(12) STANDARD PATENT (11) Application No. AU 2011312611 B2
(19) AUSTRALIAN PATENT OFFICE

(54)

(61)

(21)
(87)
(30)
(31)
(43)
(44)

(71)

(72)

(74)

(56)

Title
Secure deployment of provable identity for dynamic application environments

International Patent Classification(s)
HO4L 9/00 (2006.01)

Application No: 2011312611 (22) Date of Filing: 2011.09.23
WIPO No: WO12/047555

Priority Data

Number (32) Date (33) Country
12/901,445 2010.10.08 us
Publication Date: 2012.04.12

Accepted Journal Date: 2014.05.29

Applicant(s)
Microsoft Corporation

Inventor(s)

Jirka, lan;Tevosyan, Kahren;Sanders, Corey;Moore, George M.;Srivastava,
Mohit;Russinovich, Mark Eugene

Agent / Attorney
Davies Collison Cave, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000

Related Art
US 2009/0037736 A1

2012/047555 A3 | I} 0000 0 R 0 A0 0

Q
=

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

\

EEE%E;
=

12 April 2012 (12.04.2012)

WIPOIPCT

(10) International Publication Number

WO 2012/047555 A3

(51

(e2))

(22)

(25)
(26)
(30)

QY

(72)

International Patent Classification:
GOG6F 21/20 (2006.01) HO04L 9/00 (2006.01)

International Application Number:
PCT/US2011/053010

International Filing Date:

23 September 2011 (23.09.2011)
Filing Language: English
Publication Language: English
Priority Data:
12/901,445 8 October 2010 (08.10.2010) us
Applicant (for all designated States except US): MI-

CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: JIRKA, Ian; c/o Microsoft Corporation, LCA -
International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). TEVOSYAN, Kahren; c/o
Microsoft Corporation, LCA - International Patents, One
Microsoft Way, Redmond, Washington 98052-6399 (US).
SANDERS, Corey; c/o Microsoft Corporation, LCA - In-
ternational Patents, One Microsoft Way, Redmond, Wash-
ington 98052-6399 (US). MOORE, George M.; c/o Mi-
crosoft Corporation, LCA - International Patents, One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).
SRIVASTAVA, Mohit; c/o Microsoft Corporation, LCA -
International Patents, One Microsoft Way, Redmond,

81

(84)

Washington 98052-6399 (US). RUSSINOVICH, Mark
Eugene; c/0 Microsoft Corporation, LCA - International
Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(ii))

[Continued on next page]

(54) Title: SECURE DEPLOYMENT OF PROVABLE IDENTITY FOR DYNAMIC APPLICATION ENVIRONMENTS

402 fabric controller

414 host

FIG. 5

(57) Abstract: An invention is described for securely deploying a provable identity for virtual machines (VMs) in a dynamic envir -
onment. In an embodiment, a fabric controller instructs a VM host to create a VM and sends that VM a secret. The fabric controller
sends that same secret (or a second secret, such as the private key of a public/private key pair) to the security token service along
with an instruction to make an account for the VM. The VM presents proof that it possesses the secret to the security token service
and in return receives a full token. When a client connects to the deployment, it receives the public key from the security token ser -
vice, which it trusts, and the full token from the VM. It validates the full token with the public key to determine that the VM has the
identity that it purports to have.

WO 2012/047555 A3 I 0000000000 00RO 0

— as to the applicant's entitlement to claim the priority of — before the expiration of the time limit for amending the
the earlier application (Rule 4.17(iii)) claims and to be republished in the event of receipt of
Published: amendments (Rule 48.2(h))

— with international search report (Art. 21(3)) (88) Date of publication of the international sea;clhlvl['z;)ozlgzlz

02 May 2014

2011312611

10

15

20

25

H:\mka\Inter woven\NRPortb\DCC\MKA\6265833_2.doc-2/05/2014

SECURE DEPLOYMENT OF PROVABLE IDENTITY FOR
DYNAMIC APPLICATION ENVIRONMENTS

BACKGROUND

[0001] It is common for computers to communicate securely. A computer may have a
provable identity that another computer can evaluate to determine that the first computer is
the computer that it purports to be (e.g. a particular company’s login and authorization

Server).

[0002] It is also common for companies or other entities to deploy server farms made up
of virtual machines (VMs). In such server farms, multiple VMs may be configured
homogenously and serve resources to clients — such as remote desktops or remote
applications. In the course of managing such a server farm, VMs may be destroyed and
(re)created. A VM may be destroyed and then recreated for a variety of reasons, such as to

prevent drift from a known machine state by recreating it with a known machine state.

[0003] In these deployments where VMs are destroyed and created, each VM may have a
provable identity. There are many problems with establishing a provable identity for a VM

of a deployment, some of which are well known.

[0003A] It is desired to provide a method, system or computer-readable storage device
that alleviates one or more difficulties of the prior art, or to at least provide a useful

alternative.

SUMMARY
[0004] In accordance with some embodiments of the present invention, there is provided a
method for establishing a provable identity for a first computer, comprising:

in response to creating an account for the first computer on a second computer,
sending the first computer first data, and sending the second computer the first data, the
first computer sending the first data to the second computer and the second computer
verifying the first data as received from the first computer against the first data already

possessed by the second computer;

02 May 2014

2011312611

10

15

20

25

30

H:\mka\Inter woven\NRPortb\DCC\MKA\6265833_2.doc-2/05/2014

- 1A -

in response to the second computer verifying the first data as received from the first
computer against the first data already possessed by the second computer, sending the first
computer a full token that comprises an assertion of an identity of the first computer, the
full token being created by the second computer based on the account for the first

computer; and

sending a public key to a third computer, wherein the third computer confirms the
identity of the first computer based on determining that combining the full token of the
first computer and the public key produces a result consistent with the identity of the first

computer.

[0004A] In accordance with some embodiments of the present invention, there is provided
a system for establishing a provable identity for a first computer, comprising:
a memory bearing instructions that, upon execution by a processor, cause the system to at

least:

in response to creating an account for the first computer on a second computer,
send the first computer first data, and send the second computer the first data, the
first computer sending the first data to the second computer and the second
computer verifying the first data as received from the first computer against the

first data already possessed by the second computer;

in response to the second computer verifying the first data as received from the first
computer against the first data already possessed by the second computer, send the
first computer a full token that comprises an assertion of an identity of the first
computer, the full token being created by the second computer based on the

account for the first computer; and

send a public key to a third computer, wherein the third computer confirms the
identity of the first computer based on determining that combining the full token of
the first computer and the public key produces a result consistent with the identity

of the first computer.

[0004B] In accordance with some embodiments of the present invention, there is provided

a computer-readable storage device for establishing a provable identity for a virtual

02 May 2014

2011312611

10

15

20

25

H:\mka\Inter woven\NRPortb\DCC\MKA\6265833_2.doc-2/05/2014

-1B -

machine (VM), bearing computer-readable instructions that, upon execution by a

computer, cause the computer to perform operations comprising:
creating an account on a token service for the VM;
creating the VM;
creating a secret for the VM; and
sending the secret to the VM and to the token service, such that:
the VM sends proof of possession of the secret to the token service;

in response to determining that the VM possesses the secret, the token

service sends a full token to the VM;

in response to receiving a request from an external computer for a public
key of the token service, the token service sends the public key to the

external computer; and

the VM sends the full token to the external computer, such that the external
computer validates an identity of the VM by processing the full token with

the public key, and communicates with the VM.

[0005] One problem that prior techniques have, and which is reduced or eliminated by
the present invention is that of the amount of time they require to establish a VM’s
provable identity. The prior techniques require a relatively large amount of time to carry
out. This time cost may not be a major issue in a static environment, where once a
machine is set up, it will run for an extended period of time. However in a VM
deployment environment, such as a MICROSOFT Azure cloud computing platform, VMs
may have a relatively short life, and may be recreated many times. This large number of
creation events and the relatively short life of a VM after creation means that this relatively
large cost in establishing a provable identity for the VM upon creation will occupy a large
amount of the VM’s time, and the VM will have less time when it is fully functional.
[0006] In an embodiment of the present invention, a controller manages the VMs of a
server farm. This controller may be, for example, MICROSOFT’s Azure Fabric

Controller, which monitors, maintains and provisions VMs in a MICROSOFT Azure

10

15

20

25

30

WO 2012/047555 PCT/US2011/053010

cloud computing environment deployment. The deployment also comprises a security
token service that is configured to provide clients of the server farm with tokens that the
clients can use to confirm the provable identity of a VM in the server farm.

