Oversættelse af europæisk patentskrift

(45) Oversættelsen bekendtgjort den: 2015-05-26

(80) Dato for Den Europæiske Patentmyndigheds bekendtgørelse om meddelelse af patenter: 2015-02-18

(86) Europæisk ansøgning nr.: 11709713.9

(86) Europæisk indleveringsdag: 2011-03-22

(87) Den europæiske ansøgnings publiceringsdag: 2013-02-06

(86) International ansøgning nr.: EP2011054282

(87) Internationale publikationsnr.: WO2011120836

(30) Prioritet: 2010-04-01 US 319997 P

(84) Designerede stater: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(73) Patentehaver: Evonik Degussa GmbH, Rellinghauser Straße 1-11, 45128 Essen, Tyskland

(72) Opfinder: KÖHLE, Hans-Jürgen, Ostring 5, 63533 Mainhausen, Tyskland
SCHÖPPNER, Matthias, Am Hirschbach 17, 62638 Bad Soden Salzmunster, Tyskland
MELEDATHU, Saji John, 13319 Naylor’s Blue Ct, Chester, Virginia 23836, USA
YOUNG, Delbert G., 424 Grand Oaks Court, Groveland, Illinois 61535, USA
SCHICK, Georg, Am Böttershof 18, 47809 Krefeld, Tyskland
EULER, Axel, Brüder-Grimm-Str.103, 36396 Steinau an der Strasse, Tyskland
HAMANN, Ingo, 1 Ming Court, Chester, NJ 07930, USA
KURTH, Todd L., 18847 62nd Place North, Maple Grove, MN 55311, USA
JAKOB, Harald, Meerholzer Straße 1, 63594 Hasselroth, Tyskland

(74) Fuldægtig i Danmark: RWS Group, Europa House, Chiltern Park, Chiltern Hill, Chalfont St Peter, Bucks SL9 9FG, Storbritannien

(54) Benævnelse: AKTIV TEKSTILBLØDGØRENDE SAMMENÆTNING

(56) Fremdragne publikationer:
EP-A1- 0 829 531
WO-A1-94/19439
WO-A2-2007/026314
WO-A2-2009/018955
DE-A1- 3 402 146
GB-A- 2 007 734
DESCRIPTION

[0001] The present invention relates to fabric softener active compositions having a low content of flammable solvents, a low melt viscosity and high stability in a molten state.

[0002] Quaternary ammonium salts carrying two hydrophobic long chain hydrocarbon moieties have found broad use as fabric softener actives. Quaternary ammonium salts of alkanolamines esterified with an average two fatty acid moieties per molecule, commonly referred to as ester quats, have largely replaced earlier alkyl quaternary ammonium compounds because of their biodegradability.

[0003] Bis-(2-hydroxyethyl)-dimethylammonium chloride fatty acid diesters, which have found commercial use, are difficult to handle in a pure state, since the solid tends to lump and the melt has high viscosity at low melt temperatures and unsatisfactory stability at higher melt temperatures. Therefore, bis-(2-hydroxyethyl)-dimethylammonium chloride fatty acid diesters are usually shipped as a molten composition containing at least 13 % by weight of ethanol or 2-propanol, which has a viscosity at temperatures of 65 to 75 °C that is sufficiently low for pumping. However, such compositions have a low flash point of less than 30 °C and are therefore subject to regulatory restrictions and require additional safety measures in handling.

[0004] WO 2007/026314 proposes to replace the flammable solvent of such compositions by 2 to 40 % by weight of a diluent chosen from alkyl esters or polyesters, alkyl amides or polyamides, fatty acids, nonionics or combinations thereof and specifically discloses hydrogenated tallow fat, hydrogenated tallow fatty acid, hydrogenated coconut oil, hydrogenated palm stearine, hydrogenated soya oil, ethylene glycol distearate, hard soya sucrose ester, cetyl palmitate and pentaerythritol tetrapropionate/tetracarperate as suitable diluents. WO 2007/026314 further proposes to use an additional coupling agent, selected from polyhydric alcohols, partial esters of polyhydric alcohols non-ionic surfactants, in an amount of from 0.1 to 15 % by weight. However, the compositions taught by WO 2007/026314 have the disadvantage of a low stability in the molten state with respect to dealkylation of the quaternary ammonium salt, which leads to an increase in the content of free ester amine during transport and handling in a molten state. Further relevant art includes US 2003/02220210 and GB 2007 734.

