I*I Innovation, Sciences et Innovation, Science and CA 3065306 A1 2018/12/06
Développement economique Canada Economic Development Canada
ey 3 065 306

Office de la Propriéte Intellectuelle du Canada Canadian Intellectual Property Office

12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
13) A1

(86) Date de dépdot PCT/PCT Filing Date: 2018/05/30 (51) ClLInt./Int.Cl. GO6F 27/56(2013.01)

(87) Date publication PCT/PCT Publication Date: 2018/12/06 | (71) Demandeur/Applicant:

(85) Entrée phase nationale/National Entry: 2019/11/27 CYEMPTIVE TECHNOLOGIES, INC., US
(86) N° demande PCT/PCT Application No.: US 2018/035205| (/2) Inventeurs/Inventors:

MACLEOD, STEWART P., US;
(87) N publication PCT/PCT Publication No.: 2018/222/66 PIKE, ROBERT, US

(30) Priorité/Priority: 2017/05/30 (US62/512,659) (74) Agent: BLAKE. CASSELS & GRAYDON LLP

(54) Titre : DETECTION ET PROTECTION EN TEMPS REEL DES LOGICIELS MALVEILLANTS ET DE LA

STEGANOGRAPHIE DANS UN MODE NOYAU
(54) Title: REAL-TIME DETECTION OF AND PROTECTION FROM MALWARE AND STEGANOGRAPHY IN A KERNEL

MODE

Detect a file operation request initiated by a i
Process running in user mode §

600 |

:

\\\

IRRAAAAmAA AR ARAAAA A AL AR A AR AR AL AR AR A AR AR AAA AR A AR A AR AR AR AR AR A LA AR AR A LA A A A AR AR A AR AR AR AR AA A AR AR AR A AR A AR AR AR A LA A A R AR A AR AN

% Perform malware detection analytics on a file
. buffer associated with the detected file
%
:

%
§ 605

L T T L LT LT s T L

T AR A A A AR AL A A A A A AL AL AAAAAAAAAAAAAAAAAAAARAAAAAAAARANAAAAN AR ARA AR AR

Responsive to detecting the behavior i

. Indicating the presence of the malware, i
. identify the process responsible for initiating ;
the detected file operation reguest ;

610 |

s sexssenssaesss e e s e s sse s e o e e s eeSS s ,.
Perform a search for the identified process on |
one or more of a blacklist of proegrams and a
§whitelist of programs to determine whether the
i[dentified process s a trusted process |

615

--

sss

. Responsive to determining that the identified
process 1s not a trusted process, execute a
‘ malware remediation action against the
Identified process and transmit information
describing the malware to a client device
620

(57) Abréegée/Abstract:
A method for real-time detection of malware In a Kernel mode includes detecting a file operation request Initiated by a process

running In user mode. Malware detection analytics I1s performed on a file buffer associated with the detected file operation request

50 rue Victoria e Place du Portage1l e Gatineau, (Québec) K1AOC9 e www.opic.ic.gc.ca i+
50 Victoria Street e Place du Portage 1 ¢ Gatineau, Quebec K1AO0C9 e www.cipo.ic.gc.ca al l a a

CA 3065306 A1 2018/12/06

ey 3 065 306
13) A1

(57) Abrege(suite)/Abstract(continued):

to detect behavior Indicating presence of malware. Responsive to detecting the behavior indicating the presence of the malware,
the process responsible for initiating the detected file operation request Is identified. A search for the identified process Is performed
on one or more of a blacklist of programs and a whitelist of programs to determine whether the identified process Is a trusted
process. Responsive to determining that the identified process Is not a trusted process, a malware remediation action Is executed
against the identified process. Information describing the malware Is transmitted to a client device.

wo 20187222766 A1 IO A OO 0 A

CA 03065306 2015-11-27

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2018/222766 Al

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

06 December 2018 (06.12.2018) WIRPO | PCT

(51) International Patent Classification:
GO6F 21/56 (2013.01)

(21) International Application Number:
PCT/US2018/035205

(22) International Filing Date:
30 May 2018 (30.05.2018)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

62/512,659 30 May 2017 (30.05.2017) US

(71) Applicant: CYEMPTIVE TECHNOLOGIES, INC.
[US/US]; 18433 22nd Way NE, Woodinville, WA 98077
(US).

(72) Inventors: MACLEOD, Stewart, P.; Cyemptive Tech-
nologies, Inc., 18433 22nd Way NE, Woodinville, WA
98077 (US). PIKE, Robert; Cyemptive Technologies, Inc.,
18433 22nd Way NE, Woodinville, WA 98077 (US).

(74) Agent: IYENGAR, Vikram et al.; Fenwick & West LLP,
801 California Street, Mountain View, CA 94041 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH, CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,

(84)

DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, 85G, SK, SL, SM, 8T, SV, SY, TH, TJ, TM, TN,
IR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

KM, ML, MR, NE, SN, TD, TG).

Published:
with international seavch report (Art. 21(3))

(34) Title: REAL-TIME DETECTION OF AND PROTECTION FROM MALWARE AND STEGANOGRAPHY IN A KERNEL

MODE
(57) Abstract: A method for real-time detection of malware in a Kernel mode imncludes
| Detect a fle operation request nifiated by 2 detecting a file operation request initiated by a process running in user mode. Malware
B node detection analytics is performed on a file butfer associated with the detected file operation
— request to detect behavior indicating presence of malware. Responsive to detecting the
MWWWWW&W behavior indicating the presence of the malware, the process responsible for initiating the
Perform malware detection analytics on a file . ¢

T rtar sserinted with the delacted fila ; detected file operation request is identified. A search for the identified process is performed
operation reqp‘iii"efcge;fgaﬁ:gar:m ndicating, on one or more of a blacklist of programs and a whitelist of programs to determine whether

|

. RO

Responsive to detecting the behavior
indicating the presence of the malware,
iIdentify the process responsible for initiating
the detected file operation request
610

AAATAARLALTAARLA ST AR A ST A LA AR

TFAATLAATFAATLASTFAATLAGTAAKLAGTAARLACLARRL AL

- - R - - -
Perform a search for the identified process on]
one or mare of a blacklist of programs and a
whitelist of programs to determine whether the
identified process 1s a trusted process
61

Responsive to determining that the identified
process is not a trusted process, execute a
malware remediation acticn against the
identified process and transmit information
describing the malware to a client device
620

FIG. 6

605 | the 1dentified process is a trusted process. Responsive to determining that the identified
: process 1s not a trusted process, a malware remediation action 1s executed against the 1den-
tified process. Information describing the malware 1s transmitted to a client device.

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

REAL-TIME DETECTION OF AND PROTECTION FROM MALWARE AND
STEGANOGRAPHY IN A KERNEL MODE

CROSS REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of U.S. Provisional Application No.
62/512,659, filed May 30, 2017, which 1s incorporated by reference 1n its entirety.

TECHNICAL FIELD
[0002] This disclosure relates generally to detection of malware, and 1n particular to real-

time detection of and protection from malware and steganography in a kernel mode.

BACKGROUND
[0003] Malware refers to malicious computer software programs, which may infect
computers, tablets, or devices without the owner’s knowledge or permission. Steganography
1s one such method to infect devices and networks with malware.
[0004] Malware may include viruses, worms, Trojans, botnets, spyware, and adware.
Viruses replicate themselves after attaching to an executable program. Worms replicate
themselves across a network to quickly infect a large number of devices. Trojans disguise
themselves as legitimate software and attempt to steal the user’s identification, password, and
other personal information. Botnets are groups of infected devices that are remotely
controlled. The individual bots (devices) can be instructed to send SPAM email or
participate in demal of service attacks. Spyware 1s designed to capture keystrokes, credit card
numbers, and other personal information. Adware infects a device and downloads and
displays unwanted advertisements.
[0005] Traditional malware prevention tools may try to detect a signature and 1solate and
repair, or remove the malware. However, the number of malware programs has increased
dramatically, and signatures are typically created only for known malware. Traditional
signature-based approaches therefore are typically unable to identify or detect unknown
malware.
[0006] Moreover, traditional approaches, based on run-time heuristic scanning using
rules, may generate many false positives and false negatives. Other traditional approaches,
based on sandboxing to execute suspicious files in a virtual machine and observe malicious
behavior, are typically unable to detect malware that 1s able to determine 1f 1t 1s 1n a sandbox
(virtual machine or container) and evade detection. Finally, traditional approaches, based on

static code analysis, are also unable to detect malware reliably.

