
(12) STANDARD PATENT (11) Application No. AU 2011312611 B2
(19)

(54)

(51)

(21)

(87)

(30)

(31)

(43)
(44)

(71)

(72)

(74)

(56)

AUSTRALIAN PATENT OFFICE

Title
Secure deployment of provable identity for dynamic application environments

International Patent Classification(s)
H04L 9/00 (2006.01)

Application No: 2011312611 (22) Date of Filing: 2011.09.23

WIPO No: WO12/047555

Priority Data

Number
12/901,445

(32) Date
2010.10.08

(33) Country
US

Publication Date: 2012.04.12
Accepted Journal Date: 2014.05.29

Applicant(s)
Microsoft Corporation

Inventor(s)
Jirka, lan;Tevosyan, Kahren;Sanders, Corey;Moore, George M.;Srivastava,
Mohit;Russinovich, Mark Eugene

Agent / Attorney
Davies Collison Cave, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000

Related Art
US 2009/0037736 A1

WIPO I PCT

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

Organization
International Bureau

(43) International Publication Date
12 April 2012 (12.04.2012)

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
(10) International Publication Number

WO 2012/047555 A3

(51) International Patent Classification:
G06F 21/20 (2006.01) H04L 9/00 (2006.01)

(21) International Application Number:
PCT/US2011/053010

(22) International Filing Date:
23 September 2011 (23.09.2011)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
12/901,445 8 October 2010 (08.10.2010) US

(71) Applicant (for all designated States except US): MI­
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(72) Inventors: JIRKA, Ian; c/o Microsoft Corporation, LCA -
International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). TEVOSYAN, Kahren; c/o
Microsoft Corporation, LCA - International Patents, One
Microsoft Way, Redmond, Washington 98052-6399 (US).
SANDERS, Corey; c/o Microsoft Corporation, LCA - In­
ternational Patents, One Microsoft Way, Redmond, Wash­
ington 98052-6399 (US). MOORE, George M.; c/o Mi­
crosoft Corporation, LCA - International Patents, One Mi­
crosoft Way, Redmond, Washington 98052-6399 (US).
SRIVASTAVA, Mohit; c/o Microsoft Corporation, LCA -
International Patents, One Microsoft Way, Redmond,

Washington 98052-6399 (US). RUSSINOVICH, Mark
Eugene; c/o Microsoft Corporation, LCA - International
Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(H))

[Continued on next page]

(54) Title: SECURE DEPLOYMENT OF PROVABLE IDENTITY FOR DYNAMIC APPLICATION ENVIRONMENTS

FIG. 5

W
O

 20
12

/0
47

55
5 A

3

(57) Abstract: An invention is described for securely deploying a provable identity for virtual machines (VMs) in a dynamic envir­
onment. In an embodiment, a fabric controller instructs a VM host to create a VM and sends that VM a secret. The fabric controller
sends that same secret (or a second secret, such as the private key of a public/private key pair) to the security token service along
with an instruction to make an account for the VM. The VM presents proof that it possesses the secret to the security token service
and in return receives a full token. When a client connects to the deployment, it receives the public key from the security token ser -
vice, which it trusts, and the full token from the VM. It validates the full token with the public key to determine that the VM has the
identity that it purports to have.

wo 2012/047555 A3 llllllllllllllllllllllllllllllllll^
— as to the applicant's entitlement to claim the priority of

the earlier application (Rule 4.17(iii))

Published:
— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(88) Date of publication of the international search report:
31 May 2012

H:\mka\Inter woven\NRPortbl\DCC\MKA\6265833_2.doc-2/05/2014
20

11
31

26
11

02

 M
ay

 2
01

4

- 1 -

SECURE DEPLOYMENT OF PROVABLE IDENTITY FOR
DYNAMIC APPLICATION ENVIRONMENTS

BACKGROUND

5 [0001] It is common for computers to communicate securely. A computer may have a

provable identity that another computer can evaluate to determine that the first computer is

the computer that it purports to be (e.g. a particular company’s login and authorization

server).

[0002] It is also common for companies or other entities to deploy server farms made up

10 of virtual machines (VMs). In such server farms, multiple VMs may be configured

homogenously and serve resources to clients - such as remote desktops or remote

applications. In the course of managing such a server farm, VMs may be destroyed and

(re)created. A VM may be destroyed and then recreated for a variety of reasons, such as to

prevent drift from a known machine state by recreating it with a known machine state.

15 [0003] In these deployments where VMs are destroyed and created, each VM may have a

provable identity. There are many problems with establishing a provable identity for a VM

of a deployment, some of which are well known.

[0003A] It is desired to provide a method, system or computer-readable storage device

that alleviates one or more difficulties of the prior art, or to at least provide a useful

20 alternative.

SUMMARY

[0004] In accordance with some embodiments of the present invention, there is provided a

method for establishing a provable identity for a first computer, comprising:

25 in response to creating an account for the first computer on a second computer,

sending the first computer first data, and sending the second computer the first data, the

first computer sending the first data to the second computer and the second computer

verifying the first data as received from the first computer against the first data already

possessed by the second computer;

5

10

15

20

25

30

H:\mka\Inter woven\NRPortbl\DCC\MKA\6265833_2.doc-2/05/2014

- 1A-

in response to the second computer verifying the first data as received from the first

computer against the first data already possessed by the second computer, sending the first

computer a full token that comprises an assertion of an identity of the first computer, the

full token being created by the second computer based on the account for the first

computer; and

sending a public key to a third computer, wherein the third computer confirms the

identity of the first computer based on determining that combining the full token of the

first computer and the public key produces a result consistent with the identity of the first

computer.

[0004A] In accordance with some embodiments of the present invention, there is provided

a system for establishing a provable identity for a first computer, comprising:

a memory bearing instructions that, upon execution by a processor, cause the system to at

least:

in response to creating an account for the first computer on a second computer,

send the first computer first data, and send the second computer the first data, the

first computer sending the first data to the second computer and the second

computer verifying the first data as received from the first computer against the

first data already possessed by the second computer;

in response to the second computer verifying the first data as received from the first

computer against the first data already possessed by the second computer, send the

first computer a full token that comprises an assertion of an identity of the first

computer, the full token being created by the second computer based on the

account for the first computer; and

send a public key to a third computer, wherein the third computer confirms the

identity of the first computer based on determining that combining the full token of

the first computer and the public key produces a result consistent with the identity

of the first computer.

[0004B] In accordance with some embodiments of the present invention, there is provided

a computer-readable storage device for establishing a provable identity for a virtual

H:\mka\Inter woven\NRPortbl\DCC\MKA\6265833_2.doc-2/05/2014

5

10

15

20

25

- IB -

machine (VM), bearing computer-readable instructions that, upon execution by a

computer, cause the computer to perform operations comprising:

creating an account on a token service for the VM;

creating the VM;

creating a secret for the VM; and

sending the secret to the VM and to the token service, such that:

the VM sends proof of possession of the secret to the token service;

in response to determining that the VM possesses the secret, the token

service sends a full token to the VM;

in response to receiving a request from an external computer for a public

key of the token service, the token service sends the public key to the

external computer; and

the VM sends the full token to the external computer, such that the external

computer validates an identity of the VM by processing the full token with

the public key, and communicates with the VM.

[0005] One problem that prior techniques have, and which is reduced or eliminated by

the present invention is that of the amount of time they require to establish a VM’s

provable identity. The prior techniques require a relatively large amount of time to carry

out. This time cost may not be a major issue in a static environment, where once a

machine is set up, it will run for an extended period of time. However in a VM

deployment environment, such as a MICROSOFT Azure cloud computing platform, VMs

may have a relatively short life, and may be recreated many times. This large number of

creation events and the relatively short life of a VM after creation means that this relatively

large cost in establishing a provable identity for the VM upon creation will occupy a large

amount of the VM’s time, and the VM will have less time when it is fully functional.

