US009542114B2

a2 United States Patent

Pearson et al.

US 9,542,114 B2
Jan. 10, 2017

(10) Patent No.:
45) Date of Patent:

(54) METHODS AND APPARATUS TO PROTECT
MEMORY REGIONS DURING LOW-POWER
STATES

(71) Applicant: Intel Corporation, Santa Clara, CA

(US)

(72) Adrian R. Pearson, Beaverton, OR

(US); Christopher Andrew

Thornburg, Chandler, AZ (US); Steven

J. Brown, Phoenix, AZ (US); Peter R.

Munguia, Chandler, AZ (US)

Inventors:

(73) Assignee: Intel Corporation, Santa Clara, CA

(US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

@
(22)

Appl. No.: 15/187,348
Filed: Jun. 20, 2016

Prior Publication Data

US 2016/0299721 Al Oct. 13, 2016

(65)

Related U.S. Application Data

Continuation of application No. 14/639,854, filed on
Mar. 5, 2015, now Pat. No. 9,372,993, which is a

(Continued)

(63)

Int. CL.
HO4L 9/00
GO6F 3/06

(51
(2006.01)
(2006.01)

(Continued)

(52) US. CL

CPC ... GO6F 3/0625 (2013.01); GOGF 1/3234

(2013.01); GOG6F 3/0622 (2013.01); HO4L

9/3247 (2013.01)

RANDOM/
PSEUDO-
RANDOM VALUE

(58) Field of Classification Search
CPC combination set(s) only.
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,539,879 A
5,944,821 A

7/1996 Pearce et al.
8/1999 Angelo

(Continued)

OTHER PUBLICATIONS

United States Patent and Trademark Office, “Notice of Allowance,”
issued in connection with U.S. Appl. No. 13/976,342, on Oct. 3,
2014 (17 pages).

(Continued)

Primary Examiner — Beemnet Dada
(74) Attorney, Agent, or Firm — Hanley, Flight &
Zimmerman, LLC

(57) ABSTRACT

A disclosed example involves managing power states, sign-
ing a suspend-to-RAM (STR) data structure by: generating
a header key, a scatter/gather table key and a dynamic
random access memory (DRAM) key using a root key
generated by the secure processor. Generating a header
signature using the header key, the header signature based on
a table header and a random or pseudo-random value.
Generating a scatter/gather table signature using the scatter/
gather table key, the scatter/gather table signature based on
a scatter/gather table header and a random or pseudo-
random value. Generating a DRAM signature using the
DRAM key and a value from a region of DRAM. Storing the
header signature, the scatter/gather table signature and the
DRAM signature in the STR data structure. Resume the
processor system from the low-power mode when the data
structure is valid based on a comparison of a first signature
and a second signature.

21 Claims, 11 Drawing Sheets

STR DATA
STRUCTURE

222 POINTER

/ / -
— m—
CONTINUOUSLY

POWERED
MEMORY [212

\\
'

N
N /

~ !
Nl
< 7
HosT

CPU

INTER-
PROCESSOR
COMMUNICATION

(IPC) PATH L
|

SECURE

CPU

—208
FLASH
MEMORY
(—208
MANUFACTURER
HOSTBOOT | REQUIRED
RAM REGIONS TABLE
— — 224
C 226
CONDITIONAL ACCESS
REQUIRED REGIONS
TABLE
210
— SUSPEND-TO-
RAM (STR)
SYSTEM DATA
MEMORY STRUCTURE
c— —y 216

204 =

L21B

PROTECTED
REGIONS

US 9,542,114 B2
Page 2

Related U.S. Application Data

continuation of application No. 13/976,342, filed as
application No. PCT/US2012/055580 on Sep. 14,
2012, now Pat. No. 8,978,135.

(51) Imt.CL
HO4L 9/32 (2006.01)
GO6F 1/32 (2006.01)
(56) References Cited

U.S. PATENT DOCUMENTS

6,081,752 A 6/2000 Benson, IV et al.
6,694,451 B2 2/2004 Atkinson
6,930,949 B2 8/2005 Schaefer
6,968,469 Bl 11/2005 Fleischmann et al.
7,793,127 B2 9/2010 Gu et al.
8,195,248 B2 6/2012 Ha et al.
8,199,686 Bl 6/2012 Donovan
8,214,909 B2 7/2012 Morita et al.
8,248,629 B2 8/2012 Fukuda
8,874,926 B1* 10/2014 Edwards GO6F 21/75
713/180
8,978,135 B2* 3/2015 Pearson ... GO6F 21/575
726/22
9,372,993 B2* 6/2016 Pearson GO6F 21/575
2001/0016927 Al 8/2001 Poisner
2001/0037438 Al* 11/2001 Mathisc.o........ GO6F 21/51
711/163

2002/0073358 Al
2002/0099946 Al
2003/0196137 Al
2004/0003273 Al
2004/0148536 Al
2006/0212727 Al

6/2002 Atkinson
7/2002 Herbert et al.
10/2003 Ahmad et al.
1/2004 Grawrock et al.
7/2004 Zimmer et al.
9/2006 Judge et al.

2011/0145598 Al1* 6/2011 Smith ... GOG6F 21/554
713/190

2014/0082724 Al 3/2014 Pearson et al.

2015/0033038 Al* 1/2015 GoSS ..oooovovevrnnene. GO6F 12/1408
713/193

OTHER PUBLICATIONS

International Searching Authority, “International Search Report,”
issued in connection with International Patent Application No.
PCT/US2012/055580, on Mar. 18, 2013 (3 pages).

International Searching Authority, “Written Opinion,” issued in
connection with International Patent Application No. PCT/US2012/
055580, Mar. 18, 2013 (4 pages).

International Bureau, “International Preliminary Report on Patent-
ability,” issued in connection with PCT application No. PCT/
US2012/055580, mailed on Mar. 17, 2015 (5 pages).

European Patent Office, “Extended Search Report,” issued in con-
nection with European Patent Application No. 12884706.8, mailed
Apr. 7, 2016 (368 pages).

Trusted Computing Group, “Trusted Computing Platform Alliance
(TCPA) Main Specification Version 1.1b,” XP-002304627, Feb. 22,
2002 (332 pages).

United States Patent and Trademark Office, “Non-Final Office
Action,” issued in connection with U.S. Appl. No. 14/639,854, on
Sep. 21, 2015 (6 pages).

United States Patent and Trademark Office, “Notice of Allowance,”
issued in connection with U.S. Appl. No. 14/639,854, on Feb. 18,
2016 (5 pages).

United States Patent and Trademark Office, “Supplementl Notice of
Allowability,” issued in connection with U.S. Appl. No. 14/639,854,
on May 19, 2016 (2 pages).

Korean Intellectual Property Office, “Notice of Allowance,” issued
in connection with Korean Patent Application No. 10-2015-
7003891, mailed Jun. 28, 2016, 3 pages.

* cited by examiner

U.S. Patent Jan. 10, 2017 Sheet 1 of 11 US 9,542,114 B2

100 PROCESSOR SYSTEM
\\

106 NNV

-

/

ANV /1)
_ |08
comMm 4=

—
“—

111NN NANT

MWV | 112
USER I/F 7]

\\/Zf

/1
\V/

~ uP

\
\

JTTTANAINS
110 NNV LY

/

~ MEM

\\/ff
[NV
\V/

/l\\\

\
\

Z1TTINNNANT T/Z 1T TINNVNANT

ACTIVE STATE
102 —=""

