© 2015/030933 A1 I 0O A0 00 0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

S March 2015 (05.03.2015)

WIPOIPCT

(10) International Publication Number

WO 2015/030933 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

International Patent Classification:
GO6T 11/20 (2006.01) GO6T 15/04 (2011.01)
GO6T 11/40 (2006.01)

International Application Number:
PCT/US2014/045309

International Filing Date:
2 July 2014 (02.07.2014)

Filing Language: English
Publication Language: English
Priority Data:

61/871,260 28 August 2013 (28.08.2013) US
14/321,409 1 July 2014 (01.07.2014) US

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Inventors: GOEL, Vineet; 5775 Morehouse Drive, San
Diego, California 92121-1714 (US). CEYLAN, Usame;
5775 Morehouse Drive, San Diego, California 92121-1714
(US).

Agent: PRIEM, David F.; Shumaker & Sieffert, P.A.,
1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125

(US).
Designated States (unless otherwise indicated, for every

kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(84)

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

(54) Title: PREFIXED SUMMED LENGTH IN GRAPHICS PROCESSING

(‘136

142
/'\. |

FIG. 9C

(57) Abstract: In an example, rendering graphics data includes determining, with a graphics processing unit (GPU), a texture otfset
for a current segment of a plurality of ordered segments of a dashed line, where the texture offset for the current segment of the plur -
ality of ordered segments is based on an accumulation of lengths of segments that precede the current segment in the order, and pixel
shading the current segment including applying the texture offset to determine a location of the current segment.

WO 2015/030933 PCT/US2014/045309

PREFIXED SUMMED LENGTH IN GRAPHICS PROCESSING

[8801] This application claims the benefit of U.S. Provisional Application No.
61/871,260, filed August 28, 2013 the entire contents of which is hereby ncorporated

by reference.

TECHNICAL FIELD
{8602] This disclosure relates to graphics processing, and more particularly, to

techniques for path rendering.

BACKGROUND
{8803] Path rendering may refer to the rendering of two-dimensional {2D) vector
graphics paths (alteroatively referred to herein as “paths™), cach of which may include
one or more path segments. When a path inchades two or more path segments, the
individual path scgments may be of the same type or of different types. The types of
path segments may include, for example, a line, an elliptic arc, a quadratic Bézier curve,
and a cubic Bézier curve. In some examples, the path segment types may be defined in
accordance with a standard veetor graphies application programming interface (APT),
such as, ¢.g., the Open Vector Graphics (OpenV(G) APL
[88064] Path rendering may be implemented in a central processing unit (CPU)
However, such an approach may be CPU-intensive, and may therefore Hmit the amount
of CPU processing cycles available for other CPU tasks. Moreover, in some cases, 2
relatively large amount of data may nced o be transferred to a graphics processing unit
{GPU) to render the path segment at a desired level of detal. The relatively large
amount of data may consame a significant amount of memory storage space when
storing the data, and may consume a significant amount of memory bandwidth when

transterring the data to the GPU.

SUMMARY
{8605] This disciosure inchudes techniques for generating graphics data with path
filling and dashing. For example, when filling a path, according to aspects of this
disclosure, a GPU may perform stenciling operations at a different rate than the rate at

which memory s allocated for rendered data (referred to as a render target). Thatis, a

WO 2015/030933 PCT/US2014/045309

stencil parameter for performing stencil operations may be specified independently from
a render target parameter for storing rendered data.

{8606] In addition, with respect to dashing, according o aspects of this disclosure, a
GPU may determine dash characteristics and perform dashing in a single rendering
pass. For example, the GPU may calculate the length of cach of the segments as the
segments are determined and apply the length information to determine a starting
location (c.g., a toxture coordinate) for cach dash segment.

98671 In an cxample, a method of rendering graphics data jncludes determining a
stencil parameter that indicates a sampling rate for determining a coverage value for
cach antialiased pixel of a path of an image, determining, separately from the stencil
parameter, a render target parameter that indicates a memory allocation for each
antiahiased pixel of the path, and rendering the path using the stencil parameter and the
render target parameter.

[8808] o another exampie, an apparatus for rending graphics includes a graphics
processing unit (GPLU) configured to determine a stencil parameter that fndicates a
sampling rate for determining a coverage value for cach antialiased pixel of a path of an
image, determine, separately from the stencil parameter, a render target parameter that
indicates a memory allocation for cach antialiased pixel of the path, and render the path
using the stencil parameter and the render target parameter.

[8809] In another example, an apparatus for rendering graphies data includes means
for determining a stencil parameter that indicates a sampling rate for determining a
coverage value for each antialiased pixel of a path of an tmage, meaons for determining,
separately from the stencil parameter, a render target parameter that indicates a memory
allocation for each antialiased pixel of the path, and means for rendering the path using
the stencil parameter and the render target parameter.

8818] In another cxarople, a non-transitory computer-readable medium has
mstructions stored thereon that, when executed, cause a graphics processing unit {GPU)
to determine a stencii parameter that indicates a sampling rate for determining
coverage vatue for each antialiased pixel of a path of animage, deterovine, separately
from the stencil parameter, a render target parameter that indicates a memory allocation
for cach antialiased pixel of the path, and render the path using the stencil parameter and

the render target parameter.

WO 2015/030933 PCT/US2014/045309

(O3]

{8611] In another example, a method of vendering graphics data inchades
determining, with a graphics processing unit (GPU), a texture offset for a current
segment of a plorality of ordered segments of a dashed line, wherein the texture offset
for the currerd segment of the plurality of ordered segments 15 based on an accumulation
of lengths of segments that precede the current segment in the order, and pixel shading
the current segment inchiding applying the texture offset to determine a location of the
current segment.

98121 In avother example, an apparatus for rendering graphbics data includes 2
graphics processing unit {GPL) configured to determuine a texture offset for a current
segment of a plorality of ordered segments of a dashed line, wherein the texture offset
for the currerd segment of the plurality of ordered segments 15 based on an accumulation
of lengths of segments that precede the current segment in the order, and pixel shade the
current segment including applying the textare offset to determine a location of the
current segment.

98131 In another example, an apparatus for rendering graphics data inchudes means
for determining, with a graphics processing unit {GPL, a texture offset for a current
segment of a plorality of ordered segments of a dashed line, wherein the texture offset
for the currerd segment of the plurality of ordered segments 15 based on an accumulation
of lengths of segments that precede the current segment in the order, and means for
pixel shading the current segment including applying the texture offset to determine a
location of the current segment.

[9814] In another cxanplie, a non-transitory computer-readable medivm has
instructions stored thereon that, when executed, cause a graphics processing unit (GPU)
configured to determine a texture offset for a current segment of a plurality of ordered
segments of a dashed line, whercin the texture offsct for the current scgment of the
phurality of ordered segments s based on an accumulation of lengths of segments that
precede the current segment in the order, and pixel shade the current segment mcluding
applying the textore offset o determine a location of the current segment.

18013] The details of one or more examples of the disclosure are set forth in the
accompanying drawings and the description below. Other features, objects, and
advantages of the disclosure will be apparent from the description and drawings, and

from the claims.

WO 2015/030933 PCT/US2014/045309

BRIEF DESCRIPTION OF DRAWINGS

{8816] FIG. 11s 3 biock diagram illustrating an example computing device that may
be used to implement the techoigues of this disclosure.

{8817] TIG. 2 is a block diagram illustrating the CPU, the GPU and the memory of
the computing device in FIG. 1 in further deiail.

[B818] FIG. 3 is a concepiual diagram iilustrating an exanple graphics pipeline that
may be used to perform techniques of this disclosure.

[8819] FIG. 41s a diagram of an example path to be rendered.

[8828] FIGS. 5A-5C are diagrams illustrating an cxample sequence of filling
operations for the path shown in FIG, 4,

86211 Q. 6 18 a conceptual diagram illustrating a stenciling operation.

18822] TIG. 7 i3 a conceptual diagram illustrating an example filling operation,
according to aspects of this disclosure.

[8823] FIG. 8 is a graph illustrating bandwidth during rendering, according to
aspects of this disclosure.

[8824] FIGS. 9A-9D are a sequence of diagrams illustrating an cxample dashing
operation for the path shown in F1G. 4.

[8628] FIG. 1018 a flow diagram illustrating an example process for rendering
graphics data, according o aspects of this disclosure.

18626] FIG. 11 is a flow diagram illustrating an cxample process for dashing,

according to aspects of this disclosure.

BETAILED DESCRIPTION

[80627) This disclosure 1s directed to technigues for performing GPU based path
rendering. Path rendering may refer to the rendering of two-dimensional (Z2D) vecior
graphics paths (alternatively referred to herein as “paths™), cach of which may include
one or more path segments. When a path includes two or more path segments, the
individual path segments may be of the same type or of different types. The types of
path segments may include, for cxample, a line, an elliptic arc, a quadratic Bézier curve,
and a cubic Bézicr curve. In some examples, the path segmernd types may be defined io
accordance with a standard vector graphics apphcation programming interface (AP,

such as, e.g., the Open Vector Graphics (OpenVG) APL

WO 2015/030933 PCT/US2014/045309

186281 GPUs typically implement a threc-dimensional (3D) graphics pipeline that is
designed to be compliant with one or more 3D graphics APIs. Because the prevailing
3D graphics APls in use today do not require that compliant devices support path
rendering conunands, modem GPUs often provide little to no hardware acceleration for
path rendering commands. For example, a typical 3D graphics pipeline implemented in
a modern GPU may include a rasterizer that is designed to rasterize low-order, non-
curved, 30 graphics primitives (such as, ¢.g., points, lines and triangles), but is not
capable of directly rendering curved path rendering privuitives (such as, ¢.g., clliptic arcs
and Bévier curves).

18828] One approach for path rendering may tvolve using a 3D GPU pipeline to
provide partial GPU hardware acceleration for the execution of path rendering
commands. This approach involves preprocessing a path segment with a central
processing unit (CPUY in order to convert the path segment into one or morg low-order,
non-curved, 3D graphics primitives that can be rasierized by the GPU. For example, a
CPU may tessellate a curved path segment (e.g., an elliptic arc or a Bézier curve) mto a
set of relatively small iriangles that approximates the curvature of the path segment, and
may cause the set of triangles to be rendered using the GPU. Such an approach,
howevey, may be CPU-mtensive, and may therefore Hott the amount of CPU processing
cycles available for other CPU tasks. Moreover, in some cases, a relatively large
amount of trizngles may be needed to render the path segment at a desired level of
detail. The relatively large amount of triangles may consume a significant amount of
memory sforage space when storing the data, and may conswne a significant amount of
memory bandwidth when transferring the data to the GPU.

18838] Ancther approach for providing partial-to-total GPU hardware acceleration
for the exccution of path rendering commands may involve modifying the architecture
of the GPU to support a dedicated, hardware-accelerated, path rendering pipeline.
However, because the prevailing 3D graphics APIs (e.g., the Microsofi® DirectX 11
(DX AP]) typically do not require a GPU architecture to inclode a dedicated path
rendering pipeline, such an approach does not result in a cross-platform, hardware-
accelerated, path rendering solution that would be guaranteed to be supported by all
GPUs which are compliant with a particular 3D graphics API (e.g., the DX 11 AP,
{8631] In some cxamples, a GPU-based path rendering technique may be used in

which the GPU 1s configured to tessellate a received path segment into a plurality of

WO 2015/030933 PCT/US2014/045309

line segments, and to render the tesscllated hne segments using a 313 graphics pipeline.
By using the GPU o tessellate a path segment into line scgments, the burden of
preprocessing path segments is lifted from the CPU, thereby frecing up processing
resources for other CPU tasks, Moreover, the GPU may, in some examples, utilize a
highly-paralle], modern GPU tessellation architecture to perform the tessellation
operations, which may, in some examples, allow the GPU to render a path segment in a
more efficient manner than the CPU. In addition, because the tessellation occurs in the
(GPU, rather than in the CPU, a multitude of tessellated primitives do not need 1o be
stored in systemn memory and do not need to be passed from the CPU to the GPU,
therchy reducing the memory footprint needed for path rendering as well as the memory
bandwidth needed for path rendering.

[8832] In some examples, a GPU may use a multi-sample anti-aliasing (MSAA)
technique to perform antialiasing. For example, pixels are uniformly colored and
always of the same shape, which may result in lines of a rendered image becoming
iagged in appearance. With MSAA, muliiple samples may be generated for a single
pixel. The samples may then be combined {(e.g., averaged) to determine a final pixel
value.

80833] Accordingly, in some instances, a GPU may render an fmage at a higher
resolution than the resohution being displayed. The GPU may then down-sample the
image to the appropriate size prior to display. The result may be smoother transitions
from one line of pixels to another along the edges of objects, MSAA may be performed
using a factor of 4, §, 16, or other values. When performing MSAA, the GPU may
sample depth and stencil operations at the MSA A rate, allocate memory at the MSAA
rate, and rasterize pixels at the MSAA rate (e.g., 16x MSAA meludes [6x depth/stencil
samples per pixel, and 16x memory allocation per pixel, and 16X rasterization samples
per pixel).

[8834] In genersl, a “target” may refer to memory allocated for a rendered pixel.
Typically, with respect to antialiased images, a sampling rate for performing graphics
operations such as rasterization and a memory allocation for the rendeored target
correspond with each other, ¢.gz., 1:1. Thus, in an example for purposes of llustration, a
GPU may ose a sampling rate of 16x per pixel for rasterization and allocate memory to
store 16 samples per pixel. However, in target independent rasterization (TIR), the

saoypling rate of the rasterization process may be specified independently from the

WO 2015/030933 PCT/US2014/045309

memory allocated for the rendered image. For example, a sampling rate of four samples
per pinel may be used for rasterization, while a memory allocation for storing color of
pixels of the image may be onc color per pixel in the image.

[803%] While TIR allows a rasterization rate to be independently specified from the
memory allocated for the target, other rendering operations may remain tied together,
For example, depth and stenciling operations {as described in greater detail below) may
typicaily be associated with the render target. Accordingly, a single render target is
specified per pixel, depth and stencil operations may also be performed at the same rate
(i.c., Ix sampling rate}.

1803s6] According to aspects of this disclosure, a GPU may leverage the concept of
TiR in stenciling operations. For exanple, the GPU may perform stenciling at a higher
rate than the amount of memory that is allocated for a particular pixel. Thatis, ina
process in which steneil operations are super-sampled, e.g., cach pixel will have 16
samples, the GPU may render by computing the coverage value per pixel based on
which sanmple of the pixel {of the supor sampled pixel) passed the stencil test, e.g., was
mside a particular path. For performance improvement, a render target may be Ix
sampled while the stencil may be 16x sampled. The GPU may assign cach pixel a
coverage value based on a per sample stenci] test. Specifying a stenciling sampling rate
mdependently from the target and the rasterization rate may be referred to hevein as
stenciled TIR.

{8837 The stenciled TIR process may be applied during path rendering. For
examiple, when path rendering, a GPY may typically porform the following example
functions to fill a path: tessellate the path into line segments, connect line segments 1o 4
pivot point to form triangles, and render triangles to a stencil buffer (ncluding, in some
instances, performing a depth test), where the stencil buffer indicates visible pixels in of
the image. The next and possibly final steps of the filling process are 1o render a
bounding box with a stencil test enabled and to copy the contents of the stencil buffer to
a frame buffer. This approach requires two rendering passes, ¢.g., onc pass to render the
hounding box and one pass 1o ronder the texture.