[0007] Inan embodiment, when the controller deploys a new VM instance, it injects a
piece of cryptographic data (a “secret”) into the image file that the VM will boot from.
Other embodiments may implement other ways of communicating a secret, such as via a
separately established security network channel, or where the VM generates the secret and
transmits it to the controller over a secure network channel. The controller sends this
same cryptographic data (or other cryptographic data corresponding to the cryptographic
data, such as where the cryptographic data is a private key, and the other cryptographic
data is a public key of an asymmetrical key pair) to the security token service, along with
other information that the security token service uses to generate a claim for The new VM.
After the controller deploys the new VM instance, the new VM sends the security token
service proof that it possesses the secret via a security protocol, and in response receives a
full claim token.

[0008] When a client connects to the server farm, it will attempt to establish the provable
identity of the VM to which it connects. To do so, the client retrieves a public key from
the security token service that the security token service uses to sign claims. The client
also receives the full claim token from the VM, and uses the public key from the security
token service and the full claim token from the VM to determine whether or not the VM’s
identity is proven.

[0009] The example embodiments described herein discuss a situation where a client
connects to a VM of a server farm. As described, the client may be thought of as
performing a role traditionally considered to be performed by a server — that of
authenticating the VM’s identity. There are also embodiments where the roles are
reversed in a communication, where the VM authenticates the client’s identity. In either
type of embodiment, the invention for establishing a secure provable identity of a VM of a
server farm may be deployed.

[0010] In another embodiment, the invention is implemented when the controller
redeploys a single application instance into another VM host within the server farm (or
even in a different data center, if the application migrates, for instance, due to geographic
constraints). Application instances might move around frequently due to the underlying
operating system undergoing security patching, or rebooting, or where the underlying

hardware experiences a failure. Thus, the invention provides a secure provable identity

-2

02 May 2014

2011312611

10

15

20

25

H:\mka\Inter woven\NRPortb\ADCC\MKA\6265833_2.doc-2/05/2014

-3-

that is durable across space and time, so even if the application instance is forcibly moved
to a different physical server, the secure provable identity remains constant. This is an
improvement over prior techniques, where a secure provable identity was bound to the

underlying physical hardware.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Some embodiments of the present invention are hereinafter described, by way of
example only, with reference to the accompanying drawings, in which:

[0012] FIG. 1 depicts an example general purpose computing environment in which
techniques described herein may be embodied.

[0013] FIG. 2 depicts an example remote presentation session server that may be
embodied within a virtual machine with a provable identity.

[0014] FIG. 3 depicts an example virtual machine host wherein techniques described
herein can be implemented.

[0015] FIG. 4 depicts a second example virtual machine host wherein techniques
described herein can be implemented.

[0016] FIG. 5 depicts an example server farm in which an aspect of an embodiment of
the invention is implemented.

[0017] FIG. 6 depicts another example server farm in which an aspect of an embodiment
of the invention is implemented.

[0018] FIG. 7 depicts another example server farm in which an aspect of an embodiment
of the invention is implemented.

[0019] FIG. 8 depicts example operational procedures for a server farm establishing a
provable identity for a VM of the server farm.

[0020] FIG. 9 depicts example operational procedures for a client of a server farm

verifying the provable identity of a VM of a server farm.

02 May 2014

2011312611

10

H:\mka\Inter woven\NRPortb\DCC\MKA\6265833_2.doc-2/05/2014

-3A -

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

[0021] Embodiments may execute on one or more computer systems. FIG. 1 and the
following discussion are intended to provide a brief general description of a suitable
computing environment in which the disclosed subject matter may be implemented.

[0022] The term processor used throughout the description can include hardware
components such as hardware interrupt controllers, network adaptors, graphics processors,
hardware based video/audio codecs, and the firmware used to operate such hardware. The

term processor can also include microprocessors, application specific integrated circuits,

10

15

20

25

30

WO 2012/047555 PCT/US2011/053010

and/or one or more logical processors, €.g., one or more cores of a multi-core general
processing unit configured by instructions read from firmware and/or software. Logical
processor(s) can be configured by instructions embodying logic operable to perform
function(s) that are loaded from memory, e.g., RAM, ROM, firmware, and/or mass
storage.

[0023] Referring now to FIG. 1, an exemplary general purpose computing system is
depicted. The general purpose computing system can include a conventional computer 20
or the like, including at least one processor or processing unit 21, a system memory 22,
and a system bus 23 that communicative couples various system components including the
system memory to the processing unit 21 when the system is in an operational state. The
system bus 23 may be any of several types of bus structures including a memory bus or
memory controller, a peripheral bus, and a local bus using any of a variety of bus
architectures. The system memory can include read only memory (ROM) 24 and random
access memory (RAM) 25. A basic input/output system 26 (BIOS), containing the basic
routines that help to transfer information between elements within the computer 20, such
as during start up, is stored in ROM 24. The computer 20 may further include a hard disk
drive 27 for reading from and writing to a hard disk (not shown), a magnetic disk drive 28
for reading from or writing to a removable magnetic disk 29, and an optical disk drive 30
for reading from or writing to a removable optical disk 31 such as a CD ROM or other
optical media. The hard disk drive 27, magnetic disk drive 28, and optical disk drive 30
are shown as connected to the system bus 23 by a hard disk drive interface 32, a magnetic
disk drive interface 33, and an optical drive interface 34, respectively. The drives and
their associated computer readable media provide non volatile storage of computer
readable instructions, data structures, program modules and other data for the computer
20. Although the exemplary environment described herein employs a hard disk, a
removable magnetic disk 29 and a removable optical disk 31, it should be appreciated by
those skilled in the art that other types of computer readable media which can store data
that is accessible by a computer, such as flash memory cards, digital video disks, random
access memories (RAMs), read only memories (ROMs) and the like may also be used in
the exemplary operating environment. Generally, such computer readable storage media
can be used in some embodiments to store processor executable instructions embodying
aspects of the present disclosure.

[0024] A number of program modules comprising computer-readable instructions may

be stored on computer-readable media such as the hard disk, magnetic disk 29, optical disk

-4-

10

15

20

25

30

WO 2012/047555 PCT/US2011/053010

31, ROM 24 or RAM 25, including an operating system 35, one or more application
programs 36, other program modules 37 and program data 38. Upon execution by the
processing unit, the computer-readable instructions cause the actions described in more
detail below to be carried out or cause the various program modules to be instantiated. A
user may enter commands and information into the computer 20 through input devices
such as a keyboard 40 and pointing device 42. Other input devices (not shown) may
include a microphone, joystick, game pad, satellite dish, scanner or the like. These and
other input devices are often connected to the processing unit 21 through a serial port
interface 46 that is coupled to the system bus, but may be connected by other interfaces,
such as a parallel port, game port or universal serial bus (USB). A monitor 47, display or
other type of display device can also be connected to the system bus 23 via an interface,
such as a video adapter 48. In addition to the display 47, computers typically include
other peripheral output devices (not shown), such as speakers and printers. The exemplary
system of FIG. I also includes a host adapter 55, Small Computer System Interface (SCSI)
bus 56, and an external storage device 62 connected to the SCSI bus 56.

[0025] The computer 20 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 49. The remote
computer 49 may be another computer, a server, a router, a network PC, a peer device or
other common network node, and typically can include many or all of the elements
described above relative to the computer 20, although only a memory storage device 50
has been illustrated in FIG. 1. The logical connections depicted in FIG. I can include a
local area network (LAN) 51 and a wide area network (WAN) 52. Such networking
environments are commonplace in offices, enterprise wide computer networks, intranets
and the Internet.