POWER STATE
TRANSITION

104—=—, SUSPEND-TO-RAM (STR) STATE

106 108
\ /
112 T F
\\ ’UP /COMM 114
110 112
i
116 “

100 e PROCESSOR SYSTEM

FIG. 1

U.S. Patent Jan. 10, 2017

RANDOM/
PSEUDO-
RANDOM VALUE
222

—H

CONTINUQUSLY
POWERED [
MEMORY 212

Sheet 2 of 11 US 9,542,114 B2

STR DATA
STRUCTURE
POINTER

T

— 206
FLASH
MEMORY
— 208
MANUFACTURER
HOST BOOT REQUIRED
RAM REGIONS TABLE
— —

L 226

CONDITIONAL ACCESS
REQUIRED REGIONS

N\ /
\\ /
N /
AN
l 202 —
N\ 7
HOST
CPU
INTER-
PROCESSOR
COMMUNICATION
(IPC) PATH =
214
SECURE
CPU
204 —

TABLE
210
- SUSPEND-TO-
RAM (STR)
SYSTEM DATA
MEMORY STRUCTURE
— —H 216
L218
PROTECTED
REGIONS

FIG. 2

US 9,542,114 B2

Sheet 3 of 11

Jan. 10, 2017

U.S. Patent

ﬁ 00g 8ze € Old
1YINHOL 3HNLONYLS v1va (41S) Wvd-01-aN3adsSNs \\
S31A4d 91 4O I1dILTINN V¥ 3ZIS ‘ ace
F719VL HFAHLVO/HI1L1IVOS IMVYIN OL S31AL DNIAAvd S31A880LdN wLthv@ ONIQavd \ vee
¥344N49 GIANDITY ILAG-9L UIN 40 3ZIS ¥ 8.(L-N)++9 N-3ZIS zee
FHENLYNDIS A9 AITHIAQOD Sl LVYHL d344Ng _ _ J1av.L
Q3INDITY ILAG-9} UIN 4O LYVLS JHL OL ¥ILINIOd 119-2¢ 4 8(I-N)+v9 N-d31NIOd YIHLYD
14 /4311v0S Qm
H344Ng AaNDITV 3LAG-91 1SHId 40 3ZIS 14 89 0-3ZIS s 0ze
FHNLYNDIS A9 AFHINOD Sl LYHL Y34dNd AIANDITY _
341A8-91 18dId JHL 40 1dv1S 3HL Ol Jd31NIOd 119-¢¢ L4 v9 0-d3LNIOd ~s~ clLe
0X0 8 9s d3anyg3say
S3IYINIT
Avay =8¢
379V.L YIHLYSD/H3L1YIS dISOTONT IHL v zc MAHLYS
NI STIYMLNT ¥IHLYD/HILLVYOS 40 J3FANN
AALLYOS| yagvaH uis
40 ¥3IFNNN e
NOISY3IA
NOISIATY TVILINI = 0X0 12 8y IHNLONYLS N
v1va ¥ls olLg
319vL YFHLYD/H3ALIVYIS
NI @3LVINILS VIHVY AVEA 40 IUNLYNDIS ol ce FUNLYNOIS WvHa d1S Qm
31gavlL ol ol IYNLYNDIS F19VL
HAHLYO/HIL1YIS JLAG-8XN 40 FHNLYNDIS HAHLIVYO/HIALIVYIS H1S ﬂum
H3AAYIH Y18 JLAG-9L 40 JUNLYNDIS 9l 0 JYNLYNOIS ¥IAVIH YLS Nm
(831A8) 138440
NOILdI¥OS3A 2Z1S J1Ag HILANVHVL

U.S. Patent

Jan. 10, 2017 Sheet 4 of 11

(START)

READ STR DATA STRUCTURE

DETERMINE WHETHER STR
DATA STRUCTURE IS VALID

! — 418

IS STR DATA NO
STRUCTURE VALID?

y YES 420

RESTORE STATE(S) OF
PLATFORM SOFTWARE

v 402
RECEIVE LOW-POWER MODE
INSTRUCTION
A 4 404
ADD PROTECTED REGIONS
\ 4 408
GENERATE SIGNATURES
A 4 408
STORE SIGNATURES IN STR
DATA STRUCTURE
v — 410
ENTER LOW-POWER MODE
] — 412
RECEIVE RESUME
INSTRUCTION
A 4 c— 44

v c— 416

RETURN ERROR

»

Y

(ENDS)

FIG. 4

v — 422
ENABLE ACTIVE POWER
STATE
v — 424

US 9,542,114 B2

U.S. Patent Jan. 10, 2017 Sheet 5 of 11 US 9,542,114 B2

202 — 204 — 208 —
HOST SECURE HOST BOOT
CPU CPU RAM

HOST BOOT
SEQUENCE

T
| I
| I
I I
| |
502 |
EXECUTE HOST BOOT RAM . | |
INSTRUCTIONS A | |
| I
504
¢ (. | |
| INITIALIZE CACHE AND FLASH | | |
v —506 | |
| INITIALIZE EXTERNAL DRAM |« : :
508
SEND ADD REGIONS¢INTER PROCESSO? | I
-) I
COMMUNICATION (IPC) | |
| |
NO \ 4 (— 310 I |
—< COLD BOOT? > | |
YES ' |
\ 4 (‘ 512 I I
| LOG COLD BOOT | : :
v — 514 | |
| CALL STAGE-2 AUTH SEQUENCE |—— | |
— 516 | |
> | CALL VERIFY DRAM | I |4
< I I
) — 518 | |
JUMP TO : |

|
$TAGE-1 BOOT PROCESS

%'TAGE-z BOOT P}R_OCESS

STAGE-2 COMMON ENTRY POINT

— 520
| OTHER INITIALIZATION | | |
I I
(522 | R4
|| CALLRESUMESWITCH || | |
v — 524 | |
| FINISH BOOT | : :
I I
END | [
| I
I I

| FIG. 5

US 9,542,114 B2

Sheet 6 of 11

Jan. 10, 2017

U.S. Patent

_
e

Tm?o:&w VLVQ MLS [«
—aglz

AHOW3AN
N3LSAS

C oz

99Id .

| _ aN3 _

_ _ _

| STUNLYNDIS _

I ANV JHNLONYLS |- ONIASNS _

| s v1va ¥1S 3YOLS —8l9 ozz— |

| 919 — A |

| IUNLONYLS _ d31NIOd

_ V.1Vd ¥LS NOIS _ JANLONYLS

| b9 7 v1va Yls

_ Y3LINIOd _ _

_ INLONYULS V1VA H1S i »(aNvd-0aN3Sd/aNvy |

_ ANV JONON JHOLS _ 777 _

I zi9-J 1 _ "

_ | 30NON A1vdaNTD e, _ _

I) T } l _

_ e——— IWYHQA NOIS _ _

_ I gog-J ¥ _

_ _ SNOID 3 _

“ _ a3103.108d Aav _

_ | 90922 £ :

| syanba anadsns |

! ! J)

| | P09~ _

_ _ IYYMITaqIN _

_ _ ANV Sddv 3Z33u4 _

_ [Z09 —J A [

_ _ (_wvarol-anadsns) _

_ _ _ AHOW3N
VY Ndo Ndod d3d3ImMod

1008 LSOH 34N23S 1SOH ATSNONNILNOD
g0z oz - zoz -2z

US 9,542,114 B2

Sheet 7 of 11

Jan. 10, 2017

U.S. Patent

Y. 'Old

_ _ _ _ |

_ _ _ | _

[| I |

[| I I

[I I |

[| I |

_ _ WNLONYLS _ _

_ _ V1VA ¥1S AJINIA _ '

_ _ Ay A | _

] | IUNLONYLS _ _
TmEo:E_w ﬁime] | VIVa ALS Qvay _ z— |

_ 91z : oL = £ _ — HILINIOd

_ _ H3INIOd JHNLONYLS [, | UNLONYLS

_ _ vivadisavay | “ | vivauis

_ “ 80/ L | "

_ | | JONON FLIMMYIAO | _ » ONVH-0aN3Sd/anvy)

_ | 90/, — 4 _ | 222 ﬂL _

| | | 3onoNavay e I (anvy-oanasdianwy)

_ _ 0. — _ | czz— |

_ _ le ANVININOD _

_ _ _ Odl AdI43A AN3S _

[I | 70/ — A _

_ _ _ (. wWwdaAdi®an) _

|

_ _ _ _ _

_ _ _ _ AHOWIN
AHOWIN vy Ndo Ndo d34¥3mod
W3LSAS 1009 1SOH 34NO3S LSOH ATSNONNILNOD

Loz g0z L yoz L zoz Lziz

U.S. Patent Jan. 10, 2017 Sheet 8 of 11 US 9,542,114 B2

(— 202 (— 204 (— 208
HOST SECURE HOST BOOT
CPU CPU RAM

:;; (—\714

YES SIGNATURES
VERIFIED?

v NO (‘ 716
| GENERATE ERROR |

v 718

.| READ CA REQUIRED
d REGION TABLE |

|

|

|

|

|

|

|

|

|

|

|

|

| |
| v —720 |
' READ MANUFACTURER '
: REQUIRED REGION j&——
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

TABLE

v — 722

YES / CAREQUIRED >

\ REGIONS COVERED?

v NO —724

| GENERATE ERROR |

" — 726

MANUFACTURER YES
REQUIRED REGIONS

I
|
|
|
|
I
I
I
I
I
|
COVERED? !
] NO —728 :
I

I

I

I

I

I

I

I

I

I

I

I

| GENERATE ERROR |

v — 730
|
| RETURN STATUS fe—

YES v (— 732
DRAM VERIFIED? >

v NO — 734

PERFORM HARDWARE
RESET

»l

(RETURNEND)
!
I

! FIG. 7B

U.S. Patent Jan. 10, 2017 Sheet 9 of 11 US 9,542,114 B2

202 — 204 —
HOST SECURE
CPU CPU

(RESUME SWITCH)

(— 802

READ COLD BOOT RESUME
FROM ON-CHIP REGISTER

804
RESUME y N
COLD BOOT OR RESUME? > 806

COLD BOOT /
FP-——==== 2

| | CEFDK
| | GENERATE ACPI TABLE | | STAGE-2

| v |~ 808

| ADD ACPI TABLE TO | -
| PROTECTED REGIONS | >
L 1 __—_—_——_ I 810

| TABLE I SYSTEM

| 814
v

USE WAKE VECTOR IN ACPI |

CEFDK
TABLE AS ENTRY POINT
S © | STAGE-2

A 4
(JUMP TO RESUME ENTRY POINT)
|

|
I
I
I
I
I
!
!
I
I
I
I
I
I
:
I
I
I
|| SETWAKE VECTORINACPI [|OPERATING |
I
I
|
|
I
I
I
I
I
|
|
I
I
I
I
I
|
!