[8638] According to aspects of this disclosure, 2 GPU may il a path in a single
rendering pass, without the need to pre-process a bounding box. For example, in some
cxamples, 3 GPU may incorporate a bounding box unit, which may inciude hardware

that is used at a rasterizer stage. For example, as primitives are rendered to a stencil

WO 2015/030933 PCT/US2014/045309

o]

buffer, the bounding box unit may track the ocutermost coordinate points of a given path
{c.g., top, bottom, left, and right extrema). The cutermost coordinate points may alse be
referred to as maximum boundary points, in the sense that these points indicate the
outermost boundary of the path. After stenciling is complete, the bounding box unit has
determined a bounding rectangle based on the cutermost coordinate points.

[8839] In the cxample above, the GPU does not shade the primitives of the path as
they are rendered to the stencil buffer (the primitives only affect the stencil). The GPU
may then render the bounding box using the stencil buffer to assign the color.
According to aspects of this disclosure, another draw call is not necded after performing
the stenciling and determining the bounding box. Rather, the GPU rasterizes the
bounding box using stenciled TIR in a single pass.

[8848] In this way, the GPU may Bl (e.g., perform stencil and color operationsy ina
single pass, rather than, for example, determining primitives at 3 GPU, determining a
bounding box at a CPU, and performing color operations on the GPU. That is,
techniques of this disclosure include a bounding box optimization that allows the GPU
to determine a bounding bex (e.g., during tessellation, which the GPU may then push to
a rasterizer) so that both stencil and color can be performed in a single pass.

8841] Other aspects of this disclosure relate to dashing (such as a dashed line). For
example, when dashing a stroked path, the GPU may render dash segments in order
(referred to as a segment order), and may generate one segment where the previous
segiments left off. That is, the GPU determines a starting location for each scgmoent in
the dash pattern only after shading the previous segment. Such computations may
reduce paratlelism of graphics processing and require more than one rendering pass to
perform, because the locations for each section of the dash need to be processed in order
io determine the correct starting focation.

[8042] According to aspects of this disclosure, the GPU may determine dash
characteristics and perform dashing n a single pass, e.g. a single rendering pass. For
example, the GPU may calculate the length of each of the segments as the segments are
determined, ¢.g., during geometry shading. That is, the GPU may accumulate the
lengths of the scgments, e.g., segments preceding a current segment in a segment order,
to determine a starting location of a current segment. This accumuldation of lengths may
be referred to horein as a “prefix length” or “prefix semmed fength.” The GPU may

also determinge the total length of the line.

WO 2015/030933 PCT/US2014/045309

D

{88431 In an cxample for purposes of iustration, the GPU may deternume a first
segment of a dashed bine. The GPU may also determine a second segment of the dashed
line. The GPU may determine the starting location for the second segment based on a
prefix summed length of previcus segments. That is, the GPU may determine the
starting location for the second segment based on an accumulation of the lengths of the
previous segments, 1.¢., the first segment. The GPU may also determing a third segment
of the dashed line. Again, the GPU may determine the starting location for the third
segment based on a prefix summed fength of previous segments. That is, the GPU may
determine the starting location for the third segment based on an accumulation of the
lengths of the previous segments, 1.¢., the first segment and the second segment. The
GPU may continue To this mammer undd the starting focations of cach of the segoents of
the hine have been determined.

[8044] In some examples, the dashed hine may include visible segments and invisible
segiments. For example, GPU 12 may determine a color for segments that are visible
(e.g., the dashes of the line) and discard segments that are invisible {¢.g., the portion of
the dashed line between the colored dashes). GPU 12 may determine whether to retain
a segment (which may be mterchangeably referred herein as a fragment, ¢.g., during
pixel shading) based on a location of the segment being shaded. With respect 1o the
three segments described above as an example, assume the first and third segments of
the dashed line and the second scgment 1s an invisible segment separating the first and
third segments that is not colored. GPU 12 may determine whether to retain (e.g., shade
with a color) or discard the segmends during pixel shading based on the locations of the
segments. That is, GPU 12 may determine that the first segment is retained based on
the location of the first segment, determine that the second segment is discarded based
on the location of the second segment, and defermine that the third segment is retained
based on the location of the third scgment.

[88458] According to aspects of this disclosure, the GPU may apply the prefix
summed length for cach segment as a texture offset during rendering. For example,
after rasterizing a segment, the GPU may feed the value of the prefix summed length for
the segment to a pixel shader as a texture offset value. The GPU may apply the texture
offset to the texture coordinates of the beginning of the line to determine the location of

the segment being shaded.

WO 2015/030933 PCT/US2014/045309

{8846] FIG. 11s a block diagram illostrating an example computing device 2 that
may be osed to implement the technigues of this disclosure. Computing device 2 may
comprise a personal computer, a desktop computer, a laptop computer, a computer
workstation, a video game platform or console, a wircless communication device (such
as, ¢.g., a mobile telephone, a cellular telephone, a satellite telephone, and/or a mobile
telephone handset), a landline telophone, an Internet telephone, a handheld device such
as a portabie video game device or a personal digital assistant (PDA), a personal music
player, a video player, a display device, a television, a television set-top box, a server,
an intermediate network device, a maintrame computer or any other type of device that
processes and/or displays graphical data.

8047] Asillustrated inthe example of FIG. 1, computing device 2 fncludes a user
mierface 4, a CPU 6, 2 memory controller 8, a memory 10, a graphics processing unit
(GPU) 12, a GPU cache 14, a display interface 16, a display 18 and bus 20, User
interface 4, CPU 6, memory controller 8, GPU 12 and display interface 16 may
comuunicate with cach other using bus 20. 1t should be noted that the specific
configuration of buses and commumication interfaces between the different components
shown in FIG. 1 is mercly exemplary, and other configirations of computing devices
and/or other graphics processing systems with the same or different componcuts may be
used to implement the techniques of this disclosure.

[8848] CPU 6 may comprise a general-purpose or a special-purpose processor that
controls operation of computing device 2. A user may provide input to computing
device 2 to cause CPU 6 to execute one or more software applications. The software
applications that execute on CPU 6 may melude, for example, an operating system, a
word processor application, an email application, a spread sheet application, a media
player application, a video game application, a graphical uscr interface application or
another program. The user may provide input to computing device 2 via one of more
mput devices (not shown) such as a keyboard, 3 mouse, a nucrophone, a touch pad or
another imput device that is coupled to computing device 2 via user interface 4.

19849 The sottware applications that execute on CPU 6 may include one or more
graphics rendering nstroctions that instruet GPU 12 1o cause the rendering of graphics
data to display 18, In some examples, the software instructions may conform to a
graphics application programming mterface (AP}, such as, ¢.g., an Open Graphics

Library (OpenGL®) API, an Open Graphics Library Embedded Systems (OpenGL ES)

WO 2015/030933 PCT/US2014/045309

11

APL, a Direct3D APL a DirectX APL a RenderMan APL a WebGL API, or any other
public or proprictary standard graphics APL In order to process the graphics rendering
instructions, CPU 6 may issue¢ one or more graphics rendering commands to GPU 12 10
cause GPU 12 1o perform some or all of the rendering of the graphics data. o some
examples, the graphics data to be rendered may inclade 4 hist of graphics primitives,
2.5, points, Hings, triangles, quadralaterals, triangle strips, patches, stc. In further
examples, the graphics data to be rendered may inclade one or more path rendering
prinytives, such as, €.g., line segments, clliptic arcs, quadratic Bézier curves, and cubic
Bézier curves.

[8888] Memory controller 8 facilitates the transfer of data going into and oot of
memory 10, For example, memory controller € may reccive memory read requests and
memory write requests from CPU 6 and/or GPU 12, and service such requests with
respeet o memory 10 in order to provide memory services for the components in
computing device 2. Memory controller 8 is communicatively coupled to memory 10,
Although memory controller 8 is iHustrated in the example computing device 2 of FIG.
1 as being a processing module that is separate from each of CPU 6, GPU 12, and
memory 1, in other examples, some or all of the fonctionality of memory controlier 8
may be fmplemented on one or more of CPU 6, GPU 12, and memory 10,

{8851 Memory 10 may store program modules and/or nstructions that are
acceasible for execution by CPU 6 and/or data for ase by the programs executing on
CPU 6. For example, memory 10 may store user applications and graphics dais
associated with the applications. Memory 10 may also store information for use by
and/or generated by other components of computing device 2. For example, memory 10
may act as a device memaory for GPU 12 and may store data to be operated on by GPU
12 as well as data resulting from operations performed by GPU 12, For example,
memory 10 may store any combination of path data, path segment data, surfaces, texture
butters, depth bufters, stencil buffers, vertex buffers, frame butters, or the like. In
addition, memory 10 may store command streams for processing by GPU 12, For
exanple, memory 10 may store path rendering coromands, 313 graphics rendering
commands, and/or general-purpose GPU computing commands. Memory 10 may
include one or more volatile or non-velatile memories or storage devices, such as, for
example, random access memory (RAM]), static RAM (SRAM), dynamic RAM

(DRAM), synchronous dyvamic random access memory (SDRAM), read-ondy memory

WO 2015/030933 PCT/US2014/045309

12

(ROM}, erasable programmable ROM (EPROM), electrically erasable programmable
ROM (EEPROM), Flash memory, a magnetic data media or an optical storage media.
18082} GPU 12 may be configured to execute commands that are issued to GPU 12
by CPU 6. The commands executed by GPU 12 may include grapbics commands, draw
call commands, GPU state programming commands, memory transfer commands,
general-purpose computing commands, kernel execution commands, ete.

[8853] o some examples, GPU 12 may be configured to perform graphics operations
to render one or more graphics primitives to display 18, In such examples, when one of
the software applications executing on CPU 6 requires graphics processing, CPU 6 may
provide graphics data to GPU 12 for rendering to display 18 and issue one or more
graphics commands to GPU 12. The graphics commands may include, e.g., draw call
commands, GPL state programming commands, memory transfer commands, blitting
commands, etc. The graphics data may inclade vertex buffers, texture data, surface
data, ctc. In some examples, CPU 6 may provide the commands and graphics data to
GPU 12 by writing the coromands and graphics data to memory 10, which may be
accessed by GPU 12,

[8054] In further examples, GPU 12 may be configared to perform general-purpose
computing for applications executing on CPU 6. In such examples, when one of the
software applications executing on CPU 6 decides to off-load a computational task to
GPU 12, CPU 6 may provide general-purpose computing data to GPU 12, and issue one
or more gencral-purpose computing commands to GPU 12, The general-purpose
computing commands may include, e.g., kernel execution commands, memory fransfer
commands, ctc. In some examples, CPU 6 may provide the commands and general-
purpose computing data to GPU 12 by writing the commands and graphics data to
memory 1}, which may be accessed by GPU 12,

[B085] GPU 12 may, in some jostances, be built with a highly-paraliel structure that
provides more efficient processing of vector operations than CPU 6. For example, GPU
12 way inchude a plorality of processing clements that are configured to operaic on
multiple vertices, control points, pixels and/or other data in a parallel manner. The
highly paralle] nature of GPU 12 may, in some instances, allow GPU 12 to render
graphics images (2.g., GUIs and two-dimensional (2D} and/or three-dimensional (303)
graphics scenes) onto display 18 more quickly than rendering the images vsing CPU 6.

1n addition, the highly parallel nature of GPU 12 may allow GPU 12 {0 process certain

WO 2015/030933 PCT/US2014/045309

types of vector and matrix operations for general-purposed computing applications more
quickly than CPU 6.

18086] GPU 12 may, in some examples, be integrated into 3 motherboard of
computing device 2. In other instances, GPU 12 may be present on a graphics card that
1s installed n a port in the motherboard of computing device 2 or may be otherwise
ncorporated within a peripheral device configured to interoperate with compating
device 2. In further instances, GPU 12 may be located on the same microchip as CPU 6
formaing a system on a chip (50C). GPU 12 may include one or more processors, such
as On¢ o1 more microprocessors, apphcation specific integrated circuits (ASICs), field
programumable gate arrays (FPGAs), digital signal processors {(D5SPs), or other
equivalent integrated or discrete logic circuitry.

{8087 In some examples, GPU 12 may be directly coupled to GPU cache 14, Thus,
GPU 12 may read data from and write data to GPU cache 14 without necessarily using
bus 20. In other words, GPU 12 may process data locally using a local storage, instead
of oft-chip momory. This allows GPU 12 te operate in a more cfficient manner by
climinating the need of GPU 12 to read and write data via bus 20, which may
experience heavy bus traffic. In some instances, however, GPU 12 may not mcluide a
separate cache, but nstead wtihize memory 10 via bus 20. GPU cache 14 may include
one or more volatile or non-volatile memories or storage devices, such as, e.g., random
access memory (RAM), static RAM (SRAM), dynamic RAM (DRAM), erasable
programmable ROM (EPROM), clectrically crasable programmable ROM (EEPROM),
Flash memory, a roagnetic data media ot an optical storage media.

{66581 CPU 6 and/or GPU {2 may store rendered image data in a frame buffer that is
allocated within memory 10. With respect to vector graphies, the rendered image data
may include rendered fill arcas and stroke areas for a path segment to be rendered.
Display interface 16 may retrieve the data from the frame buffer and configure display
18 to display the image represented by the rendered mage data. In some examples,
display interface 16 may include g digital-to-analog converter {DAC) that is configured
to convert the digial values retricved from the frame buffer into an analog sigoal
consumable by display 18, In other examples, display interface 16 may pass the digital
values divectly to display 18 for processing.

{8659] Display 18 may include a monitor, a television, a projection device, a liquid

crystal display (LCD), a plasma display panel, a ight emitting diode (LED) array, a

WO 2015/030933 PCT/US2014/045309

14

cathode ray tube (CRT) display, electronic paper, a surface-conduction electron-emitted
display (SED), a laser television display, a nanocrystal display or another type of
display unit. Display 18 may be inlegrated within computing device 2. For instance,
dispiay 18 may be a screen of a mobile telepbone handset or a tablet computer.
Alternatively, display 18 may be a stand-alone deviee coupled to computer deviee 2 via
a wired or wircless commumications link, For instance, display 18 may be a computer
monitor or flat panel display connected to 8 personal computer via a cable or wircless
fink.

[8868] Bus 20 may be implemented using any combination of bus stroctures and bus
protocols including first, second and third generation bus structures and protocols,
shared bus structures and protocels, point-to-point bus structures and protocols,
wnidirectional bus structures and protocols, and bidirectional bus structures and
protocols. Examples of different bus structures and protocols that may be used to
waplement bus 20 inchude, e.g., a HyperTransport bus, an InfiniBand bus, an Advanced
Graphics Port bus, a Peripheral Component Interconnect (PCl) bus, a PCI Express bus,
an Advanced Microcontrolier Bus Architecture (AMBA)} Advanced High-performance
Bus (AHR), an AMBA Advanced Peripheral Bus {(APB)} |, and an AMBA Advanced
cXentisible tnterface (AXY) bus. Other types of bus structures and protocols may also
be used.