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] The disclosed embodiments have advantages and features which will be more
readily apparent from the detailed description, the appended claims, and the accompanying
figures (or drawings). A brief introduction of the figures 1s below.
[0008] Figure (FIG.) 1 illustrates an example block diagram of a system for real-time
detection of and protection from malware and steganography in a kernel mode, 1n accordance
with an embodiment.
[0009] FIG. 2 illustrates an example block diagram of real-time detection of and
protection from malware for applications running in user mode on a platform, 1n accordance
with an embodiment.
[0010] FIG. 3 illustrates an example filter manager and minifilter drivers for real-time
detection of and protection from malware, 1n accordance with an embodiment.
[0011] FIG. 4 illustrates example components of a volume shadow service (VSS) for
real-time detection of and protection from malware, 1n accordance with an embodiment.
[0012] FIG. 5 illustrates example data points for Monte Carlo P1 approximation, in
accordance with an embodiment.
[0013] FIG. 6 1llustrates an example process for real-time detection of and protection
from malware, 1n accordance with an embodiment.
[0014] FIG. 7 illustrates components of an example portable executable (PE) file for real-
time detection of and protection from steganography in a kernel mode, 1n accordance with an
embodiment.
[0015] FIG. 8 illustrates an example process for real-time detection of and protection
from steganography in a kernel mode, 1n accordance with an embodiment.
[0016] FIG. 9 1s a block diagram 1llustrating components of an example machine able to
read instructions from a machine-readable medium and execute them i1n a processor or

controller.

DETAILED DESCRIPTION
[0017] The Figures (FIGs.) and the following description relate to preferred embodiments
by way of illustration only. It should be noted that from the following discussion, alternative
embodiments of the structures and methods disclosed herein will be readily recognized as
viable alternatives that may be employed without departing from the principles of what 1s

claimed.

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

[0018] Reference will now be made 1n detail to several embodiments, examples of which
are 1llustrated 1n the accompanying figures. It 1s noted that wherever practicable similar or
like reference numbers may be used 1n the figures and may indicate similar or like
functionality. The figures depict embodiments of the disclosed system (or method) for
purposes of illustration only. One skilled 1n the art will readily recognize from the following
description that alternative embodiments of the structures and methods illustrated herein may

be employed without departing from the principles described herein.

INTRODUCTION

[0019] Traditional security products may include behavioral analytics and run-time
heuristics to protect devices from unknown malware by looking for suspicious application
program interface (API) calls and actions. Malware refers to software that 1s intended to
damage or disable computers and computer systems. Malware may include sophisticated
programs to evade detection from security products by creating polymorphic and
metamorphic malware. Polymorphic malware mutates by encrypting destructive code using a
mutation engine that generates a new “signature” on different executions. Metamorphic
malware dynamically restructures executable code to obfuscate malicious intentions. To
evade detection, malware may add redundant processor opcodes, such as push, pop, nop, and
jump 1nstructions, to change an executable’s signature but not affect i1ts functionality.

[0020] Ransomware 1s a fast growing category of malware. Ransomware 1s a type of
malware that infects a computer, tablet, device or smartphone with the goal of forcing the
user “to pay a ransom” to regain access to their device or personal data. Some types of
ransomware may lock a user device or system to prevent the user from access to their device
or system. Other types of ransomware may encrypt the user’s personal data, such as word
processing documents, photographs, music, video, and email, using encryption software. In
such cases, the user may be required to pay a ransom to regain access. Steganography 1s one
such method to infect devices and networks with ransomware.

[0021] Steganography refers to the practice of concealing a computer file, message,
1mage, or video within another computer file, message, image, or video. In digital
steganography, electronic communications may include steganographic coding inside of a
transport layer, such as a document file, image file, program or protocol. Media files may be
used for steganographic transmission because of their size. For example, a sender might start
with an innocuous 1mage file and adjust the color of every hundredth pixel to correspond to a

letter 1n the alphabet.

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

[0022] Traditional methods to detect ransomware may rely on detecting malware file
signatures, run-time heuristic scanning, sandboxing, static code analysis, etc. However,
traditional methods, based on detecting malware file signatures, may only detect previously
1dentified malware and may not protect against new forms of ransomware, such as self-
morphing ransomware. Traditional methods, based on run-time heuristic scanning, may use a
set of rules to generate false positives and false negatives. Traditional methods, based on
sandboxing, may execute suspicious files in a virtual machine and observe malicious
behavior. However, ransomware may be able to determine 1f 1t 1s 1n a sandbox (virtual
machine or container) and evade detection. Traditional methods, based on static code
analysis, may attempt to disassemble the executable code and create a parse tree to 1dentify
suspicious API calls. However, such traditional methods, based on static code analysis,
cannot detect ransomware reliably.

[0023] “Packed” malware and “hidden malware” 1s traditionally undetected and may pass
through a local device’s firewall, the network’s firewall, and anti-virus software. Traditional
firewall features such as filtering and deep packet inspection, intrusion protection systems,
and application awareness are often used. However, traditional firewalls rely on a port
assignment to 1dentify malware. The link between the actual application type and the
firewall’s assumption of the application 1s therefore weak. Moreover, deep packet inspection
1s of limited value when the termination point 1s the destination and not the firewall due to

strong encryption.

CONFIGURATION OVERVIEW

[0024] Disclosed by way of example embodiments are systems, methods and/or computer
program products (e.g., a computer readable storage media that stores instructions executable
by one or more processing units) for real-time detection of and protection from malware 1n a
kernel mode. A processor in a computer may generally run 1n at least two different modes:
user mode and kernel mode. Typically, applications may run 1n user mode, while core
operating system components may run in kernel mode.

[0025] In one embodiment, a file operation request initiated by a process running 1n user
mode 1s detected. Malware detection analytics are performed on a file buffer associated with
the detected file operation request to detect behavior indicating presence of malware.
Responsive to detecting the behavior indicating presence of the malware, the process
responsible for initiating the detected file operation request 1s identified. A search for the

1dentified process 1s performed on one or more of a blacklist of programs and a whitelist of

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

programs to determine whether the 1dentified process 1s a trusted process. Responsive to
determining that the 1dentified process 1s not a trusted process, a malware remediation action
1s executed against the 1dentified process. Information describing the malware 1s transmitted
to a client device.

[0026] The disclosed embodiments perform integrated real-time detection of security
threats to protect devices, and networks, from malicious attacks and data loss. Static analysis
may be performed to search for files potentially infected with malware using an array of tests
to 1dentity suspicious program instructions to decide 1f 1t 1s malware. Once detected, a
unique sequence of bytes uniquely 1dentifies the malicious software without requiring
execution and differentiates 1t from legitimate programs. Dynamic analysis monitors the
behavior of an application during execution to determine 1f 1t contains malware. In addition
to 1dentifying malware directly, the state of the system 1s monitored in real-time.

[0027] Since modern malware may be polymorphic or metamorphic, malware may evade
detection by traditional antivirus software that use file signatures. One embodiment uses a
unique state-based mechanism to detect 1f a file has been encrypted without authorization.
The responsible process 1s 1dentified, and 1solated from other devices. This obviates the need
to know the malware a priori. The changes in the state of data make 1dentification of the
malware quick and reliable. Integrated steganography detection 1dentifies the presence of
hidden data and malware from executing on the device. The system executes in-line on the
firewall to prevent malware and files with hidden data from entering the network. Together 1t
works as an integrated end-to-end system that leverages the strengths of static analysis,
dynamic analysis, and system state changes to more accurately detect malware and with
fewer false positives and fewer false negatives.

