用于车辆的制动踏板限位装置及具有其的车辆

摘要

本发明公开了一种用于车辆的制动踏板限位装置，还公开了一种具有该制动踏板限位装置的车辆。所述用于车辆的制动踏板限位装置包括：适合与所述车辆的车身相连的安装支座；连接杆，所述连接杆设有在所述安装支座上，所述连接杆从所述安装支座向上向下延伸；第一托板，所述第一托板的下端相对所述第一托板的上端向下向后倾斜；第一过渡板，所述第一过渡板的下端相对所述第一过渡板的上端向下向后延伸，第的第二托板，所述第二托板的下端相对所述第二托板的上端向下向后延伸。其中所述第二托板与所述第一托板支座与所述第一托板间距离可根据车辆的车辆的车辆进行调节。根据本发明实施例的制动踏板限位装置具有限位效果好、易于制造、通用性强、适用范围广等优点。
1. 一种用于车辆的制动踏板限位装置，其特征在于，包括：
 适于与所述车辆的车身相连的安装支座；
 连接件，所述连接件设在所述安装支座上，所述连接件从所述安装支座向上向后延伸；
 第一托板，所述第一托板倾斜地设在所述连接件的上端，所述第一托板的下端相对所述第一托板的上端向下向后延伸；和
 适于倾斜地设在所述车辆的制动泵的下部的第一托板，所述第二托板的下端相对所述第二托板的上端向下向后延伸，其中所述第二托板与所述第一托板相对且与所述第一托板间隔预定距离。

2. 根据权利要求1所述的用于车辆的制动踏板限位装置，其特征在于，还包括：
 安装件，所述安装件设在所述安装支座上；和
 旋转件，所述旋转件在预定角度范围内可旋转地设在所述安装件上，所述旋转件的下端与所述旋转件相连。

3. 根据权利要求2所述的用于车辆的制动踏板限位装置，其特征在于，所述安装件内具有安装腔且所述安装腔的壁上设有开口，所述旋转件包括可旋转地设在所述安装腔内的旋转件本体以及设在所述旋转件本体上的第一限位件和第二限位件，其中所述第一限位件与所述开口的第一侧壁配合，所述第二限位件与所述开口的第二侧壁配合，所述第一侧壁与所述第二侧壁相对。

4. 根据权利要求3所述的用于车辆的制动踏板限位装置，其特征在于，所述开口贯通所述安装腔的壁，所述连接件的下端通过所述开口与所述旋转件本体相连，所述第一限位件和所述第二限位件通过所述开口伸出所述安装腔。

5. 根据权利要求4所述的用于车辆的制动踏板限位装置，其特征在于，所述安装腔为圆柱形且所述旋转件本体为圆柱形，所述开口沿所述安装腔的径向和轴向贯通所述安装腔的壁，所述第一限位件和所述第二限位件中的每一个沿所述旋转件本体的轴向延伸，且所述第一限位件和所述第二限位件中的每一个的端面与所述旋转件本体的端面平行。

6. 根据权利要求1所述的用于车辆的制动踏板限位装置，其特征在于，所述第一托板与所述第二托板平行。

7. 一种车辆，其特征在于，包括：
 车身；
 制动泵，所述制动泵设在所述车身的前围上；
 制动踏板，所述制动踏板与所述制动泵相连；和
 制动踏板限位装置，所述制动踏板限位装置为根据权利要求1-6任一项所述的用于车辆的制动踏板限位装置，其中所述安装支塞设在所述车身上，所述第二托板倾斜地设在所述制动泵的下部。

8. 根据权利要求7所述的车辆，其特征在于，所述安装支塞与所述车身通过点焊相连。

9. 根据权利要求7所述的车辆，其特征在于，所述安装件与所述安装支塞通过气体保护焊相连，所述连接件与所述第一托板通过气体保护焊相连，所述连接件与旋转件通过气体保护焊相连。