[0026] When used in a LAN networking environment, the computer 20 can be connected
to the LAN 51 through a network interface or adapter 53. When used in a WAN
networking environment, the computer 20 can typically include a modem 54 or other
means for establishing communications over the wide area network 52, such as the
Internet. The modem 54, which may be internal or external, can be connected to the
system bus 23 via the serial port interface 46. In a networked environment, program
modules depicted relative to the computer 20, or portions thereof, may be stored in the
remote memory storage device. It will be appreciated that the network connections shown
are exemplary and other means of establishing a communications link between the

computers may be used. Moreover, while it is envisioned that numerous embodiments of

-5-

10

15

20

25

30

WO 2012/047555 PCT/US2011/053010

the present disclosure are particularly well-suited for computerized systems, nothing in
this document is intended to limit the disclosure to such embodiments.

[0027] System memory 22 of computer 20 may comprise instructions that, upon
execution by computer 20, cause the computer 20 to implement the invention, such as the
operational procedures of FIG. 5 or FIG. 6.

[0028] Generally, FIG. 2 depicts a high level overview of a server environment that can
be configured to include aspects of the invention. Server 204 may be effectuated in
computer 20 of FIG. 1, where system memory 22 comprises instructions that, upon
execution by processing unit 21, cause processing unit 21 to carry out operations that
implement the invention. In reference to the figure, depicted is a server 204 that can
include circuitry configured to effectuate a remote presentation session server, or in other
embodiments the server 204 can include circuitry configured to support remote
presentation connections. In the depicted example, the server 204 can be configured to
generate one or more sessions for connecting clients such as sessions 1 through N (where
N is an integer greater than 1). Briefly, a session in example embodiments of the present
invention can generally include an operational environment that is effectuated by a
plurality of subsystems (e.g., software code) that are configured to interact with a kernel
214 of server 204. For example, a session can include a process that instantiates a user
interface such as a desktop window, the subsystems that track mouse movement within the
window, the subsystems that translate a mouse click on an icon into commands that
effectuate an instance of a program, etc. A session can be generated by the server 204 on
a user-by-user basis by the server 204 when, for example, the server 204 receives a
connection request over a network connection from a client 201. Generally, a connection
request can first be handled by the transport logic 210 that can, for example, be effectuated
by circuitry of the server 204. The transport logic 210 can in some embodiments include a
network adaptor; firmware, and software that can be configured to receive connection
messages and forward them to the engine 212. As illustrated by FIG. 2, the transport logic
210 can in some embodiments include protocol stack instances for each session.
Generally, each protocol stack instance can be configured to route user interface output to
a client and route user input received from the client to the session core 244 associated
with its session.

[0029] Continuing with the general description of FIG. 2, the engine 212 in some
example embodiments of the present invention can be configured to process requests for

sessions; determine the functionality for each session; generate sessions by allocating a set

-6-

10

15

20

25

30

WO 2012/047555 PCT/US2011/053010

of physical resources for the session; and instantiating a protocol stack instance for the
session. In some embodiments the engine 212 can be effectuated by specialized circuitry
components that can implement some of the above mentioned operational procedures. For
example, the circuitry in some example embodiments can include memory and a processor
that is configured to execute code that effectuates the engine 212. As depicted by FIG. 2,
in some instances the engine 212 can receive connection requests and determine that, for
example, a license is available and a session can be generated for the request. In the
situation where the server 204 is a remote computer that includes remote presentation
session capabilities, the engine 212 can be configured to generate a session in response to
a connection request without checking for a license. As illustrated by FIG. 2, a session
manager 216 can be configured to receive a message from an engine 212 and in response
to the message the session manager 216 can add a session identifier to a table; assign
memory to the session identifier; and generate system environment variables and instances
of subsystem processes in memory assigned to the session identifier.

[0030] As illustrated by FIG. 2, the session manager 216 can instantiate environment
subsystems such as a runtime subsystem 240 that can include a kernel mode part such as
the session core 244. For example, the environment subsystems in an embodiment are
configured to expose some subset of services to application programs and provide an
access point to the kernel of the operating system 214. In example embodiments the
runtime subsystem 240 can control the execution of processes and threads and the session
core 244 can send requests to the executive of the kernel 214 to allocate memory for the
threads and schedule time for them to be executed. In an embodiment the session core 244
can include a graphics display interface 246 (GDI), a security subsystem 250, and an input
subsystem 252. The input subsystem 252 can in these embodiments be configured to
receive user input from a client 201 via the protocol stack instance associated with the
session and transmit the input to the session core 244 for the appropriate session. The user
input can in some embodiments include signals indicative of absolute and/or relative
mouse movement commands, mouse coordinates, mouse clicks, keyboard signals, joystick
movement signals, etc. User input, for example, a mouse double-click on an icon, can be
received by the session core 244 and the input subsystem 252 can be configured to
determine that an icon is located at the coordinates associated with the double-click. The
input subsystem 252 can then be configured to send a notification to the runtime

subsystem 240 that can execute a process for the application associated with the icon.

10

15

20

25

30

WO 2012/047555 PCT/US2011/053010

[0031] In addition to receiving input from a client 201, draw commands can be received
from applications and/or a desktop and be processed by the GDI 246. The GDI 246 in
general can include a process that can generate graphical object draw commands. The
GDI 246 in this example embodiment can be configured to pass its output to the remote
presentation subsystem 254 where the commands are formatted for the display driver that
is attached to the session. In certain example embodiments one or more physical displays
can be attached to the server 204, e.g., in a remote presentation session situation. In these
example embodiments the remote presentation subsystem 254 can be configured to mirror
the draw commands that are rendered by the display driver(s) of the remote computer
system and transmit the mirrored information to the client 201 via a stack instance
associated with the session. In another example embodiment, where the server 204 is a
remote presentation session server, the remote presentation subsystem 254 can be
configured to include virtual display driver(s) that may not be associated with displays
physically attacked to the server 204, e.g., the server 204 could be running headless. The
remote presentation subsystem 254 in this embodiment can be configured to receive draw
commands for one or more virtual displays and transmit them to the client 201 via a stack
instance associated with the session. In an embodiment of the present invention, the
remote presentation subsystem 254 can be configured to determine the display resolution
for each display driver, e.g., determine the display resolution of the virtual display
driver(s) associated with virtual displays or the display resolution of the display drivers
associated with physical displays; and route the packets to the client 201 via the associated
protocol stack instance.

[0032] In some example embodiments the session manager 216 can additionally
instantiate an instance of a logon process (sometimes referred to as a log in process)
associated with the session identifier of the session that can be configured to handle logon
and logoff for the session. In these example embodiments drawing commands indicative
of the graphical user interface associated with the logon process can be transmitted to the
client 201 where a user of the client 201 can input an account identifier, e.g., a
username/password combination, a smart card identifier, and/or biometric information into
a logon screen. The information can be transmitted to server 204 and routed to the engine
212 and the security subsystem 250 of the session core 244. For example, in certain
example embodiments the engine 212 can be configured to determine whether the user
account is associated with a license; and the security subsystem 250 can be configured to

generate a security token for the session.

10

15

20

25

30

WO 2012/047555 PCT/US2011/053010

[0033] FIG. 3A depicts an example virtual machine host (sometimes referred to as a
VMHost or host) wherein aspects of an embodiment of the invention can be implemented.
The VMHost can be implemented on a computer such as computer 20 depicted in FIG. 1,
and VMs on the VMHost may execute an operating system that effectuates a remote
presentation session server, such as server operating system 214 of FIG. 2.

[0034] Hypervisor microkernel 302 can enforce partitioning by restricting a guest
operating system’s view of system memory. Guest memory is a partition’s view of
memory that is controlled by a hypervisor. The guest physical address can be backed by
system physical address (SPA), i.e., the memory of the physical computer system,
managed by hypervisor. In an embodiment, the GPAs and SPAs can be arranged into
memory blocks, i.e., one or more pages of memory. When a guest writes to a block using
its page table, the data is actually stored in a block with a different system address
according to the system wide page table used by hypervisor.

