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1. 

METHODS AND APPARATUS TO PROTECT 
MEMORY REGIONS DURING LOW-POWER 

STATES 

RELATED APPLICATIONS 

This patent arises from a continuation of U.S. patent 
application Ser. No. 14/639,854, filed Mar. 5, 2015, which is 
a continuation of U.S. patent application Ser. No. 13/976, 
342, filed Jun. 26, 2013, now U.S. Pat. No. 8,978,135, which 
is a national stage entry of International Patent Application 
No. PCT/US2012/055580, filed Sep. 14, 2012. U.S. patent 
application Ser. No. 14/639,854, U.S. patent application Ser. 
No. 13/976,342 and International Patent Application No. 
PCT/US2012/055580 are hereby incorporated herein by 
reference in their entireties. 

FIELD OF THE DISCLOSURE 

The present disclosure relates generally to processor 
systems and, more particularly, to methods and apparatus to 
protect memory regions of a processor System during low 
power states. 

BACKGROUND 

Energy Star standards define power levels for acceptable 
low-power consumption ratings of electronic devices. To 
comply with Such Energy Star standards, electronic devices 
often implement one or more low-power modes. Such 
low-power modes include a full-off power state, a suspend 
to-RAM (random access memory) power state, a suspend 
to-disk (hibernate) state, and/or one or more types of standby 
power states. The full-off power state typically consumes the 
lowest amount of power of any platform power state. 
However, the full-off power state requires the platform to 
complete a full boot of the platform software after a power 
on operation is re-applied. Such a full boot incurs undesir 
able boot latencies. 
The suspend-to-RAM power state is an alternative to the 

full-off state. The suspend-to-RAM power state retains the 
operating state of the platform Software as it existed imme 
diately prior to entering the suspend-to-RAM power state. 
Because the platform Software operating state is retained in 
RAM during the suspend-to-RAM power state, the platform 
Software need only execute portions of a boot process to 
continue where it left off before entering the suspend-to 
RAM State. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 illustrates an example processor system that tran 
sitions between an active power state and a Suspend-to 
RAM (random access memory) power State. 

FIG. 2 illustrates example components of the example 
processor system of FIG. 1 that may be used to protect 
memory regions during low-power states of the processor 
system. 

FIG. 3 illustrates an example data structure format for 
storing signatures and location information for protected 
regions of platform Software stored in system memory 
during a low-power state. 

FIG. 4 illustrates an example flow diagram representative 
of computer readable instructions that may be executed to 
transition the processor system of FIG. 1 between a low 
power mode power state and an active power state in 
accordance with the teachings of this disclosure. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
FIG. 5 illustrates an example flow diagram representative 

of computer readable instructions that may be executed to 
perform a host boot sequence to boot a processor system 
during a cold boot or a resume from a low-power State. 

FIG. 6 illustrates an example flow diagram representative 
of computer readable instructions that may be executed to 
transition a processor System to a low-power state. 

FIGS. 7A and 7B illustrate an example flow diagram 
representative of computer readable instructions that may be 
executed to verify protected regions of system memory 
storing data for a software platform operating state. 

FIG. 8 illustrates an example flow diagram representative 
of computer readable instructions that may be executed to 
boot a processor System under a cold boot process or a 
resume process to resume from a low-power state. 

FIG. 9 illustrates an example flow diagram representative 
of computer readable instructions that may be executed to 
generate signatures useable to authenticate a Suspend-to 
RAM data structure. 

FIG. 10 illustrates an example flow diagram representa 
tive of computer readable instructions that may be executed 
to verify the validity of a suspend-to-RAM data structure. 

DETAILED DESCRIPTION 

Example methods, apparatus, systems, and articles of 
manufacture disclosed herein enable protecting regions of 
memory during low-power states of processor Systems. 
Disclosed examples are described herein in connection with 
a Suspend-to-RAM (random access memory) power state. 
However, examples disclosed herein may additionally or 
alternatively be used to protect regions of memory during 
other power states of processor systems. 

Processor systems may be configured to transition 
between different power states, ranging from full-power-on 
to fully off states. These different power states are provided 
to conserve power. Intermediate power States such as a 
Suspend-to-RAM power state is sometimes used to strike a 
balance between lower power consumption and having the 
ability to resume operation (e.g., exit the Suspend-to-RAM 
power state to a fully on state) relatively faster than is 
otherwise possible when performing a cold boot from a fully 
off state or a suspend-to-disk (e.g., hibernate) power state. A 
suspend-to-RAM power state is a low-power state in which 
a processor system retains a state or states in random access 
memory of platform Software (e.g., an operating system 
(OS) and/or applications) that is running when the processor 
system initiates its transition to the Suspend-to-RAM state. 
When the processor System resumes or exits the Suspend 
to-RAM state to a fully on power state, the processor system 
need not execute the entire platform boot software as 
required when performing a cold boot from a fully off state 
or a hibernate State. In prior systems, not executing the entire 
platform boot Software upon resume introduces potential 
security risks because the platform system memory can be 
compromised while it is in the suspend-to-RAM power 
state. For example, malicious code can be written to memory 
regions storing the operating state(s) of the platform Soft 
ware. Upon resume from the suspend-to-RAM state of such 
prior systems, the compromised platform Software could be 
executed, and allow an attacker to take control of the system 
or to otherwise compromise the system. 

Unlike prior systems having security vulnerabilities when 
in a Suspend-to-RAM power State, examples disclosed 
herein may be used to implement a trusted resume to provide 
platform Software and system integrators with features to 
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protect the platform Software while processor systems are in 
Suspend power States or low-power states (e.g., a suspend 
to-RAM power state). 

FIG. 1 illustrates an example processor system 100 that 
may be used to implement the examples disclosed herein to 5 
protect memory regions during low-power states of the 
processor system 100. In the illustrated example, the pro 
cessor System 100 is shown transitioning between an active 
power state 102 and a suspend-to-RAM (STR) power state 
104. In the active power state 102 of the illustrated example, 
a microprocessor (uP) Subsystem 106, a communication 
subsystem 108, a memory subsystem 110, and a user inter 
face (I/F) subsystem 112 are shown fully powered. In the 
suspend-to-RAM power state 104 of the illustrated example, 
the microprocessor Subsystem 106, the communication Sub 
system 108, the memory subsystem 110, and the display 
subsystem 112 are shown in a low-power state in which 
power is removed from portions thereof. 

In the illustrated example, the microprocessor Subsystem 
106, the communication subsystem 108, the memory sub 
system 110, and the display subsystem 112 are only partially 
powered as power remains applied to portions 114, 116, 118, 
and 120. In this manner, the powered portions 114, 116, 118, 
and 120 are useable for resuming the active power state 102 
of the processor system 100 from the suspend-to-RAM 
power state 104. In the illustrated example, the powered 
microprocessor portion 112 includes continuously powered 
memory (e.g., continuously powered memory 212 of FIG. 2) 
to store an address or a pointer to an authentication table 
(e.g., a pointer to a suspend-to-RAM data structure 216 of 
FIG. 2) storing security parameters (e.g., signatures) and 
memory address locations of platform software stored in 
RAM (e.g., a system memory 210 of FIG. 2) during the 
suspend-to-RAM power state 104. In the illustrated 
example, the powered communication Subsystem portion 
114 may include power to a wake-on-LAN (local area 
network) circuit or other wake-on-network circuit to resume 
the processor system 100 using network communications. In 
the illustrated example, the powered memory Subsystem 
portion 116 includes system memory (e.g., the system 
memory 210 of FIG. 2) used to store the state or states of 
platform software when the processor system 100 is in the 
suspend-to-RAM power state 104. The powered user inter 
face portion 118 of the illustrated example may include 
power to detect de-pressing of a power/wake button or 45 
de-pressing of a keyboard key or other user input of any 
other type of human interface device (HID). 

Examples disclosed herein enable using a trusted resume 
to transition the processor system 100 from the suspend-to 
RAM power state 104 to the active state 102 by providing 
various example protection features or trust features. In the 
illustrated examples, a trusted resume (a) Substantially 
reduces the ability of malicious attacks to change contents of 
system memory (e.g., the system memory 210 of FIG. 2) that 
stores state(s) of the platform software when in a low-power 55 
mode (e.g., the suspend-to-RAM power state 104); (b) 
Substantially reduces the ability of performing system 
memory replay attacks and/or rollback attacks; (c) enables 
designating multiple authenticated/non-authenticated 
regions in system memory (e.g., the system memory 210 of 60 
FIG. 2); (d) enables a host processor (e.g., a host processor 
202 of FIG. 2) to generate/authenticate a signature for 
selected protected regions (e.g., protected regions 218 of 
FIG. 2) without knowledge of the signing key; and (e) 
enables hardware manufacturers (e.g., of host processors 65 
(e.g., the host processor 202 of FIG. 2), secure processors 
(e.g., a secure processor 204 of FIG. 2), and/or processor 
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systems) and third-party vendors to specify amounts (e.g., at 
least minimal amounts) of protected regions (e.g., the pro 
tected regions 218 of FIG. 2) that are to be protected by 
using authentication and verification processes under the 
trusted resume techniques disclosed herein. As described in 
detail below, examples disclosed herein provide these pro 
tections by authenticating/signing critical portions of system 
memory (e.g., dynamic random access memory (DRAM)) 
during transitions into the suspend-to-RAM power state 104, 
and verifying those authenticated/signed critical portions of 
system memory when resuming out of the Suspend-to-RAM 
state 104 into the active power state 102. In disclosed 
examples, critical portions of a boot sequence are aggregated 
during the boot sequence Such that stage N of the boot 
sequence adds protected regions (e.g., the protected regions 
218 of FIG. 2) about stage N+1. To guard against rollback 
attacks, a random or pseudo-random value (e.g., a nonce 
value) is incorporated into the authenticating/signing pro 
cess and is stored in continuously powered memory (e.g., 
continuously powered memory 212 of FIG. 2) during the 
suspend-to-RAM power state 104. 