10. 根据权利要求7所述的车辆，其特征在于，所述安装支塞设在车身的挡泥板上。
用于车辆的制动踏板限位装置及具有其的车辆

技术领域
[0001] 本发明涉及车辆领域，具体而言，涉及一种用于车辆的制动踏板限位装置及具有该制动踏板限位装置的车辆。

背景技术
[0002] 现有的制动踏板限位通常通过两种方式实现，第一种是通过在车下制动踏板上方设置的限位横梁，限制车辆高速翻车时制动踏板向上向后的位移，进而实现对驾驶员腿部的保护；第二种是通过将制动踏板臂设计为可断结构，车辆高速碰撞时制动踏板臂会自动断掉。第一种方式限位横梁通常固定在仪表板安装梁，仪表板安装梁和限位横梁的强度必须满足一定的要求，从而使得整车质量和成本增加且限位横梁的布置对车内布局空间要求较高。第二种方式中的制动踏板臂设计要求和生产要求较高，同时制动踏板臂在断裂中断口处会形成尖角，增大了对驾驶员腿部伤害的风险。

发明内容
[0003] 本发明旨在至少在一定程度上解决上述技术问题之一或至少提供一种有用的商业选择。为此，本发明的一个目的在于提供一种用于车辆的制动踏板限位装置，在车辆高速碰撞时，所述制动踏板限位装置可以将制动踏板的向上且向后的运动改变为向下且向前的运动，从而保护驾驶人员的腿部免受伤害。
[0004] 本发明的另一个目的在于提供一种具有所述制动踏板限位装置的车辆。
[0005] 为了实现上述目的，根据本发明第一方面的实施例提供一种用于车辆的制动踏板限位装置。所述用于车辆的制动踏板限位装置包括用于与所述车辆的车身相连的安装支架；连接件，所述连接件设在所述安装支架上，所述连接件设在所述安装支架向上向下延伸的第一托板，所述第一托板倾斜地设在所述连接件的上端，所述第一托板的下端相对所述第一托板的上端向上向下延伸；和适于倾斜地设在所述车辆的制动泵的下部的第二托板，所述第二托板的下端相对所述第二托板的上端向下向上延伸，其中所述第二托板与所述第一托板相对且与所述第一托板间隔预定距离。
[0006] 根据本发明实施例的制动踏板限位装置通过所述第一托板与倾斜地设置在所述制动泵的下部的所述第二托板的配合，使得所述车辆不受高速碰撞时，所述制动踏板的运动趋势为向下且向前，避免了由于所述制动踏板向后且向上运动而造成对驾驶人员的腿部的伤害。此外，所述制动踏板限位装置由所述安装支架、所述连接件、所述第一托板和所述第二托板构成，且上述部件中的每一的构均简单而质量较轻，从而使所述制动踏板限位装置具有结构简单，易于制造的优点。所述制动踏板限位装置还可以根据所述车辆的实际情况进行相应的结构调整，从而所述制动踏板限位装置还具有通用性强，适用范围更广等优点。
[0007] 另外，根据本发明上述实施例的用于车辆的制动踏板限位装置还可以具有如下附加的技术特征：

3
根据本发明的一个实施例，所述用于车辆的制动踏板限位装置还包括：安装件，所述安装件设在所述安装支座上；和旋转件，所述旋转件在预定角度范围内可旋转地设在所述安装件上，所述连接件的下端与所述旋转件相连。由此可以使所述制动踏板限位装置对所述制动踏板的限位更稳定、更可靠。

根据本发明的一个实施例，所述安装件内具有安装腔且所述安装腔的壁上设有开口，所述旋转件包括可旋转地设在所述安装腔内的旋转件本体以及设在所述旋转件本体上的第一限位件和第二限位件，其中所述第一限位件与所述开口的第一侧壁配合，所述第二限位件与所述开口的第二侧壁配合，所述第一侧壁与所述第二侧壁相对。由此所述预定角度范围可以通过所述第一限位件与所述第一侧壁的位置以及所述第二限位件与所述第二侧壁的位置共同确定。

根据本发明的一个实施例，所述开口贯通所述安装腔的壁，所述连接件的下端通过所述开口与所述旋转件本体相连，所述第一限位件和所述第二限位件通过所述开口伸出所述安装腔。由此可以使所述第一限位件与所述第一侧壁的配合以及所述第二限位件与第二侧壁的配合更紧密、更可靠。