FIG. 8

U.S. Patent Jan. 10, 2017 Sheet 10 of 11 US 9,542,114 B2

204 — 210 —
SECURE SYSTEM
CPU MEMORY

SIGN STR DATA
STRUCTURE

RETURN STR HEADER
SIGNATURE, STR SCATTER/
GATHER TABLE SIGNATURE,
AND STR DRAM SIGNATURE

|

|
I

[

[

[

I

— 902 |

| GENERATE STR ROOT GENERATION KEY | I
I

v (— 904 |

| GENERATE STR HEADER KEY | |
v — 906 :

GENERATE STR HEADER SIGNATURE | R

i

v — 908 |

GENERATE STR SCATTER/GATHER TABLE KEY| |
v — 910 :

GENERATE SCATTER/GATHER TABLE [€ i
SIGNATURE >

v — 912 |

GENERATE STR DRAM KEY | I

I

v — 914 '

GENERATE DRAM SIGNATURE) !

]

v — 916 :

DESTROY SIGNING KEYS | |

v 918 |

I

I

I

I

I

I

I

I

I

FIG. 9

U.S. Patent Jan. 10, 2017 Sheet 11 of 11 US 9,542,114 B2

204 — 210 —
SECURE SYSTEM
CPU MEMORY

|
VERIFY STR DATA
STRUCTURE

v — 1002
| GENERATE STR ROOT GENERATION KEY |

v

— 1004

| GENERATE STR HEADER KEY |

v (— 1006
(‘l 1008
— 1010

GENERATE STR HEADER SIGNATURE

!

| VERIFY STR HEADER

v

|GENERATE STR SCATTER/GATHER TABLE KEY|

v — 1012

GENERATE STR SCATTER/GATHER TABLE
SIGNATURE

!

— 1014

| VERIFY STR SCATTER/GATHER TABLE |
v (~| 1016
(— 1018

A -
>

| GENERATE STR DRAM KEY
v

GENERATE STR DRAM SIGNATURE

A
gl

v —— 1020
| VERIFY STR DRAM |

v — 1022
| DESTROY SIGNING KEYS |

v

(RETURN)
T

|
!
|
J
7
.
|
|
|

FIG. 10

US 9,542,114 B2

1
METHODS AND APPARATUS TO PROTECT
MEMORY REGIONS DURING LOW-POWER
STATES

RELATED APPLICATIONS

This patent arises from a continuation of U.S. patent
application Ser. No. 14/639,854, filed Mar. 5, 2015, which is
a continuation of U.S. patent application Ser. No. 13/976,
342, filed Jun. 26, 2013, now U.S. Pat. No. 8,978,135, which
is a national stage entry of International Patent Application
No. PCT/US2012/055580, filed Sep. 14, 2012. U.S. patent
application Ser. No. 14/639,854, U.S. patent application Ser.
No. 13/976,342 and International Patent Application No.
PCT/US2012/055580 are hereby incorporated herein by
reference in their entireties.

FIELD OF THE DISCLOSURE

The present disclosure relates generally to processor
systems and, more particularly, to methods and apparatus to
protect memory regions of a processor system during low-
power states.

BACKGROUND

Energy Star standards define power levels for acceptable
low-power consumption ratings of electronic devices. To
comply with such Energy Star standards, electronic devices
often implement one or more low-power modes. Such
low-power modes include a full-off power state, a suspend-
t0-RAM (random access memory) power state, a suspend-
to-disk (hibernate) state, and/or one or more types of standby
power states. The full-off power state typically consumes the
lowest amount of power of any platform power state.
However, the full-off power state requires the platform to
complete a full boot of the platform software after a power-
on operation is re-applied. Such a full boot incurs undesir-
able boot latencies.

The suspend-to-RAM power state is an alternative to the
full-off state. The suspend-to-RAM power state retains the
operating state of the platform software as it existed imme-
diately prior to entering the suspend-to-RAM power state.
Because the platform software operating state is retained in
RAM during the suspend-to-RAM power state, the platform
software need only execute portions of a boot process to
continue where it left off before entering the suspend-to-
RAM state.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example processor system that tran-
sitions between an active power state and a suspend-to-
RAM (random access memory) power state.

FIG. 2 illustrates example components of the example
processor system of FIG. 1 that may be used to protect
memory regions during low-power states of the processor
system.

FIG. 3 illustrates an example data structure format for
storing signatures and location information for protected
regions of platform software stored in system memory
during a low-power state.

FIG. 4 illustrates an example flow diagram representative
of computer readable instructions that may be executed to
transition the processor system of FIG. 1 between a low-
power mode power state and an active power state in
accordance with the teachings of this disclosure.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 5 illustrates an example flow diagram representative
of computer readable instructions that may be executed to
perform a host boot sequence to boot a processor system
during a cold boot or a resume from a low-power state.

FIG. 6 illustrates an example flow diagram representative
of computer readable instructions that may be executed to
transition a processor system to a low-power state.

FIGS. 7A and 7B illustrate an example flow diagram
representative of computer readable instructions that may be
executed to verify protected regions of system memory
storing data for a software platform operating state.

FIG. 8 illustrates an example flow diagram representative
of computer readable instructions that may be executed to
boot a processor system under a cold boot process or a
resume process to resume from a low-power state.

FIG. 9 illustrates an example flow diagram representative
of computer readable instructions that may be executed to
generate signatures useable to authenticate a suspend-to-
RAM data structure.

FIG. 10 illustrates an example flow diagram representa-
tive of computer readable instructions that may be executed
to verify the validity of a suspend-to-RAM data structure.

DETAILED DESCRIPTION

Example methods, apparatus, systems, and articles of
manufacture disclosed herein enable protecting regions of
memory during low-power states of processor systems.
Disclosed examples are described herein in connection with
a suspend-to-RAM (random access memory) power state.
However, examples disclosed herein may additionally or
alternatively be used to protect regions of memory during
other power states of processor systems.

Processor systems may be configured to transition
between different power states, ranging from full-power-on
to fully off states. These different power states are provided
to conserve power. Intermediate power states such as a
suspend-to-RAM power state is sometimes used to strike a
balance between lower power consumption and having the
ability to resume operation (e.g., exit the suspend-to-RAM
power state to a fully on state) relatively faster than is
otherwise possible when performing a cold boot from a fully
off state or a suspend-to-disk (e.g., hibernate) power state. A
suspend-to-RAM power state is a low-power state in which
a processor system retains a state or states in random access
memory of platform software (e.g., an operating system
(OS) and/or applications) that is running when the processor
system initiates its transition to the suspend-to-RAM state.
When the processor system resumes or exits the suspend-
t0o-RAM state to a fully on power state, the processor system
need not execute the entire platform boot software as
required when performing a cold boot from a fully off state
or a hibernate state. In prior systems, not executing the entire
platform boot software upon resume introduces potential
security risks because the platform system memory can be
compromised while it is in the suspend-to-RAM power
state. For example, malicious code can be written to memory
regions storing the operating state(s) of the platform soft-
ware. Upon resume from the suspend-to-RAM state of such
prior systems, the compromised platform software could be
executed, and allow an attacker to take control of the system
or to otherwise compromise the system.

Unlike prior systems having security vulnerabilities when
in a suspend-to-RAM power state, examples disclosed
herein may be used to implement a trusted resume to provide
platform software and system integrators with features to

US 9,542,114 B2

3

protect the platform software while processor systems are in
suspend power states or low-power states (e.g., a suspend-
t0o-RAM power state).

FIG. 1 illustrates an example processor system 100 that
may be used to implement the examples disclosed herein to
protect memory regions during low-power states of the
processor system 100. In the illustrated example, the pro-
cessor system 100 is shown transitioning between an active
power state 102 and a suspend-to-RAM (STR) power state
104. In the active power state 102 of the illustrated example,
a microprocessor (uP) subsystem 106, a communication
subsystem 108, a memory subsystem 110, and a user inter-
face (I/F) subsystem 112 are shown fully powered. In the
suspend-to-RAM power state 104 of the illustrated example,
the microprocessor subsystem 106, the communication sub-
system 108, the memory subsystem 110, and the display
subsystem 112 are shown in a low-power state in which
power is removed from portions thereof.