[0006] In an embodiment of the present invention, a controller manages the VMs of a

server farm. This controller may be, for example, MICROSOFT’S Azure Fabric

Controller, which monitors, maintains and provisions VMs in a MICROSOFT Azure

WO 2012/047555 PCT/US2011/053010

5

10

15

20

25

30

cloud computing environment deployment. The deployment also comprises a security

token service that is configured to provide clients of the server farm with tokens that the

clients can use to confirm the provable identity of a VM in the server farm.

[0007] In an embodiment, when the controller deploys a new VM instance, it injects a

piece of cryptographic data (a “secret”) into the image file that the VM will boot from.

Other embodiments may implement other ways of communicating a secret, such as via a

separately established security network channel, or where the VM generates the secret and

transmits it to the controller over a secure network channel. The controller sends this

same cryptographic data (or other cryptographic data corresponding to the cryptographic

data, such as where the cryptographic data is a private key, and the other cryptographic

data is a public key of an asymmetrical key pair) to the security token service, along with

other information that the security token service uses to generate a claim for The new VM.

After the controller deploys the new VM instance, the new VM sends the security token

service proof that it possesses the secret via a security protocol, and in response receives a

full claim token.

[0008] When a client connects to the server farm, it will attempt to establish the provable

identity of the VM to which it connects. To do so, the client retrieves a public key from

the security token service that the security token service uses to sign claims. The client

also receives the full claim token from the VM, and uses the public key from the security

token service and the full claim token from the VM to determine whether or not the VM’s

identity is proven.

[0009] The example embodiments described herein discuss a situation where a client

connects to a VM of a server farm. As described, the client may be thought of as

performing a role traditionally considered to be performed by a server - that of

authenticating the VM’s identity. There are also embodiments where the roles are

reversed in a communication, where the VM authenticates the client’s identity. In either

type of embodiment, the invention for establishing a secure provable identity of a VM of a

server farm may be deployed.

[0010] In another embodiment, the invention is implemented when the controller

redeploys a single application instance into another VM host within the server farm (or

even in a different data center, if the application migrates, for instance, due to geographic

constraints). Application instances might move around frequently due to the underlying

operating system undergoing security patching, or rebooting, or where the underlying

hardware experiences a failure. Thus, the invention provides a secure provable identity

-2-

H:\mka\Inter woven\NRPortbl\DCC\MKA\6265833_2.doc-2/05/2014
20

11
31

26
11

02

 M
ay

 2
01

4

-3-

that is durable across space and time, so even if the application instance is forcibly moved

to a different physical server, the secure provable identity remains constant. This is an

improvement over prior techniques, where a secure provable identity was bound to the

underlying physical hardware.

5

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Some embodiments of the present invention are hereinafter described, by way of

example only, with reference to the accompanying drawings, in which:

[0012] FIG. 1 depicts an example general purpose computing environment in which

10 techniques described herein may be embodied.

[0013] FIG. 2 depicts an example remote presentation session server that may be

embodied within a virtual machine with a provable identity.

[0014] FIG. 3 depicts an example virtual machine host wherein techniques described

herein can be implemented.

15 [0015] FIG. 4 depicts a second example virtual machine host wherein techniques

described herein can be implemented.

[0016] FIG. 5 depicts an example server farm in which an aspect of an embodiment of

the invention is implemented.

[0017] FIG. 6 depicts another example server farm in which an aspect of an embodiment

20 of the invention is implemented.

[0018] FIG. 7 depicts another example server farm in which an aspect of an embodiment

of the invention is implemented.

[0019] FIG. 8 depicts example operational procedures for a server farm establishing a

provable identity for a VM of the server farm.

25 [0020] FIG. 9 depicts example operational procedures for a client of a server farm

verifying the provable identity of a VM of a server farm.

H:\mka\Inter woven\NRPortbl\DCC\MKA\6265833_2.doc-2/05/2014
20

11
31

26
11

02

 M
ay

 2
01

4

-3A-

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

[0021] Embodiments may execute on one or more computer systems. FIG. 1 and the

following discussion are intended to provide a brief general description of a suitable

computing environment in which the disclosed subject matter may be implemented.

5 [0022] The term processor used throughout the description can include hardware

components such as hardware interrupt controllers, network adaptors, graphics processors,

hardware based video/audio codecs, and the firmware used to operate such hardware. The

term processor can also include microprocessors, application specific integrated circuits,

10

WO 2012/047555 PCT/US2011/053010

5

10

15

20

25

30

and/or one or more logical processors, e.g., one or more cores of a multi-core general

processing unit configured by instructions read from firmware and/or software. Logical

processor(s) can be configured by instructions embodying logic operable to perform

function(s) that are loaded from memory, e.g., RAM, ROM, firmware, and/or mass

storage.

[0023] Referring now to FIG. 1, an exemplary general purpose computing system is

depicted. The general purpose computing system can include a conventional computer 20

or the like, including at least one processor or processing unit 21, a system memory 22,

and a system bus 23 that communicative couples various system components including the

system memory to the processing unit 21 when the system is in an operational state. The

system bus 23 may be any of several types of bus structures including a memory bus or

memory controller, a peripheral bus, and a local bus using any of a variety of bus

architectures. The system memory can include read only memory (ROM) 24 and random

access memory (RAM) 25. A basic input/output system 26 (BIOS), containing the basic

routines that help to transfer information between elements within the computer 20, such

as during start up, is stored in ROM 24. The computer 20 may further include a hard disk

drive 27 for reading from and writing to a hard disk (not shown), a magnetic disk drive 28

for reading from or writing to a removable magnetic disk 29, and an optical disk drive 30

for reading from or writing to a removable optical disk 31 such as a CD ROM or other

optical media. The hard disk drive 27, magnetic disk drive 28, and optical disk drive 30

are shown as connected to the system bus 23 by a hard disk drive interface 32, a magnetic

disk drive interface 33, and an optical drive interface 34, respectively. The drives and

their associated computer readable media provide non volatile storage of computer

readable instructions, data structures, program modules and other data for the computer

20. Although the exemplary environment described herein employs a hard disk, a

removable magnetic disk 29 and a removable optical disk 31, it should be appreciated by

those skilled in the art that other types of computer readable media which can store data

that is accessible by a computer, such as flash memory cards, digital video disks, random

access memories (RAMs), read only memories (ROMs) and the like may also be used in

the exemplary operating environment. Generally, such computer readable storage media

can be used in some embodiments to store processor executable instructions embodying

aspects of the present disclosure.

[0024] A number of program modules comprising computer-readable instructions may

be stored on computer-readable media such as the hard disk, magnetic disk 29, optical disk

-4-

WO 2012/047555 PCT/US2011/053010

5

10

15

20

25

30

31, ROM 24 or RAM 25, including an operating system 35, one or more application

programs 36, other program modules 37 and program data 38. Upon execution by the

processing unit, the computer-readable instructions cause the actions described in more

detail below to be carried out or cause the various program modules to be instantiated. A

user may enter commands and information into the computer 20 through input devices

such as a keyboard 40 and pointing device 42. Other input devices (not shown) may

include a microphone, joystick, game pad, satellite dish, scanner or the like. These and

other input devices are often connected to the processing unit 21 through a serial port

interface 46 that is coupled to the system bus, but may be connected by other interfaces,

such as a parallel port, game port or universal serial bus (USB). A monitor 47, display or

other type of display device can also be connected to the system bus 23 via an interface,

such as a video adapter 48. In addition to the display 47, computers typically include

other peripheral output devices (not shown), such as speakers and printers. The exemplary

system of FIG. 1 also includes a host adapter 55, Small Computer System Interface (SCSI)

bus 56, and an external storage device 62 connected to the SCSI bus 56.