根据本发明的一个实施例，所述安装腔为圆柱形且所述旋转件本体为圆柱形，所述开口沿所述安装腔的径向和轴向贯通所述安装腔的壁，所述第一限位件和所述第二限位件中的每一个沿所述旋转件本体的轴向延伸，且所述第一限位件和所述第二限位件中的每一个的端面与所述旋转件本体的端面平齐。由此不仅可以增强所述制动踏板限位装置的结构强度，还可以进一步提高所述制动踏板限位装置的可靠性。

根据本发明的一个实施例，所述第一托板与所述第二托板平行。由此有利于高速碰撞时，所述车辆受到的力的传递。

根据本发明第二方面的实施例提出一种车辆。所述车辆包括车身；制动泵，所述制动泵设在所述车身的前围上；制动踏板，所述制动踏板与所述制动泵相连；和制动踏板限位装置，所述制动踏板限位装置为根据本发明第一方面所述的用于车辆的制动踏板限位装置，其中所述安装支座设在所述车上，所述第二托板倾斜地设在所述制动泵的下部。因此根据本发明实施例的车辆具有安全性能和性能优势。

根据本发明的一个实施例，所述安装支座与所述车身通过点焊相连。

根据本发明的一个实施例，所述安装件与所述安装支座通过气体保护焊相连，所述连接件与所述第一托板通过气体保护焊相连，所述连接件与所述旋转件通过气体保护焊相连。由此可以保证所述制动踏板限位装置的各部件之间的连接强度，从而保证所述制动踏板限位装置的结构强度。

根据本发明的一个实施例，所述安装支座设在车身的中端板上。

本发明的附加方面和优点将在下面的描述中部分给出，部分将从下面的描述中变得明显，或通过本发明的实践了解到。

附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解，其中：
图 1 是根据本发明实施例的用于车辆的制动踏板限位装置的正视图；
具体实施方式

[0022] 下面详细描述本发明的实施例，所述实施例的示例在附图中示出，其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的，旨在用于解释本发明，而不能理解为对本发明的限制。

[0023] 在本发明的描述中，需要理解的是，术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系，仅是为了便于描述本发明和简化描述，而不是指示或暗示所指的装置或部件必须具有特定的方位、以特定的方位构造和操作，因此不能理解为对本发明的限制。

[0024] 此外，术语“第一”、“第二”仅用于描述目的，而不能理解为指示或暗示相对重要性或者隐含指明所要求的技术特征的数量。由此，限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中，“多个”的含义是两个或两个以上，除非另有明确具体的限定。

[0025] 在本发明中，除非另有明确的规定和限定，术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解，例如，可以是固定连接，也可以是可拆卸连接，或一体地连接；可以是机械连接，也可以是电连接，或可以是直接连接，或可以是间接连接，或可以是连接于中间媒介间接连接，或可以是两个元件内部的连接。对于本领域的普通技术人员而言，可以根据具体情况理解上述术语在本发明中的具体含义。

[0026] 在本发明中，除非另有明确的规定和限定，第一特征在第二特征“上”或“下”可以包括第一和第二特征直接接触，也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且，第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方，或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方，或仅仅表示第一特征水平高度小于第二特征。

[0027] 下面参照图 1-图 3 描述根据本发明实施例的车辆 1。如图 1-图 3 所示，根据本发明实施例的车辆 1 包括车身 10、制动泵 20、制动踏板 30 和制动踏板限位装置 40。制动泵 20 设在车身 10 的前围 110 上，制动踏板 30 与制动泵 20 相连。

[0028] 首先参照图 1-图 3 描述根据本发明实施例的用于车辆 1 的制动踏板限位装置 40。如图 1-图 3 所示，根据本发明实施例的制动踏板限位装置 40 包括适于与车辆 1 的车身 10 相连的安装支座 410、连接件 420、第一托板 430 和适于倾斜地设在车辆 1 的制动泵 20 的下部的第二托板 440。