In the illustrated example, the microprocessor subsystem
106, the communication subsystem 108, the memory sub-
system 110, and the display subsystem 112 are only partially
powered as power remains applied to portions 114,116, 118,
and 120. In this manner, the powered portions 114, 116, 118,
and 120 are useable for resuming the active power state 102
of the processor system 100 from the suspend-to-RAM
power state 104. In the illustrated example, the powered
microprocessor portion 112 includes continuously powered
memory (e.g., continuously powered memory 212 of FIG. 2)
to store an address or a pointer to an authentication table
(e.g., a pointer to a suspend-to-RAM data structure 216 of
FIG. 2) storing security parameters (e.g., signatures) and
memory address locations of platform software stored in
RAM (e.g., a system memory 210 of FIG. 2) during the
suspend-to-RAM power state 104. In the illustrated
example, the powered communication subsystem portion
114 may include power to a wake-on-LAN (local area
network) circuit or other wake-on-network circuit to resume
the processor system 100 using network communications. In
the illustrated example, the powered memory subsystem
portion 116 includes system memory (e.g., the system
memory 210 of FIG. 2) used to store the state or states of
platform software when the processor system 100 is in the
suspend-to-RAM power state 104. The powered user inter-
face portion 118 of the illustrated example may include
power to detect de-pressing of a power/wake button or
de-pressing of a keyboard key or other user input of any
other type of human interface device (HID).

Examples disclosed herein enable using a trusted resume
to transition the processor system 100 from the suspend-to-
RAM power state 104 to the active state 102 by providing
various example protection features or trust features. In the
illustrated examples, a trusted resume (a) substantially
reduces the ability of malicious attacks to change contents of
system memory (e.g., the system memory 210 of FIG. 2) that
stores state(s) of the platform software when in a low-power
mode (e.g., the suspend-to-RAM power state 104); (b)
substantially reduces the ability of performing system
memory replay attacks and/or rollback attacks; (c) enables
designating multiple authenticated/non-authenticated
regions in system memory (e.g., the system memory 210 of
FIG. 2); (d) enables a host processor (e.g., a host processor
202 of FIG. 2) to generate/authenticate a signature for
selected protected regions (e.g., protected regions 218 of
FIG. 2) without knowledge of the signing key; and (e)
enables hardware manufacturers (e.g., of host processors
(e.g., the host processor 202 of FIG. 2), secure processors
(e.g., a secure processor 204 of FIG. 2), and/or processor

20

25

30

35

40

45

55

4

systems) and third-party vendors to specify amounts (e.g., at
least minimal amounts) of protected regions (e.g., the pro-
tected regions 218 of FIG. 2) that are to be protected by
using authentication and verification processes under the
trusted resume techniques disclosed herein. As described in
detail below, examples disclosed herein provide these pro-
tections by authenticating/signing critical portions of system
memory (e.g., dynamic random access memory (DRAM))
during transitions into the suspend-to-RAM power state 104,
and verifying those authenticated/signed critical portions of
system memory when resuming out of the suspend-to-RAM
state 104 into the active power state 102. In disclosed
examples, critical portions of a boot sequence are aggregated
during the boot sequence such that stage N of the boot
sequence adds protected regions (e.g., the protected regions
218 of FIG. 2) about stage N+1. To guard against rollback
attacks, a random or pseudo-random value (e.g., a nonce
value) is incorporated into the authenticating/signing pro-
cess and is stored in continuously powered memory (e.g.,
continuously powered memory 212 of FIG. 2) during the
suspend-to-RAM power state 104.

FIG. 2 illustrates example components of the example
processor system 100 of FIG. 1 that may be used to manage
power state transitions of the processor system 100. In the
illustrated example, the processor system 100 includes a
host processor (CPU) 202, a secure processor (CPU) 204, a
flash memory 206, a host boot RAM 208, a system memory
210, and a continuously powered memory 212. The proces-
sor system 100 of the illustrated example can be, for
example, a server, a personal computer, a mobile phone
(e.g., a cell phone), a personal digital assistant (PDA), an
Internet appliance, a DVD player, a CD player, a digital
video recorder, a Blu-ray player, a gaming console, a per-
sonal video recorder, a set-top box, or any other type of
computing device.

In the illustrated example, the host CPU 202, the secure
CPU 204, and the host boot RAM 208 are located on the
same silicon die so that inter-processor communications
between the processors 202 and 204 and communications
with the host boot RAM 208 are not exposed external to the
silicon die. This provides further security in the examples
disclosed herein by substantially reducing external accessi-
bility to security communications and security data
exchanged between the host CPU 202, the secure CPU 204,
and/or the host boot RAM 208. Also in the illustrated
example, the flash memory 206 and the system memory 210
are located on separate integrated circuits that are located on
the same circuit board as the silicon die containing the host
CPU 202, the secure CPU 204, and the host boot RAM 208.

The processors 202 and 204 can be implemented by using
processors or controllers from any desired family or manu-
facturer. In the illustrated example, an inter-processor com-
munication (IPC) path 214 is provided between the proces-
sors 202 and 204 to enable inter-processor communications
therebetween. In the illustrated example, the host processor
202 includes the continuously powered memory 212 which
may be implemented using an embedded static random
access memory (SRAM). Because SRAM is a volatile
memory, it remains powered (or a portion thereof remains
powered) in the illustrated examples during low-power
modes such as the suspend-to-RAM power state 104 of FIG.
1 so that data stored therein is persisted.

The processors 202 and 204 are in communication with
the flash memory 206, the host boot RAM 208, and the
system memory 210. Although not shown, the processors
202 and 204 may also be in communication with a mass
memory (e.g., a hard drive) that stores an operating system

US 9,542,114 B2

5

and/or applications). In the illustrated example, the flash
memory 206 is a non-volatile memory used to store param-
eters (e.g., security parameters and/or other parameters that
are not persisted in volatile memories when power is com-
pletely removed) for booting the processor system 100. The
host boot RAM 208 of the illustrated example stores boot
code for booting the processor system 100 and loading an
operating system. The host boot RAM 208 of the illustrated
example also stores a manufacturer required region table
224 to indicate protected regions (e.g., the protected regions
218 of FIG. 2) of platform software stored in the system
memory 210. In the illustrated example, a hardware manu-
facturer of the host CPU 202, the secure CPU 204, the
processor system 100, and/or one or more hardware com-
ponents of the processor system 100 specifies the regions
(e.g., the protected regions 218) indicated in the manufac-
turer required region table 224 so that those specified
regions are protected using examples disclosed herein dur-
ing the suspend-to-RAM power state 104 (FIG. 1) to imple-
ment a trusted resume.

In the illustrated example, the host boot RAM 208 also
stores a conditional access (CA) required regions table 226
(e.g., a third-party required regions table) to indicate third-
party-specified protected regions (e.g., the protected regions
218 of FIG. 2) of platform software stored in the system
memory 210. In the illustrated examples, the CA required
regions table 226 is accessible and modifiable by third-
parties for after-market products or developments (e.g.,
after-market software and/or hardware installations in the
processor system 100). For example, one or more third-
parties specify the regions (e.g., the protected regions 218)
indicated in the CA required regions table 226 so that those
specified regions are protected using examples disclosed
herein during the suspend-to-RAM power state 104 (FIG. 1)
to implement a trusted resume. In the illustrated examples,
the CA required regions table 226 is copied into and authen-
ticated from the host boot RAM 208 by the secure CPU 204
before the host CPU 202 begins executing instructions. In
the illustrated examples, this happens during power state
transitions in which the host CPU 202 boots from its reset
vector (e.g., when resuming from the suspend-to-RAM
power state 104 and/or during cold boots). In some
examples, the CA required regions table 226 may be stored
in an authenticated area of the host boot RAM 208 that is
authenticated during a stage-1 boot loader (e.g., a stage-1
boot process shown in FIG. 5). Alternatively, the CA
required regions table 226 could be implemented as part of
stage-1 boot loader parameter blocks.

Using the manufacturer required regions table 224 and the
CA required regions table 226 enables a hardware manu-
facturer and third parties to specify protected regions (e.g.,
the protected regions 218) that they deem useful of protect-
ing using examples disclosed herein. In some examples, the
manufacturer required regions table 224 and the CA required
regions table 226 may alternatively be implemented as a
single table stored in the host boot RAM 208.

The system memory 210 of the illustrated example stores
the operating state(s) of platform software (e.g., an operating
system and/or applications) that is running at the time that
the processor system 100 transitions from the active power
state 102 to the suspend-to-RAM power state 104 of FIG. 1.
In this manner, the processor system 102 can transition out
of the suspend-to-RAM power state 104 to the active power
state 102 based on the platform software state(s) stored in
the system memory 210 to resume the same operating state
that it was in before entering the suspend-to-RAM power
state 104. For example, the operating system can resume to

10

15

20

25

30

35

40

45

50

55

60

65

6

its same previous operating state, and applications that were
previously loaded and running can resume to their same
previous operating states.

The system memory 210 of the illustrated example is
implemented using a volatile dynamic random access
memory (DRAM). In some examples, to enable such a
volatile DRAM to persist its data while in the suspend-to-
RAM power state 104, at least a minimal amount of power
is supplied to the volatile DRAM, and the volatile DRAM is
set to operate in a low-power, self-refresh mode in which
data stored therein is persisted. In other examples, the
system memory 210 may be implemented using a cache
memory, a volatile SRAM, and/or any other type of volatile
or non-volatile memory.