FIG. 2 illustrates example components of the example 
processor system 100 of FIG. 1 that may be used to manage 
power state transitions of the processor system 100. In the 
illustrated example, the processor system 100 includes a 
host processor (CPU) 202, a secure processor (CPU) 204, a 
flash memory 206, a host boot RAM 208, a system memory 
210, and a continuously powered memory 212. The proces 
sor system 100 of the illustrated example can be, for 
example, a server, a personal computer, a mobile phone 
(e.g., a cell phone), a personal digital assistant (PDA), an 
Internet appliance, a DVD player, a CD player, a digital 
Video recorder, a Blu-ray player, a gaming console, a per 
Sonal video recorder, a set-top box, or any other type of 
computing device. 

In the illustrated example, the host CPU 202, the secure 
CPU 204, and the host boot RAM 208 are located on the 
same silicon die so that inter-processor communications 
between the processors 202 and 204 and communications 
with the host boot RAM 208 are not exposed external to the 
silicon die. This provides further security in the examples 
disclosed herein by Substantially reducing external accessi 
bility to security communications and security data 
exchanged between the host CPU 202, the secure CPU204, 
and/or the host boot RAM 208. Also in the illustrated 
example, the flash memory 206 and the system memory 210 
are located on separate integrated circuits that are located on 
the same circuit board as the silicon die containing the host 
CPU202, the secure CPU 204, and the host boot RAM 208. 
The processors 202 and 204 can be implemented by using 

processors or controllers from any desired family or manu 
facturer. In the illustrated example, an inter-processor com 
munication (IPC) path 214 is provided between the proces 
sors 202 and 204 to enable inter-processor communications 
therebetween. In the illustrated example, the host processor 
202 includes the continuously powered memory 212 which 
may be implemented using an embedded static random 
access memory (SRAM). Because SRAM is a volatile 
memory, it remains powered (or a portion thereof remains 
powered) in the illustrated examples during low-power 
modes such as the suspend-to-RAM power state 104 of FIG. 
1 so that data stored therein is persisted. 
The processors 202 and 204 are in communication with 

the flash memory 206, the host boot RAM 208, and the 
system memory 210. Although not shown, the processors 
202 and 204 may also be in communication with a mass 
memory (e.g., a hard drive) that stores an operating system 
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and/or applications). In the illustrated example, the flash 
memory 206 is a non-volatile memory used to store param 
eters (e.g., security parameters and/or other parameters that 
are not persisted in Volatile memories when power is com 
pletely removed) for booting the processor system 100. The 
host boot RAM 208 of the illustrated example stores boot 
code for booting the processor System 100 and loading an 
operating system. The host boot RAM 208 of the illustrated 
example also stores a manufacturer required region table 
224 to indicate protected regions (e.g., the protected regions 
218 of FIG. 2) of platform software stored in the system 
memory 210. In the illustrated example, a hardware manu 
facturer of the host CPU 202, the secure CPU 204, the 
processor System 100, and/or one or more hardware com 
ponents of the processor system 100 specifies the regions 
(e.g., the protected regions 218) indicated in the manufac 
turer required region table 224 so that those specified 
regions are protected using examples disclosed herein dur 
ing the suspend-to-RAM power state 104 (FIG. 1) to imple 
ment a trusted resume. 

In the illustrated example, the host boot RAM 208 also 
stores a conditional access (CA) required regions table 226 
(e.g., a third-party required regions table) to indicate third 
party-specified protected regions (e.g., the protected regions 
218 of FIG. 2) of platform software stored in the system 
memory 210. In the illustrated examples, the CA required 
regions table 226 is accessible and modifiable by third 
parties for after-market products or developments (e.g., 
after-market software and/or hardware installations in the 
processor system 100). For example, one or more third 
parties specify the regions (e.g., the protected regions 218) 
indicated in the CA required regions table 226 so that those 
specified regions are protected using examples disclosed 
herein during the suspend-to-RAM power state 104 (FIG. 1) 
to implement a trusted resume. In the illustrated examples, 
the CA required regions table 226 is copied into and authen 
ticated from the host boot RAM 208 by the secure CPU 204 
before the host CPU 202 begins executing instructions. In 
the illustrated examples, this happens during power State 
transitions in which the host CPU 202 boots from its reset 
vector (e.g., when resuming from the Suspend-to-RAM 
power state 104 and/or during cold boots). In some 
examples, the CA required regions table 226 may be stored 
in an authenticated area of the host boot RAM 208 that is 
authenticated during a stage-1 boot loader (e.g., a stage-1 
boot process shown in FIG. 5). Alternatively, the CA 
required regions table 226 could be implemented as part of 
stage-1 boot loader parameter blocks. 

Using the manufacturer required regions table 224 and the 
CA required regions table 226 enables a hardware manu 
facturer and third parties to specify protected regions (e.g., 
the protected regions 218) that they deem useful of protect 
ing using examples disclosed herein. In some examples, the 
manufacturer required regions table 224 and the CA required 
regions table 226 may alternatively be implemented as a 
single table stored in the host boot RAM 208. 
The system memory 210 of the illustrated example stores 

the operating state(s) of platform Software (e.g., an operating 
system and/or applications) that is running at the time that 
the processor system 100 transitions from the active power 
state 102 to the suspend-to-RAM power state 104 of FIG. 1. 
In this manner, the processor System 102 can transition out 
of the suspend-to-RAM power state 104 to the active power 
state 102 based on the platform software state(s) stored in 
the system memory 210 to resume the same operating State 
that it was in before entering the suspend-to-RAM power 
state 104. For example, the operating system can resume to 
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6 
its same previous operating state, and applications that were 
previously loaded and running can resume to their same 
previous operating states. 
The system memory 210 of the illustrated example is 

implemented using a volatile dynamic random access 
memory (DRAM). In some examples, to enable such a 
volatile DRAM to persist its data while in the suspend-to 
RAM power state 104, at least a minimal amount of power 
is supplied to the volatile DRAM, and the volatile DRAM is 
set to operate in a low-power, self-refresh mode in which 
data stored therein is persisted. In other examples, the 
system memory 210 may be implemented using a cache 
memory, a volatile SRAM, and/or any other type of volatile 
or non-volatile memory. 

In the illustrated example, the system memory 210 stores 
a suspend-to-RAM (STR) data structure 216 and protected 
regions 218 of platform software. In the illustrated example, 
the protected regions 218 store select portions of platform 
software stored in the system memory 210 during the 
suspend-to-RAM power state 104, and that are to be pro 
tected from attacks by signing or authenticating the pro 
tected regions 218 using security parameters (e.g., signa 
tures). The STR data structure 216 stores addresses or 
pointers to the protected regions 218 of the platform soft 
ware in the system memory 210 that are to be protected 
using examples disclosed herein during the Suspend-to 
RAM power state 104. The STR data structure 216 of the 
illustrated example also stores the Security parameters (e.g., 
signatures) for authenticating its data, and determining the 
validity of its data when resuming from the Suspend-to 
RAM power state 104. An example format used to imple 
ment the STR data structure 216 in the illustrated examples 
is described below in connection with FIG. 3. 

Attacks may be attempted on the processor system 100 by 
attackers modifying the information in the STR data struc 
ture 216 to point to different regions of the system memory 
210 storing malicious Software in an attempt to cause the 
host CPU 202 to execute such malicious code when the 
processor system 100 resumes to the fully active power state 
102. To detect whether such modifications exist in the STR 
data structure 216, a verification process disclosed herein is 
performed during a trusted resume of the processor system 
100, and the verification process generates an error when it 
detects that the STR data structure 216 has been modified 
during the suspend-to-RAM power state 104. In this manner, 
the host CPU 202 and/or the secure CPU204 can prevent the 
processor system 100 from proceeding with the resume 
process so that the processor System 100 cannot be com 
promised by malicious Software. 