[0005] Therefore, there is still a need for fabric softener active compositions which have a low melt viscosity and high stability in a molten state and at the same time have a low flammability.

[0006] It has now been found that fabric softener active compositions based on a bis-(2-hydroxyethyl)-dimethylammonium chloride fatty acid ester made from fatty acids with a specific chain length and a specific degree of unsaturation and having a particular molar ratio of fatty acid moieties to amine moieties, which comprise a specific amount of a fatty acid triglyceride, having a specific lower chain length of the fatty acid moieties, as well as a specific amount of an alcohol, selected from ethanol, 1-propanol and 2-propanol, show an unexpected combination of low melt viscosity, high stability towards dealkylation in the molten state and low flammability.

[0007] The present invention is therefore directed to a fabric softener active composition, comprising

a) from 65 to 95 % by weight of a bis-(2-hydroxyethyl)-dimethylammonium chloride fatty acid ester having a molar ratio of fatty acid moieties to amine moieties of from 1.80 to 1.96, an average chain length of the fatty acid moieties of from 16 to 18 carbon atoms and an iodine value, calculated for the free fatty acid, of from 0 to 50,

b) from 2 to 8 % by weight of a fatty acid triglyceride having an average chain length of the fatty acid moieties of from 10 to 14 carbon atoms and an iodine value, calculated for the free fatty acid, of from 0 to 15, and

c) from 3 to 12 % by weight of an alcohol selected from ethanol, 1-propanol and 2-propanol.

[0008] The invention is further directed to a method for making such compositions, comprising the steps

a) reacting a mixture comprising from 78 to 95 % by weight bis-(2-hydroxyethyl)-methyamine fatty acid ester having a molar ratio of fatty acid moieties to amine moieties of from 1.80 to 1.96, an average chain length of the fatty acid moieties of from 16 to 18 carbon atoms and an iodine value, calculated for the free fatty acid, of from 0 to 50, from 2 to 9 % by weight of a fatty acid triglyceride having an average chain length of the fatty acid moieties of from 10 to 14 carbon atoms and an iodine value, calculated for the free fatty acid, of from 0 to 15, and from 3 to 13 % by weight of an alcohol selected from ethanol, 1-propanol and 2-propanol with an excess of methyl chloride at a temperature of from 60 to 120 °C to provide a reaction mixture, and
b) separating unreacted methyl chloride from the reaction mixture of step a) by distilling off a mixture of methyl chloride and said alcohol, condensing alcohol from said mixture of methyl chloride and alcohol and returning condensed alcohol to said reaction mixture to provide a content of alcohol of from 3 to 12 % by weight.

[0009] The invention is also directed to an alternative method for making such compositions, comprising the steps

a) reacting a mixture comprising from 88 to 98 % by weight bis-(2-hydroxyethyl)-methylamine fatty acid ester having a molar ratio of fatty acid moieties to amine moieties of from 1.80 to 1.96, an average chain length of the fatty acid moieties of from 16 to 18 carbon atoms and an iodine value, calculated for the free fatty acid, of from 0 to 50, from 2 to 9 % by weight of a fatty acid triglyceride having an average chain length of the fatty acid moieties of from 10 to 14 carbon atoms and an iodine value, calculated for the free fatty acid, of from 0 to 15, and from 0 to 3 % by weight of an alcohol selected from ethanol, 1-propanol and 2-propanol with an excess of of from 80 to 120 °C to provide a reaction mixture,

b) adding more of the alcohol to the reaction mixture of step a) to provide a content of alcohol of from 3 to 12 % by weight, and

c) separating unreacted methyl chloride from the mixture of step b) by distilling off a mixture of methyl chloride and said alcohol, condensing alcohol from said mixture of methyl chloride and alcohol and returning condensed alcohol to said reaction mixture to provide a content of alcohol of from 3 to 12 % by weight.

[0010] The fabric softener active composition of the invention comprises from 65 to 95 % by weight of bis-(2-hydroxyethyl)-dimethylammonium chloride fatty acid ester The composition preferably comprises from 80 to 90 % by weight of said ester.