In the illustrated example, the system memory 210 stores
a suspend-to-RAM (STR) data structure 216 and protected
regions 218 of platform software. In the illustrated example,
the protected regions 218 store select portions of platform
software stored in the system memory 210 during the
suspend-to-RAM power state 104, and that are to be pro-
tected from attacks by signing or authenticating the pro-
tected regions 218 using security parameters (e.g., signa-
tures). The STR data structure 216 stores addresses or
pointers to the protected regions 218 of the platform soft-
ware in the system memory 210 that are to be protected
using examples disclosed herein during the suspend-to-
RAM power state 104. The STR data structure 216 of the
illustrated example also stores the security parameters (e.g.,
signatures) for authenticating its data, and determining the
validity of its data when resuming from the suspend-to-
RAM power state 104. An example format used to imple-
ment the STR data structure 216 in the illustrated examples
is described below in connection with FIG. 3.

Attacks may be attempted on the processor system 100 by
attackers modifying the information in the STR data struc-
ture 216 to point to different regions of the system memory
210 storing malicious software in an attempt to cause the
host CPU 202 to execute such malicious code when the
processor system 100 resumes to the fully active power state
102. To detect whether such modifications exist in the STR
data structure 216, a verification process disclosed herein is
performed during a trusted resume of the processor system
100, and the verification process generates an error when it
detects that the STR data structure 216 has been modified
during the suspend-to-RAM power state 104. In this manner,
the host CPU 202 and/or the secure CPU 204 can prevent the
processor system 100 from proceeding with the resume
process so that the processor system 100 cannot be com-
promised by malicious software.

In the illustrated example, the continuously powered
memory 212 of the host CPU 202 stores an example STR
data structure pointer 220 that points to the storage location
(e.g., amemory address) of the STR data structure 216 in the
system memory 210. During a trusted resume process to
transition the processor system 100 out of the suspend-to-
RAM power state 104, the host CPU 202 can retrieve the
STR data structure pointer 220 to locate the STR data
structure 216 to enable verifying the integrity of the pro-
tected regions 218 of the platform software.

In the illustrated example, the continuously powered
memory 212 of the host CPU 202 also stores an example
random/pseudo-random value 222. The random/pseudo-ran-
dom value 222 of the illustrated example is used as a nonce
value to generate verification signatures to confirm the
integrity of the protected regions 208 of the platform soft-
ware stored in the system memory 210 during the suspend-
to-RAM power state 104. In the illustrated example, the

US 9,542,114 B2

7

random/pseudo-random value 222 is used to generate the
verification signatures when the processor system 100 is
transitioning into the suspend-to-RAM power state 104.
After generating the verification signatures, the random/
pseudo-random value 222 is stored securely from undesired
access in the continuously powered memory 212. In this
manner, when resuming out of the suspend-to-RAM power
state 104, the random/pseudo-random value 222 can be
retrieved from the continuously powered memory 212 and
used to verify the integrity of the protected regions 218 of
the platform software. In the illustrated example, the ran-
dom/pseudo-random value 222 is used to guard against
replay/rollback attacks by serving as a unique secret value
that is very difficult for any potential attacker to access or
modify because it is stored in the continuously power
memory 212 of the host CPU 202. In addition, the random/
pseudo-random value 222 is not easily predictable by an
attacker because it is sufficiently random. In some examples,
selecting a relatively large number of bits (e.g., 64 bits or
more) for the random/pseudo-random value 222 also guards
against replay/rollback attacks by making it very costly from
a time and storage perspective for an attacker to launch a
collision attack. For example, using a random/pseudo-ran-
dom value 222 with a relatively large number of bits would
require an attacker to store many DRAM/STR data structure
permutations to launch a collision attack.

FIG. 3 illustrates an example suspend-to-RAM (STR)
data structure format 300 that may be used to implement the
STR data structure 216 of FIG. 2 to store signatures and
location information to authenticate the protected regions
218 of platform software persisted in the system memory
210 of FIG. 2 during the suspend-to-RAM power state 104
of FIG. 1. In the illustrated example, the STR data structure
format 300 includes an STR header signature field 302 for
storing an STR signature at a byte offset of zero (0), and
occupying a data size of 16 bytes in the STR data structure
216. The STR header signature of the illustrated example is
used to authenticate a STR header (e.g., stored in STR
header fields 308) of the STR data structure 216 to confirm
that it is valid (e.g., it has not been altered or compromised
during the suspend-to-RAM power state 104).

The STR data structure format 300 of the illustrated
example includes a STR scatter/gather table signature field
304 for storing a STR scatter/gather table signature at a byte
offset of 16, and occupying a data size of 16 bytes in the STR
data structure 216. In the illustrated examples, the STR
scatter/gather table signature is used to authenticate an
Nx8-byte scatter/gather table 310 stored in the STR data
structure 216 to confirm that it is valid (e.g., it has not been
altered or compromised during the suspend-to-RAM power
state 104). In the illustrated example, the scatter/gather table
310 stores pointers to locations in the system memory 210
storing the protected regions 218 of the platform software.

The STR data structure format 300 of the illustrated
example also includes a STR DRAM signature field 306 for
storing a STR DRAM signature at a byte offset of 32, and
occupying a data size of 16 bytes in the STR data structure
216. In the illustrated examples, the STR DRAM signature
is used to authenticate a DRAM area stipulated in the
scatter/gather table 310 stored in the STR data structure 216
to confirm that it is valid (e.g., it has not been altered or
compromised during the suspend-to-RAM power state 104).
In the illustrated example, the DRAM area stipulated by the
scatter/gather table 310 is pointed to by a pointer stored in
a pointer-0 field 312, and it is the first 16-byte aligned buffer
of the protected regions 218 (FIG. 2).

40

45

8

In the illustrated examples, signatures stored in the STR
header signature field 302, the STR scatter/gather table
signature field 304, and the STR DRAM signature field 306
are used to sign the STR data structure 216 when the
processor system 100 is transitioning into the suspend-to-
RAM power state 104. In this manner, the stored signatures
can be used when resuming the processor system 100 out of
the suspend-to-RAM power state 104 to determine whether
the STR data structure 216 is valid (e.g., has not been altered
or compromised during the suspend-to-RAM power state
104). For example, potential attackers may modify the
information in the STR data structure 216 to point to
different regions of the system memory 210 storing mali-
cious software in an attempt to cause the host CPU 202 to
execute such malicious code when the processor system 100
resumes to the fully active power state 102. If such modi-
fications exist in the STR data structure 216, a verification
process performed during a trusted resume of the processor
system 100 generates an error based on the signature(s) of
one or more of the STR header signature field 302, the STR
scatter/gather table signature field 304, and/or the STR
DRAM signature field 306.

Although three signature fields 302, 304, and 306 are
shown in FIG. 3, fewer signatures (e.g., one signature or two
signatures) or more signatures (e.g., more than three signa-
tures) may be used with the examples disclosed herein to
authenticate/sign the STR data structure 216 and confirm its
validity during resume operations. In addition, although
specific types of signatures are disclosed herein (e.g., a
header signature, a scatter/gather table signature, and a
DRAM signature), other types of signatures and/or other
manners of generating signatures may be used with
examples disclosed herein to authenticate/sign the STR data
structure 216 and confirm its validity during resume opera-
tions. For example, one or more signatures may be generated
based on different information (e.g., more information, less
information, or differently segmented information) in the
STR data structure 216, so long as the signature(s) can be
used to authenticate/sign the STR data structure 216 when
entering a low-power mode, and validate it during a resume
process.

The STR header fields 308 of the illustrated example
includes an STR data structure version field 316 to indicate
a revision of the STR data structure format 300, and a
number of scatter/gather array entries field 318 to indicate
the number of scatter/gather entries stored in the scatter/
gather table 310.

In the illustrated example, each scatter/gather entry in the
scatter/gather table 310 includes the memory address loca-
tion and data size of a corresponding memory region in the
protected regions 218 (FIG. 2). The scatter/gather table 310
includes the pointer-0 field 312 to store a pointer pointing to
the memory address location in the system memory 210 of
the first 16-byte aligned buffer that is protected by the STR
DRAM signature stored in the STR DRAM signature field
306. A size-0 field 320 of the scatter/gather table 310 stores
the data size in bytes of the first 16-byte aligned buffer. The
scatter/gather table 310 of the illustrated example includes a
plurality of other pointer/size field pairs 322 indicating
memory address locations in system memory 210 and cor-
responding data sizes of other 16-byte aligned buffers up to
an Nth 16-byte aligned buffer corresponding to a pointer-N
field 324 and a size-N field 326. In the illustrated example,
the pointer and size fields 312, 320, 322, 324, and 326 refer
to 16-byte aligned buffers in the system memory 210 that
store the protected regions 218. By storing the addresses and
sizes of the protected regions 218 in this manner in the STR

US 9,542,114 B2

9

data structure 216, examples disclosed herein can determine
whether it is safe to access the protected regions 218 when
resuming from the suspend-to-RAM power state 104 by
relying on an authentication/signing of the STR data struc-
ture 216.