[0035] In the depicted example, parent partition component 304, which can also be also
thought of as similar to “domain 0” in some hypervisor implementations, can interact with
hypervisor microkernel 302 to provide a virtualization layer. Parent partition 304 in this
operational environment can be configured to provide resources to guest operating systems
executing in the child partitions 1-N by using virtualization service providers 328 (VSPs)
that are sometimes referred to as “back-end drivers.” Broadly, VSPs 328 can be used to
multiplex the interfaces to the hardware resources by way of virtualization service clients
(VSCs) (sometimes referred to as “front-end drivers”) and communicate with the
virtualization service clients via communication protocols. As shown by the figures,
virtualization service clients can execute within the context of guest operating systems.
These drivers are different than the rest of the drivers in the guest in that they may be
supplied with a hypervisor, not with a guest.

[0036] Emulators 334 (e.g., virtualized integrated drive electronics device (IDE devices),
virtualized video adaptors, virtualized NICs, etc.) can be configured to run within the
parent partition 304 and are attached to resources available to guest operating systems 320
and 322. For example, when a guest OS touches a register of a virtual device or memory
mapped to the virtual device 302, microkernel hypervisor can intercept the request and
pass the values the guest attempted to write to an associated emulator.

[0037] Each child partition can include one or more virtual processors (330 and 332) that
guest operating systems (320 and 322) can manage and schedule threads to execute

thereon. Generally, the virtual processors are executable instructions and associated state

-9.

10

15

20

25

30

WO 2012/047555 PCT/US2011/053010

information that provide a representation of a physical processor with a specific
architecture. For example, one virtual machine may have a virtual processor having
characteristics of an INTEL x86 processor, whereas another virtual processor may have
the characteristics of a PowerPC processor. The virtual processors in this example can be
mapped to logical processors of the computer system such that the instructions that
effectuate the virtual processors will be backed by logical processors. Thus, in an
embodiment including multiple logical processors, virtual processors can be
simultaneously executed by logical processors while, for example, other logical processors
execute hypervisor instructions. The combination of virtual processors and memory in a
partition can be considered a virtual machine.

[0038] Guest operating systems can include any operating system such as, for example,
a MICROSOFT WINDOWS operating system. The guest operating systems can include
user/kernel modes of operation and can have kernels that can include schedulers, memory
managers, etc. Generally speaking, kernel mode can include an execution mode in a
logical processor that grants access to at least privileged processor instructions. Each
guest operating system can have associated file systems that can have applications stored
thereon such as terminal servers, e-commerce servers, email servers, etc., and the guest
operating systems themselves. The guest operating systems can schedule threads to
execute on the virtual processors and instances of such applications can be effectuated.
[0039] FIG. 4 depicts a second example VMHost wherein techniques described herein
can be implemented. FIG. 4 depicts similar components to those of FIG. 3; however in
this example embodiment the hypervisor 338 can include the microkernel component and
components from the parent partition 304 of FIG. 3 such as the virtualization service
providers 328 and device drivers 324 while management operating system 336 may
contain, for example, configuration utilities used to configure hypervisor 304. In this
architecture hypervisor 338 can perform the same or similar functions as hypervisor
microkernel 302 of FIG. 3; however, in this architecture hypervisor 334 can be configured
to provide resources to guest operating systems executing in the child partitions.
Hypervisor 338 of FIG. 4 can be a stand alone software product, a part of an operating
system, embedded within firmware of the motherboard or a portion of hypervisor 338 can
be effectuated by specialized integrated circuits.

[0040] FIG. 5 depicts an example deployment in which an aspect of an embodiment of
the invention is implemented. The host 414 depicted in FIG. 5 may comprise example VM

host 300 of FIG. 3 or 4, and host 414 may comprise a VM 408 that performs the functions

-10 -

10

15

20

25

30

WO 2012/047555 PCT/US2011/053010

of a remote presentation session server, such as the remote presentation session server 204
of FIG. 2, Deployment 400 comprises fabric controller 402, security token service 404,
hosting layer 406, VMs 408-1 through 408-N, and VM images 410-1 through 410-N. As
depicted, there are three instances of VM 408, though it may be appreciated that more or
fewer instances of VM 408 may exist in systems that implement the present invention.
Likewise, as depicted, there are three instances of VM image 410, though it may be
appreciated that more or fewer instances of VM image 410 may exist in systems that
implement the present invention. The instances of VM 408 are homogenously configured
— they are configured to execute the same version of an operating system and to execute
certain applications. There may be other VMs within deployment 400 that are not
homogenously configured with VM 408. As depicted, each instance of VM 408 is
configured to provide resources to client computers that access deployment 400. For
instance, the instances of VM 408 may be configured to serve remote desktops or remote
applications to clients. Each instance of VM 408 has an associated VM image 410 (for
instance, VM 408-1 has associated VM image 410-a). A VM’s associated VM image
comprises a storage medium that bears instructions and/or data used in executing the VM.
For instance, VM image 410-1 may comprise a guest operating system (guest OS) that
VM 408-1 executes. A VM image 410 may be associated with a VM 408 by configuring
the VM 408 to mount the associated VM image 410 upon execution of VM 408 and access
instructions and/or data stored thereon.

[0041] The instances of VM 408 are hosted by a hosting layer 406 of a physical host
414. For instance, in a MICROSOFT Azure environment, hosting layer 406 may
comprise an instance of Azure VM Host. Hosting layer 406 executes on a physical
machine and is configured to enable multiple instances of VM 408 to run concurrently on
the physical machine. Hosting layer 406 presents to a VM 408 a virtual operating
platform and monitors the execution of VM 408 (and a guest operating system executing
within VM 408).

[0042] Security token service 404 is configured to create and manage accounts for VMs
and other entities (such as fabric controller 402) within deployment 400. That is, security
token service 404 is able to extend a chain of trust that it is part of to other entities within
deployment 400. Security token service 404 itself may be considered trusted because
client 412 is configured with information that allows it to validate security tokens issued
by security token server 404. For example, client 412 may be configured with the

certificate the security token service 404 uses to sign tokens that it passes to VMs 408.

-11 -

10

15

20

25

30

WO 2012/047555 PCT/US2011/053010

Alternatively, client 412 may be configured to possess the subject name of the certificate
used by security token service 404 for signing tokens that it issues.

[0043] A VM 408 may request a token from security token service 404. In that request,
VM 408 proves its identity to security token service 404 by providing proof that it
possesses the secret with which it was provisioned by fabric controller 402. Security
token service 404 validates the identity of VM 408 using the account information (such as
the VM’s 408 public key) that was created by fabric controller 402. Security token service
404 then issues the token to the VM 408. The token is signed with the security token
service’s 404 private key. The VM 408 then sends the token to client 412, which validates
that the token is signed by the security token service 404 using the information about the
security token service’s certificate with which client 412 is configured. Upon validation
of the token, client 412 is able to check the identity asserted in the token for VM 408.
[0044] An example communication flow for effectuating the present invention is also
depicted in FIG. 5. In communication flow (1), security token service 404 sends its public
key to client 412. This may occur in response to security token service 404 receiving a
request from client 412 for this public key. Communication flow (2) depicts fabric
controller 402 instructing hosting layer 406 to create VM 408-1, and to pass a secret to
VM 408-1 (such as by storing it in a location of VHD 410-1 where VM 408-1 is
configured to look for the secret). Communication flow (3) depicts fabric controller 402
also sending that secret to security token service 404 and instructing security token service
404 to create an account for VM 408-1. In communication flow (4), VM 408-1 sends
security token service 404 evidence that it has the secret. This may comprise the secret
itself, but in scenarios where it may be possible for an attacker to snoop the
communication link used for communication flow (4), it may rather comprise some
indirect evidence that VM-1 408-1 has possession of the secret. For instance, where the
secret comprises a number, VM-1 408-1 use the secret as input to a mathematical function,
and then send the output of that mathematical function (the evidence that it has the secret)
to security token service 404. Security token service 404, also having the secret, may also
perform the same mathematical function using the secret as input, then compare its result
against the result that it receives from VM-1 408-1. Where its result matches the result
that it receives, security token service may determine that VM-1 408-1 does have the
secret, is thus a valid member of the deployment, and send VM-1 408-1 a full token that it
can use to prove its identity to a client. Security token service 404 may sign this full token

with its private key before sending it, so that VM-1 408-1 may decrypt is with security

-12 -

10

15

20

25

30

WO 2012/047555 PCT/US2011/053010

token service’s 404 public key, and confirm that the full token was generated by security
token service 404, and that it was not modified during transmission. Communication flow
(5) depicts client 412 receiving VM-1 408-1’s full token. This may occur, for example, in
response to client 412 sending a request to VM-1 408-1 for its full token. In another
embodiment, VM-1 408-1 may broadcast or otherwise offer its token at a known location
(such as at a gateway or connection broker of a deployment), and client 412 may obtain
the token from this location.