[8861] In some instances, GPU 12 may be configured to provide partial-to-total GPU
based execution of various path rendering commands. For exampie, CPU 6 may issue
one or more path rendering conmmands to GPU 12, and GPU 12 may exccute the path
rendering commands. As one example, CPU 6 may issue to GPU 12 one or more path
filling commands that instruct GPU 12 to perform a path filling operation, and GPU 12
may execute the path filling commands. As another example, CPU 6 may issue o GPU
12 one or more path stroking commands that instruct GPU 12 to perform a path stroking
operation, and GPU 12 may execute the path stroking conumands.

{8862] In some examples, GPU 12 may be configured to receive data indicative of a
path segment of a path to be rendered, tesseliate the path segment into a plurality of
primitives, and render at least one of a fill area and a stroke area for the path segment
based on the phurality of primitives. The GPU may render a {ill area for the path

segment when performing a fill operation, and may render a stvoke area for the path

WO 2015/030933 PCT/US2014/045309

15

segment when performing a stroke operation. The phurality of primitives, in some
examples, may be a plurality of line scgments.

8663] In some examples, GPU 12 may usc a two-pass rendering approach to
perform a path filling operation. For exaople, as part of a first rendering pass, GPU 12
may receive data indicative of a path segment of a path to be rendered, tessellate the
path segment nto a plorality of Hne segments, and generate a pharality of triangle
primitives based on the plurality of line segments. GPU 12 may generate cach of the
phurality of triangle primitives based on a respective one of the pluraliy of line
segments. GPU 12 may render cach of the plurality of triangle primitives into a
common stencil buffer such that the common stencil buffer stores data indicative of
which pixels are inside of the fill area for the path segment. After rendering the
primitives into the common stencil buffer, GPU 12 may perform a second rendering
pass. During the second rendering pass, GPU 12 may render one or more primitives
that encompass the pixels that arc inside of the fill area for the path segment based on
the data stored 1o the stencil buffer and a fill color in order to generate a rasterized
version of the fill area for the path segment.

18864] To generate the plurality of triangle primitives for the path filling operation,
GPU 12 may, in some cxamples, generate a plurality of triangle primitives such that
each of the triangle primitives has a common vertex that is the same for all of the
triangle primitives generated for a path segment. In such examples, GPU 12 may
generate the plurality of triangle primitives such that cach of the triangle primitives has
two additional vertices {i.¢., two vertices in addition to the common vertex) that
correspond to the endpoints of a respective one of the plurality of hine segments. Each
additional vertex may correspond o a respective one of the endpoints of a
corresponding line segment.

18865] Thus, when performing path rendering, GPU 12 may perform the following
example funmctions to fill a path: tesseliate the path into line segments, conmect Hine
segments {0 a pivot point to form triangle primitives, and render triangles to a stencil
buffer. The next and possibly final steps of the filling process are 1o render a bounding
box that encompasses the path {as described in greater detail, for example, with respect
to FIG. 5Cy with a stencil test enabled, and to copy the stencil contents to a frame

buffer. In somc instances, the bounding box may be determined based on commands

WO 2015/030933 PCT/US2014/045309

16

received from CPU 6. As noted above, this approach requires two rendering passes and
pre-processing of path to compute the bounding box.

18666] In addition, when performing antialiasing such as MSAA, GPY 12 may
sanple the stencil buffer at the same rate as the render target. For example, if the
stencil buffer and render target are both sampled at the MSAA rate, the memory
bandwidth consumed when copying the stencil baffer to the frame butfer may be
relatively large. If GPU 12 performs TIR and uses a relatively smaler allocation for the
render target, the stenctl sampling rate may also be impacted, therchy reducing the
accuracy of the stencil buffer.

8867] According to aspects of this disclosure, GPU 12 may perform stenciled TIR.
For example, GPU 12 may determine a stencii parameter that indicates a sampling rate
for determining a coverage value for cach antialiased pixel of a path of an image. GPU
12 may also determine, separately from the stencil parameter, a render target parameter
that indicates a memory allocation for cach aniialiased pixel of the path. GPU 12 may
render the path using the stencil parameter and the render target parameter.

[8868] Insome examples, GPU 12 may perform stenciling at a higher rate than the
amount of memory that is allocated for pinels. For example, with respect to 16x
MSAA, GPU 12 may perform stencil operations that are super-sampled, e.g., with each
pixel having 16 samples. GPU 12 may render a given path by computing a coverage
vahie per pixel based on the number of samples of the pixel that passed a stencil test
(2.g., were determined {0 be inside the path). According to aspects of this disclosure,
GPU 12 arender target for the pixels may be 1x sampled despite the stencil being 16x
sampied.

1886%] In addition, according to aspects of this disclosure, GPU 12 may fill a path in
a single rendering pass, without the need to pre-process a bounding box. For example,
GPU 12 may determine a bounding box during stenciling operations. In this exanple,
as GPU 12 renders primitives during stenciling {(e.g., without shading the pixels), GPU
12 may determine the outermost poinds (e.g., outermost boundary points) of the
prinytives of the path. In some examples, GPU 12 may determine an upper point (at the
relative top of the path), a lower point (at the relative bottom of the path), a right point
{at the right-most point of the path), and a left poit {at the left-most point of the path}.
GPU 12 may determine the bounding box using the outermost points detormined during

stenciling. That 15, GPU 12 may determine a bounding box that encompasses all of the

WO 2015/030933 PCT/US2014/045309

17

primitives of the path. In some examples, the bounding box may be composed of two
triangles.
18078) After completing the bounding box, GPU 12 may further process {e.g., in the
same rendering pass) the bounding box by pertorming steociled TIR oun top of the
bounding box. That is, as noted above, GPU 12 may determine a coverage value for
each pixel and shade the pixels that GPU 12 determines are located within the steneil.
In this exanple, GPU 12 need not perform a separate depth test on the pixels.
[6671] With respect to stroking, GPU 12 may in some instances dash a stroked path.
That is, GPU 12 may determine a plurality of segments for a stoked path, sach that the
rendered path appears as a dashed Hne. Typically, GPU 12 may determine segments of
the dashed path in order. For example, GPU 12 may receive commands from CPU 6 to
render one segment before moving on to the next segment of the path. Such a process
may deter parallelism (e.g., rasicrizing and/or shading more than one segment in a
particular time instance) and may prevent GPU 12 from independently rendering the
path.
86721 According to aspects of this disclosure, GPU 12 may determine the locations
of each segment of the path (as well as the length of the path) and apply the length
information during rendering. For example, GPU 12 may determine a texture offset for
cach segment of a plurality of ordered segments of a dashed Hne. In some instances, the
segment order may be determined diring geometry shading, as described in greater
detail below. In this example, the texture offsct for a current segment of the phurality of
ordered scgments may be based on an accumulation of lengths of segments that precede
the current segment in the order. GPU 12 may also pixel shade the segments, mchuding
applying the texture offset to gach segment to determine locations of the segments. For
cxample, for example, GPU 12 may determine whether segments are visible or invisible
based on the location of the segments. GPU 12 may retain (e.g., determine a color) for
visible segments and discard segments of the dash that are not visible (e.g., the space
between the visible dashes). In this way, GPU 12 may perform path rendering of a
dashed line, ¢.g., without recetving dashing commands from CPU 6.
186731 While described with respect to path rendering, the prefix sum operations
described above are not limited to vector graphics. For example, the technigues for
ctermining a prefix sum may be used in any application in which GPU 12 tracks an

accumulated value. 1o an example for purposes of iHustration, GPU 12 may perform the

WO 2015/030933 PCT/US2014/045309

s
o]

prefix sum operations described above when determining gradients. For example, in
image processing, creating gradients may require acciunulation of some length
information to determine colors. In this example, GPU 12 may apply the prefix sum
operations described above to determine the length information

[8874] The rendering techniques described in this disclosure may be implemented m
any of the components of computing device 2 illustrated i FIG. 1 mmcluding, e.g., CPU
6, GPU 12, and memory 10, In some examples, the path rendering techniques may be
mmplemented completely or almost completely by GPU 12 (e.g., in & graphics pipeline
of GPU 12 as described with respect to FIG. 3). In additional examples, CPU 6 may
implement techniques for configuring the state of the graphics pipeline and binding
shader prograros to the graphics pipehne to implerent a path rendering pipeline in GPU
12 that performs the path rendering techniques of this disclosure. In further examples,
CPU 6 may be configured to place data indicative of a path to be rendered into one or
more buffers {e.g., one or mere vertex buffers) that may be accessed by GPU 12 10
render ene or more paths.

[8678] QG 2 18 a block diagram illustrating CPU 6, GPU 12 and memory 10 of
computing device 2 in FIG. 1 in further detail. As shownin FIG. 2, CPU G is
communicatively coupled to GPU 17 and memory 10, and GPU 12 is communicatively
coupled to CPU 6 and memory 10. GPU 12 may, in some examples, be integrated onto
a motherboard with CPU 6. In additional examples, GPU 12 may be implemented on a
graphics card that 1s installed in a port of a motherboard that includes CPU 6. In further
examples, GPU 12 may be incorporated within & peripheral device that is configured to
mteroperate with CPU 6. In additional examples, GPU 12 may be located on the same
pricrochip as CPU 6, forming a system on a chip (SoC).

18676 CPU 6 is configured to exccute a software application 24, a graphics API 26,
a (GPU driver 28 and an operating system 30. Software application 24 may include one
or more instructions that cause graphics images to be displayed and/or one or more
insiructions that cause a non-graphics task (¢.g., a general-purposed computing task) to
be performed on GPU 12, Software application 24 may issuc instructions to graphics
API 26, Graphics AP 26 may be a runtime service that translates the instructions
received from software application 24 into a format that is consumable by GPU diiver
28. GPU driver 28 receives the instroctions from software application 24, via graphics

API 26, and controls the operation of GPU 12 to service the nstructions. For example,

WO 2015/030933 PCT/US2014/045309

GPU driver 28 may formulate one or more commands 38, place the commands 38 into
memory 1), and instract GPU 12 to execute the commands 38, In some examples, GPU
driver 28 may place the commands 38 into memory 1) and conununicate with GPU 12
via operating system 30, ¢.g., via one or more system calls.

[8877] GPU 12 includes a command engine 32 and one or more processing units 34,
In some examples, the one or more processing onits 34 may form and/or implement a
3D graphics rendering pipeline, ¢.g., a DX 11 graphics rendering pipeline (i.c., a 3D
graphics pipeline that is compliant with the DX 11 graphics AP,

18678] Command engine 32 is contigured to receive commands from CPU 6 {e.g.,
via memory 10) and to cause GPY 12 to execote the commands. In response to
recoiving a state command, command engine 32 may be configured 1o set one or more
state registers in GPU 12 to particular valoes based on the state command, and/or to
configure one or more of the fixed-fonction processing units 34 based on the state
command. In responsc to receiving a draw call command, command engine 32 may be
configured to cause processing units 34 1o render one or more path segraents based on
data that defines the geometry of the one or more path segments 1o be rendered and
based on data indicative of the type of path segment for each of the path segments to be
rendered. In some cxamples, the data that defines the geometry of the one or more path
scgments to be rendered and the data that defines the type of path scgment for each of
the path segments may be stored in one or more vertex data structures in memory 10
Command engine 32 may also receive shader program binding commands, and load
particular shader programs into one or more of the programmable processing units 34
based on the shader program binding commands.

[8879] Processing units 34 may include one or more processing units, each of which
may be a programmable processing unit or a fixed-function processing unit. A
programynable processing unit may include, for example, a prograromable shader unit
that 1s configured to execute one or more shader programs that are downloaded onto
GPU 12 from CPU 6. A shader program, in some cxamples, may be a compiled version
of a program written in a high-level shading language, such as, e.g., an OpenGL
Shading Language (GLSL), a High Level Shading Language (HLSL), a C for Graphics
{Cg) shading language, cic.

{8688] In some cxamples, a programmable shader unit may inclade a plorality of

processing units that are configured to operate in paralicl, ¢.g., an SIMD pipcline. A

WO 2015/030933 PCT/US2014/045309

9]
<

programmable shader unit may have 2 program memory that stores shader program
imstructions and an execution state register, e.g., a program counter register that
indicates the current instruction in the program memory being exccuted or the next
instruction to be fetched. The progravvuable shader units in processing units 34 may
melade, for example, vertex shader umits, pixel shader units, geometry shader omits, hull
shader umits, domain shader units, tessellation contrel shader units, tesseliation
evaluation shader units, compute shader units, and/or unified shader units. As shown in
F1G. 2, processing units 34 also may include bounding box unit 40 and prefix sum umit.
{86811 A fixed-fumction processing unit may include hardware that is hard-wired to
perform certain functions. Although the fixed fonction hardware may be configurable,
via one or more control signals for example, to perform different functions, the fixed
fumction hardware typically docs not include a program memory that is capable of
receiving user-compiled programs, In some exampies, the fixed function processing
units in processing units 34 may include, for example, processing units that perform
raster operations, such as, ¢.g., depth festing, scissors testing, alpha blending, etc.
{8082] Memory 10 may store path data 36 and one or more commands 38, In some
examples, path data 36 may be stored as a plurality of vertices (or control points) in one
ot more vertex buffers allocated in memory 10, In some exampies, the path data may be
stored in a patch list data structure (e.g., a four control point patch list). Commands 38
may be stored in one or more command buffers (e.g., a ring buffer). CPU 6 (e.g., GPU
driver 28 via operating system 3() may place path data 36 and commands 38 into
memory 10 for consumption by GPU 12, GPU 12 {c.g., command engine 32) may
retrigve and execute commands 38 stored in memory 1.

18883] In cxamples where path data 36 is stored as vertices (e.g., control points), the
vertices may include one or more attributes that geometrically define a path segment to
be rendered. For example, for a line, the vertices in the patch control list may tnchude
data indicative of coordinates for the endpoints of the line (e.g., (x0, y0) and (x1, v1)).
For a cubic Bézier curve, the vertices in the pateh control list may include data
ndicative of the coordinates of the four countrol poings that define the curve (e.g., (x0,
vy, (b, vy, 22, vy, (%3, v3)). For a quadratic Bézier curve, the vertices in the paich
control list may inclode data indicative of coordinates for three control points instead of
four control points. For clliptic arcs, the vertices i the patch control hist may include

data indicative of an endpoint pararseterization of the cliiptic arc or data indicative of a

WO 2015/030933 PCT/US2014/045309

center parameterization of the elliptic arc.

[8884] In some cases, the one or more attributes that geometrically define the path
segment to be rendered may be resolution-independent. In other words, the attributes
that geometrically define the path segment may be independent of the amount of
tessellation to be performed when rendering the path segment and/or independent of the
amount of vertices to be generated when rendering the path segment.