In the illustrated example, the scatter/gather table 310 is
extensible to being a size that is a multiple of 16 bytes. For
this extensibility, the scatter/gather table 310 is provided
with padding bytes 328.

Although the example STR data structure format 300 is
shown in FIG. 3 in connection with particular data sizes
(e.g., 4 bytes, 8 bytes, 16 bytes, 32 bytes, etc.) and byte
offsets, other data sizes and/or byte offsets may be used for
parameters of the STR data structure format 300 (e.g., data
sizes and/or byte offsets of signatures and/or other param-
eters). Although the scatter/gather table 310 refers to 16-byte
aligned buffers, the scatter/gather table 310 may be adapted
for use with other buffer sizes. In addition, although pointers
and size values in the scatter/gather table 310 are used in the
illustrated example to specify locations and sizes of the
protected regions 218 (FIG. 2), other suitable manners for
specifying locations and/or sizes of the protected regions
218 may additionally or alternatively be used.

FIGS. 4, 5, 6, 7A, 7B, and 8-10 are representative of
machine readable instructions that may be executed by the
processor system 100 (FIGS. 1 and 2) to protect regions of
memory during low-power states as disclosed herein. In
these examples, the machine readable instructions comprise
programs for execution by one or more processors such as
the host CPU 202 and the secure CPU 204 of FIG. 2. The
programs may be embodied in software stored on a tangible
computer readable medium such as a CD-ROM, a floppy
disk, a hard drive, a digital versatile disk (DVD), a Blu-ray
disk, or a memory associated with the processors 202 and
204, but the entire program and/or parts thereof could
alternatively be executed by a device other than the proces-
sors 202 and 204 and/or embodied in firmware or dedicated
hardware. Further, although the example programs are
described with reference to the flowcharts illustrated in
FIGS. 4, 5, 6, 7A, 7B, and 8-10, many other methods of
implementing the example processor system 100 may alter-
natively be used. For example, the order of execution of the
blocks may be changed, and/or some of the blocks described
may be changed, eliminated, or combined.

As mentioned above, the example processes of FIGS. 4,
5, 6, 7A, 7B, and 8-10 may be implemented using coded
instructions (e.g., computer readable instructions) stored on
a tangible computer readable medium such as a hard disk
drive, a flash memory, a read-only memory (ROM), a
compact disk (CD), a digital versatile disk (DVD), a cache,
a random-access memory (RAM) and/or any other storage
media in which information is stored for any duration (e.g.,
for extended time periods, permanently, brief instances, for
temporarily buffering, and/or for caching of the informa-
tion). As used herein, the term tangible computer readable
medium is expressly defined to include any type of computer
readable storage and to exclude propagating signals. Addi-
tionally or alternatively, the example processes of FIGS. 4,
5, 6, 7A, 7B, and 8-10 may be implemented using coded
instructions (e.g., computer readable instructions) stored on
a non-transitory computer readable medium such as a hard
disk drive, a flash memory, a read-only memory, a compact
disk, a digital versatile disk, a cache, a random-access
memory and/or any other storage media in which informa-
tion is stored for any duration (e.g., for extended time
periods, permanently, brief instances, for temporarily buff-
ering, and/or for caching of the information). As used herein,

20

25

30

40

45

50

10

the term non-transitory computer readable medium is
expressly defined to include any type of computer readable
storage device or storage disc and to exclude propagating
signals. As used herein, when the phrase “at least” is used as
the transition term in a preamble of a claim, it is open-ended
in the same manner as the term “comprising” is open ended.
Thus, a claim using “at least” as the transition term in its
preamble may include elements in addition to those
expressly recited in the claim.

FIG. 4 is an example flow diagram representative of
computer readable instructions to transition the processor
system 100 of FIG. 1 between the active power state 102
(FIG. 1) and the suspend-to-RAM power state 104 (FIG. 1)
in accordance with the teachings of this disclosure. For a
more detailed discussion, FIGS. 5, 6, 7A, 7B, and 8-10
described below show additional example operations that
may be performed to transition the processor system 100
between the active power state 102 and the suspend-to-RAM
power state 104 as disclosed herein.

Turning in detail to FIG. 4, initially, the host CPU 202
(FIG. 2) receives a low-power mode instruction (block 402).
The low-power mode instruction of the illustrated example
is an instruction to transition the processor system 100
(FIGS. 1 and 2) to the suspend-to-RAM power state 104
(FIG. 1). The secure CPU 204 (FIG. 2) adds entries to
identify the protected regions 218 in the STR data structure
216 of FIG. 2 (block 404). For example, the secure CPU 204
stores information indicating the quantity of the protected
regions 218 in the number of scatter/gather array entries
field 318 (FIG. 3) of the STR data structure 216 (FIG. 2), and
stores entries in the scatter/gather table 310 (FIG. 3) of the
STR data structure 216 describing the locations and sizes of
the protected regions 218. In the illustrated example, the
secure CPU 204 determines which memory regions are to be
protected regions 218 based on memory regions specified by
a hardware manufacturer in the manufacturer required
regions table 224 of FIG. 2 and/or memory regions specified
by one or more third parties in the conditional access
required regions table 226 of FIG. 2.

The secure CPU 204 generates signatures (block 406) for
authenticating the STR data structure 216. For example, the
secure CPU 204 generates signatures for storing in the STR
header signature field 302, the STR scatter/gather table
signature 304, and the STR DRAM signature field 306 of
FIG. 3. The secure CPU 204 may use any suitable function
for generating the signatures including, for example, a
cipher-based message authentication code (CMAC) func-
tion, a hash-based message authentication code (HMAC), or
any other suitable function for generating signatures. In the
illustrated example, the secure CPU 204 generates a STR
header signature by applying the signature generating func-
tion to the STR header stored in the STR header field 308
(FIG. 3) of the STR data structure 216. In the illustrated
example, the secure CPU 204 generates a STR scatter/gather
table signature by applying the signature generating function
to the STR scatter/gather table stored in the STR scatter/
gather table 310 (FIG. 3) of the STR data structure 216. In
the illustrated example, the secure CPU 204 generates a STR
DRAM signature by applying the signature generating func-
tion to the DRAM area pointed to by the pointer-0 field 312
of the scatter/gather table 310, and occupying the first
16-byte aligned buffer of the protected regions 218 (FIG. 2).
In some examples, the signature generating function may be
used in combination with other data (e.g., random/pseudo-
random values) when generating the signatures to add
additional authentication strength.

US 9,542,114 B2

11

The secure CPU 204 stores the signatures in the STR data
structure 216 (block 408). For example, the secure CPU 204
stores the signatures in the STR header signature field 302,
the STR scatter/gather table signature 304, and the STR
DRAM signature field 306 (FIG. 3) of the STR data struc-
ture 216 (FIG. 2). The processor system 100 enters the
low-power mode (block 410). In the illustrated example, the
low-power mode is the suspend-to-RAM power state 104 of
FIG. 1.

At some subsequent time, the processor system 100
receives a resume instruction (block 412). For example, the
processor system 100 receives a wake-on-LAN instruction
via the communication subsystem 108 of FIG. 1, or receives
a user input via the user interface 112 of FIG. 1, or receives
any other suitable input (e.g., a wake-up timer input, a
service interrupt, etc.) to transition the processor system 100
from the suspend-to-RAM state 104 to the active state 102.

The secure CPU 204 reads the STR data structure 216
(block 414) from the system memory 210. The secure CPU
204 determines whether the STR data structure 216 is valid
(block 416). For example, the secure CPU 204 re-generates
signatures in the same manner as described above in con-
nection with block 406 for comparing against the signatures
stored in the STR header signature field 302, the STR
scatter/gather table signature field 304, and the STR DRAM
signature field 306 of FIG. 3. In this manner, the secure CPU
204 can compare each signature generated at block 416 with
its corresponding signature generated at block 406 (e.g., the
STR header signature, the STR scatter/gather table signa-
ture, and the STR DRAM signature) to verify different parts
of the STR data structure 216 and confirm whether the STR
data structure 216 is valid. If any re-generated signature does
not match its corresponding signature from block 406, then
the secure CPU 204 can determine that a potential attack on
the processor system 100 is being attempted.

If the secure CPU 204 determines that the STR data
structure 216 is valid (block 418), the host CPU 202 restores
the state(s) of the platform software (block 420). The host
CPU 202 enables the active power state 102 of the processor
system 100 (block 422). However, if at block 418 the secure
CPU 204 determines that the STR data structure 216 is not
valid (e.g., one of the re-generated signatures does not match
its corresponding signature generated at block 406 and
stored in the STR data structure 216), the secure CPU 204
returns an error to the host CPU 204 (block 424). In this
manner, the host CPU 204 can prevent the processor system
100 from resuming the active state 100, and can perform a
pre-defined operation or process to prevent an attack on the
processor system 100. In some examples, such a pre-defined
operation or process involves initiating a hard reset of the
processor system 100. After enabling the active power state
102 at block 422 or after returning an error at block 424, the
example process of FIG. 4 ends.