[0028] Disclosed further by way of example embodiments are systems, methods and/or
computer program products (e.g., a computer readable storage media that stores instructions
executable by one or more processing units) for real-time detection of and protection from
steganography 1n a kernel mode. Transmission of a file via a firewall, an operating system,
or an e-mail system i1s detected. A size of the file 1s determined. From a file system, a stored
filesize of the file 1s retrieved. The determined size of the file 1s compared to the stored
filesize of the file. Responsive to the determined size of the file being larger than the stored
filesize of the file, steganography detection analytics are executed on the file. Responsive to
the steganography detection analytics indicating the presence of steganography 1n the file, a
steganography remediation action 1s executed. Information describing the steganography 1s

transmitted to a client device.

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

[0029] The disclosed embodiments can protect many types of devices from both known
and unknown malware and security threats by integrating a combination of analytics to
1dentify unauthorized data encryption, data exfiltration, rootkit installations, and
steganography. The system and method create an end-to-end solution to detect, 1solate,
analyze and remove malware faster, more accurately, with less computational overhead, and
storage utilization compared to existing techniques. Real-time analysis of state changes to
the file system enable real-time protection before the user’s data 1s encrypted or deleted. The
dynamic API monitoring heuristics, dynamic code analysis, the creation of tripwires and
honeypots help discover suspicious behavior in near real-time.

[0030] The disclosed embodiments proactively check for tampering with the system
configuration (MFT, MBR, Registry, and Windows Task Manager) and correct for malicious
changes to ensure that the user has not been locked out. MFT refers to the Master File Table.
MBR refers to the Master Boot Record. The Windows Registry 1s a hierarchical database
that stores low-level configuration settings for the operating system and for information for
applications, device drivers, Security Account Manager (SAM) and access to system
performance counters. The Task Manager schedules execution of programs. A centralized
and detailed logging system allows system administrators to manage all devices 1n their
environment and provide the basis for a wide variety of data analytics.

[0031] The benefits and advantages of the disclosed embodiments include continuously
scouring the system without knowledge of where ransomware 1s present. As part of the
approach, the method may de-commission a server, e.g., DNS server. The result 1s an 1solate-
and-detect-a-change-in-state approach that 1s evidence of ransomware. Polymorphic
ransomware can encrypt a payload in a container and change signatures that are undetectable
by traditional methods. Metamorphic ransomware changes 1ts signature by injecting
meaningless machine instructions into the code. Instead of searching for known malware, the
disclosed embodiments therefore look for state changes 1n the system. Further advantages
and benefits include simplicity 1n using a blacklist of programs to identify malware. The
disclosed embodiments therefore require low-maintenance because the disclosed system and
1ts related databases or a third-party threat intelligence/service provider compiles and updates
the blacklist of programs.

[0032] The disclosed embodiments may perform static state analysis (scan the disk) and
real-time analysis. Malware signatures are not used but computations are performed to detect
whether a file encrypted or not. Both read and write bufters inside the I/O request packet

may be used. Therefore, no extra memory allocation or extra read/write operations are

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

needed. There are no post-processing analytics, which need extra memory and computation.
In another embodiment, the methods and system disclosed may be used to counter memory-
based attacks, 1n which a file 1s stored in memory and not on the disk. In-memory monitoring
of file allocations are performed and data that does not touch a disk may be scanned. The
combination of statistical analytics on the device integrated in-line with the firewall provide

strong protection for the network and devices.

METHODS AND SYSTEM FOR MALWARE AND STEGANOGRAPHY DETECTION AND PREVENTION
[0033] In one embodiment, a method for real-time detection of and protection from
malware 1n a kernel mode comprises detecting a file operation request initiated by a process
running 1n user mode. Malware detection analytics are performed on a file buffer associated
with the detected file operation request to detect behavior indicating presence of malware.
Responsive to detecting the behavior indicating the presence of the malware, the process
responsible for initiating the detected file operation request 1s 1dentified. A search for the
1dentified process on one or more of a blacklist of programs and a whitelist of programs 1s
performed to determine whether the 1dentified process 1s a trusted process. Responsive to
determining that the 1dentified process 1s not a trusted process, a malware remediation action
1s executed against the 1dentified process. Information describing the malware 1s transmitted
to a client device.

[0034] In one embodiment, the detecting of the file operation request comprises
determining, from a file handle corresponding to the file operation request, whether the file
operation request corresponds to an operation of interest. Responsive to determining that the
file operation request corresponds to an operation of interest, the file operation request 1s
intercepted.

[0035] In one embodiment, the intercepting of the file operation request comprises
determining, by a filter manager, whether a minifilter driver 1s registered to intercept file
operation requests. Responsive to determining that the minifilter driver 1s registered to
intercept file operation requests, the filter manager transmits the file operation request to the
minifilter driver.

[0036] In one embodiment, the performing of the malware detection analytics comprises
performing one or more of Monte Carlo approximation, entropy determination, serial
coefficient analysis, arithmetic mean determination, Chi-Square determination, and standard

deviation determination to determine whether data within the file bufter 1s encrypted.

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

[0037] In one embodiment, the determining that the identified process 1s not a trusted
process further comprises locating the identified process on the blacklist of programs. The
executing of the malware remediation action further comprises terminating a write operation
associated with the detected file operation request, terminating the detected file operation
request by deleting the detected file operation request from memory, and 1solating a disk file
1mage associated with the identified process.

[0038] In one embodiment, responsive to locating the 1dentified process on the whitelist
of programs, a minifilter driver 1ignores the detected file operation request.

[0039] In one embodiment, the determining whether the 1dentified process 1s a trusted
process further comprises transmitting, responsive to not locating the process on the blacklist
of programs or the whitelist of programs, a request to the client device to authorize the
1dentified process.

[0040] In one embodiment, the determining that the identified process 1s not a trusted
process further comprises receiving, responsive to the transmitting of the request to the client
device to authorize the 1dentified process, a message from the client device that the 1dentified
process 1s not authorized.

[0041] In one embodiment, the 1dentified process 1s added to the blacklist of programs.
[0042] In one embodiment, responsive to receiving a message from the client device that
the 1dentified process 1s authorized, the 1identified process 1s added to the whitelist of
programs.

[0043] In one embodiment, a non-transitory computer readable medium stores
instructions that when executed by at least one processor cause the at least one processor to
detect a file operation request initiated by a process running in user mode. Malware detection
analytics are performed on a file buffer associated with the detected file operation request to
detect behavior indicating presence of malware. In response to detecting the behavior
indicating the presence of the malware, the process responsible for initiating the detected file
operation request 1s 1dentified. A search 1s performed for the identified process on one or
more of a blacklist of programs and a whitelist of programs to determine whether the
1dentified process 1s a trusted process. In response to determining that the 1dentified process
1S not a trusted process, a malware remediation action 1s executed against the identified
process. Information 1s transmitted describing the malware to a client device.

[0044] In one embodiment, the instructions that cause the at least one processor to detect
the file operation request further comprises instructions that cause the at least one processor

to determine, from a file handle corresponding to the file operation request, whether the file

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

operation request corresponds to an operation of interest. The file operation request 1s
intercepted 1n response to determining that the file operation request corresponds to an
operation of interest.

[0045] In one embodiment, the 1nstructions that cause the at least one processor to
intercept the file operation request further comprises instructions that cause the at least one
processor to determine, by a filter manager, whether a minifilter driver 1s registered to
intercept file operation requests. The filter manager transmits the file operation request to the
minifilter driver, responsive to determining that the minifilter driver 1s registered to intercept
file operation requests.

[0046] In one embodiment, the 1nstructions that cause the at least one processor to
perform the malware detection analytics further comprises instructions that cause the at least
one processor to perform one or more of Monte Carlo approximation, entropy determination,
ser1al coefficient analysis, arithmetic mean determination, Chi-Square determination, and
standard deviation determination to determine whether data within the file buftfer 1s
encrypted.