In the illustrated example, the continuously powered 
memory 212 of the host CPU 202 stores an example STR 
data structure pointer 220 that points to the storage location 
(e.g., a memory address) of the STR data structure 216 in the 
system memory 210. During a trusted resume process to 
transition the processor system 100 out of the suspend-to 
RAM power state 104, the host CPU 202 can retrieve the 
STR data structure pointer 220 to locate the STR data 
structure 216 to enable verifying the integrity of the pro 
tected regions 218 of the platform software. 

In the illustrated example, the continuously powered 
memory 212 of the host CPU 202 also stores an example 
random/pseudo-random value 222. The random/pseudo-ran 
dom value 222 of the illustrated example is used as a nonce 
value to generate verification signatures to confirm the 
integrity of the protected regions 208 of the platform soft 
ware stored in the system memory 210 during the Suspend 
to-RAM power state 104. In the illustrated example, the 
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random/pseudo-random value 222 is used to generate the 
verification signatures when the processor system 100 is 
transitioning into the suspend-to-RAM power state 104. 
After generating the verification signatures, the random/ 
pseudo-random value 222 is stored securely from undesired 
access in the continuously powered memory 212. In this 
manner, when resuming out of the Suspend-to-RAM power 
state 104, the random/pseudo-random value 222 can be 
retrieved from the continuously powered memory 212 and 
used to verify the integrity of the protected regions 218 of 
the platform software. In the illustrated example, the ran 
dom/pseudo-random value 222 is used to guard against 
replay/rollback attacks by serving as a unique secret value 
that is very difficult for any potential attacker to access or 
modify because it is stored in the continuously power 
memory 212 of the host CPU 202. In addition, the random/ 
pseudo-random value 222 is not easily predictable by an 
attacker because it is sufficiently random. In some examples, 
selecting a relatively large number of bits (e.g., 64 bits or 
more) for the random/pseudo-random value 222 also guards 
against replay/rollback attacks by making it very costly from 
a time and storage perspective for an attacker to launch a 
collision attack. For example, using a random/pseudo-ran 
dom value 222 with a relatively large number of bits would 
require an attacker to store many DRAM/STR data structure 
permutations to launch a collision attack. 

FIG. 3 illustrates an example suspend-to-RAM (STR) 
data structure format 300 that may be used to implement the 
STR data structure 216 of FIG. 2 to store signatures and 
location information to authenticate the protected regions 
218 of platform software persisted in the system memory 
210 of FIG. 2 during the suspend-to-RAM power state 104 
of FIG. 1. In the illustrated example, the STR data structure 
format 300 includes an STR header signature field 302 for 
storing an STR signature at a byte offset of Zero (0), and 
occupying a data size of 16 bytes in the STR data structure 
216. The STR header signature of the illustrated example is 
used to authenticate a STR header (e.g., stored in STR 
header fields 308) of the STR data structure 216 to confirm 
that it is valid (e.g., it has not been altered or compromised 
during the suspend-to-RAM power state 104). 
The STR data structure format 300 of the illustrated 

example includes a STR scatter/gather table signature field 
304 for storing a STR scatter/gather table signature at a byte 
offset of 16, and occupying a data size of 16 bytes in the STR 
data structure 216. In the illustrated examples, the STR 
scatter/gather table signature is used to authenticate an 
Nx8-byte scatter/gather table 310 stored in the STR data 
structure 216 to confirm that it is valid (e.g., it has not been 
altered or compromised during the Suspend-to-RAM power 
state 104). In the illustrated example, the scatter/gather table 
310 stores pointers to locations in the system memory 210 
storing the protected regions 218 of the platform software. 
The STR data structure format 300 of the illustrated 

example also includes a STR DRAM signature field 306 for 
storing a STR DRAM signature at a byte offset of 32, and 
occupying a data size of 16 bytes in the STR data structure 
216. In the illustrated examples, the STR DRAM signature 
is used to authenticate a DRAM area stipulated in the 
scatter/gather table 310 stored in the STR data structure 216 
to confirm that it is valid (e.g., it has not been altered or 
compromised during the suspend-to-RAM power state 104). 
In the illustrated example, the DRAM area stipulated by the 
scatter/gather table 310 is pointed to by a pointer stored in 
a pointer-0 field 312, and it is the first 16-byte aligned buffer 
of the protected regions 218 (FIG. 2). 
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8 
In the illustrated examples, signatures stored in the STR 

header signature field 302, the STR scatter/gather table 
signature field 304, and the STR DRAM signature field 306 
are used to sign the STR data structure 216 when the 
processor System 100 is transitioning into the Suspend-to 
RAM power state 104. In this manner, the stored signatures 
can be used when resuming the processor system 100 out of 
the suspend-to-RAM power state 104 to determine whether 
the STR data structure 216 is valid (e.g., has not been altered 
or compromised during the Suspend-to-RAM power state 
104). For example, potential attackers may modify the 
information in the STR data structure 216 to point to 
different regions of the system memory 210 storing mali 
cious software in an attempt to cause the host CPU 202 to 
execute such malicious code when the processor system 100 
resumes to the fully active power state 102. If such modi 
fications exist in the STR data structure 216, a verification 
process performed during a trusted resume of the processor 
system 100 generates an error based on the signature(s) of 
one or more of the STR header signature field 302, the STR 
scatter/gather table signature field 304, and/or the STR 
DRAM signature field 306. 

Although three signature fields 302, 304, and 306 are 
shown in FIG. 3, fewer signatures (e.g., one signature or two 
signatures) or more signatures (e.g., more than three signa 
tures) may be used with the examples disclosed herein to 
authenticate/sign the STR data structure 216 and confirm its 
validity during resume operations. In addition, although 
specific types of signatures are disclosed herein (e.g., a 
header signature, a scatter/gather table signature, and a 
DRAM signature), other types of signatures and/or other 
manners of generating signatures may be used with 
examples disclosed herein to authenticate/sign the STR data 
structure 216 and confirm its validity during resume opera 
tions. For example, one or more signatures may be generated 
based on different information (e.g., more information, less 
information, or differently segmented information) in the 
STR data structure 216, so long as the signature(s) can be 
used to authenticate/sign the STR data structure 216 when 
entering a low-power mode, and validate it during a resume 
process. 
The STR header fields 308 of the illustrated example 

includes an STR data structure version field 316 to indicate 
a revision of the STR data structure format 300, and a 
number of scatter/gather array entries field 318 to indicate 
the number of scatter/gather entries stored in the scatter/ 
gather table 310. 

In the illustrated example, each scatter/gather entry in the 
scatter/gather table 310 includes the memory address loca 
tion and data size of a corresponding memory region in the 
protected regions 218 (FIG. 2). The scatter/gather table 310 
includes the pointer-0 field 312 to store a pointer pointing to 
the memory address location in the system memory 210 of 
the first 16-byte aligned buffer that is protected by the STR 
DRAM signature stored in the STR DRAM signature field 
306. A size-0 field 320 of the scatter/gather table 310 stores 
the data size in bytes of the first 16-byte aligned buffer. The 
scatter/gather table 310 of the illustrated example includes a 
plurality of other pointer/size field pairs 322 indicating 
memory address locations in System memory 210 and cor 
responding data sizes of other 16-byte aligned buffers up to 
an Nth 16-byte aligned buffer corresponding to a pointer-N 
field 324 and a size-N field 326. In the illustrated example, 
the pointer and size fields 312,320,322, 324, and 326 refer 
to 16-byte aligned buffers in the system memory 210 that 
store the protected regions 218. By storing the addresses and 
sizes of the protected regions 218 in this manner in the STR 
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data structure 216, examples disclosed herein can determine 
whether it is safe to access the protected regions 218 when 
resuming from the suspend-to-RAM power state 104 by 
relying on an authentication/signing of the STR data struc 
ture 216. 

In the illustrated example, the scatter/gather table 310 is 
extensible to being a size that is a multiple of 16 bytes. For 
this extensibility, the scatter/gather table 310 is provided 
with padding bytes 328. 

Although the example STR data structure format 300 is 
shown in FIG. 3 in connection with particular data sizes 
(e.g., 4 bytes, 8 bytes, 16 bytes, 32 bytes, etc.) and byte 
offsets, other data sizes and/or byte offsets may be used for 
parameters of the STR data structure format 300 (e.g., data 
sizes and/or byte offsets of signatures and/or other param 
eters). Although the scatter/gather table 310 refers to 16-byte 
aligned buffers, the scatter/gather table 310 may be adapted 
for use with other buffer sizes. In addition, although pointers 
and size values in the scatter/gather table 310 are used in the 
illustrated example to specify locations and sizes of the 
protected regions 218 (FIG. 2), other suitable manners for 
specifying locations and/or sizes of the protected regions 
218 may additionally or alternatively be used. 