FIG. 5 illustrates an example flow diagram representative
of computer readable instructions that may be executed to
perform a host boot sequence to boot the processor system
100 (FIGS. 1 and 2) during a cold boot or a resume from the
suspend-to-RAM power state 104 (FIG. 1). In the illustrated
example, the operations up to and including block 518 are
performed as part of a stage-1 (S1) boot process, and the
operations of blocks 520, 522, and 524 are performed during
a stage-2 (S2) boot process.

Initially, the host CPU 202 executes host boot ram instruc-
tions (block 502) stored in the host boot ram 208. The host
CPU 202 initializes cache and the flash memory 206 (block
504). The host CPU 202 initializes external DRAM (block
506). In the illustrated example, the external DRAM is the

10

15

20

25

30

35

40

45

50

55

60

65

12

system memory 210. In some examples, the host CPU 202
initializes the external DRAM using S1 parameters (stage-1
boot loader parameters) stored in the host boot RAM 208.

The host CPU 202 sends an ADD regions [PC instruction
to the secure CPU 204 via the inter-processor communica-
tion path 214 of FIG. 2 (block 508). In the illustrated
example, the host CPU 202 issues the ADD regions IPC
instruction so that regions of platform software stored/
created during a stage 2 boot process can be designated as
protected regions 218 (FIG. 2) so that they can be protected
using the signing/authentication techniques disclosed
herein.

The host CPU 202 determines whether it is performing a
cold boot (block 510) from a full power-off state. If it is
performing a cold boot, the host CPU 202 logs the cold boot
(block 512) and calls a stage-2 authentication sequence
(block 514). Otherwise, if the host CPU 202 determines that
it is not performing a cold boot (block 510), it is resuming
form the suspend-to-RAM power state 104 (FIG. 1), and the
host CPU 202 calls a verify DRAM process (block 516). An
example process to verify DRAM that may be called at
block 516 is described below in connection with FIGS. 7A
and 7B.

After calling the stage-2 authentication sequence at block
514, or after calling the verify DRAM process at block 516,
the host CPU 202 jumps to a stage-2 common entry point
(block 518). In the illustrated example, the stage-2 common
entry point allows the host CPU 202 to execute a stage-2
boot process.

During the stage-2 boot process, the host CPU 202
performs other initialization operations (block 520). Such
other initialization operations may include other initializing
other portions of the microprocessor subsystem 106 and/or
the memory subsystem 110, initializing portions of the
communication subsystem 108, initializing other portions of
the user interface subsystem 112 of FIG. 1, and/or perform-
ing any other initializations configured by system designers
as needing to occur during the stage-2 boot process.

The host CPU 202 calls a resume switch process (block
522). An example resume switch process that may be called
at block 522 is described below in connection with FIG. 8.
In the illustrated examples, the resume switch process
enables adding an ACPI table as a protected region 218. The
host CPU 202 then finishes the remainder of the boot
operations (block 524). In the illustrated example, the
remaining boot operations that are performed are based on
whether the host CPU 202 is performing a cold boot or a
resume. The example process of FIG. 5 then ends.

FIG. 6 illustrates an example flow diagram representative
of computer readable instructions that may be executed to
transition the processor system 100 (FIGS. 1 and 2) to the
suspend-to-RAM power state 104 (FIG. 1) from the active
power state 102 (FIG. 1). In the illustrated example, the
example process of FIG. 6 may be invoked by a user input
(e.g., a user pressing/selecting a sleep button), a timeout
interrupt, or any other suitable user and/or machine input to
transition the processor system 100 to a low-power mode.

Initially, the host CPU 202 freezes applications and
middleware (block 602), for example, from executing any
further until the processor system 100 resumes back to the
active power state 102. The host CPU 202 suspends drivers
(block 604). The host CPU 202 adds the protected regions
218 to the STR data structure 216 (block 606). In the
illustrated example, the host CPU 202 adds the protected
regions 218 of platform software to the STR data structure
216 by adding location and size information in a scatter/
gather table of the STR data structure 216 in accordance

US 9,542,114 B2

13

with the format of the scatter/gather table 310 of FIG. 3. In
this manner, the STR data structure 216 can be used to locate
the protected regions 218 in the system memory 210. The
host CPU 202 sends an IPC instruction to the secure CPU
204 to sign/authenticate the DRAM (block 608). The sign
DRAM IPC instruction of the illustrated example causes the
secure CPU 204 to sign the STR data structure 216 stored in
the system memory 210.

The secure CPU 204 then performs operations to sign the
STR data structure 216. Initially, the secure CPU 204
generates a nonce value (block 610). In the illustrated
example, the generated nonce value is the random or
pseudo-random value 222 of FIG. 2, and it is used to
generate signatures for signing/authenticating the STR data
structure 216. The signatures of the illustrated example
include signatures to be stored in the STR header signature
field 302, the STR scatter/gather table signature field 304,
and the STR DRAM signature field 306 of FIG. 3. In the
illustrated example, the random/pseudo-random value 222 is
used for the nonce value to make it difficult for any potential
attacker to replay the contents of DRAM.

The secure CPU 204 stores the nonce value (e.g., the
random/pseudo-random value 222) and the STR data struc-
ture pointer 220 (FIG. 2) in the continuously powered
memory 212 (block 612). In this manner, the nonce value
(e.g., the random/pseudo-random value 222) and the STR
data structure pointer 220 are persisted during the suspend-
to-RAM power state 104, and are accessible to resume to the
active power state 102, because the continuously powered
memory 212 remains powered during the suspend-to-RAM
power state 104.

The secure CPU 204 signs the STR data structure 216 of
FIG. 2 (block 614). In the illustrated example, the secure
CPU signs the STR data structure 216 by generating the
signatures corresponding to the STR header signature field
302, the STR scatter/gather table signature field 304, and the
STR DRAM signature field 306 of FIG. 3. An example
signature process that may be used to implement block 614
is described below in connection with FIG. 9.

The secure CPU 204 stores the STR data structure 216
and the signatures (e.g., the signatures in the STR header
signature field 302, the STR scatter/gather table signature
field 304, and the STR DRAM signature field 306) in the
system memory 210 (block 616). The host CPU 202 tran-
sitions the processor system 100 into the suspend-to-RAM
power state 104 (block 618). The example process of FIG.
6 then ends.

FIGS. 7A and 7B illustrate an example flow diagram
representative of computer readable instructions that may be
executed to verify the validity of the protected regions 218
(FIG. 2) in the system memory 210 (FIG. 2) storing data for
a software platform operating state. The example process of
FIGS. 7A and 7B may be instantiated from block 516 of
FIG. 5. As shown in FIG. 7A, initially, the host CPU 202
sends a verify IPC command to the secure CPU 204 (block
204). The verify IPC command causes the secure CPU 204
to perform a verification process to verify the validity of the
protected regions 218. The secure CPU 204 reads a nonce
value (e.g., the random/pseudo-random value 222) from the
continuously powered memory 212 (block 704). In the
illustrated example, the nonce value is the random/pseudo-
random value 222 (FIG. 2) that was generated at block 610
of FIG. 6 when transitioning the processor system 100 to the
suspend-to-RAM power state 104.

The secure CPU 204 overwrites the nonce value (e.g., the
random/pseudo-random value 222) in the continuously pow-
ered memory 212 (block 706), for example, with any

20

25

30

40

45

14

random data. In the illustrated example, overwriting the
nonce value in this manner guards against replay attacks by
not leaving the nonce value exposed for re-use by potential
attackers. The secure CPU 204 reads the STR data structure
pointer 220 from the continuously powered memory 212
(block 708). The secure CPU 204 uses the STR data
structure pointer 220 to locate and read the STR data
structure 216 (FIG. 2) from the system memory 210 (block
710). The secure CPU 204 verifies the validity of the STR
data structure 216 (block 712). An example process that may
be used to verify the validity of the STR data structure 216
at block 712 is described below in connection with FIG. 10.

The secure CPU 204 determines whether the signatures
are verified (block 714) (FIG. 7B). In the illustrated
example, the signatures that are checked for validity are the
signatures of the signatures in the STR header signature field
302, the STR scatter/gather table signature field 304, and the
STR DRAM signature field 306 of FIG. 3. If the secure CPU
204 determines at block 714 that one or more of the
signatures is/are not verified as valid, the secure CPU 204
generates an error (block 716). After generating the error at
block 716, or if the secure CPU 204 determines at block 714
that all of the signatures are verified as valid, the secure CPU
204 reads the CA required region table 226 of FIG. 2 (block
718). The secure CPU 204 also reads the manufacturer
required region table 224 of FIG. 2 (block 720). In the
illustrated example, the secure CPU 204 may retrieve the
CA required region table 226 and the manufacturer required
region table 224 from the host boot RAM 208 at addresses
provided by the host CPU 202. For example, the addresses
at which the CA required region table 226 and the manu-
facturer required region table 224 are located may be stored
as pointers in S1 parameters, and may be retrieved by the
host CPU 202 form the S1 parameters.