[0047] In one embodiment, the 1nstructions that cause the at least one processor to
determine that the 1dentified process 1s not a trusted process further comprises instructions
that cause the at least one processor to locate the 1dentified process on the blacklist of
programs. The instructions that cause the at least one processor to execute the malware
remediation action further comprises instructions that cause the at least one processor to
terminate a write operation associated with the detected file operation request, terminate the
detected file operation request by deleting the detected file operation request from memory,
and 1solate a disk file image associated with the 1dentified process.

[0048] In one embodiment, the non-transitory computer readable medium further stores
instructions that when executed by the at least one processor causes the at least one processor
to 1gnore, by a minifilter driver, the detected file operation request, responsive to locating the
1dentified process on the whitelist of programs.

[0049] In one embodiment, the instructions that cause the at least one processor to
determine whether the 1dentified process 1s a trusted process further comprises instructions
that cause the at least one processor to transmit a request to the client device to authorize the
1dentified process, responsive to not locating the process on the blacklist of programs or the
whitelist of programs.

[0050] In one embodiment, the instructions that cause the at least one processor to

determine that the 1dentified process 1s not a trusted process further comprises instructions

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

that cause the at least one processor to receive a message from the client device that the
1dentified process 1s not authorized, responsive to the transmitting of the request to the client
device to authorize the 1dentified process.

[0051] In one embodiment, the non-transitory computer readable medium further stores
instructions that when executed by the at least one processor cause the at least one processor
to add the 1dentified process to the blacklist of programs.

[0052] In one embodiment, the non-transitory computer readable medium further stores
instructions that when executed by the at least one processor cause the at least one processor
to add the 1dentified process to the whitelist of programs, responsive to receiving a message
from the client device that the 1dentified process 1s authorized.

[0053] In one embodiment, a method for real-time detection of and protection from
steganography 1n a kernel mode comprises detecting transmission of a file via a firewall, an
operating system, or an e-mail system. A size of the file 1s determined. A stored filesize of
the file 1s retrieved from a file system. The determined size of the file 1s compared to the
stored filesize of the file. Responsive to the determined size of the file being larger than the
stored filesize of the file, steganography detection analytics are executed on the file.
Responsive to the steganography detection analytics indicating presence of steganography in
the file, a steganography remediation action 1s executed, and information 1s transmitted
describing the steganography to a client device.

[0054] In one embodiment, the determining of the size of the file comprises obtaining a
pointer to a section header of the file, the section header associated with a plurality of
sections of the file. For each section of the plurality of sections of the file, a size of the
section 1s determined. The size of each section of the plurality of sections of the file 1s
summed up to determine the size of the file.

[0055] In one embodiment, the obtaining of the pointer to the section header of the file
comprises opening the file using a filename of the file or a path of the file. A header of the
file 1s read. A magic number 1s retrieved from the header. The magic number 1s verified to
obtain a pointer to the section header of the file.

[0056] In one embodiment, the executing of the steganography detection analytics on the
file comprises 1dentifying an appended payload in the file. The appended payload 1s analyzed
to determine a file format of the appended payload. The steganography detection analytics
are executed based on the file format of the appended payload.

[0057] In one embodiment, the executing of the steganography detection analytics on the

file comprises 1dentifying an appended payload in the file. One or more of Monte Carlo

10

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

approximation, entropy determination, serial coefficient analysis, arithmetic mean
determination, Chi-Square determination, and standard deviation determination are
performed to determine whether data within the appended payload 1s encrypted.

[0058] In one embodiment, the executing of the steganography detection analytics on the
file comprises 1dentifying an appended payload in the file, and 1dentifying presence of
unauthorized data within the appended payload.

[0059] In one embodiment, the executing of the steganography detection analytics on the
file comprises 1dentifying an appended payload in the file, and 1dentifying presence of
assembly level or machine level instructions within the appended payload.

[0060] In one embodiment, the executing of the steganography remediation action
comprises terminating processing and transmission of the file, and 1solating the file.

[0061] In one embodiment, a non-transitory computer readable medium stores
instructions that when executed by at least one processor cause the at least one processor to
detect transmission of a file via a firewall, an operating system, or an e-mail system. A size
of the file 1s determined. From a file system, a stored filesize of the file 1s retrieved. The
determined size of the file 1s compared to the stored filesize of the file. In response to the
determined size of the file being larger than the stored filesize of the file, steganography
detection analytics are executed on the file. In response to the steganography detection
analytics indicating presence of steganography 1n the file, a steganography remediation action
1s executed, and information 1s transmitted describing the steganography to a client device.
[0062] In one embodiment, the 1nstructions that cause the at least one processor to
determine the size of the file comprise instructions that cause the at least one processor to
obtain a pointer to a section header of the file, the section header associated with a plurality
of sections of the file. For each section of the plurality of sections of the file, a size of the
section 1s determined. The size of each section of the plurality of sections of the file 1s
summed up to determine the size of the file.

[0063] In one embodiment, the instructions that cause the at least one processor to obtain
the pointer to the section header of the file comprise instructions that cause the at least one
processor to open the file using a filename of the file or a path of the file. A header of the file
1s read. A magic number 1s retrieved from the header. The magic number 1s verified to
obtain a pointer to the section header of the file.

[0064] In one embodiment, the 1nstructions that cause the at least one processor to
execute the steganography detection analytics on the file comprise instructions that cause the

at least one processor to identify an appended payload in the file. The appended payload 1s

11

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

analyzed to determine a file format of the appended payload. The steganography detection
analytics are executed based on the file format of the appended payload.

[0065] In one embodiment, the instructions that cause the at least one processor to
execute the steganography detection analytics on the file comprise instructions that cause the
at least one processor to 1dentify an appended payload in the file. One or more of Monte
Carlo approximation, entropy determination, serial coefficient analysis, arithmetic mean
determination, Chi-Square determination, and standard deviation determination 1s performed
to determine whether data within the appended payload 1s encrypted.

[0066] In one embodiment, the 1nstructions that cause the at least one processor to
execute the steganography detection analytics on the file comprise instructions that cause the
at least one processor to 1dentify an appended payload in the file, and 1dentify presence of
unauthorized data within the appended payload.

[0067] In one embodiment, the 1nstructions that cause the at least one processor to
execute the steganography detection analytics on the file comprise instructions that cause the
at least one processor to 1dentify an appended payload 1n the file, and 1dentify presence of
assembly level or machine level instructions within the appended payload.

[0068] In one embodiment, the 1nstructions that cause the at least one processor to
execute the steganography remediation action comprise 1nstructions that cause the at least one
processor to terminate processing and transmission of the file, and 1solate the file.

[0069] In one embodiment, a computer system comprises at least one computer
processor. A non-transitory computer readable medium stores instructions that when
executed by the at least one computer processor cause the at least one processor to detect
transmission of a file via a firewall, an operating system, or an e-mail system. A size of the
file 1s determined. From a file system, a stored filesize of the file 1s determined. The
determined size of the file 1s compared to the stored filesize of the file. Responsive to the
determined size of the file being larger than the stored filesize of the file, steganography
detection analytics are executed on the file. Responsive to the steganography detection
analytics indicating presence of steganography in the file, a steganography remediation action
1s executed. Information 1s transmitted describing the steganography to a client device.
[0070] In one embodiment, the instructions that cause the at least one computer processor
to determine the size of the file comprise instructions that cause the at least one computer
processor to obtain a pointer to a section header of the file, the section header associated with

a plurality of sections of the file. For each section of the plurality of sections of the file, a

12

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

size of the section 1s determined. The size of each section of the plurality of sections of the
file 1s summed up to determine the size of the file.

[0071] In one embodiment, the instructions that cause the at least one computer processor
to obtain the pointer to the section header of the file comprise instructions that cause the at
least one computer processor to open the file using a filename of the file or a path of the file.
A header of the file 1s read. A magic number 1s retrieved from the header. The magic
number 1s verified to obtain a pointer to the section header of the file.