[0045] As a result of communication flow (1) and communication flow (5), client 412
now has both the public key of security token service 304 and the full token of VM-1 408-
1. It may then validate the full token (and, as a result, that VM-1 408-1 does have the
identity that it purports to have) with the public key. For instance, where a mathematical
function that takes the public key and the full token as inputs produces a known output
that matches what client 412 knows the output should match if VM-1 408-1 does have the
identity it purports to have, then client 412 may determine that VM-1 408-1 does have the
identity it purports to have.

[0046] It may be appreciated that the present invention may be effectuated without
adhering strictly to this communication flow of FIG. 5 (such as by implementing the
communication flow of FIG. 6). For instance, in an embodiment of the present invention,
client 412 may not receive the public key from security token service 404 (herein depicted
as communication flow (1)) until after any of communication flows (2), (3), (4) or (5) have
occurred. In another embodiment of the present invention, communication flow (3)
(where fabric controller 402 sends the secret to security token service 404) may occur
before communication flow (2) (where fabric controller sends the secret to VM 408-1).
These examples do not make up a full enumeration of the possibilities for the
communication flow.

[0047] FIG. 6 depicts another example deployment in which an aspect of an embodiment
of the present invention is implemented, similar to FIG. 5. Fabric controller 402b, security
token service 404b, hosting layer 406b, VMs 408-1b through 408-Nb, VHDs 410-1b
through 410-Nb, client 412b, and host 414b may be similar to fabric controller 402,
security token service 404, hosting layer 406, VMs 408-1 through 408-N, VHDs 410-1
through 410N, client 412, and host 414 of FIG. 5, respectively.

[0048] The primary difference between the embodiment of FIG. 6 and the embodiment
of FIG. 5 is that, in the embodiment of FIG. 6, security token service 404b and VM 408-1b

do not communicate directly as in FIG. 5, but rather use fabric controller 402b as an

-13 -

10

15

20

25

30

WO 2012/047555 PCT/US2011/053010

intermediary. In embodiments, this may be advantageous, because security token service
404D has fewer communications links to maintain. Embodiments where a security token
service 404 and a VM 408 communicate directly to present VM 408 with a full token may
be advantageous, such as where a token is valid only for a set period of time, so time spent
indirectly sending the token through a fabric controller 404 may take up some of the time
for which that full token is valid.

[0049] Like with respect to the communication flow of FIG. 5, the communication flow
of the embodiment of FIG. 6 is not mandatory, and there are other embodiments that
implement the present invention that may use different communication flows.

[0050] As depicted in FIG. 6, in communication flow 1B, client 412b obtains a public
key from security token service 404b, and in communication flow 4B, client 412b obtains
a full token from VM-1b 408-1b. These communication flows of 1B and 4B may be
similar to communication flows 1 and 5, respectively, as described for FIG. 5.

[0051] Communication flow 2B depicts fabric controller 402b instructing security token
service 404b to create an account for VM-1b 408-1b and receiving a full token from VM-
1b 408-1b. In an embodiment where a secret is also created or determined,
communication flow 2B includes either security token service 404b creating or
determining the secret, and then sending it to fabric controller 402b, or fabric controller
402b creating or determining the secret, and then sending it to security token service 404b.
[0052] Communication flow 3B depicts fabric controller 402b sending the full token to
VM-1b 408-1b. Where a secret is also used in an embodiment, communication flow 3B
includes fabric controller 402b sending the secret to VM-1b 408-1b. After VM-1b 408-1b
has the full token, it may send that full token to client 412b in communication flow 4B.
Between communication flows 1B and 4B, client 412b has both the public key form
security token service 404b (communication flow 1B) and the full token from VM-1b 408-
1b (communication flow 4B). Client 412b may then validate the purported identity of
VM-1b 408-1b using the public key and the token, as described with respect to FIG. 5.
[0053] FIG. 7 depicts another example deployment in which an aspect of an embodiment
of the invention is implemented, similar to FIGs. 5 and 6. Fabric controller 402c, security
token service 404c, hosting layer 406¢, VMs 408-1c through 408-Nc, VHDs 410-1c
through 410-Nc, client 412¢, and host 414¢ may be similar to fabric controller 402,
security token service 404, hosting layer 406, VMs 408-1 through 408-N, VHDs 410-1
through 410N, client 412, and host 414 of FIG. 5, respectively.

- 14 -

10

15

20

25

30

WO 2012/047555 PCT/US2011/053010

[0054] FIG. 7 also depicts deployment management 416¢, which comprises fabric
controller 402c¢ and security token service 404c. Deployment management 416¢ handles a
management role for a deployment that includes host 414c, including such things as
provisioning VMs and providing tokens for authentication to VMs.

[0055] The primary difference between the embodiment of FIG. 7 and the embodiments
of FIGs. 5 and 6 is that, in the embodiment of FIG. 7, deployment management 416¢
provisions VM-1c 408-1c, sends a public key to client 412c¢, and sends a full token to VM-
1c 408-1c, whereas, for instance, in FIG. 5, those tasks were divided between fabric
controller 402c¢ and security token service 404c. Such an embodiment may occur where a
single system or process handles these tasks by itself.

[0056] Like with respect to the communication flow of FIG. 5, the communication flow
of the embodiment of FIG. 7 is not mandatory, and there are other embodiments that
implement the present invention that may use different communication flows.

[0057] As depicted in FIG. 7, in communication flow 1C, client 412¢ obtains a public
key from deployment management 416¢. This may occur in a similar manner as to how
client 412 obtains a public key from security token service 404 in communication flow 1
of FIG. 5. As further depicted in FIG. 7, in communication flow 3C, client 412¢ obtains a
full token from VM-1c¢ 408-1c. This may occur in a similar manner as to how client 412¢
obtains a full token from VM-1 408-1 in communication flow 5 of FIG 4A.

[0058] As depicted in FIG. 7, in communication flow 2C, deployment management 416¢
provisions VM-1c 408-1c¢ (such as by sending instructions to do so to host 414c), and also,
as part of this act of provisioning, sends VM-1c 408-1c¢ a full token that VM-1c 408-1c
may use to prove its identity to clients such as client 412c.

[0059] After communication flows 1C, 2C, and 3C have occurred, client 412¢ has both a
public key from deployment manager 416¢ (obtained in communication flow 1C), and a
full token from VM-1¢ 408-1c (obtained in communication flow 3C). Client 412¢ may
then validate the purported identity of VM-1c 408-1c¢ using the public key and the token,
as described with respect to FIG. 5.

[0060] FIG. 8 depicts example operational procedures for a deployment establishing a
provable identity for a VM of the deployment, that may be implemented, for instance, in
the systems depicted in FIGs. 5-7. The operational procedures of FIG. 8 may be
performed by a fabric controller, such as fabric controller 402. The operational procedures
of FIG. 8 begin with operation 500, which leads into operation 502. Operation 502 depicts

creating an account for the first computer (such as VM-1 408-1) on a second computer

-15-

10

15

20

25

30

WO 2012/047555 PCT/US2011/053010

(such as security token service 404). Operation 502 may be effectuated in a manner
similar to communication flow (3) of FIG. 5, or communication flow (2B) of FIG. 6.
[0061] In an embodiment where creating an account for the first computer on the second
computer is performed by a fourth computer (such as fabric controller 402), and wherein
the fourth computer has an account on the second computer and the authority to create
accounts for other computers, operation 502 may include instructing the second computer,
by the fourth computer, to create the account for the first computer. For instance, in FIG.
5, fabric controller 402 may have an account with security token service 404, and have the
ability to create accounts for other computers.