[0025] The computer 20 may operate in a networked environment using logical

connections to one or more remote computers, such as a remote computer 49. The remote

computer 49 may be another computer, a server, a router, a network PC, a peer device or

other common network node, and typically can include many or all of the elements

described above relative to the computer 20, although only a memory storage device 50

has been illustrated in FIG. 1. The logical connections depicted in FIG. 1 can include a

local area network (LAN) 51 and a wide area network (WAN) 52. Such networking

environments are commonplace in offices, enterprise wide computer networks, intranets

and the Internet.

[0026] When used in a LAN networking environment, the computer 20 can be connected

to the LAN 51 through a network interface or adapter 53. When used in a WAN

networking environment, the computer 20 can typically include a modem 54 or other

means for establishing communications over the wide area network 52, such as the

Internet. The modem 54, which may be internal or external, can be connected to the

system bus 23 via the serial port interface 46. In a networked environment, program

modules depicted relative to the computer 20, or portions thereof, may be stored in the

remote memory storage device. It will be appreciated that the network connections shown

are exemplary and other means of establishing a communications link between the

computers may be used. Moreover, while it is envisioned that numerous embodiments of

-5 -

WO 2012/047555 PCT/US2011/053010

5

10

15

20

25

30

the present disclosure are particularly well-suited for computerized systems, nothing in

this document is intended to limit the disclosure to such embodiments.

[0027] System memory 22 of computer 20 may comprise instructions that, upon

execution by computer 20, cause the computer 20 to implement the invention, such as the

operational procedures of FIG. 5 or FIG. 6.

[0028] Generally, FIG. 2 depicts a high level overview of a server environment that can

be configured to include aspects of the invention. Server 204 may be effectuated in

computer 20 of FIG. 1, where system memory 22 comprises instructions that, upon

execution by processing unit 21, cause processing unit 21 to carry out operations that

implement the invention. In reference to the figure, depicted is a server 204 that can

include circuitry configured to effectuate a remote presentation session server, or in other

embodiments the server 204 can include circuitry configured to support remote

presentation connections. In the depicted example, the server 204 can be configured to

generate one or more sessions for connecting clients such as sessions 1 through N (where

N is an integer greater than 1). Briefly, a session in example embodiments of the present

invention can generally include an operational environment that is effectuated by a

plurality of subsystems (e.g., software code) that are configured to interact with a kernel

214 of server 204. For example, a session can include a process that instantiates a user

interface such as a desktop window, the subsystems that track mouse movement within the

window, the subsystems that translate a mouse click on an icon into commands that

effectuate an instance of a program, etc. A session can be generated by the server 204 on

a user-by-user basis by the server 204 when, for example, the server 204 receives a

connection request over a network connection from a client 201. Generally, a connection

request can first be handled by the transport logic 210 that can, for example, be effectuated

by circuitry of the server 204. The transport logic 210 can in some embodiments include a

network adaptor; firmware, and software that can be configured to receive connection

messages and forward them to the engine 212. As illustrated by FIG. 2, the transport logic

210 can in some embodiments include protocol stack instances for each session.

Generally, each protocol stack instance can be configured to route user interface output to

a client and route user input received from the client to the session core 244 associated

with its session.

[0029] Continuing with the general description of FIG. 2, the engine 212 in some

example embodiments of the present invention can be configured to process requests for

sessions; determine the functionality for each session; generate sessions by allocating a set

-6-

WO 2012/047555 PCT/US2011/053010

5

10

15

20

25

30

of physical resources for the session; and instantiating a protocol stack instance for the

session. In some embodiments the engine 212 can be effectuated by specialized circuitry

components that can implement some of the above mentioned operational procedures. For

example, the circuitry in some example embodiments can include memory and a processor

that is configured to execute code that effectuates the engine 212. As depicted by FIG. 2,

in some instances the engine 212 can receive connection requests and determine that, for

example, a license is available and a session can be generated for the request. In the

situation where the server 204 is a remote computer that includes remote presentation

session capabilities, the engine 212 can be configured to generate a session in response to

a connection request without checking for a license. As illustrated by FIG. 2, a session

manager 216 can be configured to receive a message from an engine 212 and in response

to the message the session manager 216 can add a session identifier to a table; assign

memory to the session identifier; and generate system environment variables and instances

of subsystem processes in memory assigned to the session identifier.

[0030] As illustrated by FIG. 2, the session manager 216 can instantiate environment

subsystems such as a runtime subsystem 240 that can include a kernel mode part such as

the session core 244. For example, the environment subsystems in an embodiment are

configured to expose some subset of services to application programs and provide an

access point to the kernel of the operating system 214. In example embodiments the

runtime subsystem 240 can control the execution of processes and threads and the session

core 244 can send requests to the executive of the kernel 214 to allocate memory for the

threads and schedule time for them to be executed. In an embodiment the session core 244

can include a graphics display interface 246 (GDI), a security subsystem 250, and an input

subsystem 252. The input subsystem 252 can in these embodiments be configured to

receive user input from a client 201 via the protocol stack instance associated with the

session and transmit the input to the session core 244 for the appropriate session. The user

input can in some embodiments include signals indicative of absolute and/or relative

mouse movement commands, mouse coordinates, mouse clicks, keyboard signals, joystick

movement signals, etc. User input, for example, a mouse double-click on an icon, can be

received by the session core 244 and the input subsystem 252 can be configured to

determine that an icon is located at the coordinates associated with the double-click. The

input subsystem 252 can then be configured to send a notification to the runtime

subsystem 240 that can execute a process for the application associated with the icon.

-7-

WO 2012/047555 PCT/US2011/053010

5

10

15

20

25

30

[0031] In addition to receiving input from a client 201, draw commands can be received

from applications and/or a desktop and be processed by the GDI 246. The GDI 246 in

general can include a process that can generate graphical object draw commands. The

GDI 246 in this example embodiment can be configured to pass its output to the remote

presentation subsystem 254 where the commands are formatted for the display driver that

is attached to the session. In certain example embodiments one or more physical displays

can be attached to the server 204, e.g., in a remote presentation session situation. In these

example embodiments the remote presentation subsystem 254 can be configured to mirror

the draw commands that are rendered by the display driver(s) of the remote computer

system and transmit the mirrored information to the client 201 via a stack instance

associated with the session. In another example embodiment, where the server 204 is a

remote presentation session server, the remote presentation subsystem 254 can be

configured to include virtual display driver(s) that may not be associated with displays

physically attacked to the server 204, e.g., the server 204 could be running headless. The

remote presentation subsystem 254 in this embodiment can be configured to receive draw

commands for one or more virtual displays and transmit them to the client 201 via a stack

instance associated with the session. In an embodiment of the present invention, the

remote presentation subsystem 254 can be configured to determine the display resolution

for each display driver, e.g., determine the display resolution of the virtual display

driver(s) associated with virtual displays or the display resolution of the display drivers

associated with physical displays; and route the packets to the client 201 via the associated

protocol stack instance.