[8885] CPU 6 may also place data indicative of the type of path segment to be
rendered {(i.c., a “path segment type fndicator”) into one or more otherwise urused
vertex atiributes n the vertex butfer. In some exampies, the different path segment
types may correspond to a set of path segment types that are defined by a vector
graphics APl and are available for use by software application 24, In some examples,
the different path segment types may correspond to a set of path scgment types that are
defined by the OpenVG APL

18086] Commands 38 may inchide one or more state commands and/or one or morg
draw call commands. A state command may mstruct GPU 12 to change one or more of
the state variables in GPU 12, such ag, e.g., the draw color, the fill color, the stroke
color, ete. In some examples, the state commands may inclode path rendering state
commands that are configured to sct one or more state variables associated with
rendering 4 path. For example, the state commands may include a paint mode command
that 15 configured to indicate whether a path to be rendered is to be filled, stroked, or
both. As another example, the state commands may include a fill color command that
specifies a color to be used for filling operations and/or a stroke color command that
specifies a color to be used for stroking operations. As a further example, the state
commands may specify one of more parameters for the stroke operation, such as, e.g., a
stroke widih, an end cap style (e.g., round, square}, a line join style (c.g., miter, round,
bevel), a miter limit, cte. In some examples, o addition to or in Heu of using a state
command to set one or more state parameters, one or more of the state parameters may
be set by using a draw call command or by placing state indicators into 3 vertex buffer
that contains path data 36.

86871 A draw call commmand may instract GPU 12 to render the geometry defined
by a group of one or more vertices {e.g., defined in a vertex buffer) stored in memory
10. In some examples, the draw call command may invoke GPU 12 to render all of the

vertices stored n a defined section (e.g., a vertex buffer or path data 36) of memory 10.

WO 2015/030933 PCT/US2014/045309

In other words, once GPU 12 receives the draw call command, control is passed to GPU
12 for rendering the geometry and primitives represented by the vertices in the defined
section (e.g., vertex buffer or path data 36) of memory 10.

{8088] The draw call commands may inchude one or both of 3D draw call coromands
and path rendering draw call commands. For 3D rendering draw call commands, the
geometry defined by the group of one or more vertices in the vertex buffer may
correspond to onc or more 3D graphics primitives to be rendered {c.g., points, lines,
triangles, quadralaterals, triangle strips, patches, etc.), and the 3D rendering draw call
command may instruct GPU 12 to render the one or more 3D graphics primtives. For
path rendering draw call commands, the geometry defined by the group of one or more
vertices 1o the vertex buffer may correspond to one or more path primitives to be
rendered (¢.g., ine segments, elliptic arcs, quadratic Bézier curves, and cubic Bézier
curves, ete.), and the path rendering draw call command may instruct GPU 12 to render
the one or more path primitives. In some examples, the path primitives capable of being
rendered by GPU 12 may correspond to the different types of path segments described
in ths disclosure.

[888%] In some examples, the path rendering techniques deseribed in this disclosure
may be implemented in any of the components shown in FIG. 2 jncluding, ¢.g., graphics
API 26, GPU driver 28, command engine 32 and processing units 34, In further
examples, all or almost all of the path rendering techniques may be implemented in a
graphics pipeline in GPU 12 formed by processing units 34. In additional examples,
software application 24, graphics API 26 and/or GPLU driver 28 of CPU 6 may
mplement techuiques for configuring the state of the graphics pipeline and binding
shader programs to the graphics pipeline to implement a path rendering pipeline in GPU
12 that performs the path rendering techniques described in this disclosure. In further
cxamples, sottware application 24, graphics API 26 and/or GPY driver 28 of CPU 6
may be configured to place data indicative of a path to be rendered into one or more
buffers {e.g., one or more vertex buffers) that may be accessed by GPU 12 o render one
or more paths.

[8898] According to aspects of this disclosure, processing units 34 nclude a
bounding box unit 40. Boonding box unit 40 may include one or more programmable
and/or fixed function units for determining a bounding box. For example, techniques of

this disclosure foclude determining a bounding bex and rendering the bounding box fn a

WO 2015/030933 PCT/US2014/045309

(o]
(O3]

single rendering pass (as described in greater detail, for example, with respect to FIG. 3
below). When GPU 12 performs a path filing operation, bounding box unit 40 may be
-esponsible for determining the boundaries of the path.

8891] According o aspects of this disclosure, the bounding box unit 40 may be
mitiated using an AP call. For exarmple, graphics APl 26 may inchide one or more
nstructions for triggering the use of bounding box unit 40 during rendering of a path.
The API call may aliow GPU 12 to skip shading of primitives until bounding box unit
44} has determined the bounding box. GPU 12 may then perform stenciled TIR on top
of the bounding box, as noted above. Tn addition, by mncorporating bounding box unit
40, GPU 12 may fill a path in a single pass without using a depth baffer.

18092] Bounding box unit 40 mway allow GPU 12 to §ill paths without pre-processing
a bounding box. For example, bounding box unit 40 may determine the bounding box
using control polvgons, ¢.g., at CPU 6, That is, bounding box umit 40 may determine
the bounding box based on the boundaries of all of the generated primitives.

198931 According to aspects of this disclosure, GPU 12 may be configured to skip
shading of primitives until bounding box unit 40 has determined the bounding box.
That is, during generation of the bounding box, GPU 12 may write primitives of the
path to a stencil buffer of GPU 12 without shading the primitives. By incorporating
bounding box wunit 40, GPU {2 may fill 4 path in a single pass without using a depth
buffer. For example, GPU 12 may perform stenciled TIR on top of the boonding box.
{8894] o an cxample for purposes of illustration, afier GPU 12 has rasterized the
hounding box determined by bounding box vt 40, GPU 12 may determing a coverage
value for each pixel in the bounding box. In some examples, GPU 12 may determine
the coverage vahues for quads of pixels {4 pixels at a time). In such examples, before
forming a pixel wave for processing, GPU 12 may perform a stencil test on samples of
cach pixel of the quad. GPU 12 may update a coverage mask for cach pixel based on
the result of the test. This coverage value may be referred to as a stenciled TIR
attribute that GPU 12 may then use during shading. For example, an InputCoverage
value for cach pixel may be based on the stenciled TIR. For example, GPU 12 may
pixel shade (e.g., color) each pixel passing the stencil test {¢.g., where a pixel passes the
stencil test when more samples of the pixel are visible (shaded) than not). That is, GPU
12 may pass both a coverage mask (for centroid} and sample mask after stencil test (for

InputCoverage) from a distributed processor (DProc) to a sampler,
D £ p . , p

WO 2015/030933 PCT/US2014/045309

[8898] According to some aspects of this disclosure, an APT call may be used to
support a stenciled TIR mode of rendering. For example, graphics AP 26 may inchude
one or more instructions for triggering the use of stenciled TIR during rendering of a
path. When stenciled TIR is active, a color buffer and a depth/stenci buffer (which
may be allocated in a memory of GPU 12 and/or memory 10) may be different. For
example, when performing MSAA, GPU 12 may render to a color buffer that is 1x
MSAA and a stencil buffer that is 16x MSAAL

18096] According to other aspects of this disclosure, processing units 34 also include
a prefix sum unit 42 for rendering dashed segments, e.g., stroking a dashed path. Prefix
sum unit 42 may determine a texture offset for cach segment of a plurality of ordered
segments of a dashed line. In some examples, a tessellation or geometry shader stage
may determine the scgment order when generating the segments. The texture offset for
a corrent segment of the plurality of ordered segments may be based on an accumuldation
of lengths of segments that precede the current segment in the order. Prefix sum unit 42
may provide the fexture offset to a shader stage, such as a pixel shader stage. The
shader stage may apply the texture offset and render the segment in the appropriate
location.

18897] Accordingly, prefix sum unit 42 may include one or more programmable or
fixed function units that accumulates the lengths of segments of a dashed line. In some
examples, prefix sum unit 42 may be incorporated at a rasterizer stage. For example,
GPU 12 may tesseliate paths and a geometry shader stage may determine the path
length. In other examples, the length may be deterprined by one or more other shader
anits. For exarople, according to aspects of this disclosure, prefix som unit 42 may
calcolate a linclength valoe in a similar manner to a system interpreted valoe for the
atiribute pointsize (indicating a size of a point primitive). That is, linclength may be s
system interprefed value tndicating a location of a segmerd (also referred o as a
fragment) m a dashed pattern.

[8898] Wheo a pixel shader {c.g., as described with respect to FIG. 3 below) of GPU
12 receives the prefix summed linclength value, the pixel shader roay detormine 2
location of a fragment bemg shaded in a dash pattern. The pixel shader may then either
retain the fragment (if it forms part of the visible dash) or discard the fragment (if it is

niot part of the visible dash) based on the determined location. In any case, prefix sum

WO 2015/030933 PCT/US2014/045309

unit 42 may accunuiiate the length information as a prefix sum and provide the prefix
sum 43 a texture offset to a downstream shader stage, such as a pixel shader.

{8699 During rendering, GPU 12 may send an cvent preswum_start to a tessellation
engine (T8E) (which may include a bull shader, a tessellator, and/or a domain shader, as
described in greater detail with respect to FIG. 3 below) 1o reset a prefix_sum
parameter. For cach primitive, prefix sum unit 42 may add a scalar value (¢.g., same
ficld as pointsize) of the primitive to prefix_sum as new value. Prefix sum unit 42 may
pass the old pre-fix sum value per pixel as texture offset.

[8168] In some examples, the tessellation engine may incorporate a register o
accumulate prefix sum parameter. Prefix sum unit 42 may resct the register by the
event presurn_start. The tessellation engine passes the prefix_sum as & per primitive
attribute to render backend (RB) in the barycentric plane interface, similar to primitive
faceness (which may be similar to sending a texture offset). In this example, an
aitribute may be added to the RB to provide a high level sequencer (HLSQ) with an
wnterface to represent this per primitive atiribute.

[8161] FIG. 3 15 a conceptual diagram illustrating an example graphics pipeline 43 that
may perform the path rendering techniques of this disclosure. In some examples, the
graphics pipeline may correspond to a Microsoft® DirectX (X)) 11 graphics pipeline.
As shown in FIG. 3, graphics pipeline 43 includes a plarality of processing stages
inclading an input assembler (JA) 44, a vertex shader (VS) 46, a hull shader (HS) 48, a
tessellator 30, a domain shader (DS} 52, a geometry shader {((GS) 54, a rasterizer 56, a
pixcl shader (P5) 58, and an output merger 60. Hull shader 48, tessellator 50, and
domain shader 52 may form the tessellation stages 62 of graphics pipeline 43, In
addition, pipeline 43 also inchudes resources block 64, In some examples, pipeline 43
may be implemented by and/or incorporated in GPU 12, as noted below.

18102] Resources block 64 may correspond to one or more memory resourees used by
graphics pipeline 43, such as, e.g., one or more textures and/or one or more buffers.
Resources bock 64 may store input data to be processed by one or more of the
processing stages in graphics pipeline 43 and/or output data from one or more of the
processing stages in graphics pipeline 43, As one example, resources block 64 may
store a stencil buffer used for performing a path filling operation as described in this
disclosure. As another example, resources block 64 may siore a frame buffer that holds

a rasterized version of a fill arca for a path segment and/or a rasterized version of a

WO 2015/030933 PCT/US2014/045309

stroke arca for a path segment as described in this disclosure. i some examples, the
memory resources that form resowrees block 64 may reside in memory 10 and/or GPU
cache 14 of computing device 2.

18103] The processing stages depicted in FIG. 3 with straight corners represent fixed-
fumction processing stages, and the processing stages depicted in FIG. 3 with roumded
corners represent programmable processing stages. For example, as shown in FIG. 3,
input assembler 44, tessellator 30, rastorizer 56 and output merger 60 are fixed-function
processing stages, and veriex shader 46, hull shader 4%, domain shader 52, geometry
shader 34 and pixel shader 58 are programmable processing stages. Each of the
programumable stages may be configured to exccute a shader program of a particular
type. For example, vertex shader 46 may be configured 1o execute a vertex shader
program, hull shader 48 may be configured 1o execute a hull shader program, etc. Each
ot the different types of shader programs may execote either on a common shader unit
of GPU 12 or on one or more dedicated shader units that are dedicated to cxecuting
shader programs of one or more particular types.

{8184} As shown in FIG. 3, mput assembler 44, vertex shader 46, hull shader 48,
domain shader 52, geometry shader 54, pixel shader 58 and output merger 60 are
commumnicatively coupled to resources block 64, Input assembler 44, vertex shader 46,
bull shader 48, domain shader 52, geometry shader 54, pixel shader 58 and output
merger 60 are configured to retrieve and/or to receive input data from resources block
64. Geometry shader 54 and output merger 60 are configured to write ocutput data to
resources block 64, The above-described configuration of conmunication between the
processing stages in graphics pipeline 43 and resources block 64 is merely one example
of how the communication may be configured between the processing stages of
graphics pipeline 43 and resources block 64. In other examples, more or less uni-
directional and/or bi-directional communication chanuoels may be provided between the
processing stages of graphics pipeline 43 and resources block 64,

18#105] Additional background information regarding the general operation of the
DirectX 11 graphics pipeline may be found at htip://msdn.microsoft.conven-
us/hbrary/windows/desktop/ff476882%2 8v=vs.85%29.aspx. Further information
regarding the general operation of the DirectX 11 graphies pipeline may be found in
Zink et al,, “Practical Rendering & Computation with Direct3D 11,7 CRC Press (2011},

{8186} Two main path rendering operations may moelude: (1) filling a path segment; and

WO 2015/030933 PCT/US2014/045309

v

(2) stroking @ path segment. In some instances, the filling operation may utilize a two-
pass approach that may generally nvolve the following steps:
Pass 1

1. Tesscliate a path segment into a plurality of line scgments.

2. (enerate a triangle primitive for every line segment.
3. Render all of the triangle primitives into a stencil buffer.
FPass 2

4. Render a bounding box for the path segment using the stenci! buffer.

[#187] For the first pass, CPU 6 may place data indicative of a path segment to be
rendered into one or more vertices of a vertex buffer. In some cxamples, the vertex
buffer may correspond to path data 36 shown in FIG. 2. The primitive topology for the
vertices in the vertex buffer may be, in some examples, a patch control Hist. For a line,
the vertices in the patch control fist may include data indicative of coordinates for the
endpoints of the line {e.g., (x0, y0y and (x1, y1}}1. For a cubic Bézier curve, the vertices
m the patch control Hst may inchide data indicative of the coordinates of the four
control points that define the curve {e.g., {30, v0), (x1, y1), (32, ¥2), (x3,¥3)). Fora
guadratic Bézier curve, the vertices in the patch control fist may include data indicative
of coordinates for three control pouds that define the curve instead of four control
points. For elliptic arcs, the vertices in the patch control Hst may inchide data indicative
of an endpoint parameterization of the elliptic arc or data indicative of a center
parameterization of the elliptic arc. CPU 6 may also place data indicative of the type of
path segment to be rendered into an otherwise unused vertex atiribute of the patch
controf list.

18108] Onc example format for the path data 36 received and used by GPU 12 10
perform path rendering will now be deseribed. 1t should be vndersiood that this is
merely one example of how data indicative of a path 1o be rendered and/or a path
segment to be rendered may be provided by CPU 6 to GPU 12 and that other examples
are possible and within the scope of this disclosure. In this example, GPU 12 receives
cach path segment as a four (4 control point patch list prinitive. Hach of the vertices
(e.g., control points) in the patch Hist, in this example, includes three (3) float attributes
that define attributes for the respective vertex {e.g., control point).