[0062] Operation 504 depicts preparing the first computer to communicate on a
communications network. Provisioning may comprise the fabric controller preparing the
first computer/VM to operate, such as by creating the VM, and configuring it with the
appropriate data and software to fulfill its function.

[0063] Operation 506 depicts sending the first computer a full token that comprises an
assertion of an identity of the first computer, the full token being created by the second
computer, computer based on the account for the first computer. The token may comprise
a claim of an identity of the first computer. In an embodiment, operation 506 is performed
by the second computer (security token service 404). This may be similar to
communication flow (4) of FIG. 5.

[0064] In an embodiment, operation 506 comprises sending to the first computer, by the
second computer, the full token, in response to receiving a credential from the first
computer corresponding to a credential stored in an account for the first computer on the
second computer. For instance, when fabric controller 402 provisions VM-1 408-1 and
also creates an account for VM-1 408-1 with security token service 404, it may send a
credential (sometimes referred to as a secret) to both VM-1 408-1 and security token
service 404. Then, when VM-1 408-1 wants to prove to security token service 404 that it
is authorized to receive a full token for the account, it may present the credential to
security token service 404 (such as by encoding it with security token service’s 404 public
key).

[0065] Operation 508 depicts sending a public key to a third computer (such as client
412), wherein the third computer confirms the identity of the first computer based on
determining that combining the full token of the first computer with the public key
produces a result consistent with the identity of the first computer. This may comprise

communication flows (1) and (5) of FIG. 5, communication flows (1B) and (4B) of FIG. 6,

- 16 -

10

15

20

25

30

WO 2012/047555 PCT/US2011/053010

or communication flows (1C) and (3C) of FIG. 7. When client 412 obtains both security
token service’s 404 public key, and the full token from VM-1 408-1, it may validate an
identity of VM-1 408-1 by processing the secure token with the public key to produce a
known result that is consistent with the identity of the first computer.

[0066] In an embodiment, operation 508 comprises the third computer determining to
trust the full token because it was issued by the second computer, the third computer
having validated an identity of the second computer. The third computer may have
validated the identity of the second computer through determining that a domain name
service name (such as a name provided through DNS) for the second computer matches a
name in a certificate for the second computer (such as a Secure Sockets Layer — SSL —
certificate). That client 412 trusts the full token at all may be based on a trusted-chain that
extends from an entity that it trusts down to VM-1 408-1. The top of this chain may be the
Domain Name System (DNS) — that when client 412 queries DNS for the computer with
name tokenservice.contoso.com and is directed to security token service 404, that that
information is accurate. Client 412 may then authenticate a certificate presented by
security token service 404 (that is issued by a certificate authority, or self-issued) as
having the same name for the security token service as is obtained through DNS. Client
412 may then trust that security token service 412 has the identity it asserts to have. This
chain of trust then extends to VM-1 408-1 where VM-1 408-1 is able to present to client
412 a full token that may be validated with the already-trusted security token service’s 404
public key.

[0067] Operation 510 depicts, in an embodiment where wherein creating an account for
the first computer on the second computer is performed by a fourth computer, and further
comprising: creating, by a fifth computer (such as a second instance of fabric controller
402), an account for a sixth computer (such as VM-2 408-2), on the second computer;
provisioning, by the fifth computer, the sixth computer; sending the sixth computer a
second full token created by the second computer; and wherein sending the public key to
the third computer comprises: sending the public key to the third computer, such that the
third computer confirms an identity of the sixth computer based on processing the full
token as presented by the second computer with the public key to produce a second known
result. There may be cases where multiple fabric controllers 402 co-exist in a deployment,
and each fabric controller is configured to communicate with security token service 404 to

obtain full tokens on behalf of VMs 408 that they provision. In operation 510, a second

-17-

tokenservice.contoso.com

10

15

20

25

30

WO 2012/047555 PCT/US2011/053010

fabric controller 402, provisions a second VM (such as VM-2 408-2) and obtains from
security token service 404 a second full token for this second VM 408.

[0068] Operation 512 depicts sending the public key to a seventh computer (such as a
second instance of client 412), such that the seventh computer confirms an identity of the
first computer based on processing the full token as presented by the first computer with
the public key to produce the known result. Multiple clients may validate the identity of a
VM (such as VM-1 408-1), using the same full token presented by the VM 408, as well as
the same public key presented by security token service 404.

[0069] Operation 514 depicts creating an account for an eighth computer (such as VM-N
408-N) on the second computer; provisioning the eighth computer; sending the eighth
computer a second full token created by the second computer; and wherein sending the
public key to the third computer comprises: sending the public key to the third computer,
such that the third computer confirms an identity of the eighth computer based on
processing the full token as presented by the eighth computer with the public key to
produce a second known result. Where multiple VMs are provisioned with their own full
token, each of these tokens may be validated by a client using the same public key of the
security token service 404. As depicted in operation 514, a single client 412 uses one
public key from security token service 404 to validate two full tokens — one for VM-1
408-1 and one for VM-N 408-N.

[0070] The operational procedures end with operation 516. It may be appreciated that
there are embodiments of the invention that do not implement all of the operations of FIG.
8, or implement them (or a subset of them) in a different order than is depicted. For
instance, an embodiment of the invention may implement operations 500, 502, 504, 506,
508, and 516, or an embodiment of the invention may implement operation 504 before
operation 502.

[0071] With respect to both FIGs. 8 and 9, it may be appreciated that not all elements of
FIGs. 5-7 have been enumerated in the examples. For instance, where client 412 of FIG. 5
is referred to as performing a task, it may be appreciated that this task may also be
performed by client 412b of FIG. 6, or client 412c¢ of FIG. 7.

[0072] FIG. 9 depicts example operational procedures for a client of a deployment
verifying the provable identity of a VM of a deployment, that may be implemented, for
instance, in the systems depicted in FIGs. 5-7. The operational procedures of FIG. 9 may
be implemented for instance, by client 412 of FIG. 5, where fabric controller 402 of FIG. 5

implements the operational procedures of fabric controller 402. The operational

-18 -

10

15

20

25

30

WO 2012/047555 PCT/US2011/053010

procedures of FIG. 9 begin with operation 600, which leads into operation 602. Operation
602 depicts obtaining a public key from a token service. Operation 604 may occur in a
manner similar to communication flow (1) of FIG. 5, communication flow (1B) of FIG. 6,
or communication flow (1C) of FIG. 7.

[0073] Operation 604 depicts obtaining a full token from a computer, the full token
indicating an identity of the computer. Operation 604 may occur in a manner similar to
communication flow (5) of FIG. 5, communication flow (4B) of FIG. 6, or communication
flow (3C) of FIG. 7.

[0074] Operation 606 depicts validating the identity of the computer by processing the
full token with the public key to produce a known result. Having obtained the public key
of security token service 404 in operation 602, and the full token of VM-1 408-1 in
operation 604, client 412 now has both the public key and the full token, and may validate
the full token (and thus, the identity of VM-1 408-1) using the public key from security
token service 404, which client 412 trusts.

[0075] Operation 608 depicts communicating with the computer in a secure relationship.
In operation 606, client 412 has validated the identity of VM-1 408-1 to be that which
VM-1 408-1 asserts it is. Based on a chain of trust that extends down through security
token service 404 and to VM-1 408-1, client 412 may trust VM-1 408-1, and as they
communicate (such as where VM-1 408-1 serves client 412 a remote presentation session),
this communication may occur within a secure, or a trusted, relationship.

[0076] The operational procedures of FIG. 9 end with operation 610.