[0032] In some example embodiments the session manager 216 can additionally

instantiate an instance of a logon process (sometimes referred to as a log in process)

associated with the session identifier of the session that can be configured to handle logon

and logoff for the session. In these example embodiments drawing commands indicative

of the graphical user interface associated with the logon process can be transmitted to the

client 201 where a user of the client 201 can input an account identifier, e.g., a

usemame/password combination, a smart card identifier, and/or biometric information into

a logon screen. The information can be transmitted to server 204 and routed to the engine

212 and the security subsystem 250 of the session core 244. For example, in certain

example embodiments the engine 212 can be configured to determine whether the user

account is associated with a license; and the security subsystem 250 can be configured to

generate a security token for the session.

-8-

WO 2012/047555 PCT/US2011/053010

5

10

15

20

25

30

[0033] FIG. 3A depicts an example virtual machine host (sometimes referred to as a

VMHost or host) wherein aspects of an embodiment of the invention can be implemented.

The VMHost can be implemented on a computer such as computer 20 depicted in FIG. 1,

and VMs on the VMHost may execute an operating system that effectuates a remote

presentation session server, such as server operating system 214 of FIG. 2.

[0034] Hypervisor microkernel 302 can enforce partitioning by restricting a guest

operating system’s view of system memory. Guest memory is a partition’s view of

memory that is controlled by a hypervisor. The guest physical address can be backed by

system physical address (SPA), i.e., the memory of the physical computer system,

managed by hypervisor. In an embodiment, the GPAs and SPAs can be arranged into

memory blocks, i.e., one or more pages of memory. When a guest writes to a block using

its page table, the data is actually stored in a block with a different system address

according to the system wide page table used by hypervisor.

[0035] In the depicted example, parent partition component 304, which can also be also

thought of as similar to “domain 0” in some hypervisor implementations, can interact with

hypervisor microkernel 302 to provide a virtualization layer. Parent partition 304 in this

operational environment can be configured to provide resources to guest operating systems

executing in the child partitions 1-N by using virtualization service providers 328 (VSPs)

that are sometimes referred to as “back-end drivers.” Broadly, VSPs 328 can be used to

multiplex the interfaces to the hardware resources by way of virtualization service clients

(VSCs) (sometimes referred to as “front-end drivers”) and communicate with the

virtualization service clients via communication protocols. As shown by the figures,

virtualization service clients can execute within the context of guest operating systems.

These drivers are different than the rest of the drivers in the guest in that they may be

supplied with a hypervisor, not with a guest.

[0036] Emulators 334 (e.g., virtualized integrated drive electronics device (IDE devices),

virtualized video adaptors, virtualized NICs, etc.) can be configured to run within the

parent partition 304 and are attached to resources available to guest operating systems 320

and 322. For example, when a guest OS touches a register of a virtual device or memory

mapped to the virtual device 302, microkernel hypervisor can intercept the request and

pass the values the guest attempted to write to an associated emulator.

[0037] Each child partition can include one or more virtual processors (330 and 332) that

guest operating systems (320 and 322) can manage and schedule threads to execute

thereon. Generally, the virtual processors are executable instructions and associated state

-9-

WO 2012/047555 PCT/US2011/053010

5

10

15

20

25

30

information that provide a representation of a physical processor with a specific

architecture. For example, one virtual machine may have a virtual processor having

characteristics of an INTEL x86 processor, whereas another virtual processor may have

the characteristics of a PowerPC processor. The virtual processors in this example can be

mapped to logical processors of the computer system such that the instructions that

effectuate the virtual processors will be backed by logical processors. Thus, in an

embodiment including multiple logical processors, virtual processors can be

simultaneously executed by logical processors while, for example, other logical processors

execute hypervisor instructions. The combination of virtual processors and memory in a

partition can be considered a virtual machine.

[0038] Guest operating systems can include any operating system such as, for example,

a MICROSOFT WINDOWS operating system. The guest operating systems can include

user/kemel modes of operation and can have kernels that can include schedulers, memory

managers, etc. Generally speaking, kernel mode can include an execution mode in a

logical processor that grants access to at least privileged processor instructions. Each

guest operating system can have associated file systems that can have applications stored

thereon such as terminal servers, e-commerce servers, email servers, etc., and the guest

operating systems themselves. The guest operating systems can schedule threads to

execute on the virtual processors and instances of such applications can be effectuated.

[0039] FIG. 4 depicts a second example VMHost wherein techniques described herein

can be implemented. FIG. 4 depicts similar components to those of FIG. 3; however in

this example embodiment the hypervisor 338 can include the microkernel component and

components from the parent partition 304 of FIG. 3 such as the virtualization service

providers 328 and device drivers 324 while management operating system 336 may

contain, for example, configuration utilities used to configure hypervisor 304. In this

architecture hypervisor 338 can perform the same or similar functions as hypervisor

microkernel 302 of FIG. 3; however, in this architecture hypervisor 334 can be configured

to provide resources to guest operating systems executing in the child partitions.

Hypervisor 338 of FIG. 4 can be a stand alone software product, a part of an operating

system, embedded within firmware of the motherboard or a portion of hypervisor 338 can

be effectuated by specialized integrated circuits.

[0040] FIG. 5 depicts an example deployment in which an aspect of an embodiment of

the invention is implemented. The host 414 depicted in FIG. 5 may comprise example VM

host 300 of FIG. 3 or 4, and host 414 may comprise a VM 408 that performs the functions

- 10-

WO 2012/047555 PCT/US2011/053010

5

10

15

20

25

30

of a remote presentation session server, such as the remote presentation session server 204

of FIG. 2, Deployment 400 comprises fabric controller 402, security token service 404,

hosting layer 406, VMs 408-1 through 408-N, and VM images 410-1 through 410-N. As

depicted, there are three instances of VM 408, though it may be appreciated that more or

fewer instances of VM 408 may exist in systems that implement the present invention.

Likewise, as depicted, there are three instances of VM image 410, though it may be

appreciated that more or fewer instances of VM image 410 may exist in systems that

implement the present invention. The instances of VM 408 are homogenously configured

- they are configured to execute the same version of an operating system and to execute

certain applications. There may be other VMs within deployment 400 that are not

homogenously configured with VM 408. As depicted, each instance of VM 408 is

configured to provide resources to client computers that access deployment 400. For

instance, the instances of VM 408 may be configured to serve remote desktops or remote

applications to clients. Each instance of VM 408 has an associated VM image 410 (for

instance, VM 408-1 has associated VM image 410-a). A VM’s associated VM image

comprises a storage medium that bears instructions and/or data used in executing the VM.

For instance, VM image 410-1 may comprise a guest operating system (guest OS) that

VM 408-1 executes. A VM image 410 may be associated with a VM 408 by configuring

the VM 408 to mount the associated VM image 410 upon execution of VM 408 and access

instructions and/or data stored thereon.

[0041] The instances of VM 408 are hosted by a hosting layer 406 of a physical host

414. For instance, in a MICROSOFT Azure environment, hosting layer 406 may

comprise an instance of Azure VM Host. Hosting layer 406 executes on a physical

machine and is configured to enable multiple instances of VM 408 to run concurrently on

the physical machine. Hosting layer 406 presents to a VM 408 a virtual operating

platform and monitors the execution of VM 408 (and a guest operating system executing

within VM 408).

[0042] Security token service 404 is configured to create and manage accounts for VMs

and other entities (such as fabric controller 402) within deployment 400. That is, security

token service 404 is able to extend a chain of trust that it is part of to other entities within

deployment 400. Security token service 404 itself may be considered trusted because

client 412 is configured with information that allows it to validate security tokens issued

by security token server 404. For example, client 412 may be configured with the

certificate the security token service 404 uses to sign tokens that it passes to VMs 408.