[0072] In one embodiment, the instructions that cause the at least one computer processor
to execute the steganography detection analytics on the file comprise instructions that cause
the at least one computer processor to 1dentify an appended payload in the file. The
appended payload 1s analyzed to determine a file format of the appended payload. The
steganography detection analytics s1 executed based on the file format of the appended

payload.

REAL-TIME DETECTION OF AND PROTECTION FROM MALWARE AND STEGANOGRAPHY IN A
KERNEL MODE

[0073] Figure (FIG.) 1 illustrates an example block diagram of a system for real-time
detection of and protection from malware and steganography in a kernel mode, 1n accordance
with an embodiment. The system includes a managed node 100, a cloud host 105, and a
security manager 115. In other embodiments, the system comprises additional or fewer
components than those described herein. Similarly, the functions can be distributed among
the components and/or different entities in a different manner than 1s described here.

[0074] The managed node 100 1s the computer system that 1s to be protected from
malware and steganography in a kernel mode. The managed node 100 may be a computer
(e.g., running Windows, MacOS, or another operating system), a data center, a mainframe, or
any other device having storage and computation capabilities. In one embodiment, the
managed node 100 includes an I/O manager 120, a Windows service manager 170, a registry
175, a static analysis module 180, storage devices 153, a kernel 165, and a hardware
abstraction layer 160. In other embodiments, the managed node 100 comprises additional or
fewer components than those described herein. Similarly, the functions can be distributed
among the components and/or different entities 1in a different manner than 1s described here.
[0075] In one embodiment, the managed node 100 1s a Windows computer. The kernel
driver 130 may be dynamically installed in the filter manager 125 inside the I/O manager

120. This embodiment provides a high-performance mechanism to intercept file system

13

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

events on the Windows platform. In other embodiments, the managed node 100 takes
advantage of a specific device’s detection system capabilities. For example, the storage
devices 155 1n this example may be volumes formatted for the NTFES file system, FAT16, or
FAT32.

[0076] The managed node 100 may include one or more devices that provide input and
output (I/O) to and from the outside world. Such devices may include keyboards, mice, audio
controllers, video controllers, disk drives, networking ports, and so on. In one embodiment,
device drivers may provide the software connection between such devices and the operating
system on the managed node 100. The kernel-mode I/O manager 120 manages the
communication between applications and the interfaces provided by device drivers. Because
devices may operate at speeds that may not match the operating system, the communication
between the operating system and device drivers 1s primarily done through I/O request
packets. These packets may be similar to network packets or Windows message packets.
They are passed from operating system to specific drivers and from one driver to another.
[0077] In one embodiment, the I/O manager 120 detects file operation requests (e.g.,
read, write, file open, etc.,) that are recerved by the managed node 100. The filter manager
125 may determine, from a file handle corresponding to the file operation request, whether
the file operation request corresponds to an operation of interest. A file handle 1s a number or
1dentifier that the operating system assigns temporarily to a file when 1t 1s opened. The
operating system uses the file handle internally when accessing the file. If the filter manager
125 determines that the file operation request corresponds to an operation of interest, the
filter manager 125 intercepts the file operation request for malware detection. If behavior 1s
found that indicates the presence of the malware, the I/O manager 120 may 1dentify the user
mode process responsible for initiating the detected file operation request.

[0078] In one embodiment, the filter manager 125 1s installed with Windows. It 1s
activated only when a minifilter driver 1s loaded. A minmifilter driver refers to a driver that
filters file system operations. Minifilter driver may be located between the I/O manager 120
and the base filesystem. The filter manager 125 may attach to the file system stack for a
target volume. A minifilter driver may attach to the file system stack indirectly, by
registering with the filter manager 125 for the I/O operations that the minifilter driver chooses
to filter.

In one embodiment, to intercept a file operation request, the filter manager 125 determines
whether a minifilter driver 1s registered to intercept file operation requests. Responsive to

determining that the minifilter driver 1s registered to intercept file operation requests, the

14

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

filter manager 125 transmits the file operation request to the minifilter driver. Once a user
process that 1s responsible for producing the file operation request has been 1dentified by the
I/O manager 120, the filter manager 125 may perform a search for the identified process on
one or more of a blacklist of programs and a whitelist of programs to determine whether the
1dentified process 1s a trusted process.

[0079] The kernel driver 130 executes 1n kernel mode as part of the kernel-mode
operating system components that manage I/0, plug and play memory, processes and threads,
and security, etc. Like the operating system 1itself, the kernel driver 130 may be implemented
as a discrete, modular component that has a well-defined set of required functionalities. The
kernel driver 130 may also supply a set of system-defined standard driver routines. The
kernel driver 130 may intercept I/O request packets before and after execution. An I/O
request packet 1s a kernel mode structure used by drivers to communicate with each other and
the operating system. A minifilter kernel driver (illustrated and described below with respect
to FIG. 3) supports routines for file operations. The kernel driver 130 1s therefore a high-
performance mechanism to receive and process file open, read, write, close, and other
operations. In one embodiment, the kernel driver 130 accesses the kernel mode read and
write buffer to perform rapid statistical analysis on the data that the process 1s requesting.
[0080] The Windows service manager 170 may be used to simplifty common tasks related
to Windows services. A Windows service 1s a computer program that operates in the
background on the managed node 100 (similar to a daemon). A Windows service may be
configured to start when the operating system 1s started and run in the background, or i1t may
be started manually or by an event. The Windows service manager 170 can create services
(both Win32 and Legacy Driver) without restarting Windows, delete existing services, and
change service configurations. The Windows service manager 170 may have both GUI and
command-line modes.

[0081] The registry 175 1s a hierarchical datastore that stores low-level settings for the
operating system and for applications that use the registry 175. The kernel 163, device
drivers, services, and user interface can all use the registry 175. The registry 175 therefore
contains information, settings, options, and other values for programs and the hardware
abstraction layer 160. When a program 1s installed, a new subkey containing settings such as
the program’s location, 1ts version, and how to start the program, are all added to the registry
175. The registry 175 may contain keys that are used by malware to schedule their execution

after reboots.

15

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

[0082] In one embodiment, the static analysis module 180 may be a compile-time static
verification tool that detects coding errors in programs and kernel mode driver code. A
Windows service may monitor the state of the kernel driver 130 and perform proactive anti-
malware tasks such as regularly verifying registry keys and values, searching for hidden
processes, and performing system-wide static scans. The static analysis module 180 may
manage system-wide scans that perform analytics on all files. This includes but 1s not limited
to detecting encryption, identifying steganography, protecting against computer “lockouts,”
and monitoring the state of the Master File Table (NTFS MFT) and the Master Boot Record
(MBR) for evidence of tampering. Also, the static analysis module 180 may use the
Windows API to determine 1f the Volume Shadow Copy Service (VSS) (illustrated and
described below with respect to FIG. 4) has been disabled from an unauthorized process. In
an embodiment, 1f an unknown process 1s tampering with the VSS, the static analysis module
180 may detect that the unknown process 1s malware. The static analysis module 180 may
then determine whether the unknown process 1s a system process to avoid false positives via
management tools.

[0083] The storage devices 155 are components of the managed node 100 that store the
data and applications on the managed node 100. The storage devices 155 may include RAM,
cache, and hard disks, as well as possibly optical disk drives and externally connected USB
drives. The storage devices 155 are formatted for a file system that controls how data 1s
stored and retrieved. The file system used may include any of the NTFS file system, FATI16,
FAT32, etc. The NTFS file system 1s a file system of the Windows NT family. File
Allocation Table (FAT) 1s a computer file system architecture and a family of industry-
standard file systems. The file system variants of FAT are FAT16 and FAT32.

[0084] The kernel 165 1s a computer program that 1s the core of the managed node 100’s
operating system, having control over managed node 100. The kernel 165 1s typically loaded
on start-up (e.g., after the bootloader). The kernel 165 handles the rest of start-up as well as
1input/output requests from software, translating them 1nto data-processing instructions for the
processors of the managed node 100. The kernel 165 also handles memory and peripherals,
such as keyboards, monitors, printers, and speakers.