[0029] 连接件 420 设在安装支座 410 上，连接件 420 从安装支座 410 向上向后延伸。第一托板 430 倾斜地设在连接件 420 的上端，第一托板 430 的下端相对第一托板 430 的上端向下向后延伸。第二托板 440 的下端相对第二托板 440 的上端向下向后延伸，其中第二托板 440 与第一托板 430 相对且第二托板 440 与第一托板 430 间隔预定距离。其中，上下方向如图 1-图 3 中的箭头 A 所示，前后方向如图 1-图 3 中的箭头 B 所示。本发明中的上下
方向与车身 10 的高度方向相同。前后方向与同车身 10 的前后方向相同。

[0030] 其中，安装支座 410 设在车身 10 上，第二托板 440 倾斜地设在制动泵 20 的下部。例如，在本发明的一个具体示例中，安装支座 410 可以设在车身 10 的挡泥板 120 上。

[0031] 当车辆 1 发生高速碰撞时，车身 10 发生挤压变形，使得制动踏板限位装置 40 的第一托板 430 与第二托板 440 接触。挤压过程中，制动踏板限位装置 40 受到的力依次通过安装支座 410、连接件 420、第一托板 430 和第二托板 440 传递到制动泵 20 上。如图 3 所示，制动泵 20 受到冲击力 F，制动泵 20 在冲击力 F 的作用下将环绕制动泵 20 与车身 10 的前围 110 的连接点旋转，进而使与制动泵 20 固定连接的制动踏板 30 的运动趋势为向下且向前。由此实现对制动踏板 30 的限位作用，从而通过改变高速碰撞时制动踏板 30 的运动趋势来保护驾驶员的腿部免受伤害。

[0032] 根据本发明实施例的制动踏板限位装置 40 通过第一托板 430 与倾斜地设置在制动泵 20 的下部的第二托板 440 的配合，使得车辆 1 在高速碰撞时，制动踏板 30 的运动趋势为向下且向前，避免了由于制动踏板 30 向后且向上运动而造成对驾驶人员的腿部的伤害。此外，制动踏板限位装置 40 的安装支座 410、连接件 420、第一托板 430 和第二托板 440 中的每一个的构造均简单而且质量较轻，从而使制动踏板限位装置 40 具有结构简单，易于制造的优点。制动踏板限位装置 40 还可以根据车辆 1 的实际情况进行相应的结构调整，从而使制动踏板限位装置 40 具有通用性强，适用范围更广等优点。

[0033] 根据本发明实施例的车辆 1 通过设置根据本发明上述实施例的制动踏板限位装置 40，从而具有安全性能高等优点。

[0034] 可选地，第一托板 430 可以与第二托板 440 平行。由此有利于高速碰撞时，车辆 1 受到的力的传递。第二托板 440 和制动泵 20 可以通过焊接相连，也可以通过螺栓连接。

[0035] 在本发明的一个实施例中，用于车辆 1 的制动踏板限位装置 40 还可以包括安装件 450 和旋转件 460。安装件 450 可以设在安装支座 410 上，旋转件 460 在预定角度范围内可旋转地设在安装件 450 上，连接件 420 的下端与旋转件 460 相连。

[0036] 可以理解的是，在车辆 1 发生高速碰撞时，制动踏板限位装置 40 的第一托板 430 与第二托板 440 的接触情况是随着碰撞发生的部位和碰撞发生时产生的冲击力的大小而改变的。换言之，第一托板 430 与第二托板 440 的接触有可能是面接触，也有可能是线接触。如果第一托板 430 与第二托板 440 的接触面积太小势必会影响冲击力的传递，从而影响制动踏板限位装置 40 对制动踏板 30 的限位的稳定性和可靠性。通过设置安装件 450 和在预定角度范围内可旋转地设在安装件 450 上的旋转件 460，使得车辆 1 受到碰撞时，第一托板 430 与第二托板 440 的接触角度可以自动调节，以达到理想的接触位置，即冲击力 F 与冲击力 F 的水平分力 Fx 的夹角 α 控制在合理的范围内。