- 11 -

WO 2012/047555 PCT/US2011/053010

5

10

15

20

25

30

Alternatively, client 412 may be configured to possess the subject name of the certificate

used by security token service 404 for signing tokens that it issues.

[0043] A VM 408 may request a token from security token service 404. In that request,

VM 408 proves its identity to security token service 404 by providing proof that it

possesses the secret with which it was provisioned by fabric controller 402. Security

token service 404 validates the identity of VM 408 using the account information (such as

the VM’s 408 public key) that was created by fabric controller 402. Security token service

404 then issues the token to the VM 408. The token is signed with the security token

service’s 404 private key. The VM 408 then sends the token to client 412, which validates

that the token is signed by the security token service 404 using the information about the

security token service’s certificate with which client 412 is configured. Upon validation

of the token, client 412 is able to check the identity asserted in the token for VM 408.

[0044] An example communication flow for effectuating the present invention is also

depicted in FIG. 5. In communication flow (1), security token service 404 sends its public

key to client 412. This may occur in response to security token service 404 receiving a

request from client 412 for this public key. Communication flow (2) depicts fabric

controller 402 instructing hosting layer 406 to create VM 408-1, and to pass a secret to

VM 408-1 (such as by storing it in a location of VHD 410-1 where VM 408-1 is

configured to look for the secret). Communication flow (3) depicts fabric controller 402

also sending that secret to security token service 404 and instructing security token service

404 to create an account for VM 408-1. In communication flow (4), VM 408-1 sends

security token service 404 evidence that it has the secret. This may comprise the secret

itself, but in scenarios where it may be possible for an attacker to snoop the

communication link used for communication flow (4), it may rather comprise some

indirect evidence that VM-1 408-1 has possession of the secret. For instance, where the

secret comprises a number, VM-1 408-1 use the secret as input to a mathematical function,

and then send the output of that mathematical function (the evidence that it has the secret)

to security token service 404. Security token service 404, also having the secret, may also

perform the same mathematical function using the secret as input, then compare its result

against the result that it receives from VM-1 408-1. Where its result matches the result

that it receives, security token service may determine that VM-1 408-1 does have the

secret, is thus a valid member of the deployment, and send VM-1 408-1 a full token that it

can use to prove its identity to a client. Security token service 404 may sign this full token

with its private key before sending it, so that VM-1 408-1 may decrypt is with security

- 12-

WO 2012/047555 PCT/US2011/053010

5

10

15

20

25

30

token service’s 404 public key, and confirm that the full token was generated by security

token service 404, and that it was not modified during transmission. Communication flow

(5) depicts client 412 receiving VM-1 408-1’s full token. This may occur, for example, in

response to client 412 sending a request to VM-1 408-1 for its full token. In another

embodiment, VM-1 408-1 may broadcast or otherwise offer its token at a known location

(such as at a gateway or connection broker of a deployment), and client 412 may obtain

the token from this location.

[0045] As a result of communication flow (1) and communication flow (5), client 412

now has both the public key of security token service 304 and the full token of VM-1 408­

1. It may then validate the full token (and, as a result, that VM-1 408-1 does have the

identity that it purports to have) with the public key. For instance, where a mathematical

function that takes the public key and the full token as inputs produces a known output

that matches what client 412 knows the output should match if VM-1 408-1 does have the

identity it purports to have, then client 412 may determine that VM-1 408-1 does have the

identity it purports to have.

[0046] It may be appreciated that the present invention may be effectuated without

adhering strictly to this communication flow of FIG. 5 (such as by implementing the

communication flow of FIG. 6). For instance, in an embodiment of the present invention,

client 412 may not receive the public key from security token service 404 (herein depicted

as communication flow (1)) until after any of communication flows (2), (3), (4) or (5) have

occurred. In another embodiment of the present invention, communication flow (3)

(where fabric controller 402 sends the secret to security token service 404) may occur

before communication flow (2) (where fabric controller sends the secret to VM 408-1).

These examples do not make up a full enumeration of the possibilities for the

communication flow.

[0047] FIG. 6 depicts another example deployment in which an aspect of an embodiment

of the present invention is implemented, similar to FIG. 5. Fabric controller 402b, security

token service 404b, hosting layer 406b, VMs 408-lb through 408-Nb, VHDs 410-lb

through 410-Nb, client 412b, and host 414b may be similar to fabric controller 402,

security token service 404, hosting layer 406, VMs 408-1 through 408-N, VHDs 410-1

through 410N, client 412, and host 414 of FIG. 5, respectively.

[0048] The primary difference between the embodiment of FIG. 6 and the embodiment

of FIG. 5 is that, in the embodiment of FIG. 6, security token service 404b and VM 408-lb

do not communicate directly as in FIG. 5, but rather use fabric controller 402b as an

- 13 -

WO 2012/047555 PCT/US2011/053010

5

10

15

20

25

30

intermediary. In embodiments, this may be advantageous, because security token service

404b has fewer communications links to maintain. Embodiments where a security token

service 404 and a VM 408 communicate directly to present VM 408 with a full token may

be advantageous, such as where a token is valid only for a set period of time, so time spent

indirectly sending the token through a fabric controller 404 may take up some of the time

for which that full token is valid.

[0049] Like with respect to the communication flow of FIG. 5, the communication flow

of the embodiment of FIG. 6 is not mandatory, and there are other embodiments that

implement the present invention that may use different communication flows.

[0050] As depicted in FIG. 6, in communication flow IB, client 412b obtains a public

key from security token service 404b, and in communication flow 4B, client 412b obtains

a full token from VM-lb 408-lb. These communication flows of IB and 4B may be

similar to communication flows 1 and 5, respectively, as described for FIG. 5.

[0051] Communication flow 2B depicts fabric controller 402b instructing security token

service 404b to create an account for VM-lb 408-lb and receiving a full token from VM-

lb 408-lb. In an embodiment where a secret is also created or determined,

communication flow 2B includes either security token service 404b creating or

determining the secret, and then sending it to fabric controller 402b, or fabric controller

402b creating or determining the secret, and then sending it to security token service 404b.

[0052] Communication flow 3B depicts fabric controller 402b sending the full token to

VM-lb 408-lb. Where a secret is also used in an embodiment, communication flow 3B

includes fabric controller 402b sending the secret to VM-lb 408-lb. After VM-lb 408-lb

has the full token, it may send that full token to client 412b in communication flow 4B.

Between communication flows IB and 4B, client 412b has both the public key form

security token service 404b (communication flow IB) and the full token from VM-lb 408­

lb (communication flow 4B). Client 412b may then validate the purported identity of

VM-lb 408-lb using the public key and the token, as described with respect to FIG. 5.

[0053] FIG. 7 depicts another example deployment in which an aspect of an embodiment

of the invention is implemented, similar to FIGs. 5 and 6. Fabric controller 402c, security

token service 404c, hosting layer 406c, VMs 408-lc through 408-Nc, VHDs 410-lc

through 410-Nc, client 412c, and host 414c may be similar to fabric controller 402,

security token service 404, hosting layer 406, VMs 408-1 through 408-N, VHDs 410-1

through 410N, client 412, and host 414 of FIG. 5, respectively.

- 14-

WO 2012/047555 PCT/US2011/053010

5

10

15

20

25

30

[0054] FIG. 7 also depicts deployment management 416c, which comprises fabric

controller 402c and security token service 404c. Deployment management 416c handles a

management role for a deployment that includes host 414c, including such things as

provisioning VMs and providing tokens for authentication to VMs.