[0085] The hardware abstraction layer 160 1s a layer of programming that allows the
managed node 100’s operating system to interact with hardware devices (e.g., processor 310
described below with reference to FIG. 3) at a more general or abstract level rather than at a
detailed hardware level. Hardware abstractions are software routines that emulate platform-

specific details, giving programs direct access to the hardware resources. Using the hardware

16

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

abstraction layer 160, device-independent, high performance applications may i1ssue standard
operating system calls to the hardware. For example, Windows 2000 1s one of several
operating systems that include a hardware abstraction layer.

[0086] The cloud host 105 provides hosting on virtual servers which pull their computing
resource from extensive underlying networks of physical web servers. In one embodiment,
the cloud host 105 may use virtual hardware, network, storage and composite solutions from
a cloud vendor. The cloud hosting may be enabled through virtualization, whereby the entire
computing capacity of an infrastructure or data center 1s distributed and delivered to multiple
users or managed nodes simultaneously. For example, a physical server may be virtualized
and consolidated to host several cloud servers, all sharing the processor, memory, storage,
network and other resources. The cloud host 105 may perform machine learning algorithms,
such as naive Bayes classification, linear regression, logistic regression, and business
intelligence analytics on the operation data. This information can be used to 1dentify the
scope of a malware attack, which devices are infected, and predict and prevent propagation.
[0087] The security manager 115 provides an enterprise-wide view of the managed node
100 and 1ts policy. It 1s used to create, manage, deploy and monitor devices, virtual
machines, and containers. The security manager 115 may also perform on-premise analytics.
In one embodiment, an 1dentified process that 1s responsible for initiating a certain file
operation request may be determined to not be a trusted process. The security manager 115
may transmit a message to the managed node 100 to execute a malware remediation action
against the 1identified process. The managed node 100 may also transmit information
describing the malware to a client device.

[0088] The client device 1s an electronic device used by a user to perform functions such
as consuming digital content, executing software applications, browsing web sites hosted by
or otherwise interacting with the managed node 100 on the network 110, and downloading
files. For example, the client device may be a smartphone or a tablet, notebook, or desktop
computer. In addition, the client device may be an Internet-of-Things (IoT)-connected device
such as a home appliance, or even another web server. The client device may include a
display device on which the user may view digital content stored on the client device or
downloaded from the managed node 100. In addition, the client device may include a user
interface (UI), such as physical and/or on-screen buttons, with which the user may interact to
perform functions such as consuming digital content, obtaining digital content, and

transmitting digital content.

17

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

[0089] In one embodiment, the security manager 115 may transmit a signal or message to
the managed node 100 to execute a malware remediation action. The malware remediation
action may include terminating a write operation associated with a detected file operation
request. The malware remediation action may include terminating the detected file operation
request by deleting the detected file operation request from memory. The malware
remediation action may include 1solating a disk file image associated with the identified
process. The disk file image 1s a file that stores all the content and the structure of an entire
disk. The disk may be an optical disk, a hard disk drive, etc. The disk file image may be an
exact copy of a disk volume or of an entire physical disk drive. The disk file image may
retain all the properties of 1ts source: files, folders, properties and the disk’s name.

[0090] In one embodiment, the security manager 115 may transmit a signal or message to
the managed node 100 to execute a steganography remediation action. The steganography
remediation action may include terminating processing and transmission of a file that 1s
trying to pass the firewall. The steganography remediation action may include 1solating the
file.

[0091] The firewall 135 1s a network security system that monitors and controls incoming
and outgoing network traffic based on security rules. The firewall 135 establishes a barrier
between the trusted internal managed node 100 and the untrusted external network 110. The
firewall 135 may be a network firewall or a host-based firewall. If the firewall 135 1s a host-
based firewall, 1t may be located within the managed node 100 or may run on the managed
node 100 to control network traftic in and out of the managed node 100.

[0092] The malware analytics module 140 performs malware detection analytics on
incoming files to the managed node 100 or on files associated with detected file operations.
The malware analytics module 140 may be located within the managed node 100 or may run
on the managed node 100. In one embodiment, the malware analytics module 140 may
perform malware detection analytics on a file buffer associated with the detected file
operation request to detect behavior indicating presence of malware. Similarly, the malware
analytics functions can be distributed among other entities of the managed node 100.

[0093] In one embodiment, the malware analytics module 140 may perform analytics for
real-time detection of and protection from steganography in a kernel mode. Once
transmission of a file via a firewall, an operating system, or an e-mail system has been
detected, the malware analytics module 140 may determine a size of the file. The size of the

file 1s a measure of how much data the file contains or, alternately, how much storage it

13

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

consumes. Typically, the size of the file 1s expressed 1in units of measurement based on the
byte.

[0094] In one embodiment, the malware analytics module 140 may determine the size of
the file by obtaining a pointer to a section header of the file. The section header 1s associated
with a plurality of sections of the file. For each section 7 of the plurality of sections of the
file, the malware analytics module 140 may determine a size s; of the section ;. The malware
analytics module 140 may sum up the size s; of each section 7 of the plurality of sections of
the file to determine the size of the file as X; s;.

[0095] In one embodiment, the malware analytics module 140 may obtain the pointer to
the section header of the file by opening the file using a filename of the file or a path of the
file. The filename of the file 1s a name used to uniquely 1dentify the file. The file system
may 1mpose a restriction on the filename length and the allowed characters within the
filename. The filename may include one or more of the host name, device name, directory
(or path), base name of the file, type (format or extension), and version of the file.

[0096] The malware analytics module 140 reads a header of the file. The header of the
file may include metadata typically stored at the start of the file. The metadata may also be
present 1n other areas, e.g., at the end of the file, depending on the file format or the type of
data contained. The header of the file may be character-based (text), a binary header, etc.
The header of the file may 1dentify the file format as well as (for an 1mage file) store
information about image format, size, resolution and color space, etc.

[0097] The malware analytics module 140 may retrieve a magic number from the header.
The magic number may be a numerical or text value used to 1dentify the file format or
protocol. For example, the magic number may be bytes within the file used to 1dentify the
format of the file. Typically, the magic number 1s a short sequence of bytes (e.g., 4 bytes
long) placed at the beginning of the file. For example, for a portable executable (PE) file, the
hex signature may be “4D 5A” and the magic number may be “MZ.” The malware analytics
module 140 may verify the magic number to obtain the pointer to the section header of the
file.

[0098] The file system may store a filesize of the file. For example, the file system may
store the number of bytes of the file that indicates how much storage 1s associated with the
file. The stored filesize may be a non-negative whole number of bytes up to a system limit.
In another example, the stored filesize may be the number of blocks or tracks occupied by the
file on a physical storage device. In this example, software may be used to track the exact

byte count. The malware analytics module 140 may retrieve, from a file system of the

19

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

managed node 100, a stored filesize of the file. The maximum file size a file system supports
depends not only on the capacity of the file system, but also on the number of bits reserved
for the storage of filesize information. The maximum file size in the FAT32 file system, for
example, 1s 4,294,967,295 bytes, which 1s one byte less than four gigabytes.

[0099] The malware analytics module 140 may compare the determined size of the file to
the stored filesize of the file. Responsive to the determined size of the file being larger than
the stored filesize of the file, the malware analytics module 140 may execute steganography
detection analytics on the file. In one embodiment, the malware analytics module 140 may
execute the steganography detection analytics by 1dentifying an appended payload 1n the file.
The appended payload 1s the body or data that perform the actual malicious purpose of the
malware. The payload (if not 1dentified and removed) may cause the managed node 100 to
slow down or freeze, send spam, encrypt data, delete files on disk, crash the system, or
corrupt files, etc. The malware analytics module 140 may analyze the appended payload to
determine a file format of the appended payload. The file format of the appended payload 1s
the structure of how information 1s stored (encoded) 1n the appended payload. For example,
the appended payload may be JPEG or TIFF for image or raster data, AI (Adobe Illustrator)
for vector data, or PDF for document exchange. The malware analytics module 140 may
execute the steganography detection analytics based on the file format of the appended
payload.