FIGS. 4, 5, 6, 7A, 7B, and 8-10 are representative of 
machine readable instructions that may be executed by the 
processor system 100 (FIGS. 1 and 2) to protect regions of 
memory during low-power States as disclosed herein. In 
these examples, the machine readable instructions comprise 
programs for execution by one or more processors such as 
the host CPU 202 and the Secure CPU 204 of FIG. 2. The 
programs may be embodied in Software stored on a tangible 
computer readable medium such as a CD-ROM, a floppy 
disk, a hard drive, a digital versatile disk (DVD), a Blu-ray 
disk, or a memory associated with the processors 202 and 
204, but the entire program and/or parts thereof could 
alternatively be executed by a device other than the proces 
sors 202 and 204 and/or embodied in firmware or dedicated 
hardware. Further, although the example programs are 
described with reference to the flowcharts illustrated in 
FIGS. 4, 5, 6, 7A, 7B, and 8-10, many other methods of 
implementing the example processor System 100 may alter 
natively be used. For example, the order of execution of the 
blocks may be changed, and/or some of the blocks described 
may be changed, eliminated, or combined. 
As mentioned above, the example processes of FIGS. 4, 

5, 6, 7A, 7B, and 8-10 may be implemented using coded 
instructions (e.g., computer readable instructions) stored on 
a tangible computer readable medium Such as a hard disk 
drive, a flash memory, a read-only memory (ROM), a 
compact disk (CD), a digital versatile disk (DVD), a cache, 
a random-access memory (RAM) and/or any other storage 
media in which information is stored for any duration (e.g., 
for extended time periods, permanently, brief instances, for 
temporarily buffering, and/or for caching of the informa 
tion). As used herein, the term tangible computer readable 
medium is expressly defined to include any type of computer 
readable storage and to exclude propagating signals. Addi 
tionally or alternatively, the example processes of FIGS. 4, 
5, 6, 7A, 7B, and 8-10 may be implemented using coded 
instructions (e.g., computer readable instructions) stored on 
a non-transitory computer readable medium such as a hard 
disk drive, a flash memory, a read-only memory, a compact 
disk, a digital versatile disk, a cache, a random-access 
memory and/or any other storage media in which informa 
tion is stored for any duration (e.g., for extended time 
periods, permanently, brief instances, for temporarily buff 
ering, and/or for caching of the information). As used herein, 
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the term non-transitory computer readable medium is 
expressly defined to include any type of computer readable 
storage device or storage disc and to exclude propagating 
signals. As used herein, when the phrase “at least’ is used as 
the transition term in a preamble of a claim, it is open-ended 
in the same manner as the term “comprising is open ended. 
Thus, a claim using “at least’ as the transition term in its 
preamble may include elements in addition to those 
expressly recited in the claim. 

FIG. 4 is an example flow diagram representative of 
computer readable instructions to transition the processor 
system 100 of FIG. 1 between the active power state 102 
(FIG. 1) and the suspend-to-RAM power state 104 (FIG. 1) 
in accordance with the teachings of this disclosure. For a 
more detailed discussion, FIGS. 5, 6, 7A, 7B, and 8-10 
described below show additional example operations that 
may be performed to transition the processor system 100 
between the active power state 102 and the suspend-to-RAM 
power state 104 as disclosed herein. 

Turning in detail to FIG. 4, initially, the host CPU 202 
(FIG. 2) receives a low-power mode instruction (block 402). 
The low-power mode instruction of the illustrated example 
is an instruction to transition the processor system 100 
(FIGS. 1 and 2) to the suspend-to-RAM power state 104 
(FIG. 1). The secure CPU 204 (FIG. 2) adds entries to 
identify the protected regions 218 in the STR data structure 
216 of FIG. 2 (block 404). For example, the secure CPU204 
stores information indicating the quantity of the protected 
regions 218 in the number of scatter/gather array entries 
field 318 (FIG.3) of the STR data structure 216 (FIG. 2), and 
stores entries in the scatter/gather table 310 (FIG. 3) of the 
STR data structure 216 describing the locations and sizes of 
the protected regions 218. In the illustrated example, the 
secure CPU204 determines which memory regions are to be 
protected regions 218 based on memory regions specified by 
a hardware manufacturer in the manufacturer required 
regions table 224 of FIG. 2 and/or memory regions specified 
by one or more third parties in the conditional access 
required regions table 226 of FIG. 2. 
The secure CPU 204 generates signatures (block 406) for 

authenticating the STR data structure 216. For example, the 
secure CPU 204 generates signatures for storing in the STR 
header signature field 302, the STR scatter/gather table 
signature 304, and the STR DRAM signature field 306 of 
FIG. 3. The secure CPU 204 may use any suitable function 
for generating the signatures including, for example, a 
cipher-based message authentication code (CMAC) func 
tion, a hash-based message authentication code (HMAC), or 
any other Suitable function for generating signatures. In the 
illustrated example, the secure CPU 204 generates a STR 
header signature by applying the signature generating func 
tion to the STR header Stored in the STR header field 308 
(FIG. 3) of the STR data structure 216. In the illustrated 
example, the secure CPU204 generates a STR scatter/gather 
table signature by applying the signature generating function 
to the STR scatter/gather table stored in the STR scatter/ 
gather table 310 (FIG. 3) of the STR data structure 216. In 
the illustrated example, the secure CPU204 generates a STR 
DRAM signature by applying the signature generating func 
tion to the DRAM area pointed to by the pointer-0 field 312 
of the scatter/gather table 310, and occupying the first 
16-byte aligned buffer of the protected regions 218 (FIG. 2). 
In some examples, the signature generating function may be 
used in combination with other data (e.g., random/pseudo 
random values) when generating the signatures to add 
additional authentication strength. 
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The secure CPU204 stores the signatures in the STR data 
structure 216 (block 408). For example, the secure CPU204 
stores the signatures in the STR header signature field 302, 
the STR scatter/gather table signature 304, and the STR 
DRAM signature field 306 (FIG. 3) of the STR data struc 
ture 216 (FIG. 2). The processor system 100 enters the 
low-power mode (block 410). In the illustrated example, the 
low-power mode is the suspend-to-RAM power state 104 of 
FIG 1. 
At some Subsequent time, the processor system 100 

receives a resume instruction (block 412). For example, the 
processor system 100 receives a wake-on-LAN instruction 
via the communication subsystem 108 of FIG. 1, or receives 
a user input via the user interface 112 of FIG. 1, or receives 
any other Suitable input (e.g., a wake-up timer input, a 
service interrupt, etc.) to transition the processor system 100 
from the suspend-to-RAM state 104 to the active state 102. 
The Secure CPU 204 reads the STR data structure 216 

(block 414) from the system memory 210. The secure CPU 
204 determines whether the STR data structure 216 is valid 
(block 416). For example, the secure CPU 204 re-generates 
signatures in the same manner as described above in con 
nection with block 406 for comparing against the signatures 
stored in the STR header signature field 302, the STR 
scatter/gather table signature field 304, and the STR DRAM 
signature field 306 of FIG. 3. In this manner, the secure CPU 
204 can compare each signature generated at block 416 with 
its corresponding signature generated at block 406 (e.g., the 
STR header signature, the STR scatter/gather table signa 
ture, and the STR DRAM signature) to verify different parts 
of the STR data structure 216 and confirm whether the STR 
data structure 216 is valid. If any re-generated signature does 
not match its corresponding signature from block 406, then 
the secure CPU 204 can determine that a potential attack on 
the processor system 100 is being attempted. 

If the Secure CPU 204 determines that the STR data 
structure 216 is valid (block 418), the host CPU 202 restores 
the state(s) of the platform software (block 420). The host 
CPU 202 enables the active power state 102 of the processor 
system 100 (block 422). However, if at block 418 the secure 
CPU 204 determines that the STR data structure 216 is not 
valid (e.g., one of the re-generated signatures does not match 
its corresponding signature generated at block 406 and 
stored in the STR data structure 216), the secure CPU 204 
returns an error to the host CPU 204 (block 424). In this 
manner, the host CPU204 can prevent the processor system 
100 from resuming the active state 100, and can perform a 
pre-defined operation or process to prevent an attack on the 
processor system 100. In some examples, such a pre-defined 
operation or process involves initiating a hard reset of the 
processor system 100. After enabling the active power state 
102 at block 422 or after returning an error at block 424, the 
example process of FIG. 4 ends. 

FIG. 5 illustrates an example flow diagram representative 
of computer readable instructions that may be executed to 
perform a host boot sequence to boot the processor system 
100 (FIGS. 1 and 2) during a cold boot or a resume from the 
suspend-to-RAM power state 104 (FIG. 1). In the illustrated 
example, the operations up to and including block 518 are 
performed as part of a stage-1 (S1) boot process, and the 
operations of blocks 520, 522, and 524 are performed during 
a stage-2 (S2) boot process. 