{8#1069] For a line path segment, the input path data may take the following form or a

WO 2015/030933 PCT/US2014/045309

stmifar form:

{ XKMFLOAT3(Xa, ¥a,

%)

s3]

4
St
e
“

{ XMFLOAT3(X1, Yi, 1.6

&

-
~
v

{ XMFLOATZ(©.6f, 0.8f, 1.9f)

()

{ XMFLOAT3(8.ef, a.8f, 1.af) I,

In this example, cach row represents a vertex or control point of a four control point
patch lst, and cach parameter in the parentheses represents an atiribute of a respective
vertex or control point. The last atiribute of the first control point, in this example,
stores data indicative of the type of path segment to be rendered {i.c., a “path segment
type indicator™). Specifically, the path segment type indicator 1o this example 15 2.01,
which means that the path segment is a Hne path segment. X0, Y, X1, Y1 are the
coordinates for the endpoiuts of the line path segment where (X0, Y0} represents a first
endpoint and (X1, Y 1) represents a sccond endpoint.

{8118} The remaining vertices and attributes in this example may be unused and/or may
be used to indicate other attributes for the path segment. Gther attributes for the path
segiment may include, ¢.g., whether the path segment is the beginning or end of an open
path, whether the path scgrment should be displayed for the path, whether an endcap
should be placed on either end of the path segment, what type of endeap should be used
if any, whether 2 join should be placed on either end of the path segment, and what type
of join to use if any.

{8111} The mput path data for a cubic Bézier path segment may take the following form
or a similar fornu

XMFLOAT3{ X8, ¥e, 3.6)

()

MMFLOAT3(X1, ¥i, 1.0f)

()

XMFLOAT3(X2, v2, 1.9f 3

e
[
b

{ XMFLOAT3(X3, v3, 1.8f) 3,

In this example, each row represents a vertex or control point of a four control point
patch list, and each parameter n the parentheses represents an attribute of a respective
vertex or control point. The last attribute of the first control point, n this exanmple,
stores data indicative of the type of path scgment to be rendered (1.e., 2 “path segment
type indicator”). Specifically, the path segment type indicator in this example is 3.0f,

which means that the path segment is a cubic Bézier path segment. X0-X3 and Y0-Y3

WO 2015/030933 PCT/US2014/045309

are the coordinates of the control points for the cubic Bézier path segment where (X0,
Y0) represents a first control point, (X1, Y1) represents a second control point, cte. The
remaining vertices and attributes in this example may be unused and/or may be used to
indicate other attributes for the path segment. The other ativibutes for the path segment
may include, in some exarmples, attributes similar to those described above with respect
to the line path segment.

18112] Similar input may be used for a quadratic Bézier path segment cxcept that three
control points may be provided instead of four control points, and the path segment type
mdicator may be different to distinguish the primitive from a cubic Bézier path segment.
{8113] For example, the input path data for a quadratic Bézier path segment may take

the following form or a similar forou

e

YMFLOATI(X@, vg, 1.86F) 1,

{ XMFLOAT3(X1, vi, 1.6f) },

{ XMFLOAT3{ X2, ¥2, 1.2) 3,

{ XMFLOAT3(9.6F, 6.0f, 1.6F) 1},
In this example, each row represents a vertex or control point of a four control point
patch list, and each parameter n the parentheses represents an attribute of a respective
vertex or control point. The last attribute of the first control point, n this exanmple,
stores data indicative of the type of path segment to be rendered (1.e., a “path segment
type indicator”). Specifically, the path segment type mdicator in this example is 1.0f]
which means that the path segment is a quadratic Bézier path segment. X{-X2 and Y-
Y2 are the coordinates of the control points for the quadratic Bézier path scgment whore
(X0, YO represents a first control point, (X1, Y1) represents a second control point, ctc.
The remaining vertices and attributes in this example may be vmused and/or may be
used to indicate other attributes for the path segment. The other atiributes for the path
segment may inchude, i some examples, attributes similar to those described above
with respect 1o the line path segment.
[8#114] In some examples, the input path data for an elliptic arc path segment may
nclude data mdicative of a conter parameterization of the clliptic arc path segrment. For
example, the input path data for an elliptic arc path segment may take the following

form or a similar form:

{ XMFLOAT3(X8, ve, 4.8f) },
{ XMFLOAT3(X4, Yi, 1.6F) 1},
{ MMFLOAT3(C.X, c.y, 1.ef)},

{ XMFLOAT3(theta®, thetal, angle) },

WO 2015/030933 PCT/US2014/045309

[
[}

In this example, each row represents a vertex or control point of a four control point
patch list, and each parameter n the parentheses represents an attribute of a respective
vertex or control point. The last attribute of the first control point, n this exanmple,
stores data indicative of the type of path segment to be rendered (1.e., 2 “path segment
type indicator”™). The path segment type indicator, in this example, may be any of 4.0,
4.1, 4.2 or 4.3 corresponding, respectively, to a large clockwise (LOW) elliptic are, a
large counter-clockwise (LCCW) elliptic arc, a small clockwise (SCW) eliiptic arc, and
a small counter-clockwise (SCCW) clliptic arc. X0, X1 and Y0, Y1 are cudpoint
coordinates of the elliptic arc path segment where (X0, Y0) represents an intial
endpoint of the arc and (X1, Y1) represents a final endpoint of the arc. In addition,
thetal represents the angle of the mitial poiot of the clliptic arc {as measured on an
vnscaled circle), and thetal represents the angle of the final point of the elliptic arc {as
measwred on an unscaled circle). Notably, even though the example input data form
specified above is a center parameterization, the mput data form may still inchude
coordinates for the initial and final codpoints of the are (e, (X0, Y0), (X1, Y1)). Such
coordinates may be used, in some examples, to ensure water-tightness of the resulting
geometry.

18115] In further cxaroples, the foput path data for an elliptic arc path segment may
melade data indicative of an endpoint parameterization of the elliptic are path segment.
For example, the input path data for an clliptic arc path segment may take the following
form or a similar form:

{ XMFLOAT3(X9, Y6, 4.6F

~

{ XMFLOAT3({ X1, Y1,

[y
@
o

~

[

-

{ XMFLOATZ(PH, Py, 1.8f)

()

{ XMFLOAT3(angle, 9.6f, 1.0f)

()
W

In this example, cach row represents a vertex or control point of a four control point
patch list, and each parameter in the parcntheses represents an attribute of a respective
rertex or control point. The last atiribute of the first control point, in this exanwple,
stores data indicative of the type of path scgment to be rendered (i.c., a “path scgment
type indicator™). The path segment type indicator, in this example may be any of4.0,
4.1, 4.2 or 4.3 corresponding, respectively, to a large clockwise (LUW) elliptic arc, a
large counter-clockwise (LCCW) elliptic are, a small clockwise (SCW) clliptic are, and

a small counter-clockwise (SCCW) elliptic arc. X0, X1 and Y0, Y1 are endpoint

WO 2015/030933 PCT/US2014/045309

coordinates of the elliptic arc path segment where (X0, Y0) represents an intial
endpoint of the arc and (X1, Y1) represents a final endpoint of the arc. In addition,
angle reprosents the counter-clockwise rotation angle of the ellipse relative to the x axis
measured prior to scaling by (v4, mv).

{8116} In cxamples where the input path data includes an elliptic arc represented i an
endpoint parametric form, CPU 6 may, in some examples, convert the representation of
the ciliptic arc from an eadpoint parametric form into a center parametric form prior to
sending data indicative of the elliptic arc to GPU 12 for rendering. For example, CPU 6
may generate a center parameterization of an elliptic arc based on an endpoint
parameterization of the elliptic arc, and send the center parameterization of the elliptic
arc to GPU 12, The center parameterization for the elliptic arc may conform to the
example input data form specified above. The center parameterization may be used by
CPU 6 to find the endpoint tangents and/or normals for the elliptic arc, which may in
turn be used by CPU 6 to gencrate join primitives for rendering by GPU 12

[9117] In some examples, stroking operations may use three additional ficlds of the
vertex path data input to handle endeaps, joins and open paths. For example, certain
vertex coordinates may store data indicative of whether the path segment is the
beginning of an open path, the end of an open path, and whether the path scgment may
be dropped (e.g., the path segment is the closing path scgment of an open path). The
following s an example template that inchides the above-described vertex atiributes:

{ XMFLOATZ(X8, ve, 2.6F)

()

5

{ XMFLOATZ(X1, vi, 2.9f)

()

{ XMFLOAT3(8.9f, 9.ef, 2.9f }

()
W

{ XMFLOAT3(8.2f, 0.6f, 2.9f)

()

In this template, a 2.0f on the z coordmate (i.e. third coordinate or attribute) of the
second vertex indicates that the path segment is the beginning of an open path and may
signal to GPU 12 to put an endcap (i.c., a staricap) at the beginning of the path segment.
A 2.0f on the 7 coordinate of the third vertex indicates that the path segment 15 the
ending of an open path and may signal to GPU 12 to pot an endeap at the end of the
path segment. A 2.0f on the = coordinate of the last vertex indicates that the current
prinytive is 1o be dropped (e.g., it 15 the closing line or path segment of an open path).
{8118} To perform a path filling operation, input assembler 44 obtains path data 36

from memory 10, and passes the path data onto one or more subseguent stages of

WO 2015/030933 PCT/US2014/045309

graphics pipehine 43 to render the path segments {(e.g., path primitives) specified by path
data 36. For example, input assembler 44 may obtain a plurality of vertices from a
vertex buffer stored in memory 10 and cause veriex shader 46 {o process the vertices.

In some exanples, input assembler 44 may pass the vertices to be processed divectly to
vertex shader 46, n additional examples, input assembler 44 may direet vertex shader
46 to retrieve particular vertices for processing from a vertex baffer in resources block
64.

19119] Vertex shader 46 is configured to process vertices received from input assembler
44 and/or resources block 64 and to generate an output vertex for each mput vertex
processed by vertex shader 46, For example, for each input vertex, vertex shader 46
may execute an instance of & vertex shader program on a shader unit of GPU 12, In
some examples, vertex shader 46 may execute a “pass-through” vertex shader program
for each input vertex. The “pass-through” vertex shader program may cause vertex
shader 46 to, for cach input vertex, output a vertex that corresponds to the input vertex.
In this case, an output vertex may correspond to an input vertex if the output vertex has
the same atiributes as the input vertex. To implement the “pass-through” vertex shader
program, in some examples, vertex shader 46 may apply an identity transformation to
cach input vertex to gencrate an output vertex with the same attributes. The nput
vertices received by vertex shader 46 and the output vertices generated by vertex shader
46 may be alternatively referred to as input control points and owtput control points,
respectively.

19128] In further cxamples, vertex shader 46 may generate one or more cuiput aitributes
for an output vertex that are not identical to the input attributes of a corresponding input
vertex. For example, vertex shader 46 may perform substantive processing on one or
more of the attributes of the input vertices to generate one or more atiributes for the
output vertices. As one example, vertex shader 46 may perform one or more of 2 world
transformation, a view transformation, a projection transformation, or any combination
thereof on the positional attributes of the mput vertices to generate one or more
attributes for the output vertices. As another example, vertex shader 46 may add and/or
delete attributes from the set of input atiributes to gencrate a set of output attributes for
an output vertex.

18121} Tesscllation stages 62 (i.c., hull shader 48, tessellator 50, and domain shader 52)

may form a tessclation engine and may tesscliate a path segment defined by the imput

WO 2015/030933 PCT/US2014/045309

[XV]
(O3]

path data into a plorality of Hine scgments. The plurality of ine segments may
approximate the corvature of the path segment to be rendered. In general, hull shader
48 may pass the control points received from vertex shader 46 to domain shader 52 for
further processing, and provide configuration data 1o tessellator 50, Tesscllator 50 moay
determine values at which one or more parametric equations that represent a particular
type of path segment should be evaluated. Domain shader 52 may evaluate the
parametric equations at the values determined by tessellator 50, and output a vertex for
cach evaluation. In some exampices, each of the vertices output by domain shader 52
may mnchude one or more ativibutes that are indicative of the position of the vertex. In
additional examples, each of the vertices output by domain shader 52 may inchide one
ot maore attributes that are indicative of the type of path rendering primitive agsociated
with the vertex.

[8#122] In some examples, hll shader 48 may process the control points received from
vertex shader 46 and/or resources block 64 and may generate an output control point for
cach instance of the hull shader program exccuted by hull shader 48, For exanple, for
cach output control point 1o be gencrated by hull shader 48, hull shader 48 may execute
an instance of a hell shader program on a shader unit of GPU 12, In some examples,
hull shader 48 may execute a “pass-through” hull shader program for cach cutput
control point. The “pass-through” hull shader program may cause hull shader 48 to, for
each output control point, output a control point that corresponds to a respective one of
the input control points. Tn this case, an ouiput control point may correspond to an input
control point if the output control point has the same atiributes as the input control
point.

18123] In further examples, hull shader 48 may generate one or more output attributes
for an cutput control point that are not identical {o the nput attributes of a respective
one of the input control points. For example, hull shader 48 may perform substantive
processing on one of more of the attributes of the input control points o generate one or
more attributes for the output control points. As another example, hull shader 48 may
add and/or delete attributes from a set of input attributes to generate the set of output
attributes for an output control point. Tn some examples, 1f GPU 12 receives path data
for an elliptic arc that is in the form of an endpoint parameterization, hull shader 48 may
convert the endpoint parametcrization of the elliptic arc into a center parameterization

for the elliptic arc as described in further detail below,

WO 2015/030933 PCT/US2014/045309

{8124} In additional examples, hull shader 4% may drop primitives that are not 1o be
rendered for a particular rendering operation. Dropping a primitive may refer to the
process of causing data corresponding to the primitive to not be passed on to further
stages of graphics pipeline 43, thereby effectively causing such a primitive 1o not be
rendered by the remainder of the pipeline. For exarple, when graphics pipeline 43 s
performing a filling operation, hull shader 48 may drop join primitives and cap
primitives. As another example, when graphics pipeline 43 is performing a stroking
operation, hull shader 48 may drop close-path prinitives for open paths. A closed-path
primitive may refer to a primitive that represents a hine path segment that closes 4 loop.
A close-path primitive is typically used for paths that are closed paths rather than open
paths. In some cxamples, a close-path primitive may be identified by a different
primitive type identificr than the primitive type identifier used for identifying other Hne
path segments in a path. For example, a close path primitive may be identified by a
primitive type identifier of 2.1f instead of 2.01.

18125] Hull shader 48 may also exccute an instance of a patch constant function for
cach path segment. The patch constant function may determine and provide
configuration parameters to tessellator 50 to be ased by iessellator S0 when gencrating
output values. For exaraple, the patch constant function may cause hull shader 48 to
provide tessellation factors to tesseliator 50. The tessellation factors may specify a
degree of tessellation that tessellator 50 is to apply to a particular tessellation domain
(2.g., how finely the domain should be subdivided and/or the number of smaller objects
nte which the domain should be subdivided). Tn some examples, hull shader 48 may
cause tessellator SO 1o perform 4x tessellation for cubic Bézier curves, 4x tessellation
for round joins and caps, and Ix tessellation for line segments.