[0037] 而且，通过增加冲击力 F 与冲击力 F 的水平分力 Fx 的夹角 α，可以减小冲击力 F 的水平分力 Fx 的大小，从而可以使水平分力 Fx 小于使前围 110 的结构发生变形的最大力 F1，即 Fx< F1。由此可以使制动踏板限位装置 40 对制动踏板 30 的限位更稳定，更可靠。其中，Fx= F * cos α，Fz= F * sin α。

[0038] 有利地，作用在制动泵 20 上的力矩 M1 小于使前围 110 与制动泵 20 的连接点处的结构发生变形的最大弯矩 M2，即 M1<M2。其中，L 为 Fz 到制动泵 20 与车身 10 的前围 110 的连接点的力臂，M1=Fz*L。
具体而言，制动泵 20 受到的冲击力 F 与作用在制动泵 20 上的水平分力 Fx 的夹角 α 的确定可以通过以下两个步骤完成：

1）在对车辆 1 的仿真分析中依照整车变形情况和关键部位变形（例如：档泥板 120、前围 110、制动泵 20 与前围 110 连接处）的参数确定夹角 α 的合理设定范围；

2）为验证夹角 α 设置范围是否合理，根据车辆 1 的实车碰撞试验中制动踏板限位装置 40 对制动踏板 30 的限位效果对夹角 α 进行修正。

如图 2 所示，在本发明的一个实施例中，安装件 450 内可以具有安装腔且安装腔的壁上可以设有开口 452，旋转件 460 可以包括可旋转地设在安装腔内的旋转件本体 461 以及设在旋转件本体 461 上的第一限位件 462 和第二限位件 463，其中第一限位件 462 与开口 452 的第一侧壁 4521 配合，第二限位件 463 与开口 452 的第二侧壁 4522 配合，第一侧壁 4521 与第二侧壁 4522 相对。由此所述预定角度范围可以通过第一限位件 462 与第一侧壁 4521 的位置以及第二限位件 463 与第二侧壁 4522 的位置共同确定。

如图 2 所示，开口 452 可以贯穿安装腔的壁。由此可以使安装件 450 的加工更容易。连接件 420 的下端通过开口 452 与旋转件本体 461 相连，第一限位件 462 和第二限位件 463 通过开口 452 伸出安装腔。由此可以使第一限位件 462 与第一侧壁 4521 的配合以及第二限位件 463 和第二侧壁 4522 的配合更容易，更可靠。

在本发明的一些实施例中，安装腔可以为圆柱形且旋转件本体 461 可以为圆柱形，开口 452 可以沿安装腔的径向和轴向贯通安装腔的壁，第一限位件 462 和第二限位件 463 中的每一个沿旋转件本体 461 的轴线延伸，且第一限位件 462 和第二限位件 463 中的每一个的端面与旋转件本体 461 的端面平齐。由此可以增加第一限位件 462 与开口 452 的第一侧壁 4521 的接触面积以及第二限位件 463 与开口 452 的第二侧壁 4522 的接触面积，从而不仅可以增强制动踏板限位装置 40 的结构强度，还可以进一步提高制动踏板限位装置 40 的可靠性。所述安装腔的径向与旋转件本体 461 的径向相同，所述安装腔的轴向与旋转件本体 461 的轴向相同。

有利地，安装支座 410 可以与车身 10 通过点焊相连。安装件 450 与安装支座 410 可以通过气体保护焊相连，连接件 420 与第一托板 430 可以通过气体保护焊相连，连接件 420 与旋转件 460 可以通过气体保护焊相连。由此可以保证制动踏板限位装置 40 的各部件之间的连接强度，从而保证制动踏板限位装置 40 的结构强度。

根据本发明实施例的制动踏板限位装置 40 具有限位效果好、结构简单，易于制造、通用性强、适用范围广等优点。

在本说明书的描述中，参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中，对上述术语的示意性表述不一定指的是相同的实施例或示例。而且，描述的具体特征、结构、材料或者特点可以在任何一个或多个实施例或示例中以合适的方式结合。

尽管上面已经示出和描述了本发明的实施例，可以理解的是，上述实施例是示例性的，不能理解为对本发明的限制，本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变形。