[0077] While the present invention has been described in connection with the preferred
aspects, as illustrated in the various figures, it is understood that other similar aspects may
be used or modifications and additions may be made to the described aspects for
performing the same function of the present invention without deviating there from.
Therefore, the present invention should not be limited to any single aspect, but rather
construed in breadth and scope in accordance with the appended claims. For example, the
various procedures described herein may be implemented with hardware or software, or a
combination of both. Thus, the methods and apparatus of the disclosed embodiments, or
certain aspects or portions thereof, may take the form of program code (i.e., instructions)
embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other
machine-readable storage medium. When the program code is loaded into and executed
by a machine, such as a computer, the machine becomes an apparatus configured for

practicing the disclosed embodiments. In addition to the specific implementations

-19 -

02 May 2014

2011312611

10

15

H:\mka\Inter woven\NRPortb\DCC\MKA\6265833_2.doc-2/05/2014

220 -

explicitly set forth herein, other aspects and implementations will be apparent to those
skilled in the art from consideration of the specification disclosed herein. It is intended

that the specification and illustrated implementations be considered as examples only.

[0078] Throughout this specification and claims which follow, unless the context requires
otherwise, the word "comprise”, and variations such as "comprises" and "comprising", will
be understood to imply the inclusion of a stated integer or step or group of integers or steps

but not the exclusion of any other integer or step or group of integers or steps.

[0079] The reference in this specification to any prior publication (or information derived
from it), or to any matter which is known, is not, and should not be taken as an
acknowledgment or admission or any form of suggestion that that prior publication (or
information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

02 May 2014

2011312611

10

15

20

25

H:\mka\Inter woven\NRPortb\DCC\MKA\6265833_2.doc-2/05/2014

-21 -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method for establishing a provable identity for a first computer, comprising:

in response to creating an account for the first computer on a second computer,
sending the first computer first data, and sending the second computer the first data, the
first computer sending the first data to the second computer and the second computer
verifying the first data as received from the first computer against the first data already

possessed by the second computer;

in response to the second computer verifying the first data as received from the first
computer against the first data already possessed by the second computer, sending the first
computer a full token that comprises an assertion of an identity of the first computer, the
full token being created by the second computer based on the account for the first

computer; and

sending a public key to a third computer, wherein the third computer confirms the
identity of the first computer based on determining that combining the full token of the
first computer and the public key produces a result consistent with the identity of the first

computer.

2. The method of claim 1, wherein creating an account for the first computer on the
second computer is performed by a fourth computer, and wherein the fourth computer has
an account on the second computer and the authority to create an account for the first

computer, and further comprising:

instructing the second computer, by the fourth computer, to create the account for

the first computer.

3. The method of claim 2, wherein sending the first computer the full token is

performed by the second computer.

02 May 2014

2011312611

10

15

20

25

H:\mka\Inter woven\NRPortb\DCC\MKA\6265833_2.doc-2/05/2014

-22 -

4. The method of any one of claims 1 to 3, wherein sending a public key to a third
computer, wherein the third computer confirms the identity of the first computer based on
determining that combining the full token of the first computer and the public key

produces a result consistent with the identity of the first computer further comprises:

the third computer determining to trust the full token because it was issued by the
second computer, the third computer having validated an identity of the second computer
through querying a domain name system with a network address of the second computer to
receive a uniform resource locator (URL) of the second computer, and comparing the URL

of the second computer with a URL stored in a certificate for the second computer.

S. The method of any one of claims 1 to 4, wherein the third computer has validated
an identity of the second computer by determining that a domain name system name for

the second computer matches a name in a certificate for the second computer.

6. The method of any one of claims 1 to 5, wherein sending the first computer a full

token created by the second computer, comprises:

sending to the first computer, by the second computer, the full token, in response to
receiving a credential from the first computer corresponding to a credential stored in an

account for the first computer on the second computer.

7. The method of any one of claims 1 to 6, wherein creating an account for the first
computer on the second computer is performed by a fourth computer, and further
comprising:

creating, by a fifth computer, an account for a sixth computer, on the second

computer;

sending the sixth computer a second full token that comprises an assertion of an
identity of the sixth computer, the second full token being created by the second

computer based on the account for the second computer; and

02 May 2014

2011312611

H:\mka\Inter woven\NRPortb\DCC\MKA\6265833_2.doc-2/05/2014

-23-

wherein sending the public key to the third computer comprises:

sending the public key to the third computer, wherein the third computer
confirms the identity of the sixth computer based on determining that combining
the full token of the sixth computer and the public key produces a result consistent

5 with the identity of the sixth computer.

8. The method of any one of claims 1 to 7, further comprising:

sending the public key to a seventh computer, such that the seventh computer confirms an
identity of the first computer based on processing the full token as presented by the first

10 computer with the public key to produce a known result.

9. The method of claim 1, further comprising:
creating an account for an eighth computer on the second computer;

sending the eighth computer a second full token that comprises an assertion of an identity
15 of the eighth computer, the second full token being token created by the second computer

based on the account for the eighth computer; and
wherein sending the public key to the third computer comprises:

sending the public key to the third computer, wherein the third computer confirms
the identity of the eighth computer based on determining that combining the second
20 full token of the eighth computer and the public key produces a result consistent

with the identity of the eighth computer.

10. A system for establishing a provable identity for a first computer, comprising:

a memory bearing instructions that, upon execution by a processor, cause the system to at

25 least:

in response to creating an account for the first computer on a second computer,

send the first computer first data, and send the second computer the first data, the

02 May 2014

2011312611

10

15

20

25

H:\mka\Inter woven\NRPortb\DCC\MKA\6265833_2.doc-2/05/2014

-4 -

first computer sending the first data to the second computer and the second
computer verifying the first data as received from the first computer against the

first data already possessed by the second computer;

in response to the second computer verifying the first data as received from the first
computer against the first data already possessed by the second computer, send the
first computer a full token that comprises an assertion of an identity of the first
computer, the full token being created by the second computer based on the

account for the first computer; and

send a public key to a third computer, wherein the third computer confirms the
identity of the first computer based on determining that combining the full token of
the first computer and the public key produces a result consistent with the identity

of the first computer.

11. The system of claim 10, wherein creating an account for the first computer on the
second computer is performed by a fourth computer, and wherein the fourth computer has
an account on the second computer and the authority to create an account for the first
computer, and wherein the memory further bears instructions that, upon execution by the

processor, cause the system to at least:

instruct the second computer, by the fourth computer, to create the account for the

first computer.

12. The system of claim 11, wherein sending the first computer the full token is

performed by the second computer.

13. The system of any one of claims 10 to 12, wherein the third computer has validated
an identity of the second computer by determining that a domain name service name for

the second computer matches a name in a certificate for the second computer.

02 May 2014

2011312611

10

15

20

25

H:\mka\Inter woven\NRPortb\DCC\MKA\6265833_2.doc-2/05/2014

225 -
14. The system of claim 13, wherein the certificate was issued by a certificate authority
trusted by the third computer.

15. The system of any one of claims 10 to 14, wherein the instructions that, upon

execution by the processor, cause the system to at least send the first computer a full token

created by the second computer further cause the system to at least:

send to the first computer, by the second computer, the full token, in response to
receiving a credential from the first computer corresponding to a credential stored in an

account for the first computer on the second computer.

16. The system of any one of claims 10 to 15, wherein creating an account for the first
computer on the second computer is performed by a fourth computer, and wherein the
memory further bears instructions that, upon execution by the processor, cause the system

to at least:

create, by a fifth computer, an account for a sixth computer, on the second

computer;

send the sixth computer a second full token that comprises an assertion of an
identity of the sixth computer, the second full token being created by the second computer

based on the account for the second computer; and
wherein sending the public key to the third computer comprises:

sending the public key to the third computer, wherein the third computer
confirms the identity of the sixth computer based on determining that combining
the full token of the sixth computer and the public key produces a result consistent

with the identity of the sixth computer.