[0011] The bis-(2-hydroxyethyl)-dimethylammonium chloride fatty acid ester comprises at least one diester of formula \((CH_2)_n\left(CH_2CH_2OC=O\right)(CH_2)\left(CH_2CH_2OH\right)\left(CH_2CH_2OC=O\right)\left(CH_2CH_2OH\right)\) where \(R\) is the hydrocarbon group of a fatty acid moiety RCOO. The bis-(2-hydroxyethyl)-dimethylammonium chloride fatty acid ester has a molar ratio of fatty acid moieties to amine moieties of from 1.80 to 1.96 and preferably from 1.85 to 1.94. The specified molar ratio provides high softening performance in a rinse cycle fabric softener.

[0012] The fatty acid moiety of the bis-(2-hydroxyethyl)-dimethylammonium chloride fatty acid ester can be derived from a pure fatty acid or a mixture of fatty acids of formula RCOOH, where R is a hydrocarbon group. The hydrocarbon group may be branched or unbranched and preferably is unbranched.

[0013] The fatty acid moiety has an average chain length of from 16 to 18 carbon atoms and an iodine value, calculated for the free fatty acid, of from 0 to 50. The average chain length is preferably from 16.5 to 17.8 carbon atoms. Preferably, the fatty acid moiety has an iodine value of from 1.0 to 50, more preferably of from 2 to 50, even more preferably of from 5 to 40 and most preferably from 15 to 35. The average chain length is calculated on the basis of the weight fraction of individual fatty acids in the mixture of fatty acids. For branched chain fatty acids the chain length refers to the longest consecutive chain of carbon atoms. The iodine value is the amount of iodine in g consumed by the reaction of the double bonds of 100 g of fatty acid, determined by the method of ISO 3961. In order to provide the required average chain length and iodine value, the fatty acid moiety can be derived from a mixture of fatty acids comprising both saturated and unsaturated fatty acids. The unsaturated fatty acids are preferably monounsaturated fatty acids. The bis-(2-hydroxyethyl)-dimethylammonium chloride fatty acid ester preferably comprises less than 6 % by weight of multiply unsaturated fatty acid moieties. Examples of suitable saturated fatty acids are palmitic acid and stearic acid. Examples of suitable monounsaturated fatty acids are oleic acid and elaidic acid. The cis-trans-ratio of double bonds of unsaturated fatty acid moieties is preferably higher than 55:45 and more preferably higher than 65:35. The fraction of multiply unsaturated fatty acid moieties may be reduced by selective touch hydrogenation, which is a hydrogenation that selectively hydrogenates one double bond in a \(-CH=CH-CH=CH-\) substructure but not double bonds of monounsaturated hydrocarbon groups. The specified average chain length and iodine values are essential for simultaneously achieving high softening performance and low melting point of the composition. If the average chain length is less than 16 carbon atoms or the iodine value is higher than 50, the softening performance will be unsatisfactory, whereas the melting point of the composition can get too high if the average chain length is more than 18 carbon atoms.

[0014] The fatty acid moiety may be derived from fatty acids of natural or synthetic origin and is preferably derived from fatty acids of natural origin, most preferably from tallow fatty acid. The required iodine value can be provided by using a fatty acid mixture of natural origin that already has such an iodine value, for example a tallow fatty acid. Alternatively, the required iodine value can be provided by partial hydrogenation of a fatty acid mixture or a triglyceride mixture having a higher iodine value. In a
further and preferred embodiment, the required iodine value is provided by mixing a fatty acid mixture having a higher iodine value with a mixture of saturated fatty acids. The mixture of saturated fatty acids may be obtained either by hydrogenating a fatty acid mixture containing unsaturated fatty acids or from a hydrogenated triglyceride mixture, such as a hydrogenated vegetable oil.

[0015] The fabric softener active composition of the present invention further comprises from 2 to 8 % by weight and preferably from 3 to 6 % by weight of a fatty acid triglyceride having an average chain length of the fatty acid moieties of from 10 to 14 carbon atoms and an iodine value, calculated for the free fatty acid, of from 0 to 15. The average chain length of the fatty acid moieties is preferably from 12 to 13.8 carbon atoms. The fatty acid triglyceride is preferably a coconut oil or a hydrogenated coconut oil and most preferably a refined coconut oil. The specified amount of fatty acid triglyceride and average chain length of the fatty acid moieties is essential for simultaneously achieving low melting point and low flammability of the fabric softener active composition. Surprisingly, the specified amount of fatty acid triglyceride also improves the softening efficiency of a rinse cycle softener prepared from the fabric softener active composition of the present invention.