18126] As another example, the patch constant function may cause hull shader 48 to
provide a type of tessellation domain to be used during tessellation to tessellator 56, A
tessellation domain may refer to an object that is used by tesscllator 50 to generate a
phurality of coordinates for use by domain shader 52. Conceptually, the tessellation
domain may correspond 1o an object that is subdivided by tessellator 50 into a plurality
of smaller objects. The positional coordinates of the vertices of the smaller objects are
then sent to domain shader S2 for further processing. In some examples, the type of
iessellation domain may be selected to be one of a guad, a tri, and an soline. The

smaller objects into which the domain is subdivided, in some examples, may correspond

WO 2015/030933 PCT/US2014/045309

to triangles, Hne segments, or points. In some examples, hull shader 48 may specify an
isoline tessellation domain type and specify that tessellator 5O shoold subdivide the
isoling domain into line segments.

18127] Tessellator S0 may generate a plurality of output values for cach path segment
processed by tessellation stages 62. The output values may determine the values at
which one or more parametric equations that represent a particular type of path segment
should be evaluated by domain shader 52, In some examples, tesseliator 30 may
generate the plurality of output values based on one or more tessellation factors and/or a
tessellation domain type provided to tessellator 30 by hull shader 48, For example,
tessellator SO may subdivide an isoline into a plurality of line segments, and generate an
output value for cach endpoint of the plurality of line segments in a normalized
coordinate system.

[#128] Domain shader S2 may receive ootput valoes from tessellator 50 and control
points for a path segment from huli shader 48, and generate output vertices that
correspond to a plurality of tessellated line segments that approximate the curvature
and/or shape of a path segment. For example, for cach of the output values received
from tessellator 30, domain shader $2 may execute an instance of a domain shader
program on a shader unit of GPU 12, The domain shader program may cause domain
shader 52 to, for each of the output values received from tessellator 50, evaluate one or
more parametric equations at a particular value that is determined based on the
respective output value to generaie positional coordinates for an output vertex that
corresponds to the respective output value, One or more of the coefficients of the
parametric equations used to generate the output vertex coordinates may be defined
based on one or more of the control points received from hull shader 48, Each output
vertex may correspond to an endpoint of one of the plorality of tessellated line
segments. Two consccutive output vertices may cotrespond to the endpoints of a2 single
tessellated line segment.

{8#129] In additional cxamples, the domain shader program may cause domain shader 52
to generate normal coordinates for output vertices that correspond to each of the output
values received from tessellator 50, For example, the domain shader program may
cause domain shader 52 to, for cach of the output values received from tessellator 50,
evaluate one or more additional parametric cquations at a particular value that is

determined based on the respective output value in order to generate tangent coordinates

WO 2015/030933 PCT/US2014/045309

for an output vertex that corresponds 1o the respective output value. The tangent
coordinates for an output vertex may be indicative of a direction of a tangent line of the
path segment that intersects the path segment at the output vertex. Domain shader 52
may gencrate normal coordinates for cach of the output vertices based on the tangent
coordinates that correspond to the respective output vertex. The normal coordmates
generated for a particular output vertex may be indicative of a normal vector that
indicates a direction which is perpendicular to a tangent of the path segment that
ntersects the path segment at the output vertex.

18138] In some examples, when graphics pipeline 43 is performing a filling operation,
domain shader 52 may generate vertices corresponding to the locations of the endpoints
of the tessellated lne segments without generating any normals for such locations. In
such examples, when graphics pipeline 43 18 performing a stroking operation, domain
shader 52 may, in some examples, gencrate vertices corresponding to the locations of
the endpoints of the tessellated line segments and generate normals corresponding to
such focations.

{8131} Domain shader 52 may output the vertices in an ordered sequence where cach
set of adjacent vertices represents a tesscllated line segment. The line segments may
cellectively approximate the path scgment that was defined in the vertex buffer. For
example, domain shader 52 may output the following set of vertices {0, 1, 2,3, 4, 5}
that define the following Hne segments: {0, 1}, {1, 2}, {2, 3}, (3,4}, {4, 5}. In
additional examples, domain shader 52 may output the following set of vertices {0, 1, 1,
2,2,3,3, 4,4, 5} that may define the same Iine segments as listed in the previous
example.

18132} In some examples, tessellator 5O and domain shader 52 may be configured to
uniformly tesseliate a path segment into a plurality of line segments according to the
following technique. Specifically, tosseliator 530 may ouiput coordinates for parametric
evaluation {e.g., = O/T, 1/T, 2/T ... T/T, where T is the tessellation factor). Depending
on the type of primitive, domain shader 52 may evaluate one or more parameiric
equations at the values that are output by tesseliator 50,

[8133] Geometry shader 54 may receive tessellated hine segments from domain shader
52 and generate a plorality of primitives based on the tesscllated line segments. In this
manner, geometry shader 54 may delermine a segment order for line segments. For

cach of the tesscllated line scgments, geometry shader 54 may execute an nstance of a

WO 2015/030933 PCT/US2014/045309

(V)
et

geometry shader program on a shader unit of GPU 12, and generate a triangle primitive
for the tessellated line segment based on the respective tessellated line segment. In
some examples, for cach of the tessellated line segments, geometry shader 54 may
receive two vertices from dematn shader 52 that correspond to the respective tessellated
tine segment, and gonerate a set of three vertices that correspond 1o a riangle primitive.
[8#134] In some examples, two of the vertices of the triangle primitive may be the same
vertices {e.2., have the same positional coordinates) as the two received vertices. In
such cxamples, geometry shader 54 may generate the third vertex based on a common
vertex that 1s common for all tessellated hine segments associated with a path segment to
be rendered. The common veriex may or may not correspond o one of the endpoints of
the tesscilated line segmerds, In some examples, the common vertex may correspond 10
the first vertex in a set of vertices that correspond to the tessellated line segments fora
path segment to be rendered.

18135} Geometry shader 54 may be invoked once for cach of the tessellated line
segments produced by domain shader 52, For cach of the tessellated line segments,
geometry shader 54 may generate a triangle primitive using a conumon control point as a
first vertex of the triangle and using the two endpoints of the respective tessellated hne
segment as the second and third vertices of the triangle. For example, an exanple was
provided above where domain shader 52 generated the following set of vertices {0, 1, 2,
3,4, 5} that define the following line segments: {0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5},
For the above-listed scquence of Hne segments, geometry shader 54 may generate the
following triangles: {C, 0, 1}, {C, 1,2}, {C, 2,3}, {C, 3,4}, {C, 4,5}, {C, 4,51 where
C is any single vertex that is common to all of the triangles.

18136] Rasterizer S6 may be configured to convert a plorality of 3D graphics primitives
{c.g., points, lines, and triangies) into a plurality of pixels that correspond to the 3D
graphics primitives. For example, rasterizer 56 may receive three vertices that
correspond to a triangle primitive, and convert the three vertices into a plurality of
pixels that correspond to the screen pixel locations that are covered by the triangle
priotive. Screen pixel locations that are covered by the triangle primitive may welade
screen pixel locations that correspond to the vertices of the tnangle, the edges of the
triangle, and the mterior of the triangle.

{8137] Pixel shader S8 may roceive pixels from rasterizer 56, and gencrate shaded

pixels based on the received pixels according to 2 pixel shader program. For example,

WO 2015/030933 PCT/US2014/045309

(X0
o]

for each pixel received from rasterizer 56, pixel shader S8 may execute an instance of a
pixel shader program on a shader vumit of GPU 12, In some examples, pixel shader 58
may execute a “pass-through” pixel shader program for each pixel The “pass-through”
pixel shader program may cause pixel shader 58 to, for cach pixel, output 2 pixel that
corresponds to a respective one of the input pixel. In this case, an output pixel may
correspond to an input pixel if the output pixel has the same atiribotes as the tput pixel.
18138] In further cxamples, pixel shader 58 may generate one or more output atiributes
for an output pixel that are not identical to the input atiributes of a respective one of the
mput pixels. For example, pixel shader 58 may perform substantive processing on one
or more of the atiributes of an input pixel to generate one or more attributes for an
output pixel. As another example, pixel shader 58 may add and/or delete attributes from
a sct of input attributes to generate the set of output attributes for an output pixel.

[#139] Cutput merger 60 may place pixel data received from pixel shader 58 into a
render target {e.g., a frame buffer or a stencil buffer). In some examples, ocotput merger
60 may merge the pixel data received from pixel shader 38 with the pixel data already
stored in a render target based on a vaster operation.

18148] To perform the path filling operation, rasterizer 56 may rasterize each of the
triangles received by georetry shader 54 into a common stencil buffer {c.g., a bufter
stored in resources block 64). During the first pass, pixel shader 58 may be disabled or
set to a “pass-through” mode to pass input pixels directly to output merger 60. Output
merger 60 may be configured to populate the stencil buffer such that the stencil buffer
stores values which are fndicative of a fill area for the path segment according to one or
more steneil bufter filling techniques.

18141} According to aspects of this disclosure, as noted above, GPU 12 may perform a
filling operation using a single pass approach using stenciled TIR and a bounding box
that involves the following steps:

1. Tesscliate a path segment o a plurality of hne segments.

b

Generate a triangle primitive for every line segment.

[FS]

Render all of the triangle primitives into a stencil buffer.

4. Determine bounding box during stenciling.

W

Render bounding box with stenciled TIR.
In the example above, GPU 12 may send an event (¢.g., bb_start) to tessellation stages

62 {also referred to herein as a tessellation engine) indicating that the bounding box

WO 2015/030933 PCT/US2014/045309

[79)
N}

parameters (e.g., bb_box) should be reset. GPU 12 may then generate the triangle
primitives while updating the stencil buffer using the process described above. In
addition, tesscllation stages 62 update the bounding box parameters (bb_box) by
comparing min-max parameters with vertices data. That is, tessellation stages 62 may
check each of the vertices to determine whether a vertex has a location that s located
further above, below, to the right, or to the left of any previocusly determined vertices,
¢.g., using Cartesian coordinates. If the vertex is positioned at an cutermost location
relative to the other vertices, tessellation stages 62 may update the bounding box
parameters (bb_box).

{8142] When tessellation stages 62 receive a bounding box end event {¢.g., bb_end),
the tesscilation stages may generate a rectiist corresponding fo the determined bounding
box coordinates, ¢.g., form the bounding box that encompasses the triangle primitives of
the path. Rasterizer 56 may then rasterize the bounding box. According to aspects of
this disclosure, rasterizer 56 may perform stenciled TiR, in which the stenciled pixels
arc super-sampled relative to the render target and pixel shader 58 only shades stenciled
pixels. Ag pixel shader 58 shades pixels, the stencil value for the pixels may be cleared
from the stencil buffer.

18143] Accordingly, in the example described above, tesscllation stages 62 maiotain an
accumulation of bounding box parameters (bb_box} between a bounding box start event
(bb_start) and a bounding box end gvent (bb_end). The render backend (e.g., including
geometry shader 54, rasierizer 56, pixel shader 58 and/or output merger 60} expects the
fixed operations between the bounding box start cvent (bb_start) and a bounding box
end event (bb_end). That is, the render backend may perform the operations associated
with determining the bounding box without a driver {(such as GPU driver 28 (FIG. 2))
programming the render backend registers, which may be allocated o resources block
64. While described with respect to tessellation stages 62, it should be understood that
the techmiques above may be carried out by one or more other stages of the graphics
pipeline. In this way, GPU 12 may use graphics pipeling 43 to il a path in a single
pass and withowt the need to render 2 bounding box during a separate pass.

{8144} According to other aspects of this disclosure, graphics pipeline 43 may be
configured to perform dashing for a stroked path segment. In an example for purposes
of itlosiration, geomeiry shader 54 may receive tesscllated line segments from domain

shader 32 and generate a plurality of primiiives based on the tessellated line sezments.
& 3 =3

WO 2015/030933 PCT/US2014/045309

The plarality of primitives may include the dash segments to be shaded and the plurakity
of primitives may be in a particular order, ¢.g., a segment order. Geometry shader 54
{or another component of graphics pipeline 43) may also determine the length of cach of
the dashes.

{8145} In addition, geometry shader 54 accumulates the length of the dashes as each
dash 1s gencerated and assigns cach dash segment 8 prefix sum of the lengths of previous
dash scgments, ¢.g., dash segments that precede the current scgment in the segment
order. For example, the furst dash segment may be assigned a prefix sum of zero, the
second dash segment may be assigned a prefix sum of the length first dash segment, the
third dash segment may be assigned a prefix sum of the length of a combination of the
first and second dash segments, and so on.

{8146] Rasterizer 56 typically receives the dash segments and follows a primitive order
during rasterization, where the primitive order refers to an order for rendering. After
rasierization, the prefix sum for cach dash semgment may be sent to the pixel shader 58
for use when shading the dash segments. For example, in order to shade the dash
segments in the appropriate location, pixel shader 58 may apply the prefix sum for each
dash segment as a texture offsct. The textare offset indicates the location of the
previous dash segments, thercby allowing pixel shader 58 to shade the next dash
scgment in the appropriate location relative to the previous scgments.