[0055] The primary difference between the embodiment of FIG. 7 and the embodiments

of FIGs. 5 and 6 is that, in the embodiment of FIG. 7, deployment management 416c

provisions VM-lc 408-lc, sends a public key to client 412c, and sends a full token to VM-

lc 408-lc, whereas, for instance, in FIG. 5, those tasks were divided between fabric

controller 402c and security token service 404c. Such an embodiment may occur where a

single system or process handles these tasks by itself.

[0056] Fike with respect to the communication flow of FIG. 5, the communication flow

of the embodiment of FIG. 7 is not mandatory, and there are other embodiments that

implement the present invention that may use different communication flows.

[0057] As depicted in FIG. 7, in communication flow 1C, client 412c obtains a public

key from deployment management 416c. This may occur in a similar manner as to how

client 412 obtains a public key from security token service 404 in communication flow 1

of FIG. 5. As further depicted in FIG. 7, in communication flow 3C, client 412c obtains a

full token from VM-lc 408-lc. This may occur in a similar manner as to how client 412c

obtains a full token from VM-1 408-1 in communication flow 5 of FIG 4A.

[0058] As depicted in FIG. 7, in communication flow 2C, deployment management 416c

provisions VM-lc 408-lc (such as by sending instructions to do so to host 414c), and also,

as part of this act of provisioning, sends VM-lc 408-lc a full token that VM-lc 408-lc

may use to prove its identity to clients such as client 412c.

[0059] After communication flows 1C, 2C, and 3C have occurred, client 412c has both a

public key from deployment manager 416c (obtained in communication flow 1C), and a

full token from VM-lc 408-lc (obtained in communication flow 3C). Client 412c may

then validate the purported identity of VM-lc 408-lc using the public key and the token,

as described with respect to FIG. 5.

[0060] FIG. 8 depicts example operational procedures for a deployment establishing a

provable identity for a VM of the deployment, that may be implemented, for instance, in

the systems depicted in FIGs. 5-7. The operational procedures of FIG. 8 may be

performed by a fabric controller, such as fabric controller 402. The operational procedures

of FIG. 8 begin with operation 500, which leads into operation 502. Operation 502 depicts

creating an account for the first computer (such as VM-1 408-1) on a second computer

- 15 -

WO 2012/047555 PCT/US2011/053010

5

10

15

20

25

30

(such as security token service 404). Operation 502 may be effectuated in a manner

similar to communication flow (3) of FIG. 5, or communication flow (2B) of FIG. 6.

[0061] In an embodiment where creating an account for the first computer on the second

computer is performed by a fourth computer (such as fabric controller 402), and wherein

the fourth computer has an account on the second computer and the authority to create

accounts for other computers, operation 502 may include instructing the second computer,

by the fourth computer, to create the account for the first computer. For instance, in FIG.

5, fabric controller 402 may have an account with security token service 404, and have the

ability to create accounts for other computers.

[0062] Operation 504 depicts preparing the first computer to communicate on a

communications network. Provisioning may comprise the fabric controller preparing the

first computer/VM to operate, such as by creating the VM, and configuring it with the

appropriate data and software to fulfill its function.

[0063] Operation 506 depicts sending the first computer a full token that comprises an

assertion of an identity of the first computer, the full token being created by the second

computer, computer based on the account for the first computer. The token may comprise

a claim of an identity of the first computer. In an embodiment, operation 506 is performed

by the second computer (security token service 404). This may be similar to

communication flow (4) of FIG. 5.

[0064] In an embodiment, operation 506 comprises sending to the first computer, by the

second computer, the full token, in response to receiving a credential from the first

computer corresponding to a credential stored in an account for the first computer on the

second computer. For instance, when fabric controller 402 provisions VM-1 408-1 and

also creates an account for VM-1 408-1 with security token service 404, it may send a

credential (sometimes referred to as a secret) to both VM-1 408-1 and security token

service 404. Then, when VM-1 408-1 wants to prove to security token service 404 that it

is authorized to receive a full token for the account, it may present the credential to

security token service 404 (such as by encoding it with security token service’s 404 public

key).

[0065] Operation 508 depicts sending a public key to a third computer (such as client

412), wherein the third computer confirms the identity of the first computer based on

determining that combining the full token of the first computer with the public key

produces a result consistent with the identity of the first computer. This may comprise

communication flows (1) and (5) of FIG. 5, communication flows (IB) and (4B) of FIG. 6,

- 16-

WO 2012/047555 PCT/US2011/053010

5

10

15

20

25

30

or communication flows (1C) and (3C) of FIG. 7. When client 412 obtains both security

token service’s 404 public key, and the full token from VM-1 408-1, it may validate an

identity of VM-1 408-1 by processing the secure token with the public key to produce a

known result that is consistent with the identity of the first computer.

[0066] In an embodiment, operation 508 comprises the third computer determining to

trust the full token because it was issued by the second computer, the third computer

having validated an identity of the second computer. The third computer may have

validated the identity of the second computer through determining that a domain name

service name (such as a name provided through DNS) for the second computer matches a

name in a certificate for the second computer (such as a Secure Sockets Layer - SSL -

certificate). That client 412 trusts the full token at all may be based on a trusted-chain that

extends from an entity that it trusts down to VM-1 408-1. The top of this chain may be the

Domain Name System (DNS) - that when client 412 queries DNS for the computer with

name tokenservice.contoso.com and is directed to security token service 404, that that

information is accurate. Client 412 may then authenticate a certificate presented by

security token service 404 (that is issued by a certificate authority, or self-issued) as

having the same name for the security token service as is obtained through DNS. Client

412 may then trust that security token service 412 has the identity it asserts to have. This

chain of trust then extends to VM-1 408-1 where VM-1 408-1 is able to present to client

412 a full token that may be validated with the already-trusted security token service’s 404

public key.

[0067] Operation 510 depicts, in an embodiment where wherein creating an account for

the first computer on the second computer is performed by a fourth computer, and further

comprising: creating, by a fifth computer (such as a second instance of fabric controller

402), an account for a sixth computer (such as VM-2 408-2), on the second computer;

provisioning, by the fifth computer, the sixth computer; sending the sixth computer a

second full token created by the second computer; and wherein sending the public key to

the third computer comprises: sending the public key to the third computer, such that the

third computer confirms an identity of the sixth computer based on processing the full

token as presented by the second computer with the public key to produce a second known

result. There may be cases where multiple fabric controllers 402 co-exist in a deployment,

and each fabric controller is configured to communicate with security token service 404 to

obtain full tokens on behalf of VMs 408 that they provision. In operation 510, a second

- 17-

tokenservice.contoso.com

WO 2012/047555 PCT/US2011/053010

5

10

15

20

25

30

fabric controller 402, provisions a second VM (such as VM-2 408-2) and obtains from

security token service 404 a second full token for this second VM 408.

[0068] Operation 512 depicts sending the public key to a seventh computer (such as a

second instance of client 412), such that the seventh computer confirms an identity of the

first computer based on processing the full token as presented by the first computer with

the public key to produce the known result. Multiple clients may validate the identity of a

VM (such as VM-1 408-1), using the same full token presented by the VM 408, as well as

the same public key presented by security token service 404.

[0069] Operation 514 depicts creating an account for an eighth computer (such as VM-N

408-N) on the second computer; provisioning the eighth computer; sending the eighth

computer a second full token created by the second computer; and wherein sending the

public key to the third computer comprises: sending the public key to the third computer,

such that the third computer confirms an identity of the eighth computer based on

processing the full token as presented by the eighth computer with the public key to

produce a second known result. Where multiple VMs are provisioned with their own full

token, each of these tokens may be validated by a client using the same public key of the

security token service 404. As depicted in operation 514, a single client 412 uses one

public key from security token service 404 to validate two full tokens - one for VM-1

408-1 and one for VM-N 408-N.