[0016] The fabric softener active composition of the present invention also comprises from 3 to 12 % by weight and preferably from 6 to 10 % by weight of an alcohol selected from ethanol, 1-propanol and 2-propanol. The alcohol is preferably ethanol or 2-propanol and most preferably 2-propanol. The specified amount of alcohol is essential for simultaneously achieving low flammability of the fabric softener active composition and high stability of the composition in the molten state towards dealkylation of the bis-(2-hydroxyethyl)-dimethylammonium chloride fatty acid ester. The improvement in stability that can be achieved by the specified amount of alcohol appears to be specific for the chloride salt and has not been recognized in the prior art.

[0017] The combined amount of fatty acid triglyceride and the alcohol is preferably from 10 to 15 % by weight.

[0018] The fabric softener active compositions of the present invention show a combination of high stability towards dealkylation in the molten state, low melt viscosity and low flammability. A fabric softener active composition comprising 86 % by weight bis-(2-hydroxyethyl)-dimethylammonium chloride tallow fatty acid ester, 3 % by weight coconut oil and 9 % by weight 2-propanol has a flash point of 38 °C determined according to DIN 53213.

[0019] The fabric softener active composition of the present invention can be prepared by mixing bis-(2-hydroxyethyl)-dimethylammonium chloride fatty acid ester, fatty acid triglyceride and alcohol in the specified amounts. However, the fabric softener active composition is preferably prepared by one of the two methods of the invention, which share the dealkylation of a bis-(2-hydroxyethyl)-methylamine fatty acid ester with excess methyl chloride in the presence of the fatty acid triglyceride and the subsequent separation of excess methyl chloride in the presence of the alcohol.

[0020] The first method of the invention comprises two steps.

[0021] In the first step, a mixture comprising from 78 to 95 % by weight bis-(2-hydroxyethyl)-methylamine fatty acid ester, from 2 to 9 % by weight of a fatty acid triglyceride and from 3 to 13 % by weight of an alcohol selected from ethanol, 1-propanol and 2-propanol are reacted with an excess of methyl chloride at a temperature of from 60 to 120 °C and preferably from 90 to 110 °C. The molar amount of methyl chloride is larger than the molar amount of bis-(2-hydroxyethyl)-methylamine fatty acid ester and the molar ratio of methyl chloride to bis-(2-hydroxyethyl)-methylamine fatty acid ester is preferably from 1.1 to 1.5. The bis-(2-hydroxyethyl)-methylamine fatty acid ester has a molar ratio of fatty acid moieties to amine moieties of from 1.80 to 1.96, preferably from 1.82 to 1.92, an average chain length of the fatty acid moieties of from 16 to 18 carbon atoms, preferably from 16.5 to 17.8 carbon atoms, and an iodine value, calculated for the free fatty acid, of from 0 to 50, preferably from 1.0 to 50, more preferably from 2 to 50, even more preferably of from 5 to 40 and most preferably of from 15 to 35. The fatty acid triglyceride has an average chain length of the fatty acid moieties of from 10 to 14 carbon atoms, preferably from 12 to 13.8 carbon atoms, and an iodine value, calculated for the free fatty acid, of from 0 to 15 and is preferably a coconut oil or a hydrogenated coconut oil. The reaction is preferably carried out in a pressure vessel at a total pressure of from 1 to 10 bar, preferably 3 to 8 bar. The methyl chloride is preferably added to the mixture of bis-(2-hydroxyethyl)-methylamine fatty acid ester, fatty acid triglyceride and alcohol at a rate that avoids an increase of pressure beyond the specified upper limit. The reaction is preferably carried out until more than 80 %, preferably more than 85 % of the bis-(2-hydroxyethyl)-methylamine fatty acid ester has reacted. Suitable reaction times are in the range from 2 to 8 h depending on the reaction temperature and pressure.