[8#147] FIG. 4 1s a diagram of an example path 80 to be rendered. For example, path 80
represents an “ice cream cone” shape with a rounded top and an clongated bottom. Path
8 may be a closed path consisting of two cubics. Segmends may be packed into patchd
prims {primitives). For example, the fnput path data for path 80 may take the following

form or a similar form:

{ XMFLOAT4(6.0F, 8.6F, CUBIC, ©.6F) },
{ XMFLOATA(0.4F, 1.2f, 2.0f, 0.0f) I,
{ XMFLOAT&(1.4F, 1.2F, 3.0F, 0.0f) I,
{ XMFLOATA(1.8F, 8.0F, 6.0f, 8.0f) },

{ XMFLOAT4(1.8f

w0
~h
“
(o]
&
~h

CUBIC, 6.6F) 1,
{ XMFLOAT4(6.5F,-3.6F, 8.6f, 0.6f) 1,

{ XMFLOAT4(1.3%,-3.0f, B.of, 8.ef) },

WO 2015/030933 PCT/US2014/045309

41

{ XMFLOAT4(@.8F, 0.0F, 8.0f, 0.0f)

In this example, cach row represents a vertex or control point and cach paramcter in the
parcntheses represents an attribute of a respective vertex or control point. The last
attribute of the first control point, in this example, stoves data indicative of the type of
path segment to be rendered (i.c., a “path segment type indicator”). Specifically, the
path segment type indicator in this example is .01, which means that the path segment
1s a cubic Béwier path segment. The other attributes for the path segment may include,
n some examples, attributes similar to those described above with respect to the line
path segment.
18148] FIGS. 5A-5C are a sequence of diagrams illustrating an example filling
operation for path 80 shown in FIG. 4. Path 80 1s under tessellated {e.g., has fewer
segments than typical) in the example of FIGS. SA-5C for purposes of llustration. In
addition, while described with respect to GPU 12 for purposes of explanation, the
process carried out in FIGS, SA-5C may be performed by a variety of other processors.
[81498] As shown in FIG. SA, GPU 12 tessellates path 80 to include a number of
vertices 82 that are connected in a linestrip fashion 4. As shown in FIG. 3B, GPU 12
generates a nurnber of Hoe segments 86 that are conmected to a pivot point 88 to form a
number of triangle primitives. In the example of FIG. 3B, the relative first vertex of
path 80 is used as pivot point 88, The winding order of the triangles will determine the
appropriate stencil operation. For example, every generated line segment is connected
to pivot point 8%, The resulting orientation of the triangle (e.g., clockwise or
covnterclockwise) may determine the winding order of the triangle primitives. The
winding order may affect the stencil value in different ways (e.g., incrementing the
stencil value for a clockwise winding order or decrementing the stencil value fora
counterclockwise winding order).
[8154] In this example, GPU 12 does not shade the triangle primitives shown in FIG.
5B during stenciling. Rather, as noted above, triangle primitives that are rendered
during stenciling only tmpact a stencil texture 90, That is, stencil texture 90 indicates
the portions of the path that appear in the image, ¢.g., that are rendered and shaded.
[#151] Asshown in FIG, SC, GPU 12 determings a bounding box 92 that encompasses
the stenci texture 90. That is, the bounding box covers the eutire of the path that is to
¢ filled. GPU 12 then performs stenciled TIR on bounding box 92 to generate filled

path 96. In this way, GPU 12 determines bounding box 92 and fills path 80 in a single

WO 2015/030933 PCT/US2014/045309

42

rendering pass.
[8182] FIG. 615 a conceptual diagram illustrating a stenciling operation. For example,
assume for purposes of illusiration that GPU 12 renders primitive 100 using 16x
MSAA. In this exampie, cach squarc represents a sample of pixel 102,
{81583} According to aspects of this disclosure, GPU 12 may perform stenciled TIR.
Accordingly, GPU 12 may determine a stencil parameter {¢.g., the stencil sampling rate)
independently from a render target parameter {¢.g., memory allocation for a rendered
pixch. In this cxample, GPU 12 may determine a coverage value for rendering the pixel
based on whether the pixel passes a per sample stencil test.
{8184 In some examples, GPU 12 may perform a stencil test {o determine if samples
have a non-zero value, For example, GPU 12 may perform a zero/non-zero stencil test
m which samples having non-zere stencil values are rendered. In another example,
GPU 12 may perform an odd/even stencil test in which samples having an odd (or even)
value are rendered. Accordingly, in some examples, GPU 12 may perform a stencil test
to determine if samples have an odd value, In still other examples, GPU 12 may
perform a stencil test to determine 1f samples have an even value,
{8188} In any case, in the example shown in FIG. 6, 10 of the 16 samples (again,
represented by boxes) of pixel 102 are located within primitive 100, Accordingly, a
coverage mask for primitive 100 may include pixel 102 and GPL 12 may shade pixel
102 during rendering.
{8#156] FIG. 7 is a conceptual diagram illustrating an example filling operation,
according to aspects of this disclosure. For example, FIG. 7 dllustrates determining
triangle primitives and updating a stencil buffer based on the orientation of the
primitives 110, determining a bounding box 112 based on the outermost points of the
primitives, the contents of a stencil buffer 114, and a drawn bounding box and stenciled
pixels 116,
{B187] According to some examples, the sequence of determining a bounding box
during sienciling and rendering the primitives included in the stencil may be performed
by GPLU 12 using the following AP1 cali:

Draw BBR(); /# compute bounding box of primitives within the draw

call
/1 or tt can be BeginQuery().. . EndQuery{)

//if pixel shader is not bound, then only bounding box is

WO 2015/030933 PCT/US2014/045309

// computed and no primitives are rendered

Render BB(); // render the previously computed bounding box, or it can

/1 Drawindirect-like method

// same as draw call, except no primitives are seut, but
pixel

/f shader and other back-end states are specified
where Draw BB instructs GPU 12 to determine bounding box 112 during stenciling
(without rendering pixels) and Render BE instructs GPY 12 to perform stenciled TIR
on top of the bounding box. In this way, GPU 12 may determine a bounding box and
perform path filing in a single rendering pass.
181588] FIG. 8 15 a graph ilhustrating moemory bandwidth during rendering, according to
aspects of this disclosure. For example, FIG. 8 illustrates three different antialiasing
rates (4x, 8x, and 162) and the associated data transfer associated with the rates for cach
of three rendering schemes: an MSAA scheme in which tessellation and geometry
shading are performed 120, a stenciled TIR scheme 122, and a conscrvative
rasterization scheme 124 (e.g., a Loop-Blinn process). The bandwidth requirements
shown in FIG. 8 are associated with a test sequence of images rendered at 60 frames per
second (fps) and a buffer format having 32 bits of color, 24 bits of depth, and 8§ bits of
stencil.
[8159] As shown in the graph of FIG. 8, the memory bandwidth requirement for MSAA
120 are significantly greater than the memory bandwidth requirerent for stenciled TIR
122 and conservative rasierization 124, Table 1, shown below, llusirates a comparison

of MSAA 120, conservative rasterization 124, and stenciled TIR 122,

TABLE ¥
. Conservative . oy
MSAA L Stenciled TIR
Rasterization
(Quality Stmilar Slightly better Stmilar
Memory il Low (1 pixel per Low (stencil + 1 pixel
{igh
Bandwidth ® sample) per sample)
Pixel Shading | None Very high MNoneg
HW change Already exist Small Moderate
API change Already exist Swmall Moderate
Geometry CPU (move to CPU {complex Less CPU (move to

WO 2015/030933 PCT/US2014/045309

44
Work tessellation engine) | algorithm) tessellation engine)
Generie Path | 7]
] . Yes No Yes
Rendering
gveriap pathe | Yes No Yes

[#160] Table 2, shown below, illustrates an additional comparison between MSAA 120,

stenciled TIR 122 and conservative rasterization 124.

TABLE 2
Nx MSAA: Nx }§R + {_,(bnsesa:‘ffaifves
stencil: Rasterization
Sample Test (HW) Nx Nx Ix
Depth Buffer Update Nx None None
Stencil Buffer Update Nx Nx None
Color Buffer Update Nx Ix ix
Ix {relatively
Pixel Shader Launch Ix Ix complicated pixel
shading stage}

{8161} FIGS. 9A-9D are a sequence of diagrams illustrating an example dashing
operation for the path shown in FIG. 4. Again, path 80 is under tessellated in the
cxample of FIGS. 9A-9D for purposes of illustration. In addition, while described with
respect to GPU 12 for purposes of explanation, the process carried out in FIGS. 9A-9D
may be performed by a variety of other processors.

18162] As shown in FIG, 9A, GPU 172 tesscllates path 80 to include a mumber of
vertices 82 that are connected in a lnestrip 84. To addition, GPU 12 determines a
number of normals 130 (shown as arrows extending from vertices). In the example of
FIG. 9A, double normals 130 indicates a join location. Creating joins may require
endpoint tangents of the next primitive o the linestrip. FIG. 9A also includes an
example scgment 132,

{8163} FIG. 983 illustrates GPU 12 performing a fattening operation on segment 132 in
which the segment 1372 is fatiened in +/- normal directions by strokewidth/Z. An extra
thick stroke s shown in the exanple of FIG. 98 for purposes of ilustration. FIG. 98

illustrates fattened segment 134 and stroked fattened segment 136.

WO 2015/030933 PCT/US2014/045309

45

18164} FIG. 9C illustrates dashing stroked fattened segment 136, For example, GPU 12
may determine a first dash segment 138, a second dash segment 1440, and a third dash
segment 142, In this example first dash segment 138 and third dash segment 142 are
visible segments, while sccond dash segment 140 1s an invisible dash segment. For
dashing, GPU 12 determines the starting location for cach dash segment (hne} 138, 140,
and 142, As noted above, in some examples, prefix sum onit 42 may accumulate the
length of dash segments 138-142 during geomelry shading.

19168 GPU 12 may apply the lengths as a texture offset for texture coordinates from ¢
to hine length L. For example, according to aspects of thas diselosure, prefix sum unit
42 may calculate a linelength value that indicates a location of cach of segments 138 -
142, Pretix st unit 42 may seod a prefix summed loelength value to a pixel shader
stage, which determines the respective locations of segments 138-142 during pixel
shading. GPU 12 retains visible segments 138 and 142 (as shaded fragments) as
forming a part of the visible dash pattern and discards segment 140 (without shading) as
being invisible in the dash pattern.

[8166] In some examples, a graphics API that supports determining per primitive scalar
values such as pointsize may be used to mstruct GPY 12 to determine the scalar lengths.
According to aspects of this disclosure, the graphics APUmay support a linclength
value. This linclength valae may be the same flat attribute of a primitive, but the
attribute may be provided to a pixel shader stage. For example, GPU 12 may apply the
prefix sum path per tessellated primitive to determine offset coordinates during pixel
shading. In addition, API calls prsum_start, prsum_end (stmilar to query_start/end) may
bracketize one or more draw calls to indicate the relative start and end of the dashe

line.

18167) FIG. 9D illustrates the addition of a dashed stroke 142 with a filled path 144 o
generaie filled and dashed path 146,

[8#168] FIG. 10 18 a flow diagram illustrating an example technique for performing a
filling operation according to this disclosure. While described as being performed by
GPU 12 for purposes of lastration, it should be understood that the technique shown in
FIG. 10 may be performed by a variety of other processors. In addition, fower,
additional, or different steps than those shown may be used to perform the techmgue.
18169] In the example of FIG. 10, GPU 12 receives path data (160). The path data may

be mndicative of one or more path segments of a path to be rendered. GPU 12 also

WO 2015/030933 PCT/US2014/045309

46

determines a stencil parameter (162). In some examples, the stencil parameter may
indicate a sampling rate for determining a coverage valoe for cach antialiased pixel of
the path. GPU 12 also determines, separately from the stencil parameter, a render target
parameter (164). The render target parameter may indicate 2 memory allocation for
each antiahased pixel of the path.

[8178] GPU 12 tessellates a path scgment defined by the path data into a ploarality of
line segments {166). For example, GPU 12 may tessellate the path data into a linestrip
such as the one shown in FIG. 5A. GPU 12 then generates a phurality of triangle
primitives based on the plurality of line scgments (168}, Each of the plurality of
triangle primitives may be gencrated based on a respective one of the plurality of lne
segments. Each of the plurality of triangle pruattives for a given path scgment may
share a common vertex. The other two vertices for cach of the triangle primitives may
correspond to the endpoints of a respective one of the plurality of line segments.

18171 GPU 12 renders cach of the phurality of triangle primitives into a common
stencil buffer using the stencil parameter and determines a bounding box (170). For
example, as noted above, GPU 12 does not shade the triangle primitives during
stenciling. However, GPU 12 may determine the outermost points of the triangle
primitives to determine the bounding box for the primitives. Insome examples, GPU
12 may determine the coordinates for each triangle primitive and overwrite an upper
boundary point, a lower boundary point, a right boundary point, and/or a left boundary
point cach time a primitive extends beyond the outermost point of the previous triangle
prinytive.

{8172} After rendering all of the triangle primitives into the steneil butfer, the stencil
buffer may store data indicative of which pixels are tuside of the fill area for the path
segment. In addition, the bounding box encompasses cach of the triangle primitives.
18173] GPU 12 then rasterizes the bounding box using the render target parameter and
the stencil baffer (172). For example, according to aspects of this disclosure, GPU 12
performs stenciled TIR on the bounding box to determine color values for cach pixel of
the path data. The data io the stencil buffer may cause pixels inside of the fill arca to be
shaded with a fill color and cause pixels that are outside of the fill area to remain
anshaded. Once the rendering of the bounding box has completed, the render target
{c.g., the frame buffer) may store a rasterized version of the fill arca for the path

secgment using the render target parameter.

WO 2015/030933 PCT/US2014/045309

47

{8174} FIG. 11 1s a flow diagram illustrating an example technique for performing a
stroking operation according to this disclosire. Again, while described as being
erformed by GPU 12 for purposes of illustration, it shouid be understood that the
technique shown in FIG. 11 may be performed by a varicty of other processors. In
addition, fewer, additional, or different steps than those shown may be used to perform
the technique.
18175] GPU 12 receives path data (180). The path data may be indicative of one or
more path segments of a path to be rendered. GPU 12 tessellates a path segment
defined by the path data into a plarabity of hine segments (182). For example, GPU 12
may tesscllate the path data into a linestrip such as the one shown FIG. 9A.
18176] GPU 12 generates a plarality of primitives that spatially corresponds to the
stroke area for the path segment (184). For example, for each of the plurality of
tessellated line segments, GPU 12 may generate one or more primitives that spatially
correspond to a stroke area for the respective line segmeni. GPU 12 may determine a
number of tesscllated primitives per line segment during geometry shading of the line
segment. That is, during geometry shading, GPU 12 may generate a stroke “without
dashing” (¢.g., without shading particular segments of the stroke).
18177] When dashing, GPU 12 determines a path length per fessellated primitive (186).
For example, GPU 12 may determine an accomulation of lengths for cach dash scgment
(primitive} produced during geometry shading. That is, the dash segments may be
ordered in a particular order (c.g., an order determined during tessellation and/or
geometry shading). For each primitive, GPU 12 may accumulate the lengths of the
primitives preceding it in order.
[8178] GPU 12 may determineg a texture offset for textore coordinates of cach primitive
eing rendered based on the accumulation of lengths {1883, For example, as noted
above, GPY 12 may use the length information to determine a texture coordinate for the
beginning of each of the primitives. GPU 12 may apply the texture offset during pixel
shading (190). For example, GPU 12 applies the texture offset and shades each of the
segments of the dash using the appropriate color for the stroked path data.
[8179] In some examples, the techniques of this disclosure may allow users of DirectX
11 hardware to perform path rendering using DivectX 11 hardware or with hardware
that has similar performance characteristics. In forther examples, the techniques of this

disclosure may provide an all-GPU rendering solution to path rendering.

WO 2015/030933 PCT/US2014/045309

N
[z

{8188] Although the techniques of this disclosure have been primanly described with
respect to a hardware architecture that is defined by the DX 11 graphics AP the
techniques of this disclosure may also be performed in hardware architectures defined
according to other on-chip, tesscilation-cnabled graphics APls such as, ¢.g., the
OpenGL graphics AP {e.g., OpenGL versions 4.0, 4.1, 4.2, 4.3 and later versions). In
examples where the techniques of this disclosure are implemented in 2 hardware
architecture defined according to the Open(L graphics APL one or more of the
functions attributed to hull shader 48 in this disclosure may be performed by a
tessellation control shader and/or one or more of the functions attributed to domam
shader 52 in this disclosore may be performed by a tessellation evaluation shader.
{8181} The techniques described in this disclosure may be implemented, at least o part,
m hardware, software, firmware or any combination thereof. For example, various
aspects of the described technigues may be tmplemented within one or more processors,
including one or more microprocessors, digital signal processors (DDSPs), application
specific integrated circuits (ASICs), field programmable gate arrays (FPGAS), or any
other equivalent mtegrated or discrete logic circuttry, as well as any combinations of
such components. The term “processor” or “processing circuttry” may gencrally refer
to any of the foregoing logic circuitry, alone or in combination with other logic cirenitry,
ot any other equivalent circuitry such as discrete hardware that performs processing.
{8182} Such hardware, software, and firmware may be implemented within the same
device or within separate devices to support the various operations and funciions
described in this disclosure. ¥n addition, any of the described units, modules or
components may be implemented together or separately as discrete but interoperable
logic devices. Depiction of different features as modules or units is intended to
highlight different functional aspects and does not necessarily traply that such modules
or untts nwst be realized by separate hardware or software components. Rather,
fimctionality associated with one or more modules or units may be performed by
separate hardware, firmaware, and/or software components, or integrated within common
or separaie hardware or software comaponents.