Initially, the host CPU 202 executes host boot ram instruc 
tions (block 502) stored in the host boot ram 208. The host 
CPU 202 initializes cache and the flash memory 206 (block 
504). The host CPU 202 initializes external DRAM (block 
506). In the illustrated example, the external DRAM is the 
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system memory 210. In some examples, the host CPU 202 
initializes the external DRAM using S1 parameters (stage-1 
boot loader parameters) stored in the host boot RAM 208. 
The host CPU 202 sends an ADD regions IPC instruction 

to the secure CPU 204 via the inter-processor communica 
tion path 214 of FIG. 2 (block 508). In the illustrated 
example, the host CPU 202 issues the ADD regions IPC 
instruction so that regions of platform Software stored/ 
created during a stage 2 boot process can be designated as 
protected regions 218 (FIG. 2) so that they can be protected 
using the signing/authentication techniques disclosed 
herein. 
The host CPU 202 determines whether it is performing a 

cold boot (block 510) from a full power-off state. If it is 
performing a cold boot, the host CPU 202 logs the cold boot 
(block 512) and calls a stage-2 authentication sequence 
(block 514). Otherwise, if the host CPU 202 determines that 
it is not performing a cold boot (block 510), it is resuming 
form the suspend-to-RAM power state 104 (FIG. 1), and the 
host CPU 202 calls a verify DRAM process (block 516). An 
example process to verify DRAM that may be called at 
block 516 is described below in connection with FIGS. 7A 
and 7B. 

After calling the stage-2 authentication sequence at block 
514, or after calling the verify DRAM process at block 516, 
the host CPU 202 jumps to a stage-2 common entry point 
(block 518). In the illustrated example, the stage-2 common 
entry point allows the host CPU 202 to execute a stage-2 
boot process. 

During the stage-2 boot process, the host CPU 202 
performs other initialization operations (block 520). Such 
other initialization operations may include other initializing 
other portions of the microprocessor subsystem 106 and/or 
the memory subsystem 110, initializing portions of the 
communication Subsystem 108, initializing other portions of 
the user interface subsystem 112 of FIG. 1, and/or perform 
ing any other initializations configured by System designers 
as needing to occur during the stage-2 boot process. 
The host CPU 202 calls a resume switch process (block 

522). An example resume switch process that may be called 
at block 522 is described below in connection with FIG. 8. 
In the illustrated examples, the resume Switch process 
enables adding an ACPI table as a protected region 218. The 
host CPU 202 then finishes the remainder of the boot 
operations (block 524). In the illustrated example, the 
remaining boot operations that are performed are based on 
whether the host CPU 202 is performing a cold boot or a 
resume. The example process of FIG. 5 then ends. 

FIG. 6 illustrates an example flow diagram representative 
of computer readable instructions that may be executed to 
transition the processor system 100 (FIGS. 1 and 2) to the 
suspend-to-RAM power state 104 (FIG. 1) from the active 
power state 102 (FIG. 1). In the illustrated example, the 
example process of FIG. 6 may be invoked by a user input 
(e.g., a user pressing/selecting a sleep button), a timeout 
interrupt, or any other Suitable user and/or machine input to 
transition the processor system 100 to a low-power mode. 

Initially, the host CPU 202 freezes applications and 
middleware (block 602), for example, from executing any 
further until the processor system 100 resumes back to the 
active power state 102. The host CPU 202 suspends drivers 
(block 604). The host CPU 202 adds the protected regions 
218 to the STR data structure 216 (block 606). In the 
illustrated example, the host CPU 202 adds the protected 
regions 218 of platform software to the STR data structure 
216 by adding location and size information in a scatter/ 
gather table of the STR data structure 216 in accordance 
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with the format of the scatter/gather table 310 of FIG. 3. In 
this manner, the STR data structure 216 can be used to locate 
the protected regions 218 in the system memory 210. The 
host CPU 202 sends an IPC instruction to the Secure CPU 
204 to sign/authenticate the DRAM (block 608). The sign 
DRAM IPC instruction of the illustrated example causes the 
secure CPU204 to sign the STR data structure 216 stored in 
the system memory 210. 

The secure CPU 204 then performs operations to sign the 
STR data structure 216. Initially, the secure CPU 204 
generates a nonce value (block 610). In the illustrated 
example, the generated nonce value is the random or 
pseudo-random value 222 of FIG. 2, and it is used to 
generate signatures for signing/authenticating the STR data 
structure 216. The signatures of the illustrated example 
include signatures to be stored in the STR header signature 
field 302, the STR scatter/gather table signature field 304, 
and the STR DRAM signature field 306 of FIG. 3. In the 
illustrated example, the random/pseudo-random value 222 is 
used for the nonce value to make it difficult for any potential 
attacker to replay the contents of DRAM. 
The secure CPU 204 stores the nonce value (e.g., the 

random/pseudo-random value 222) and the STR data struc 
ture pointer 220 (FIG. 2) in the continuously powered 
memory 212 (block 612). In this manner, the nonce value 
(e.g., the random/pseudo-random value 222) and the STR 
data structure pointer 220 are persisted during the Suspend 
to-RAM power state 104, and are accessible to resume to the 
active power state 102, because the continuously powered 
memory 212 remains powered during the suspend-to-RAM 
power state 104. 

The secure CPU204 signs the STR data structure 216 of 
FIG. 2 (block 614). In the illustrated example, the secure 
CPU signs the STR data structure 216 by generating the 
signatures corresponding to the STR header signature field 
302, the STR scatter/gather table signature field 304, and the 
STR DRAM signature field 306 of FIG. 3. An example 
signature process that may be used to implement block 614 
is described below in connection with FIG. 9. 
The Secure CPU 204 Stores the STR data structure 216 

and the signatures (e.g., the signatures in the STR header 
signature field 302, the STR scatter/gather table signature 
field 304, and the STR DRAM signature field 306) in the 
system memory 210 (block 616). The host CPU 202 tran 
sitions the processor system 100 into the suspend-to-RAM 
power state 104 (block 618). The example process of FIG. 
6 then ends. 

FIGS. 7A and 7B illustrate an example flow diagram 
representative of computer readable instructions that may be 
executed to verify the validity of the protected regions 218 
(FIG. 2) in the system memory 210 (FIG. 2) storing data for 
a software platform operating state. The example process of 
FIGS. 7A and 7B may be instantiated from block 516 of 
FIG. 5. As shown in FIG. 7A, initially, the host CPU 202 
sends a verify IPC command to the secure CPU 204 (block 
204). The verify IPC command causes the secure CPU 204 
to perform a verification process to verify the validity of the 
protected regions 218. The secure CPU 204 reads a nonce 
value (e.g., the random/pseudo-random value 222) from the 
continuously powered memory 212 (block 704). In the 
illustrated example, the nonce value is the random/pseudo 
random value 222 (FIG. 2) that was generated at block 610 
of FIG. 6 when transitioning the processor system 100 to the 
suspend-to-RAM power state 104. 
The secure CPU 204 overwrites the nonce value (e.g., the 

random/pseudo-random value 222) in the continuously pow 
ered memory 212 (block 706), for example, with any 
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random data. In the illustrated example, overwriting the 
nonce value in this manner guards against replay attacks by 
not leaving the nonce value exposed for re-use by potential 
attackers. The secure CPU 204 reads the STR data structure 
pointer 220 from the continuously powered memory 212 
(block 708). The secure CPU 204 uses the STR data 
structure pointer 220 to locate and read the STR data 
structure 216 (FIG. 2) from the system memory 210 (block 
710). The secure CPU 204 verifies the validity of the STR 
data structure 216 (block 712). An example process that may 
be used to verify the validity of the STR data structure 216 
at block 712 is described below in connection with FIG. 10. 
The secure CPU 204 determines whether the signatures 

are verified (block 714) (FIG. 7B). In the illustrated 
example, the signatures that are checked for validity are the 
signatures of the signatures in the STR header signature field 
302, the STR scatter/gather table signature field 304, and the 
STR DRAM signature field 306 of FIG. 3. If the secure CPU 
204 determines at block 714 that one or more of the 
signatures is/are not verified as valid, the secure CPU 204 
generates an error (block 716). After generating the error at 
block 716, or if the secure CPU 204 determines at block 714 
that all of the signatures are verified as valid, the secure CPU 
204 reads the CA required region table 226 of FIG. 2 (block 
718). The secure CPU 204 also reads the manufacturer 
required region table 224 of FIG. 2 (block 720). In the 
illustrated example, the secure CPU 204 may retrieve the 
CA required region table 226 and the manufacturer required 
region table 224 from the host boot RAM 208 at addresses 
provided by the host CPU 202. For example, the addresses 
at which the CA required region table 226 and the manu 
facturer required region table 224 are located may be stored 
as pointers in S1 parameters, and may be retrieved by the 
host CPU 202 form the S1 parameters. 
The secure CPU 204 determines whether the regions 