[00100] In one embodiment, the malware analytics module 140 may perform one or more
of Monte Carlo approximation, entropy determination, serial coefficient analysis, arithmetic
mean determination, Chi-Square determination, and standard deviation determination to
determine whether data within the appended payload 1s encrypted. The performing of the
Monte Carlo approximation 1s illustrated and described below with respect to FIG. 5.
[00101] In one embodiment, the malware analytics module 140 may perform entropy
determination to determine whether data within the appended payload 1s encrypted. Entropy
measures the amount of information content 1n the appended payload by taking the negative

logarithm of the probability distribution of the values to calculate the entropy of the appended

R
H g v .{3 Ef}g‘ 1.}3;\
payload as: o
[00102] In the entropy determination above, H 1s the total entropy and £;1s the value of the
byte read from the appended payload. Encrypted and obfuscated files usually have a much

higher entropy than plain text or structured data files. The entropy H may be compared to an

20

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

entropy threshold. An entropy above the threshold indicates that the appended payload 1s
likely to be encrypted or compressed, and so 1t could be affected by ransomware. The
malware analytics module 140 may perform entropy calculations on sections (buffers) or the
entire appended payload to detect hidden or encrypted copies of malware (“packed”) hidden
1n the appended payload.

[00103] In one embodiment, the malware analytics module 140 may perform serial
coefticient analysis to determine whether data within the appended payload 1s encrypted.
Serial coefficient analysis describes the relationship between observations of the same
variable over specific periods of time, 1n this case the changing value of each byte in the
appended payload. Serial coefficient analysis determines whether the values of the bytes 1n
the appended payload are correlated. If there 1s no correlation, it means the value of the later
bytes 1n the appended payload cannot be predicted by the previous values. The lower the
seri1al correlation value, the higher the probability of strong encryption. If a variable’s senal
correlation 1s measured to be zero, then 1t means there 1s no correlation, and each of the
observations 1s independent of one another. Conversely, 1f a variable’s serial correlation
skews toward one, 1t means that the observations are serially correlated, and that future
observations are affected by past values.

[00104] In one embodiment, the malware analytics module 140 may perform Chi-Square
determination to determine whether data within the appended payload 1s encrypted. Chi-
Square determination may be used to differentiate compressed files from encrypted files.
Chi-Square determination 1s a simple statistical test commonly used to compare observed
data with expected data. The Chi-Square test 1s intended to test how likely 1t 1s that an
observed distribution 1s due to chance. It 1s also called a “goodness of fit” statistic because it
measures how well the observed distribution of data fits with the expected distribution 1f the
variables are independent. A payload that 1s compressed will have a high entropy and a high
Chi-Square value. The expected values for a perfectly random payload of bytes would have a
mean of 127.5 (255 / 2). This enables the determination of encrypted, compressed, and

encrypted compressed files. The formula for calculating the Chi-Square value 1s:

" 5
. 2,
Ak f & N a
L. . . aa e, ™ ‘
L k] 1 v o
3 Ny, X LS
R TECL. 3 BCRICN '
+ gty : B T e T S Y
l‘. -

J::\\d En'.'"' .
£
bt i .

[0010S] In one embodiment, the malware analytics module 140 may perform one or more
of arithmetic mean determination and standard deviation determination to determine whether

data within the appended payload 1s encrypted. If the appended payload 1s encrypted, the

21

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

arithmetic mean of data values of the appended payload should approximately equal 127.5
(255 /2). The standard deviation o 1s a measure used to quantify the amount of variation or
dispersion of the data values. The arithmetic mean and standard deviation are computed for a
portion of the appended payload as well as the entire appended payload. Because the
malware analytics module 140 may directly read the operating system’s internal I/O bufters,
the read and write overhead 1s reduced. This enables a larger number of statistical
determinations to be computed and analyzed, resulting in a more accurate, faster
determination, using fewer system resources. The statistical determinations can provide
partial and total values even if the data 1s provided out of order. Such out of order
determination enables high-performance, multi-threaded, and multi-process embodiments.
[00106] In one embodiment, the malware analytics module 140 may execute the
steganography detection analytics by 1dentifying presence of unauthorized data within the
appended payload. For example, the malware analytics module 140 may 1dentify
unauthorized rootkit installations or data encryption. The detection of unauthorized changes
to data 1s described 1n detail below with respect to FIG. 4. In one embodiment, the malware
analytics module 140 may 1dentify instructions on disk that an unauthorized system has been
gathering sensitive information (outbound embodiment). Unauthorized transmission of data
may thus be prevented. In one embodiment, static analysis 1s used to protect against malware
1n analysis of a file without execution of a program. In an inbound embodiment,
unauthorized code may be detected entering a corporate environment, e.g., a malicious
sequence of code hidden 1n an mp3 downloaded from the Internet.

[00107] In one embodiment, the malware analytics module 140 may execute the
steganography detection analytics by 1dentifying presence of assembly level or machine level
instructions within the appended payload. Assembly-level instructions refer to a low-level
programming language, in which there 1s a strong (but often not one-to-one) correspondence
between the language and the architecture’s machine level instructions. The malware
analytics module 140 1dentifies indications of suspicious instruction sets, €.g., machine or
assembly level language. In an embodiment, the method partially disassembles files and
looks for such suspicious instruction sets.

[00108] Responsive to the steganography detection analytics indicating presence of
steganography in the file, the malware analytics module 140 may transmit a signal to the
managed node 100 to execute a steganography remediation action. The malware analytics

module 140 may transmit information describing the steganography to a client device.

22

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

[00109] The router 145 1s a networking device that forwards data packets between the
managed node 100 and the network 110. The router 145 may also perform traffic directing
functions. When a data packet comes in from the network 110, the router 145 reads the
network address information 1n the packet to determine the ultimate destination. The switch
150 1s a computer networking device that connects devices together on the network by using
packet switching to receive, process, and forward data to the destination device. In one
embodiment, the switch 150 1s a multiport network bridge that uses hardware addresses to
process and forward data at the data link layer (layer 2) of the OSI model.

[00110] The network 110 enables communications among the client devices and the
managed node 100. To this end, the network 110 receives requests and corresponding data
(e.g., contents of a file to be posted on a web page) from client devices and forwards the
requests to the managed node 100. Likewise, the network 110 receives responses from the
managed node 100 and forwards the responses to the client devices.

[00111] The network 110 can comprise the Internet as well as mobile telephone networks.
In one embodiment, the network 110 uses standard communications technologies and/or
protocols. Thus, the network 110 can include links using technologies such as Ethernet,
802.11, Long-Term Evolution (LTE), etc. The networking protocols used on the network
110 can include multiprotocol label switching (MPLS), the transmission control
protocol/Internet protocol (TCP/IP), the User Datagram Protocol (UDP), HTTP, the simple
mail transfer protocol (SMTP), the file transfer protocol (FTP), etc. The data exchanged over
the network 110 can be represented using technologies and/or formats including the hypertext
markup language (HTML), the extensible markup language (XML), etc. In addition, all or
some of links can be encrypted using conventional encryption technologies such as secure
sockets layer (SSL), transport layer security (TLS), virtual private networks (VPNs), Internet
Protocol security (IPsec), etc. In another embodiment, the entities can use custom and/or
dedicated data communications technologies instead of, or in addition to, the ones described

above.

DETECTION OF MALWARE FOR APPLICATIONS RUNNING IN USER MODE AND KERNEL MODE ON
A PLATFORM

[00112] FIG. 2 illustrates an example block diagram of real-time detection of and
protection from malware for applications 225 running 1n user mode 235 on a platform, 1n
accordance with an embodiment. The platform 1llustrated 1s based on a processor, e.g.,
manufactured by Intel, AMD or ARM. The operating system on the platform includes user
mode 235 and kernel mode 240.

23

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

[00113] In one embodiment, kernel mode 240 1s reserved for the lowest-level, most trusted
functions of the operating system. Code that runs 1in kernel mode 240 may share a single
virtual address space. Therefore, a kernel mode driver (e.g., 200) 1s not 1solated from other
drivers (e.g., 205) and the operating system 1tself. In kernel mode 240, the executing code
has access to the underlying hardware (e.g., processor 310 described below with reference to
FIG. 3). It can execute CPU instructions and reference memory addresses.