{8183} The techniques described in this disclosure may also be stored, embodied or
encoded in a computer-readable mediom, such as a computer-readable storage medium
that stores instructions. Instructions embedded or encoded in a computer-readable

medium may cause one o more processors 1o perform the techoiques described herein,

WO 2015/030933 PCT/US2014/045309

e.g., when the instructions are executed by the one or move processors. Computer
readable storage media may inclode random access memory (RAM), read only memory
{ROM), programmable read only memory (PROM), erasable progranunable read only
memory (EPROM), electronically crasable programomable read only memory
(EEPROM), flash memory, a hard disk, a CD-ROM, a floppy disk, a cassette, magnetic
media, optical media, or other computer readable storage media that 1s tangible.

18#184] Computer-readable media may mclude computer-readable storage media, which
corresponds to a tangible storage medivm, such as those listed above. Computer-
readable media may also comprise communication media inchiding any medium that
facilitates transfer of a computer program from one place {o another, e.g., according to a
communication protocel. fn this mamner, the phrase “computer-readable media”
generally may correspond to (1) tangible computer-readable storage media which is
non-transitory, and (2) a2 non-tangible computer-readable communication medim such
as a transitory signal or carrier wave.

18185] Various aspects and exanples bave been described. However, modifications can
be made to the structure or techniques of this disclosure without departing from the

scope of the following claims.

WO 2015/030933 PCT/US2014/045309

50
WHAT IS CLAIMED IS:
1. A wmethod of rendering graphics data, the method comprising:

deternrining, with a graphics processing unit (GPUY, 2 texture offset for a current
scgment of a plurality of ordered segments of a dashed line, wherein the texture offset
for the current segment of the plurality of ordered segments is based on an accumulation
of lengths of segments that precede the current segment n the order; and

pixel shading the current segment including applying the texture offset to

determine a location of the current segment.

2. The method of claim 1, wherein the plurality of segments includes one or more
visible segments and one or more invisible segments, the method further comprising:

determining, based on the determined location of the current segment, whether
the current segment is a visible segment; and

retaining or discarding the current segment based on the deterouination.

3. The method of claim 1, forther comprising:

prior to determining the texture offsct for the current segment, geometry shading
the dashed Hue to form the phirality of ordered segments; and

determining a length value for the current segment, such that determining the
texture offsct based on the accumuiation of lengths comprises determining the texture

offset based on the length value.

4. The method of claim 3, wherein determining the length valae comprises
generating a linelength scalar value specifying a length of preceding segments in the

order.

5. The method of claim 1, further comprising:
rasterizing cach of the segmenis of the plurality of ordered segments,
wherein applying the texture offset comprises applying the texture offset to the

rasterized current segment afier the cirrent segment has been rasterized.

WO 2015/030933 PCT/US2014/045309

v
[y

6. The method of claim {, wherein applying the texwure offset comprises

determining a texture coordinate value for the current segment indicating the location.

7. The method of claim 1, wherein the pixel shading is included in a path rendering

process for the dashed hne inchuding stroking the dashed line.

8. The method of claim 1, further comprising determining the order of the
segments during geometry shading of the segments, such that the order of the scgments

15 & primitive order.

9, An apparatus for rendering graphics data, the apparatus comprising a graphics
processing unit (GPU) configured to:

determine a texture offset for a current segment of a plurality of ordered
segiments of a dashed line, wherein the texture offset for the current segment of the
phurality of ordeved segments is based on an accumulation of lengths of segments that
precede the current segment in the order; and

pixel shade the current segment inchuding applying the texture offset to

determing a location of the current segment.

10, The apparatus of claim 9, wherein the plorality of segments inclodes one or
more visible segments and one or more invisible segments, the GPU further configured
1o

determing, based on the determined location of the current segment, whether the
current segment is a visible segment; and

retain or discarding the corrent segment based on the determination.

1. The apparatus of claim 9, wherein the GPU 15 firrther configured to:

prior to determining the texture offset for the current segment, geometry shade
the dashed ling to form the plurality of ordered segments; and

determine a length value for the current segment, such that determining the
texture offset based on the accumulation of lengths comprises determining the texture

offset based on the length value.

WO 2015/030933 PCT/US2014/045309

12, The apparatus of claim 11, wherein to determine the length value, the GPU is
configured to generate a hnclength scalar value specifying a length of preceding

segments in the order.

13, The apparatus of claim 9, wherein the GPU 15 firrther configured to:
rasterize each of the segments of the plurality of ordered segments,
wherein to apply the texture offset, the GPU is configured to apply the texture

offset to the rasterized current segment afier the current segment has been rasterized.

14, The apparatus of claim 9, wherein to apply the texture offset, the GPU is
configured to determine a texture coordinate value for the current segment indicating

the location.

15. The apparatus of claim 9, wherein the pixel shading is inchided in a path

rendering process for the dashed line including stroking the dashed line.

16, The apparatus of claim 9, wherein the GPU is further configured to determine
the order of the segments during geometry shading of the segments, such that the order

of the segments is a primitive order.

17. Au apparatus for rendering graphics data, the apparatus comprising:
means for determining, with a graphics processing unit {GPU), a texture offset
for a current segment of a plurality of ordered segments of a dashed line, wherein the
texture offset for the current segment of the plurality of ordered segments is based on an
accumulation of fengths of segments that precede the current segment in the order; and
means for pixel shading the current segment including applying the texture

offset to determine a location of the current segment.

18, The apparatus of claim 17, wherein the plurality of segments fncludes one or
more visible segments and one or more nvisible segments, the apparatus further
comprising:

means for determining, based on the determined location of the current segmoent,

whether the current segment 18 a visible segment; and

WO 2015/030933 PCT/US2014/045309

v
(O3]

means for retaining or discarding the current segment based on the

determination.

19, The apparatus of clatm 17, further comprising:
prior to determining the texture offsct for the current segment, means for
geometry shading the dashed Hne to form the plurality of ordered segments; and
means for defermining a length value for the current segment, such that
deternmining the texture offset based on the accumuiation of lengths comprises

determining the texture offset based on the length value.

20, The apparatus of claim 19, wherein the means for determining the length value
comprises means tor generating a linelength scalar value specifying a length of

preceding segments in the order.

21. The apparatus of claim 17, further comprising:
means for rasterizing cach of the segments of the plorality of ordered segments,
wherein the means for applying the texture offset comprises means for applying
the texture offset to the rasterized current segment after the current segment has been

rasterized.

22. The apparatus of ¢laim 17, wherein the means for applying the texture offsct
comprises means for determining a texture coordinate value for the current segment

mdicating the location.

23, The spparatus of claim 17, further comprising means for determiniog the order
of the segmerds during geometry shading of the segments, such that the order of the

scgments is a primitive order,

24, A non-transitory computer-readable medivm having mstructions stored thereon
that, when executed, cause a graphics processing unit (GPU) configured to:
determine a texture offset for a current segment of a plurality of ordered

segments of a dashed line, whercin the texture offsct for the current scgment of the

WO 2015/030933 PCT/US2014/045309

ohurality of ordered segments is based on an accumulation of lengths of segments that
& fe=4 &
precede the current segment in the order; and
pixel shade the current segment including applying the texture offset to

determing a location of the current segment.

25. The non-transitory compriter-readable median of claim 24, wherein the plorality
of segments includes one or more visible scgments and one or more invisible segments,
the mstructions further causing the GPU 1to0:

determing, based on the determined location of the current segment, whether the
current segment is a visible segment; and

retain or discarding the currend segment based on the determination.

26. The non-transitory computer-readable medium of claim 24, wherein the
instructions further cause the GPU to:

priot fo deternuning the texture offset for the current segment, geometry shade
the dashed line to form the plorality of ovdered segments; and

determine a length value for the carrent segment, such that determining the
texture offset based on the accumuiation of lengths comprises determining the texture

offset based on the length value.

27. The non-transitory computer-readablc medivm of claim 26, wherein o
deternine the length value, the instructions cause the GPU to generate a linclength

scalar value specifying a length of preceding scgments in the order.

28. The non-iransitory computer-readable mediom of claim 24, wherein the
instructions further cause the GPU to:

rasterize each of the segments of the phurality of ordered segments,

wherein to apply the texture offset, the instructions cause the GPU to apply the
texture offset to the rasterized current segment after the current segment has been

rasterized.

WO 2015/030933 PCT/US2014/045309

28, The non-transitory computer-readable medium of ¢laim 24, wherein to apply the
texture offset, the instructions cause the GPU to determine a texture coordinate valge for

the current segment indicating the location.

30, The non-transitory computer-readable medium of claim 24, wherein the
instructions further cause the GPU to determine the order of the segments during
geometry shading of the segments, such that the order of the segments is a primitive

order.

WO 2015/030933

PCT/US2014/045309
1/12

COMPUTING DEVICE

USER
INTERFACE
4

2
MEMORY
CPU CONTROLLER |le—» MEMORY
6 3 10
1T 1T
GPU
BUS 20 > o
N ¢
DISPLAY GPU
DISPLAY 1. | INTERFACE CACHE
18 16 14

FIG. 1

WO 2015/030933

2/12

PCT/US2014/045309

SOFTWARE APPLICATION

24

'

GRAPHICS API
26

'

GPU DRIVER
28

'

OPERATING SYSTEM
30

fi

GPU
12

COMMAND ENGINE
32

!

PROCESSING UNITS
34

BOUNDING BOX
UNIT
40

PREFIX SUM UNIT
42

fi

FIG. 2

i

MEMORY
10

PATH DATA
36

COMMANDS
38

WO 2015/030933

RESOURCES
BLOCK
64

3/12

INPUT

—»| ASSEMBLER

44

'

VERTEX

—> SHADER

46

I

HULL

—> SHADER

48

—— l

TESSELLATOR
50

__vl

([DOMAIN)

—> SHADER

52

GEOMETRY

—> SHADER

54

FIG. 3

A 4

RASTERIZER
56

:

4)

PIXEL SHADER
58

_ J

:

U

*

OUTPUT

D E— MERGER

60

PCT/US2014/045309

43

Ve

> STAGES
62

TESSELLATION

PCT/US2014/045309

WO 2015/030933

4/12

80

DN Y
g,

3 e
S

S

=
&

FIG. 4

WO 2015/030933 PCT/US2014/045309
5/12

80 847
J 82 1

\.(

FIG. 5B

BOUNDING BOX FIG. 5C

WO 2015/030933
6/12

COVERAGE IS 10/16 = 5/8
BASED ON STENCIL PASSING
NON-ZERO TEST PER SAMPLE

PCT/US2014/045309

kY
5
Y
\
3
\\
i
; 100
kY
5 K
) by
bl by
LY - 14
Y -
% X
Y Y
by
3
3
b
X
by
1Y
kS
i
X
b
i
X
%
2@
%
b3
\
3
%
13
M
kY
3
%
13
%
3
%
3
. \\
A L
~
M b
N - ”z
s %,
A y
.
e, Y
N, § :
- §
-
~ S, Y
"o b
S, \
:
S 1
o b
~d

FIG. 6

00000000000000000000000000000

.

5

FIG. 7

WO 2015/030933 PCT/US2014/045309
8/12

R
RS

L4
o
!
[N
w-l\\:

R
I‘\\\\‘

ol A Ll

¥ N

Nk

%
%
¥
7
.
P2
7
s
%
s,
I IGI 8

WO 2015/030933 PCT/US2014/045309
9/12

el » 847 I\’\\

FIG. 9A 130

WO 2015/030933 PCT/US2014/045309
10/12

{“136

FIG.9C

FIG. 9D

WO 2015/030933 PCT/US2014/045309
11/12

f 160
RECEIVE PATH DATA

l

DETERMINE STENCIL 162
PARAMETER f

.

DETERMINE RENDER TARGET f 164
PARAMETER

.

TESSELLATE PATH SEGMENT 166
INTO A PLURALITY OF LINE f
SEGMENTS

'

GENERATE TRIANGLES BASED j168
ON LINE SEGMENTS

'

RENDER TRIANGLES TO STENCIL 170
BUFFER USING STENCIL I
PARAMETER AND DETERMINE
BOUNDING BOX

'

RASTERIZE BOUNDING BOX 172
USING RENDER TARGET f
PARAMETER AND STENCIL
BUFFER

FIG. 10

WO 2015/030933 PCT/US2014/045309
12/12

I 180

RECEIVE PATH DATA
TESSELLATE PATH INTO f 182

TESSELLATED LINE SEGMENTS

l

GENERATE PRIMITIVES THAT f 184
SPATIALLY CORRESPOND TO
LINE SEGMENTS

!

DETERMINE PATH LENGTH PER f186
TESSELLATED PRIMITIVE

v

DETERMINE TEXTURE OFFSET

FOR TEXTURE COORDINATES |{ 188

BASED ON ACCUMULATION OF
PRIMITIVE LENGTHS

!

APPLY TEXTURE OFFSET DURING |f 190
PIXEL SHADING

FIG. 11

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/045309

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6T11/20 GO6T11/40
ADD.

GO6T15/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6T GO9G

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X MARK J. KILGARD ET AL: "GPU-accelerated 1-30
path rendering",
ACM TRANSACTIONS ON GRAPHICS,
vol. 31, no. 6, November 2012 (2012-11),
page 1, XP055141685,
ISSN: 0730-0301, DOI:
10.1145/2366145.2366191
abstract; figures 5,6
page 172:1 - page 172:4
X US 2011/285724 Al (KILGARD MARK J [US]) 1-30
24 November 2011 (2011-11-24)
abstract; figures 4,5
paragraphs [0090], [0100] - [0108]
A,P WO 20147025516 A1l (QUALCOMM INC [US]) 1-30
13 February 2014 (2014-02-13)
abstract; figures 21-26
paragraph [0177]

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

19 September 2014

Date of mailing of the international search report

29/09/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Meinl, Wolfgang

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/045309
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2011285724 Al 24-11-2011 US 2011285711 Al 24-11-2011
US 2011285718 Al 24-11-2011
US 2011285719 Al 24-11-2011
US 2011285720 Al 24-11-2011
US 2011285721 Al 24-11-2011
US 2011285722 Al 24-11-2011
US 2011285723 Al 24-11-2011
US 2011285724 Al 24-11-2011
US 2011285735 Al 24-11-2011
US 2011285736 Al 24-11-2011
US 2011285740 Al 24-11-2011
US 2011285741 Al 24-11-2011
US 2011285742 Al 24-11-2011
US 2011285743 Al 24-11-2011
US 2011285747 Al 24-11-2011

WO 2014025516 Al 13-02-2014 US 2014043330 Al 13-02-2014
US 2014043342 Al 13-02-2014
WO 2014025516 Al 13-02-2014
WO 2014025517 Al 13-02-2014

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - wo-search-report
	Page 70 - wo-search-report