specified in the CA required regions table 226 are covered by 
the STR data structure 216 (block 722). For example, the 
secure CPU 204 compares the regions specified in the CA 
required regions table 226 to the protected regions 218 
specified in the scatter/gather table 310 (FIG. 3) of the STR 
data structure 216. If the regions specified in the CA required 
regions table 226 are not covered by the STR data structure 
216 (block 722), the secure CPU 204 generates an error 
(block 724). After generating the error at block 724, or if the 
secure CPU 204 determines at block 722 that the regions 
specified in the CA required regions table 226 are covered by 
the STR data structure 216, the secure CPU204 determines 
whether the regions specified in the manufacturer required 
regions table 224 are covered by the STR data structure 216 
(block 726). For example, the secure CPU204 compares the 
regions specified in the manufacturer required regions table 
224 to the protected regions 218 specified in the scatter/ 
gather table 310 (FIG. 3) of the STR data structure 216. If 
the regions specified in the manufacturer required regions 
table 224 are not covered by the STR data structure 216 
(block 726), the secure CPU 204 generates an error (block 
728). After generating the error at block 728, or if the secure 
CPU204 determines at block 726 that the regions specified 
in the manufacturer required regions table 224 are covered 
by the STR data structure 216, the secure CPU 204 returns 
a status to the host CPU 202 (block 730) indicating, for 
example, whether any verification errors were generated, 
whether the signatures were successfully verified as valid at 
block 714, and/or whether the regions specified in the CA 
required regions table 226 and the manufacturer required 
regions table 224 are covered by the STR data structure 216. 
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The host CPU 202 determines whether the DRAM (e.g., 
the system memory 210) is verified as valid (block 732), for 
example, based on the status (e.g., an error status or a 
verification success status) received from the secure CPU 
204. If the DRAM is not verified, the host CPU 202 
performs a hardware reset (block 734). In the illustrated 
example, when the DRAM is not verified, it is possible that 
an attack could be made on the processor system 100. As 
such, a hardware reset is used at block 734 to re-initialize the 
processor system 100 to boot anew from a cold boot state so 
that contents of the system memory 210 are discarded and 
are re-loaded and/or re-initialized. After performing the 
hardware reset 734, or if the DRAM is verified as valid at 
block 732, the example process of FIGS. 7A and 7B ends 
and/or returns to a calling function or process such as the 
example process of FIG. 5. 

FIG. 8 illustrates an example flow diagram representative 
of computer readable instructions that may be executed to 
boot the processor system 100 (FIGS. 1 and 2) under a cold 
boot process or a Suspend-to-RAM resume process. The 
example process of FIG. 8 may be instantiated by the call 
resume switch operation of block 522 of FIG. 5. Initially, the 
host CPU 202 reads a cold boot resume flag from an on-chip 
register (block 802). For example, the cold boot resume flag 
may be set in an on-chip register in the host CPU 202 to 
indicate whether the boot process is a cold boot process, or 
is a resume process to transition the processor System 100 
from a low-power mode such as the suspend-to-RAM power 
state 104 to the active power state 102 of FIG. 1. 
The host CPU 202 determines whether the boot process is 

a cold boot or a resume (block 804) based on the cold boot 
resume flag read at block 802. If the boot process is a cold 
boot (block 804), the host CPU 202 generates an ACPI table 
(block 806) and adds the ACPI table to the protected regions 
218 (block 808) as part of a CEFDK (Consumer Electronics 
Firmware Development Kit) stage-2 process. In the illus 
trated example, the ACPI table is added to the protected 
regions 218 so that the ACPI table is protected by the 
signing/authentication of the STR data structure 216. The 
host CPU 202 sets a wake vector in the ACPI table (block 
810) as part of an operating system process. Control then 
returns to a cold boot path (e.g., in FIG. 5), and the example 
process of FIG. 8 ends. 

If the host CPU 202 determines at block 804 that the boot 
process is a resume, the host CPU 202 reads a previously 
generated and stored ACPI table (block 812), and uses a 
wake vector in the ACPI table as an entry point in an 
operating system (block 814) as part of a CEFDK stage-2 
process to proceed with the resume process. In the illustrated 
example, the ACPI table accessed at blocks 812 and 814 
may be an ACPI table generated and stored in the protected 
regions 218 during a cold boot process (e.g., at blocks 806 
and 808), and the wake vector used at block 814 may be a 
wake vector set during the cold boot process (e.g., at block 
810). Control then jumps to a resume entry point, and the 
example process of FIG. 8 ends. 

FIG. 9 illustrates an example flow diagram representative 
of computer readable instructions that may be executed to 
generate signatures useable to authenticate? sign the STR 
data structure 216 of FIG. 2. The example process of FIG. 
9 may be used to implement the operation of block 614 of 
FIG. 6. The example process of FIG. 9 generates keys used 
to generate the signatures of the STR header signature field 
302, the STR scatter/gather table signature field 304, and the 
STR DRAM signature field 306 of FIG. 3 to sign the STR 
data structure 216 of FIG. 2. The keys generated in the 
process of FIG. 9 are on-die secret keys that are handled 
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securely so that they are not accessible by the host software. 
In the illustrated example, to ensure the security of the keys, 
only the secure CPU 204 is able to generate the keys. In 
addition, the secure CPU 204 of the illustrated example is 
configured to generate the keys using a process that enables 
the secure CPU 204 to identically re-create or re-generate 
the keys at later times by, for example, seeding an on-die key 
generator with the same value when a key needs to be 
re-created. The keys of the illustrated example are identi 
cally re-creatable so that the secure CPU 204 can sign the 
STR data structure 216 based on keys generated during a 
transition to the suspend-to-RAM power state 104, and so 
that upon resuming from the Suspend-to-RAM power State 
104, the secure CPU204 can generate the same keys for use 
in confirming the authentication/signing of the STR data 
structure 216 that occurred when entering the Suspend-to 
RAM power state 104. 
As shown in FIG. 9, initially, the secure CPU 204 

generates an STR root generation key (block 902). In the 
illustrated example, the secure CPU 204 uses the STR root 
generation key to generate Subsequent keys for generating 
the signatures of the STR header signature field 302, the 
STR scatter/gather table signature field 304, and the STR 
DRAM signature field 306 of FIG. 3. The secure CPU 204 
generates an STR header key (block 904) using the STR root 
generation key. The secure CPU 204 generates an STR 
header signature (block 906), for example, corresponding to 
the STR header signature field 302. In the illustrated 
example, the secure CPU 204 generates the STR header 
signature by applying a signature function (e.g., a CMAC 
function, an HMAC function, etc.) to the STR header key 
generated at block 904, and a concatenation of an STR 
header (e.g., stored in the STR header 308 of FIG. 3) and a 
nonce value (e.g., the random/pseudo-random value 222 of 
FIG. 2). For example, the signature generation function used 
at block 906 may be SIGNATURE(STR HEADER KEY, 
CONCATENATE(STR HEADER, NONCE)). 
The secure CPU 204 generates an STR scatter/gather 

table key (block 908) using the STR root generation key. The 
secure CPU 204 generates an STR scatter/gather table 
signature (block 910), for example, corresponding to the 
STR scatter/gather table 310 of FIG. 3. In the illustrated 
example, the secure CPU 204 generates the STR scatter/ 
gather table signature by applying a signature function (e.g., 
a CMAC function, an HMAC function, etc.) to the STR 
scatter/gather table key generated at block 908, and a 
concatenation of information stored in the STR scatter/ 
gather table 310 (e.g., pointer and size information stored in 
the fields 312, 320, 322, 324, 326, and 328 of the STR 
scatter/gather table 310 of FIG. 3) and a nonce value (e.g., 
the random/pseudo-random value 222 of FIG. 2). For 
example, the signature generation function used at block 906 
may be SIGNATURE(STR SCATTER/GATHER TABLE 
KEY, CONCATENATE(SCATTER/GATHER TABLE, 
NONCE)). 
The secure CPU204 generates an STRDRAM key (block 

912) using the STR root generation key. The secure CPU 
204 generates an STR DRAM signature (block 914), for 
example, corresponding to the first 16-byte aligned buffer of 
the protected regions 218 pointed to by a pointer stored in 
the pointer-0 field 312 of the scatter/gather table 310. In the 
illustrated example, the secure CPU 204 generates the STR 
DRAM signature by applying a signature function (e.g., a 
CMAC function, an HMAC function, etc.) to the STR 
DRAM key generated at block 912, and a concatenation of 
the 16-byte aligned buffer of the protected regions 218 
pointed to by the pointer in the pointer-0 field 312, and a 
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nonce value (e.g., the random/pseudo-random value 222 of 
FIG. 2). For example, the signature generation function used 
at block 914 may be SIGNATURE(STR DRAM KEY, 
CONCATENATE(STR DRAM AREA, NONCE)). 
The secure CPU204 destroys the keys generated at blocks 

902, 904, 908, and 912 (block 916). Destroying the keys 
provides further protection against the keys being accessed 
in undesirable manners. The example process of FIG. 9 
returns the STR header signature, the STR SG table signa 
ture, and the STR DRAM key (block 918) to a calling 
function or process such as the example process of FIG. 6. 
The example process of FIG. 9 then ends. 