[0070] The operational procedures end with operation 516. It may be appreciated that

there are embodiments of the invention that do not implement all of the operations of FIG.

8, or implement them (or a subset of them) in a different order than is depicted. For

instance, an embodiment of the invention may implement operations 500, 502, 504, 506,

508, and 516, or an embodiment of the invention may implement operation 504 before

operation 502.

[0071] With respect to both FIGs. 8 and 9, it may be appreciated that not all elements of

FIGs. 5-7 have been enumerated in the examples. For instance, where client 412 of FIG. 5

is referred to as performing a task, it may be appreciated that this task may also be

performed by client 412b of FIG. 6, or client 412c of FIG. 7.

[0072] FIG. 9 depicts example operational procedures for a client of a deployment

verifying the provable identity of a VM of a deployment, that may be implemented, for

instance, in the systems depicted in FIGs. 5-7. The operational procedures of FIG. 9 may

be implemented for instance, by client 412 of FIG. 5, where fabric controller 402 of FIG. 5

implements the operational procedures of fabric controller 402. The operational

- 18 -

WO 2012/047555 PCT/US2011/053010

5

10

15

20

25

30

procedures of FIG. 9 begin with operation 600, which leads into operation 602. Operation

602 depicts obtaining a public key from a token service. Operation 604 may occur in a

manner similar to communication flow (1) of FIG. 5, communication flow (IB) of FIG. 6,

or communication flow (1C) of FIG. 7.

[0073] Operation 604 depicts obtaining a full token from a computer, the full token

indicating an identity of the computer. Operation 604 may occur in a manner similar to

communication flow (5) of FIG. 5, communication flow (4B) of FIG. 6, or communication

flow (3C) of FIG. 7.

[0074] Operation 606 depicts validating the identity of the computer by processing the

full token with the public key to produce a known result. Having obtained the public key

of security token service 404 in operation 602, and the full token of VM-1 408-1 in

operation 604, client 412 now has both the public key and the full token, and may validate

the full token (and thus, the identity of VM-1 408-1) using the public key from security

token service 404, which client 412 trusts.

[0075] Operation 608 depicts communicating with the computer in a secure relationship.

In operation 606, client 412 has validated the identity of VM-1 408-1 to be that which

VM-1 408-1 asserts it is. Based on a chain of trust that extends down through security

token service 404 and to VM-1 408-1, client 412 may trust VM-1 408-1, and as they

communicate (such as where VM-1 408-1 serves client 412 a remote presentation session),

this communication may occur within a secure, or a trusted, relationship.

[0076] The operational procedures of FIG. 9 end with operation 610.

[0077] While the present invention has been described in connection with the preferred

aspects, as illustrated in the various figures, it is understood that other similar aspects may

be used or modifications and additions may be made to the described aspects for

performing the same function of the present invention without deviating there from.

Therefore, the present invention should not be limited to any single aspect, but rather

construed in breadth and scope in accordance with the appended claims. For example, the

various procedures described herein may be implemented with hardware or software, or a

combination of both. Thus, the methods and apparatus of the disclosed embodiments, or

certain aspects or portions thereof, may take the form of program code (i.e., instructions)

embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other

machine-readable storage medium. When the program code is loaded into and executed

by a machine, such as a computer, the machine becomes an apparatus configured for

practicing the disclosed embodiments. In addition to the specific implementations

- 19-

H:\mka\Inter woven\NRPortbl\DCC\MKA\6265833_2.doc-2/05/2014
20

11
31

26
11

02

 M
ay

 2
01

4

-20-

explicitly set forth herein, other aspects and implementations will be apparent to those

skilled in the art from consideration of the specification disclosed herein. It is intended

that the specification and illustrated implementations be considered as examples only.

5 [0078] Throughout this specification and claims which follow, unless the context requires

otherwise, the word "comprise", and variations such as "comprises" and "comprising", will

be understood to imply the inclusion of a stated integer or step or group of integers or steps

but not the exclusion of any other integer or step or group of integers or steps.

10 [0079] The reference in this specification to any prior publication (or information derived

from it), or to any matter which is known, is not, and should not be taken as an

acknowledgment or admission or any form of suggestion that that prior publication (or

information derived from it) or known matter forms part of the common general

knowledge in the field of endeavour to which this specification relates.

15

H:\mka\Inter woven\NRPortbl\DCC\MKA\6265833_2.doc-2/05/2014
20

11
31

26
11

02

 M
ay

 2
01

4

-21 -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method for establishing a provable identity for a first computer, comprising:

in response to creating an account for the first computer on a second computer,

5 sending the first computer first data, and sending the second computer the first data, the

first computer sending the first data to the second computer and the second computer

verifying the first data as received from the first computer against the first data already

possessed by the second computer;

in response to the second computer verifying the first data as received from the first

10 computer against the first data already possessed by the second computer, sending the first

computer a full token that comprises an assertion of an identity of the first computer, the

full token being created by the second computer based on the account for the first

computer; and

sending a public key to a third computer, wherein the third computer confirms the

15 identity of the first computer based on determining that combining the full token of the

first computer and the public key produces a result consistent with the identity of the first

computer.

2. The method of claim 1, wherein creating an account for the first computer on the

20 second computer is performed by a fourth computer, and wherein the fourth computer has

an account on the second computer and the authority to create an account for the first

computer, and further comprising:

instructing the second computer, by the fourth computer, to create the account for

the first computer.

25

3. The method of claim 2, wherein sending the first computer the full token is

performed by the second computer.

H:\mka\Inter woven\NRPortbl\DCC\MKA\6265833_2.doc-2/05/2014
20

11
31

26
11

02

 M
ay

 2
01

4

-22­

4. The method of any one of claims 1 to 3, wherein sending a public key to a third

computer, wherein the third computer confirms the identity of the first computer based on

determining that combining the full token of the first computer and the public key

produces a result consistent with the identity of the first computer further comprises:

5 the third computer determining to trust the full token because it was issued by the

second computer, the third computer having validated an identity of the second computer

through querying a domain name system with a network address of the second computer to

receive a uniform resource locator (URL) of the second computer, and comparing the URL

of the second computer with a URL stored in a certificate for the second computer.

10

5. The method of any one of claims 1 to 4, wherein the third computer has validated

an identity of the second computer by determining that a domain name system name for

the second computer matches a name in a certificate for the second computer.

15 6. The method of any one of claims 1 to 5, wherein sending the first computer a full

token created by the second computer, comprises:

sending to the first computer, by the second computer, the full token, in response to

receiving a credential from the first computer corresponding to a credential stored in an

account for the first computer on the second computer.

20

7. The method of any one of claims 1 to 6, wherein creating an account for the first

computer on the second computer is performed by a fourth computer, and further

comprising:

creating, by a fifth computer, an account for a sixth computer, on the second

25 computer;

sending the sixth computer a second full token that comprises an assertion of an

identity of the sixth computer, the second full token being created by the second

computer based on the account for the second computer; and

H:\mka\Inter woven\NRPortbl\DCC\MKA\6265833_2.doc-2/05/2014
20

11
31

26
11

02

 M
ay

 2
01

4

-23 -

wherein sending the public key to the third computer comprises:

sending the public key to the third computer, wherein the third computer

confirms the identity of the sixth computer based on determining that combining

the full token of the sixth computer and the public key produces a result consistent

5 with the identity of the sixth computer.

8. The method of any one of claims 1 to 7, further comprising:

sending the public key to a seventh computer, such that the seventh computer confirms an

identity of the first computer based on processing the full token as presented by the first

10 computer with the public key to produce a known result.