[0022] In the second step, unreacted methyl chloride is separated from the reaction mixture of step a) by distilling off a mixture of methyl chloride and the alcohol, condensing alcohol from the mixture of methyl chloride and alcohol that distills off and returning condensed alcohol to the reaction mixture to provide a content of alcohol of from 3 to 12 % by weight in the reaction mixture. The mixture of methyl chloride and alcohol is preferably distilled off at a total pressure of from 0.2 to 1 bar. The alcohol is preferably condensed from the mixture of methyl chloride and alcohol in a partial condenser at a temperature between the boiling points of methyl chloride and the alcohol at the pressure employed for the distillation. All or a part of the condensed alcohol may be
returned to the reaction mixture, depending on the content of alcohol that is desired for the resulting mixture.

[0023] The second method of the invention comprises three steps and differs from the first method of the invention in that in the first step the initial mixture comprises from 88 to 98 % by weight bis-(2-hydroxyethyl)-methylamine fatty acid ester and from 0 to 3 % by weight of the alcohol and in that in an additional step more of the alcohol is added to the reaction mixture of the first step to provide a content of alcohol of from 3 to 12 % by weight, before the step of separating unreacted methyl chloride from the mixture is carried out.

[0024] The two methods of the invention have the advantage of providing a fabric softener active composition having a low content of non-quaternized bis-(2-hydroxyethyl)-methylamine fatty acid ester at short reaction times. The second method of the invention has the additional advantage of low byproduct formation from alkylation of the alcohol and a further reduced alkylation reaction time.

[0025] The invention is illustrated by the following examples, which are however not intended to limit the scope of the invention in any way.

Examples

[0026] Fabric softener active compositions were prepared from coconut oil, 2-propanol and a bis-(2-hydroxyethyl)-dimethylammonium chloride tallow fatty acid ester with an iodine value of 20, calculated for the free fatty acid, having a molar ratio of fatty acid moieties to amine moieties of 1.89 and containing 0.044 mmol/g bis-(2-hydroxyethyl)-methylamine fatty acid ester, 0.041 mmol/g bis-(2-hydroxyethyl)-methylammonium chloride fatty acid ester and 0.111 mmol/g fatty acid by mixing the powdered quaternary ammonium salt with the solvents in the amounts given in table 1 and melting the mixtures.

[0027] Storage stability was determined for fabric softener active compositions that were stored for 5 days at 100 °C in closed glass bottles.

[0028] Melt viscosities were measured at 90 °C with a StressTech rheometer of RELOGICA® instruments using 50 mm parallel plates, a plate distance of 1 mm and shear rates of 1, 10 and 100 s⁻¹.

Table 1

<table>
<thead>
<tr>
<th>Properties of fabric softener active compositions</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction quat : coconut oil : 2-propanol in % by weight</td>
<td>92:0:8</td>
<td>96:4:0</td>
<td>88:4:8</td>
</tr>
<tr>
<td>Melt viscosity at 1 s⁻¹ in mPa*s</td>
<td>272</td>
<td>13200</td>
<td>262</td>
</tr>
<tr>
<td>Melt viscosity at 10 s⁻¹ in mPa*s</td>
<td>237</td>
<td>9010</td>
<td>236</td>
</tr>
<tr>
<td>Melt viscosity at 100 s⁻¹ in mPa*s</td>
<td>219</td>
<td>2290</td>
<td>194</td>
</tr>
<tr>
<td>Fraction of quat dealkylated after 5 d storage at 100 °C in %</td>
<td>7.8</td>
<td>10.0</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Not according to the invention

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO2007026314A (0004) (0004) (0004)
- US20302227215A [0004]
- US94220767346 [0004]
Patentkrav

1. Aktiv tekstilblødgørende sammensætning, der omfatter
 a) fra 65 til 95 vægtprocent af en bis-(2-hydroxyethyl)-
 dimethylammoniumchloridfedtsyreester, der har et molforhold
 mellem fedtsyredele og amindele på fra 1,80 til 1,96, en
 gennemsnitlig kædelængde for fedtsyredele på fra 16 til 18
 carbonatomer og en jodværdi beregnet for den fri fedtsyre på
 fra 0 til 50,
 b) fra 2 til 8 vægtprocent af et fedtsyretriglycerid, der har
 en gennemsnitlig kædelængde for fedtsyredele på fra 10 til
 14 carbonatomer og en jodværdi beregnet for den fri fedtsyre
 på fra 0 til 15, og
 c) fra 3 til 12 vægtprocent af en alkohol, der er udvalgt
 blandt ethanol, 1-propanol og 2-propanol.