Although the example process of FIG. 9 is described as 
generating three signatures (i.e., the signatures generated at 
blocks 906, 910, and 914), in other examples, fewer signa 
tures (e.g., one signature or two signatures) or more signa 
tures (e.g., more than three signatures) may be generated for 
use in authenticating/signing the STR data structure 216. 

FIG. 10 illustrates an example flow diagram representa 
tive of computer readable instructions that may be executed 
to verify the validity the STR data structure 216 (FIG. 2). 
The example process of FIG. 10 may be used to implement 
the operation of 712 of FIG. 7A when verifying DRAM 
during a resume process from the Suspend-to-RAM power 
state 104 of FIG. 1. To confirm the validity of the STR data 
structure 218, the example process is used to generate keys 
and signatures in the same manner as described above in 
connection with FIG. 9. As discussed above, the keys used 
to generate the signatures are identically re-creatable by the 
secure CPU 204 at subsequent times, for example, by 
seeding a key generator with the same seed value as used in 
the process of FIG. 9. The keys are then used to generate 
signatures based on the STR data structure 216 to compare 
against the signatures stored in the STR data structure 216 
(e.g., in the STR header signature field 302, the STR 
scatter/gather table signature field 304, and the STR DRAM 
signature field 306 of FIG. 3). Because the keys generated in 
the example process of FIG. 10 are identical to the keys 
generated in the example process of FIG. 9, the signatures 
generated in the verification process of FIG. 10 when 
resuming from the suspend-to-RAM power state 104 should 
match the signatures generated in the authentication process 
of FIG. 9 when entering the suspend-to-RAM power state 
104, if the contents of the STR data structure 216 have not 
been altered (e.g., have not been compromised by a potential 
attacker). 
As shown in FIG. 10, initially, the secure CPU 204 

generates a STR root generation key (block 1002). For 
example, the secure CPU 204 can generate the STR root 
generation key in the same manner as it generated the STR 
root generation key at block 902 of FIG. 9. The secure CPU 
204 generates a STR header key (block 1004), for example, 
in the same manner as it generated the STR header key at 
block 904 of FIG. 9. The secure CPU 204 generates an STR 
header signature (block 1006), for example, in the same 
manner as it generated the STR header signature (e.g., of the 
STR header signature field 302) at block 906 of FIG. 9. 
The Secure CPU 204 verifies the STR header of the STR 

data structure 216 (block 1008). For example, the secure 
CPU 204 compares the STR header signature generated at 
block 1006 to the STR header signature stored in the STR 
data structure 216 (e.g., in the STR header signature field 
302 of FIG. 3) to determine whether the STR header (e.g., 
the STR header in the STR header field 308 of FIG. 3) of the 
STR data structure 216 is valid. If the STR header has not 
changed since the processor System 100 entered the Sus 
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pend-to-RAM power state 104, the signatures will match to 
confirm that the STR header is valid. 
The secure CPU 204 generates an STR scatter/gather 

table key (block 1010), for example, in the same manner as 
it generated the STR scatter/gather table key at block 908 of 
FIG.9. The secure CPU204 generates an STR scatter/gather 
table signature (block 1012), for example, in the same 
manner as it generated the STR scatter/gather table signature 
at block 910 of FIG. 9. The Secure CPU 204 verifies the STR 
scatter/gather table of the STR data structure 216 (block 
1014). For example, the secure CPU 204 compares the STR 
scatter/gather signature generated at block 1006 to the STR 
scatter/gather signature stored in the STR data structure 216 
(e.g., in the STR scatter/gather signature field 304 of FIG. 3) 
to determine whether the STR scatter/gather table (e.g., the 
STR scatter/gather table location and size information in the 
STR scatter/gather table 310 of FIG. 3) of the STR data 
structure 216 is valid. If the STR scatter/gather table infor 
mation has not changed since the processor system 100 
entered the suspend-to-RAM power state 104, the signatures 
will match to confirm that the STR scatter/gather table 
information is valid. 
The secure CPU204 generates an STRDRAM key (block 

1016), for example, in the same manner as it generated the 
STR DRAM key at block 912 of FIG. 9. The secure CPU 
204 generates an STR DRAM signature (block 1018), for 
example, in the same manner as it generated the STR 
DRAM signature at block 914 of FIG. 9. The secure CPU 
204 verifies the STR DRAM area pointed to by the STR data 
structure 216 (block 1020). For example, the secure CPU 
204 compares the STR DRAM signature generated at block 
1018 to the STR DRAM signature stored in the STR data 
structure 216 (e.g., in the STR DRAM signature field 306 of 
FIG. 3) to determine whether the 16-byte aligned buffer of 
the protected regions 218 pointed to by the pointer-O 312 of 
FIG. 3 is valid. If the information in the 16-byte aligned 
buffer has not changed since the processor system 100 
entered the suspend-to-RAM power state 104, the signatures 
will match to confirm that the 16-byte aligned buffer of the 
protected regions 218 pointed to by the pointer in the 
pointer-0 field 312 is valid. 
The secure CPU204 destroys the keys generated at blocks 

1002, 1004, 1010, and 1016 (block 1022). Destroying the 
keys provides further protection against the keys being 
accessed in undesirable manners. The example process of 
FIG. 10 returns the verification status to a calling function or 
process such as the example process of FIGS. 7A and 7B, 
and the example process of FIG. 10 ends. 

Although the example process of FIG. 10 is described as 
generating three signatures (i.e., the signatures generated at 
blocks 1006, 1012, and 1018), in other examples, fewer 
signatures (e.g., one signature or two signatures) or more 
signatures (e.g., more than three signatures) may be gener 
ated for use in verifying the validity of the STR data 
structure 216. In any case, the same number of signature(s) 
should be generated in the example process of FIG. 10 as 
generated in the example process of FIG. 9. 

Disclosed example methods manage power states in a 
processor System. Some disclosed example methods 
involve, when transitioning a processor System to a low 
power mode, generating at least a first signature based on a 
data structure storing memory addresses of memory regions 
to be protected during the low-power mode. Some disclosed 
example methods also involve, during a resume process of 
the processor System from the low-power mode, generating 
at least a second signature based on the data structure storing 
the memory addresses of the memory regions to be protected 
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during the low-power mode. Some disclosed example meth 
ods also involve resuming the processor System from the 
low-power mode when the first signature matches the sec 
ond signature, and/or generating an error when the first 
signature does not match the second signature. In some 
examples, the low-power mode is a Suspend-to-random 
access memory power state in which operating states of 
platform Software are stored in a random access memory 
that remains powered during the Suspend-to-random access 
memory power state. 
Some disclosed examples also involve generating at least 

one key and a random or pseudo-random value, and using 
the at least one key and the random or pseudo-random value 
in combination with information in the data structure to 
generate the first signature. In some examples, the informa 
tion in the data structure includes at least one of a data 
structure header or memory addresses and data sizes of the 
protected memory regions. Some disclosed examples also 
involve re-generating the at least one key, retrieving the 
random or pseudo-random value from a continuously pow 
ered memory during the resume process, and using the 
re-generated key and the retrieved random or pseudo-ran 
dom value to generate the second signature. 
Some disclosed examples also involve determining at 

least one or some of the memory regions to be protected 
based on a manufacturer required regions table in which a 
hardware manufacturer of the processor System or a com 
ponent of the processor System specifies the at least some of 
the memory regions to be protected. Some disclosed 
examples also involve determining another of the memory 
regions to be protected based on a third-party required 
regions table in which a third party specifies the another of 
the memory regions to be protected. 
Some disclosed examples also involve storing a pointer to 

the data structure in a continuously powered memory during 
the low-power mode. Some disclosed examples also involve 
retrieving the pointer from the continuously powered 
memory during the resume process, and locating the data 
structure during the resume process based on the pointer. 

Also disclosed are example tangible computer readable 
storage media comprising example disclosed instructions 
that, when executed, cause a machine to perform at least 
Some example methods disclosed herein. 

Disclosed example apparatus Suspend a processor system. 
Some disclosed example apparatus include a first memory, 
and a processor in communication with the first memory. In 
Some examples, the first memory is to remain powered when 
the processor system is in a low-power mode, and the first 
memory is to store a random or pseudo-random value, and 
a pointer to a data structure. In some examples, the data 
structure is to store at least a first signature to authenticate 
information stored in the data structure that specifies 
memory regions to store an operating state of the processor 
system during the low-power mode. In some examples, the 
processor is to generate the first signature based on the data 
structure and the random or pseudo-random value when the 
processor System is transitioning to the low-power mode. In 
Some examples, when the processor System is in a resume 
process to resume from the low-power mode, the processor 
is to generate at least a second signature based on the data 
structure and the random or pseudo-random value, and 
determine whether the data structure is valid based on a 
comparison of at least the first signature and the second 
signature. In some examples, the low-power mode is a 
Suspend-to-random access memory power state in which the 
operating State is stored in a random access memory that 
remains powered during the Suspend-to-random access 
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memory power state. In some examples, the first memory is 
an embedded static random access memory, and example 
apparatus further comprise a dynamic random access 
memory to store the data structure. 