9. The method of claim 1, further comprising:

creating an account for an eighth computer on the second computer;

sending the eighth computer a second full token that comprises an assertion of an identity

15 of the eighth computer, the second full token being token created by the second computer

based on the account for the eighth computer; and

wherein sending the public key to the third computer comprises:

sending the public key to the third computer, wherein the third computer confirms

the identity of the eighth computer based on determining that combining the second

20 full token of the eighth computer and the public key produces a result consistent

with the identity of the eighth computer.

10. A system for establishing a provable identity for a first computer, comprising:

a memory bearing instructions that, upon execution by a processor, cause the system to at

25 least:

in response to creating an account for the first computer on a second computer,

send the first computer first data, and send the second computer the first data, the

H:\mka\Inter woven\NRPortbl\DCC\MKA\6265833_2.doc-2/05/2014

5

10

15

20

25

-24-

first computer sending the first data to the second computer and the second

computer verifying the first data as received from the first computer against the

first data already possessed by the second computer;

in response to the second computer verifying the first data as received from the first

computer against the first data already possessed by the second computer, send the

first computer a full token that comprises an assertion of an identity of the first

computer, the full token being created by the second computer based on the

account for the first computer; and

send a public key to a third computer, wherein the third computer confirms the

identity of the first computer based on determining that combining the full token of

the first computer and the public key produces a result consistent with the identity

of the first computer.

11. The system of claim 10, wherein creating an account for the first computer on the

second computer is performed by a fourth computer, and wherein the fourth computer has

an account on the second computer and the authority to create an account for the first

computer, and wherein the memory further bears instructions that, upon execution by the

processor, cause the system to at least:

instruct the second computer, by the fourth computer, to create the account for the

first computer.

12. The system of claim 11, wherein sending the first computer the full token is

performed by the second computer.

13. The system of any one of claims 10 to 12, wherein the third computer has validated

an identity of the second computer by determining that a domain name service name for

the second computer matches a name in a certificate for the second computer.

H:\mka\Inter woven\NRPortbl\DCC\MKA\6265833_2.doc-2/05/2014
20

11
31

26
11

02

 M
ay

 2
01

4

-25 -

14. The system of claim 13, wherein the certificate was issued by a certificate authority

trusted by the third computer.

15. The system of any one of claims 10 to 14, wherein the instructions that, upon

5 execution by the processor, cause the system to at least send the first computer a full token

created by the second computer further cause the system to at least:

send to the first computer, by the second computer, the full token, in response to

receiving a credential from the first computer corresponding to a credential stored in an

account for the first computer on the second computer.

10

16. The system of any one of claims 10 to 15, wherein creating an account for the first

computer on the second computer is performed by a fourth computer, and wherein the

memory further bears instructions that, upon execution by the processor, cause the system

to at least:

15 create, by a fifth computer, an account for a sixth computer, on the second

computer;

send the sixth computer a second full token that comprises an assertion of an

identity of the sixth computer, the second full token being created by the second computer

based on the account for the second computer; and

20 wherein sending the public key to the third computer comprises:

sending the public key to the third computer, wherein the third computer

confirms the identity of the sixth computer based on determining that combining

the full token of the sixth computer and the public key produces a result consistent

with the identity of the sixth computer.

25

17. The system of any one of claims 10 to 16, wherein the memory further bears

instructions that, upon execution by the processor, cause the system to at least:

H:\mka\Inter woven\NRPortbl\DCC\MKA\6265833_2.doc-2/05/2014
20

11
31

26
11

02

 M
ay

 2
01

4

-26-

send the public key to a seventh computer, wherein the seventh computer confirms the

identity of the first computer based on determining that combining the full token of the

first computer and the public key produces a result consistent with the identity of the first

computer.

5

18. The system of claim 17, wherein the memory further bears instructions that, upon

execution by the processor, cause the system to at least:

create an account for an eighth computer on the second computer;

send the eighth computer a second full token that comprises an assertion of an

10 identity of the first computer, the full token being created by the second computer

based on the account for the eighth computer; and

wherein sending the public key to the third computer comprises:

sending the public key to the third computer, wherein the third computer

confirms the identity of the eighth computer based on determining that combining

15 the full token of the first computer and the public key produces a result consistent

with the identity of the first computer.

19. A computer-readable storage device for establishing a provable identity for a

virtual machine (VM), bearing computer-readable instructions that, upon execution by a

20 computer, cause the computer to perform operations comprising:

creating an account on a token service for the VM;

creating the VM;

creating a secret for the VM; and

sending the secret to the VM and to the token service, such that:

25 the VM sends proof of possession of the secret to the token service;

in response to determining that the VM possesses the secret, the token

service sends a full token to the VM;

H:\mka\Inter woven\NRPortbl\DCC\MKA\6265833_2.doc-2/05/2014

5

10

15

20

-27-

in response to receiving a request from an external computer for a public

key of the token service, the token service sends the public key to the

external computer; and

the VM sends the full token to the external computer, such that the external

computer validates an identity of the VM by processing the full token with

the public key, and communicates with the VM.

20. The computer-readable storage device of claim 19, further bearing computer-

readable instructions that, upon execution by a computer, cause the computer to perform

operations comprising:

creating an account for a second VM on the token service;

provisioning the second VM;

creating a second secret for the second VM; and

sending the secret to the second VM and to the token service, such that:

the second VM sends proof of possession of the second secret to the token

service;

in response to determining that the second VM possesses the second secret,

the token service sends a second full token to the VM; and

the second VM sends the second full token to the external computer, such

that the external computer validates an identity of the second VM by processing the

second full token with the public key, and communicates with the second VM.

21. The method, system or computer-readable storage device of any one of claims 1 to

20, substantially as hereinbefore described with reference to the accompanying drawings.

WO 2012/047555 PCT/US2011/053010

1/9
C

om
pu

te
r 2

0

Ap
pl

ic
at

io
ns

 I Fl
op

py
 D

riv
e

50

WO 2012/047555 PCT/US2011/053010

2/9

WO 2012/047555 PCT/US2011/053010

3/9

300 Computer System

304 Parent
Partition

Child Partition 1

320 Guest OS
334 I/O

Emulators 316
VSCs

328
Virtualization

Service
Providers

Child Partition N

322 Guest OS

318
VSCs

324 Device
Drivers

330 Virtual
Processor

332 Virtual
Processor

302 Hypervisor Microkernel

106 Storage
Device

112
Graphics

Processing
Unit

21
Processor

104 RAM

FIG. 3

WO 2012/047555 PCT/US2011/053010

4/9

300 Computer System

Child Partition 1 Child Partition N

320 Guest OS

316
VSCs

322 Guest OS

318
VSCs

336
Management

OS

334 I/O
Emulators

330 Virtual
Processor

332 Virtual
Processor

338 Hypervisor

328 Virtualization Service
Providers

324 Device Drivers

106 Storage
Device

112
Graphics

Processing
Unit

102 Logical
Processor 104 RAM

FIG. 4

WO 2012/047555 PCT/US2011/053010

5/9

404 security token service

414 host

FIG. 5

WO 2012/047555 PCT/US2011/053010

6/9

FIG. 6

WO 2012/047555 PCT/US2011/053010

7/9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
!_

416c deployment
management

Ί
I
I
I
I
I
I
I

404c security token service |

I
I
I
I
I
I
I
I

402c fabric controller I
I

FIG. 7

WO 2012/047555 PCT/US2011/053010

8/9

FIG. 8

WO 2012/047555 PCT/US2011/053010

9/9

FIG. 9