2. Aktiv tekstilblødgørende sammensætning ifølge krav 1, der
 omfatter fra 3 til 6 vægtprocent af fedtsyreglycerideret og fra
 6 til 10 vægtprocent af alkoholen.

3. Aktiv tekstilblødgørende sammensætning ifølge krav 1
 eller 2, hvor den kombinerede mængde af fedtsyreglycerideret
 og alkoholen er fra 10 til 15 vægtprocent.

4. Aktiv tekstilblødgørende sammensætning ifølge et hvilket
 som helst af kravene 1 til 3, hvor fedtsyreglycerideret er en
 kokosolie eller en hydrogeneret kokosolie.

5. Aktiv tekstilblødgørende sammensætning ifølge et hvilket
 som helst af kravene 1 til 4, hvor fedtsyredelene af bis-(2-
 hydroxyethyl)-dimethylammoniumchloridfedtsyreesteren har en
 jodværdi beregnet for den fri fedtsyre på fra 15 til 35.

6. Fremgangsmåde til fremstilling af en aktiv
 tekstilblødgørende sammensætning ifølge krav 1, der omfatter
 trinene
 a) reaktion af en blanding, der omfatter fra 78 til
 95 vægtprocent bis-(2-hydroxyethyl)-methylaminfedtsyreester,
der har et molorhold mellem fedtsyredele og amindele på fra 1,80 til 1,96, en gennemsnitlig kædelængde for fedtsyredele på fra 16 til 18 carbonatomer og en jodværdi beregnet for den fri fedtsyre på fra 0 til 50, fra 2 til 9 vægtprocent af et fedtsytretriglycerid, der har en gennemsnitlig kædelængde for fedtsyredele på fra 10 til 14 carbonatomer og en jodværdi beregnet for den fri fedtsyre på fra 0 til 15, og fra 3 til 13 vægtprocent af en alkohol, der er udvalgt blandt ethanol, 1-propanol og 2-propanol, med et overskud af methylchlorid ved en temperatur på fra 60 til 120 °C til tilvejebringelse af en reaktionsblanding, og

b) separering af ureageret methylchlorid fra reaktionsblandingen i trin a) ved hjælp af fradestillering af en blanding af methylchlorid og alkoholen, kondensering af alkohol fra blandingen af methylchlorid og alkohol og returnering af kondenseret alkohol til reaktionsblandingen til tilvejebringelse af et indhold af alkohol på fra 3 til 12 vægtprocent.

7. Fremgangsmåde til fremstilling af en aktiv tekstilblødsgørende sammensætning ifølge krav 1, der omfatter trinene
a) reaktion af en blanding, der omfatter fra 88 til 98 vægtprocent bis-(2-hydroxyethyl)-methylaminfedtsyreester, der har et molorhold mellem fedtsyredele og amindele på fra 1,80 til 1,96, en gennemsnitlig kædelængde for fedtsyredele på fra 16 til 18 carbonatomer og en jodværdi beregnet for den fri fedtsyre på fra 0 til 50, fra 2 til 9 vægtprocent af et fedtsytretriglycerid, der har en gennemsnitlig kædelængde for fedtsyredele på fra 10 til 14 carbonatomer og en jodværdi beregnet for den fri fedtsyre på fra 0 til 15, og fra 0 til 3 vægtprocent af en alkohol, der er udvalgt blandt ethanol, 1-propanol og 2-propanol, med et overskud af methylchlorid ved en temperatur på fra 60 til 120 °C til tilvejebringelse af en reaktionsblanding,

b) tilsætning af mere af alkoholen til reaktionsblandingen i trin a) til tilvejebringelse af et indhold af alkohol på fra 3 til 12 vægtprocent og
c) separering af ureageret methylchlorid fra blandingen i trin
b) ved hjælp af fradestillering af en blanding af
methylchlorid og alkoholen, kondensering af alkohol fra
blandingen af methylchlorid og alkohol og returnering af
kondenseret alkohol til reaktionsblandingen til
tilvejebringelse af et indhold af alkohol på fra 3 til
12 vægtprocent.

8. Fremgangsmåde ifølge krav 6 eller krav 7, hvor blandingen
af methylchlorid og alkohol destilleres fra ved et totaltryk
på fra 0,2 til 1 bar.