In some examples, the processor is further to determine at 
least Some of the memory regions based on a manufacturer 
required regions table in which a hardware manufacturer of 
the processor system or a component of the processor 
system specifies the at least some of the memory regions. In 
Some examples, the processor is further to determine a 
second one of the memory regions based on a third-party 
required regions table in which a third party specifies the 
second one of the memory regions. In some examples, the 
processor is to generate the first and second signatures based 
on at least one of a data structure header or memory 
addresses and data sizes of the protected memory regions. 

In some examples, the processor is a secure processor in 
communication with a host processor. In Such some 
examples, when the data structure is not valid based on the 
comparison of at least the first signature and the second 
signature, the secure processor is to communicate an error 
status to the host processor, and the host processor is to 
perform a hardware reset based on the error status. 

Although certain example methods, apparatus and articles 
of manufacture have been described herein, the scope of 
coverage of this patent is not limited thereto. On the con 
trary, this patent covers all methods, apparatus and articles 
of manufacture fairly falling within the scope of the claims 
of this patent. 

What is claimed is: 
1. An apparatus to manage power states in a processor 

System, comprising: 
a memory to remain powered when a processor System is 

in a low-power mode; 
a secure processor in communication with the memory, 

the secure processor to sign a suspend-to-RAM (STR) 
data structure in response to a low-power mode instruc 
tion by: 
generating a STR header key, a STR scatter/gather table 

key and a dynamic random access memory (DRAM) 
key using a root key generated by the secure pro 
cessor, 

generating a STR header signature using the STR 
header key, the STR header signature based on a 
STR table header and a random or pseudo-random 
value; 

generating a STR scatter/gather table signature using 
the STR scatter/gather table key, the STR scatter/ 
gather table signature based on a STR scatter/gather 
table header and a random or pseudo-random value; 

generating a DRAM signature using the DRAM key 
and a value from a region of DRAM; and 

storing the STR header signature, the STR scatter/ 
gather table signature and the DRAM signature in 
the STR data structure; and 

a host processor to: 
resume the processor system from the low-power mode 
when the STR data structure is valid based on a 
comparison of a first signature and a second signa 
ture, the first signature based on at least one of the 
STR header signature, the STR scatter/gather table 
signature or the DRAM signature, the second signa 
ture generated in response to a resume instruction. 

2. The apparatus of claim 1, wherein memory addresses of 
memory regions to be protected during the low-power mode 
are stored in the STR data structure, the memory regions 
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including a first region based on a manufacturer required 
regions table and a second region based on a third-party 
required regions table. 

3. The apparatus of claim 1, wherein the value from a 
region of DRAM used to generate the DRAM signature 
corresponds to a first 16-byte aligned buffer of protected 
regions pointed to by a pointer stored in a pointer field of the 
scatter/gather table. 

4. The apparatus of claim 1, wherein the low-power mode 
is a Suspend-to-random access memory power state in which 
an operating State is stored in a random access memory that 
remains powered during the Suspend-to-random access 
memory power state. 

5. The apparatus of claim 1, wherein the secure processor 
is to destroy the STR header key, the STR scatter/gather 
table key and the dynamic random access memory (DRAM) 
key after the STR header signature, the STR scatter/gather 
table signature and the DRAM signature have been gener 
ated. 

6. The apparatus of claim 1, wherein the host processor is 
in communication with the secure processor, and when the 
data structure is not valid based on the comparison of the 
first signature and the second signature: 

the secure processor is to communicate an error status to 
the host processor, and 

the host processor is to perform a hardware reset based on 
the error status. 

7. The apparatus of claim 1, further including an on-die 
key generator to generate a key during a resume process: 

the on-die key generator is to re-generate the key; and 
the secure processor is to access the random or pseudo 

random value from a continuously powered memory, 
and use the re-generated key and the random or pseudo 
random value to generate the second signature. 

8. An method to manage power states in a processor 
System, comprising: 

configuring a secure processor to: 
sign a suspend-to-RAM (STR) data structure by: 

generating a STR header key, a STR scatter/gather table 
key and a dynamic random access memory (DRAM) 
key using a root key generated by the Secure pro 
cessor, 

generating a STR header signature using the STR 
header key, the STR header signature based on a 
STR table header and a random or pseudo-random 
value; 

generating a STR scatter/gather table signature using 
the STR scatter/gather table key, the STR scatter/ 
gather table signature based on a STR scatter/gather 
table header and a random or pseudo-random value; 

generating a DRAM signature using the DRAM key 
and a value from a region of DRAM; and 

storing the STR header signature, the STR scatter/ 
gather table signature and the DRAM signature in 
the STR data structure; and 

resume the processor system from the low-power mode 
when the STR data structure is valid based on a 
comparison of a first signature and a second signa 
ture, the first signature based on at least one of the 
STR header signature, the STR scatter/gather table 
signature or the DRAM signature, the second signa 
ture generated in response to a resume instruction. 

9. The method of claim 8, wherein memory addresses of 
memory regions to be protected during the low-power mode 
are stored in the STR data structure, the memory regions 
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including a first region based on a manufacturer required 
regions table and a second region based on a third-party 
required regions table. 

10. The method of claim 8, wherein the value from a 
region of DRAM used to generate the DRAM signature 
corresponds to a first 16-byte aligned buffer of protected 
regions pointed to by a pointer stored in a pointer field of the 
scatter/gather table. 

11. The method of claim 8, wherein the low-power mode 
is a Suspend-to-random access memory power state in which 
an operating State is stored in a random access memory that 
remains powered during the Suspend-to-random access 
memory power state. 

12. The method of claim 8, further including destroying 
the STR header key, the STR scatter/gather table key and the 
dynamic random access memory (DRAM) key after the STR 
header signature, the STR scatter/gather table signature and 
the DRAM signature have been generated. 

13. The method of claim 8, further including, when the 
data structure is not valid based on the comparison of the 
first signature and the second signature: 

communicating an error status to a host processor, and 
performing, via the host processor, a hardware reset based 

on the error status. 
14. The method of claim 8, further including, during the 

resume process: 
re-generating the key via the secure processor, 
accessing, via the secure processor, the random or pseudo 

random value from a continuously powered memory; 
and 

using, via the secure processor, the re-generated key and 
the random or pseudo-random value to generate the 
second signature. 

15. An integrated circuit comprising instructions that, 
when executed, cause a machine to at least: 
when transitioning a processor system to a low-power 

mode, sign a suspend-to-RAM (STR) data structure by: 
generating a STR header key, a STR scatter/gather table 

key and a dynamic random access memory (DRAM) 
key using a root key generated by a secure processor; 

generating a STR header signature using the STR 
header key, the STR header signature based on a 
STR table header and a random or pseudo-random 
value; 

generating a STR scatter/gather table signature using 
the STR scatter/gather table key, the STR scatter/ 
gather table signature based on a STR scatter/gather 
table header and a random or pseudo-random value; 

generating a DRAM signature using the DRAM key 
and a value from a region of DRAM; and 

storing the STR header signature, the STR scatter/ 
gather table signature and the DRAM signature in 
the STR data structure; and 

resume the processor system from the low-power mode 
when the STR data structure is valid based on a 
comparison of a first signature and a second signa 
ture, the first signature based on at least one of the 
STR header signature, the STR scatter/gather table 
signature or the DRAM signature, the second signa 
ture generated in response to a resume instruction. 

16. The integrated circuit of claim 15, wherein memory 
addresses of memory regions to be protected during the 
low-power mode are stored in the STR data structure, the 
memory regions including a first region based on a manu 
facturer required regions table and a second region based on 
a third-party required regions table. 
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17. The integrated circuit of claim 15, wherein the value 
from a region of DRAM used to generate the DRAM 
signature corresponds to a first 16-byte aligned buffer of 
protected regions pointed to by a pointer stored in a pointer 
field of the scatter/gather table. 5 

18. The integrated circuit of claim 15, wherein the low 
power mode is a Suspend-to-random access memory power 
state in which an operating state is stored in a random access 
memory that remains powered during the Suspend-to-ran 
dom access memory power state. 10 

19. The integrated circuit of claim 15, wherein the instruc 
tions are further to cause the machine to destroy the STR 
header key, the STR scatter/gather table key and the 
dynamic random access memory (DRAM) key after the STR 
header signature, the STR scatter/gather table signature and 15 
the DRAM signature have been generated. 

20. The integrated circuit of claim 15, wherein when the 
data structure is not valid based on the comparison of the 
first signature and the second signature, the instructions are 
to further cause the machine to: 2O 

communicate an error status to a host processor, and 
perform a hardware reset based on the error status. 
21. The integrated circuit of claim 15, wherein the instruc 

tions are further to cause the machine to, during the resume 
process: 25 

re-generate the key: 
access the random or pseudo-random value from a con 

tinuously powered memory; and 
use the re-generated key and the random or pseudo 

random value to generate the second signature. 30 
k k k k k 
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