17. The system of any one of claims 10 to 16, wherein the memory further bears

instructions that, upon execution by the processor, cause the system to at least:

02 May 2014

2011312611

H:\mka\Inter woven\NRPortb\DCC\MKA\6265833_2.doc-2/05/2014

226 -

send the public key to a seventh computer, wherein the seventh computer confirms the
identity of the first computer based on determining that combining the full token of the
first computer and the public key produces a result consistent with the identity of the first

computer.

18. The system of claim 17, wherein the memory further bears instructions that, upon

execution by the processor, cause the system to at least:
create an account for an eighth computer on the second computer;

send the eighth computer a second full token that comprises an assertion of an
10 identity of the first computer, the full token being created by the second computer

based on the account for the eighth computer; and
wherein sending the public key to the third computer comprises:

sending the public key to the third computer, wherein the third computer
confirms the identity of the eighth computer based on determining that combining
15 the full token of the first computer and the public key produces a result consistent

with the identity of the first computer.

19. A computer-readable storage device for establishing a provable identity for a
virtual machine (VM), bearing computer-readable instructions that, upon execution by a

20 computer, cause the computer to perform operations comprising:
creating an account on a token service for the VM;
creating the VM;
creating a secret for the VM; and
sending the secret to the VM and to the token service, such that:
25 the VM sends proof of possession of the secret to the token service;

in response to determining that the VM possesses the secret, the token

service sends a full token to the VM;

02 May 2014

2011312611

H:\mka\Inter woven\NRPortb\DCC\MKA\6265833_2.doc-2/05/2014

-27 -

in response to receiving a request from an external computer for a public
key of the token service, the token service sends the public key to the

external computer; and

the VM sends the full token to the external computer, such that the external
5 computer validates an identity of the VM by processing the full token with

the public key, and communicates with the VM.

20. The computer-readable storage device of claim 19, further bearing computer-
readable instructions that, upon execution by a computer, cause the computer to perform

10 operations comprising:
creating an account for a second VM on the token service;
provisioning the second VM;
creating a second secret for the second VM; and
sending the secret to the second VM and to the token service, such that:

15 the second VM sends proof of possession of the second secret to the token

service;

in response to determining that the second VM possesses the second secret,

the token service sends a second full token to the VM; and

the second VM sends the second full token to the external computer, such
20 that the external computer validates an identity of the second VM by processing the

second full token with the public key, and communicates with the second VM.

21. The method, system or computer-readable storage device of any one of claims 1 to

20, substantially as hereinbefore described with reference to the accompanying drawings.

PCT/US2011/053010

WO 2012/047555

1/9

0S @A Addoj4

He—=

6Y

9€
suoledl|ddy

(s)483ndwo) sjoway

0¥ pieoghay

€G d/I YIoM}aN

14
d/1 {od |euss

A

E

Z2b asnop

L€
0€ anlQ [eondo

8z anuq Addoj4 ™

6¢ obelo}g 8|geAoway

8¢ ejeq 1€ 'sboid
1810

| o€ 'sdav | eSO |

weiboid

_ Lz anuqa pley |

7ﬁw_

ve 4
/1 ®A\uQ [eoldo

€€ 4/l 8nug
¥s1q onaubepy

ze 4/
2AuQ ¥s!A PIeH

8¢ v1iva
NWYHOO0dd

A

29

aoIna(q abeloig

€2 shg walshkg

A

A

1€ SWVIO0dd
Y3IH10

9¢€ SNVHO0Hd

NOILVOITddV

Ly Joyuopy
| I |

96 sng ISOS

Ly

GS

Jaydepy }sOH

8v

Jardepy 0apiA

24

yun Buissasold

0¢ Jainawo)

| s€SO |

¥4
VYY)

9¢ SOI9

(b2 WO¥)
Y44

RIOWSN WaJSAS

PCT/US2011/053010

WO 2012/047555

2/9

¢ 9Old

sl 10¢
wajsAsqng > |SUIBM 11
Aeidsig g
sjowey ¥5Z A
- —>r
109 972 L ouElsy|
3oels
| Z oouesuy|
>
wasAsqng waysAsgng \ Yoelg
Aunoas 052 ongese ‘N oouesy|
810D uolIssas Fie ,)oels
A 4 21607 podsues] 012
suoled)ddy waysksqng
awnuny 0v¢
labeuel
| uoIsseg uolssas 912
Z uoissag[»
>S| auIbu3ZTe
N UOISS8S

wajsAg bBunesadp Jenas pig

JaNIBS 70¢

WO 2012/047555 PCT/US2011/053010

3/9
300 Computer System
304 Parent Child Partition 1 Child Partition N
Partition
320 Guest OS 322 Guest OS
334 1/0
Emulators 316 318
VSCs VSCs
328
Virtualization
Service
Providers
324 Device 330 Virtual 332 Virtual
Drivers Processor Processor
302 Hypervisor Microkernel

112
106 Storage || 114 NIC Graphics 21 104 RAM
Device Processing Processor
Unit

FIG. 3

WO 2012/047555 PCT/US2011/053010

4/9

300 Computer System

Child Partition 1 Child Partition N
320 Guest OS 322 Guest OS
316 318
VSCs VSCs
336
Management
oS
334 1/0
Emulators
330 Virtual 332 Virtual
Processor Processor

338 Hypervisor

328 Virtualization Service
Providers

324 Device Drivers

112
106 Storage Graphics 102 Logical
Deviceg 114 NIC PrOfJeSftsing Processor 104 RAM
ni

FIG. 4

PCT/US2011/053010

WO 2012/047555

5/9

(1) 412 client

® ____

-

410-1
VHD-1

414 host

FIG. 5

WO 2012/047555 PCT/US2011/053010

6/9

GBD 412b client

it o
/s \
/ \
/ \
/
/] e N) \\
/ 408-1b 408-2b 408-Nb
/ VM-1b | | vM-2b VM-Nb
404b security token service I L) y
l\ (410-1b) (410-2b\e @ @ >410-Nb<
Cz@ VHD- VHD- VHD-
\\ L1) L 2) L Nb)
\ (A 406b hosting layer) //
\
(38) \ ,/
O/ \ P

402b fabric controller

414b host

FIG. 6

WO 2012/047555 PCT/US2011/053010

7/9
-
412c client
O
- - - T =
/ Ly
7
/
/
4 4 \
408-1c 408-2c
VM-1c [|VM-2¢
404c security token service \) U)
(410-1c) (310-2C) o o @
VHD- VHD-

\ 1C) _ Zc J \

[A 06c hosting layer) //
/

\\ Y,

management 414c host

FIG.7

WO 2012/047555 PCT/US2011/053010

8/9

(&

502 creating an account for the first computer on the second computer

Y

[504 provisioning the first computer J
e N
506 sending the first computer a full token created by the second computer
_ Wy,

Y

(508 sending a public key to a third computer , such that the third computer confirms an)
identity of the first computer based on processing the full token as presented by the first
computer with the public key to produce a known result

Y

{510 creating, by a fifth computer, an account for a sixth computer, on the second computer,;

\. J

provisioning, by the fifth computer, the sixth computer; sending the sixth computer a second
full token created by the second computer; and wherein sending the public key to the third
computer comprises: sending the public key to the third computer, such that the third
computer confirms an identity of the sixth computer based on processing the full token as
presented by the second computer with the public key to produce a second known result

Y

[512 sending the public key to a seventh computer (such as a second instance of client 412),\
s

uch that the seventh computer confirms an identity of the first computer based on processing
the full token as presented by the first computer with the public key to produce the known
result

Y

514 creating an account for an eighth computer on the second computer; provisioning the
eighth computer; sending the eighth computer a second full token created by the second
computer; and wherein sending the public key to the third computer comprises: sending the
public key to the third computer, such that the third computer confirms an identity of the
eighth computer based on processing the full token as presented by the eighth computer with

the public key to produce a second known result)

'

FIG. 8

J

N

WO 2012/047555 PCT/US2011/053010

9/9

600
start

(602 obtaining a public key from a token server]

604 obtaining a full token from a computer, the full token indicating an identity
of the computer

606 validating the identity of the computer by processing the full token with the
public key to produce a known result

(608 communicating with the computer in a secure relationship J

610
end

FIG.9