[00114] The processor may switch between the two modes depending on the type of code
running on the processor. For example, applications 225 may run 1in user mode while core
operating system components may run in kernel mode 240. Drivers may run in kernel mode
240 or user mode 235. In other embodiments, the platform comprises additional or fewer
components than those described herein. Similarly, the functions can be distributed among
the components and/or different entities in a different manner than 1s described here.

[00115] The services 220 refer to programs that operate in the background (similar in
concept to a daemon). The user mode 235 includes subsystems 230, which run applications
225 written for many different types of operating systems. The subsystems 230 1n user mode
235 are limited to certain system resources, while the kernel mode 240 typically has
unrestricted access to the system memory and external devices. The user mode 235 includes
subsystems capable of passing I/O requests to the appropriate kernel mode device drivers 200
by using the I/O manager 120.

[00116] The operating system supports shared libraries known as dynamic-link libraries,
which are code libraries that can be used by multiple processes while only one copy 1s loaded
into memory. For example, NTDLL.DLL 215 exports the Windows Native API (the
interface used by user mode components of the operating system that must run without
support from Win32 or other API subsystems). NTDLL.DLL 215 1s a file created by the
operating system that has a description of “NT Layer DLL” and 1s the file that contains NT
kernel functions. In one embodiment, NTDLL.DLL 215 may be located 1n the
c:\windows\system32 or ¢:\winnt\system32 directory and can also be found in the ¢:\1386
directory.

[00117] The kernel mode APIs 210 interface with the I/O manager 120 and filter manager
125 (described above with respect to FIG. 1). The kernel mode device drivers 200 are
programs that operate or control particular types of devices attached to the managed node
100. The kernel 1s described above with respect to FIG. 1. The graphics drivers 205 refer to
software used by the operating system 1n kernel mode 240 to communicate with specific

agraphics devices. The hardware abstraction layer 1s described above with respect to FIG. 1.

24

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

[00118] In one embodiment, an application 225 may include one or more threads of
execution. When running in Ring 3 (user mode 235) the application 225 (thread) may request
a system service such as WriteFile(). NTDLL.DLL 215 may call the SysEnter x86
instruction and the thread’s context changes from user mode 235 to kernel mode 240. A
context switch may occur when the kernel scheduler switches a processor (or core) from one
thread to another. In this case, the thread 1s only being changed from Ring 3 to Ring 0. It
remains on the same processor or core. A higher priority thread could be assigned to the
previous thread’s processor (a context switch). In one embodiment, a context switch may
occur when 2 threads change state. On other architectures, an interrupt may be raised. Each
thread has two stacks: one that 1s used for user mode 235 and another for kernel mode 240.
An 1nterrupt 1s raised and the thread kernel then executes the kernel mode Native API 210,
such as NtWriteFile() or ZwWrnteFile().

[00119] In one embodiment, when an application 225 runs 1n user mode 2335, the operating
system may create a process for the application 225. The process provides the application
225 with a private virtual address space and a private handle table. Because the application’s
virtual address space 1s private, one application cannot alter data that belongs to another
application. Each application 225 runs 1n 1solation, and 1f a user mode application crashes,
the crash 1s limited to that one application. Other applications and the operating system are
not affected by the crash. In one embodiment, each thread in kernel mode 240 shares a single
virtual address space. Therefore, the state of all kernel mode threads and user mode threads
are visible.

[00120] In one embodiment, the processor may provide multiple levels of security. In the
case of 32-bit and 64-bit Intel and AMD processors, the kernel 165 may run 1n Ring 0, which
1s the most privileged. All user applications 225 are executed in Ring 3, which requests
kernel services via system Dynamic Link Libraries (DLLs). All user mode 235 requests use
NTDLL.DLL 215 to modity specific function parameters and switch the requesting thread
from Ring 3 to Ring O using SysEnter. The dispatcher receives the request and passes 1t to
the Executive’s service. The scheduler reexamines the threads that are ready to run. A lower
priority thread could be pre-empted during a user to privileged mode request which causes a

context switch.

25

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

EXAMPLE FILTER MANAGER AND MINIFILTER DRIVERS

[00121] FIG. 3 illustrates an example filter manager 125 and minifilter drivers 320, 3235,
and 330 for real-time detection of and protection from malware, in accordance with an
embodiment. In other embodiments, the configuration comprises additional or fewer
components than those described herein. Similarly, the functions can be distributed among
the components and/or different entities in a different manner than 1s described here.

[00122] An application 225 or process running in user mode 235 on the processor 310 may
generate a user request 300 (e.g., a file operation request such as a file open request). In one
embodiment, the process 225 1n user mode 235 makes a call to create a file in the Windows
API. This call triggers the user request 300 for file I/O (e.g., a Windows NT API call). The
request 300 goes through NTDLL.DLL 215. The I/O manager 120 detects the file operation
request 300 1nitiated by the process 225 running 1n user mode 235. In one embodiment, the
I/O manager 120 may be part of the Windows operating system. The I/O manager 120
locates where the target file 1s located (e.g., D:\ drive) and transmits a message to the filter
manager 125 to determine whether a driver 1s interested 1n intercepting the file open request
300. The filter manager 125 1s attached to a specific file system and specific volume.
[00123] In one embodiment, the filter manager 1235 1s initialized 1n the kernel mode 240.
The filter manager 125 may determine, from a file handle corresponding to the file operation
request 300, whether the file operation request 300 corresponds to an operation of interest,
e.g., a file open request. The filter manager 125 1s a kernel mode driver that exposes
functionality commonly required in file system filter drivers. Minifilter drivers (e.g.,
minifilter driver A 320) may be written to use this functionality, thus shortening the
development process while producing higher-quality, more robust drivers. The file handle
(also sometimes termed file descriptor) 1s an abstract indicator (e.g., number) used to access a
file or other input/output resource, such as a pipe or network socket. When the file 1s opened,
the type of file access requested 1s determined, e.g., read, write, shared, and exclusive.
Minifilter driver A 320 or C 330 perform the add handle step. The add handle step
determines whether the file handle 1s of interest and stores 1t 1n a tree. It 1s of interest 1f 1t 1S
writing a buffer with strong encryption. If the handle 1s not of interest, 1t can be 1gnored.
[00124] Responsive to determining that the file operation request 300 corresponds to an
operation of interest, the file operation request 300 1s intercepted. In one embodiment, the
filter manager 125 intercepts the file operation request 300 by determining whether a
minifilter driver (e.g., minifilter driver A 320) 1s registered to intercept file operation

requests. The minifilter driver A 320 may have previously registered with the filter manager

26

CA 03065306 2015-11-27

WO 2018/222766 PCT/US2018/035203

125 for events of interest (e.g., fopen, read, write, close, rename). Responsive to determining
that the minifilter driver A 320 1s registered to intercept file operation requests, the filter
manager 125 transmits the file operation request 300 to the minifilter driver A 320.

[00125] In one example, the filter manager 125 checks i1f a minifilter driver (e.g., minifilter
driver A 320) 1s interested 1n intercepting the request 300. The filter manager 125 may
identify minifilter driver A 320 by a callback. First, the minifilter driver A 320 registers and
then 1t 1dentifies which events 1t 1s interested in. The operations may be implemented as

follows.

DRIVER INITIALIZE DriverEntry;
NTSTATUS
DriverEntry (

~In PDRIVER OBJECT DriverObject,
In PUNICODE STRING RegistryPath

);

NTSTATUS
EnZooMessage (

~In PVOID ConnectionCookie,

~In reads bytes opt (InputBufferSize) PVOID InputBuffer,

~In ULONG InputBufterSize,

- Out writes bytes to opt (OutputBufterSize,*ReturnOutputBufterLength) PVOID
OutputBuftfer,

In ULONG OutputBuftterSize,

- Out<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>