The secure CPU 204 determines whether the regions
specified in the CA required regions table 226 are covered by
the STR data structure 216 (block 722). For example, the
secure CPU 204 compares the regions specified in the CA
required regions table 226 to the protected regions 218
specified in the scatter/gather table 310 (FIG. 3) of the STR
data structure 216. If the regions specified in the CA required
regions table 226 are not covered by the STR data structure
216 (block 722), the secure CPU 204 generates an error
(block 724). After generating the error at block 724, or if the
secure CPU 204 determines at block 722 that the regions
specified in the CA required regions table 226 are covered by
the STR data structure 216, the secure CPU 204 determines
whether the regions specified in the manufacturer required
regions table 224 are covered by the STR data structure 216
(block 726). For example, the secure CPU 204 compares the
regions specified in the manufacturer required regions table
224 to the protected regions 218 specified in the scatter/
gather table 310 (FIG. 3) of the STR data structure 216. If
the regions specified in the manufacturer required regions
table 224 are not covered by the STR data structure 216
(block 726), the secure CPU 204 generates an error (block
728). After generating the error at block 728, or if the secure
CPU 204 determines at block 726 that the regions specified
in the manufacturer required regions table 224 are covered
by the STR data structure 216, the secure CPU 204 returns
a status to the host CPU 202 (block 730) indicating, for
example, whether any verification errors were generated,
whether the signatures were successfully verified as valid at
block 714, and/or whether the regions specified in the CA
required regions table 226 and the manufacturer required
regions table 224 are covered by the STR data structure 216.

US 9,542,114 B2

15

The host CPU 202 determines whether the DRAM (e.g.,
the system memory 210) is verified as valid (block 732), for
example, based on the status (e.g., an error status or a
verification success status) received from the secure CPU
204. If the DRAM is not verified, the host CPU 202
performs a hardware reset (block 734). In the illustrated
example, when the DRAM is not verified, it is possible that
an attack could be made on the processor system 100. As
such, a hardware reset is used at block 734 to re-initialize the
processor system 100 to boot anew from a cold boot state so
that contents of the system memory 210 are discarded and
are re-loaded and/or re-initialized. After performing the
hardware reset 734, or if the DRAM is verified as valid at
block 732, the example process of FIGS. 7A and 7B ends
and/or returns to a calling function or process such as the
example process of FIG. 5.

FIG. 8 illustrates an example flow diagram representative
of computer readable instructions that may be executed to
boot the processor system 100 (FIGS. 1 and 2) under a cold
boot process or a suspend-to-RAM resume process. The
example process of FIG. 8 may be instantiated by the call
resume switch operation of block 522 of FIG. 5. Initially, the
host CPU 202 reads a cold boot resume flag from an on-chip
register (block 802). For example, the cold boot resume flag
may be set in an on-chip register in the host CPU 202 to
indicate whether the boot process is a cold boot process, or
is a resume process to transition the processor system 100
from a low-power mode such as the suspend-to-RAM power
state 104 to the active power state 102 of FIG. 1.

The host CPU 202 determines whether the boot process is
a cold boot or a resume (block 804) based on the cold boot
resume flag read at block 802. If the boot process is a cold
boot (block 804), the host CPU 202 generates an ACPI table
(block 806) and adds the ACPI table to the protected regions
218 (block 808) as part of a CEFDK (Consumer Electronics
Firmware Development Kit) stage-2 process. In the illus-
trated example, the ACPI table is added to the protected
regions 218 so that the ACPI table is protected by the
signing/authentication of the STR data structure 216. The
host CPU 202 sets a wake vector in the ACPI table (block
810) as part of an operating system process. Control then
returns to a cold boot path (e.g., in FIG. 5), and the example
process of FIG. 8 ends.

If the host CPU 202 determines at block 804 that the boot
process is a resume, the host CPU 202 reads a previously
generated and stored ACPI table (block 812), and uses a
wake vector in the ACPI table as an entry point in an
operating system (block 814) as part of a CEFDK stage-2
process to proceed with the resume process. In the illustrated
example, the ACPI table accessed at blocks 812 and 814
may be an ACPI table generated and stored in the protected
regions 218 during a cold boot process (e.g., at blocks 806
and 808), and the wake vector used at block 814 may be a
wake vector set during the cold boot process (e.g., at block
810). Control then jumps to a resume entry point, and the
example process of FIG. 8 ends.

FIG. 9 illustrates an example flow diagram representative
of computer readable instructions that may be executed to
generate signatures useable to authenticate/sign the STR
data structure 216 of FIG. 2. The example process of FIG.
9 may be used to implement the operation of block 614 of
FIG. 6. The example process of FIG. 9 generates keys used
to generate the signatures of the STR header signature field
302, the STR scatter/gather table signature field 304, and the
STR DRAM signature field 306 of FIG. 3 to sign the STR
data structure 216 of FIG. 2. The keys generated in the
process of FIG. 9 are on-die secret keys that are handled

20

30

35

40

45

55

16

securely so that they are not accessible by the host software.
In the illustrated example, to ensure the security of the keys,
only the secure CPU 204 is able to generate the keys. In
addition, the secure CPU 204 of the illustrated example is
configured to generate the keys using a process that enables
the secure CPU 204 to identically re-create or re-generate
the keys at later times by, for example, seeding an on-die key
generator with the same value when a key needs to be
re-created. The keys of the illustrated example are identi-
cally re-creatable so that the secure CPU 204 can sign the
STR data structure 216 based on keys generated during a
transition to the suspend-to-RAM power state 104, and so
that upon resuming from the suspend-to-RAM power state
104, the secure CPU 204 can generate the same keys for use
in confirming the authentication/signing of the STR data
structure 216 that occurred when entering the suspend-to-
RAM power state 104.

As shown in FIG. 9, initially, the secure CPU 204
generates an STR root generation key (block 902). In the
illustrated example, the secure CPU 204 uses the STR root
generation key to generate subsequent keys for generating
the signatures of the STR header signature field 302, the
STR scatter/gather table signature field 304, and the STR
DRAM signature field 306 of FIG. 3. The secure CPU 204
generates an STR header key (block 904) using the STR root
generation key. The secure CPU 204 generates an STR
header signature (block 906), for example, corresponding to
the STR header signature field 302. In the illustrated
example, the secure CPU 204 generates the STR header
signature by applying a signature function (e.g., a CMAC
function, an HMAC function, etc.) to the STR header key
generated at block 904, and a concatenation of an STR
header (e.g., stored in the STR header 308 of FIG. 3) and a
nonce value (e.g., the random/pseudo-random value 222 of
FIG. 2). For example, the signature generation function used
at block 906 may be SIGNATURE(STR HEADER KEY,
CONCATENATE(STR HEADER, NONCE)).

The secure CPU 204 generates an STR scatter/gather
table key (block 908) using the STR root generation key. The
secure CPU 204 generates an STR scatter/gather table
signature (block 910), for example, corresponding to the
STR scatter/gather table 310 of FIG. 3. In the illustrated
example, the secure CPU 204 generates the STR scatter/
gather table signature by applying a signature function (e.g.,
a CMAC function, an HMAC function, etc.) to the STR
scatter/gather table key generated at block 908, and a
concatenation of information stored in the STR scatter/
gather table 310 (e.g., pointer and size information stored in
the fields 312, 320, 322, 324, 326, and 328 of the STR
scatter/gather table 310 of FIG. 3) and a nonce value (e.g.,
the random/pseudo-random value 222 of FIG. 2). For
example, the signature generation function used at block 906
may be SIGNATURE(STR SCATTER/GATHER TABLE
KEY, CONCATENATE(SCATTER/GATHER TABLE,
NONCE)).

The secure CPU 204 generates an STR DRAM key (block
912) using the STR root generation key. The secure CPU
204 generates an STR DRAM signature (block 914), for
example, corresponding to the first 16-byte aligned buffer of
the protected regions 218 pointed to by a pointer stored in
the pointer-0 field 312 of the scatter/gather table 310. In the
illustrated example, the secure CPU 204 generates the STR
DRAM signature by applying a signature function (e.g., a
CMAC function, an HMAC function, etc.) to the STR
DRAM key generated at block 912, and a concatenation of
the 16-byte aligned buffer of the protected regions 218
pointed to by the pointer in the pointer-0 field 312, and a

US 9,542,114 B2

17

nonce value (e.g., the random/pseudo-random value 222 of
FIG. 2). For example, the signature generation function used
at block 914 may be SIGNATURE(STR DRAM KEY,
CONCATENATE(STR DRAM AREA, NONCE)).

The secure CPU 204 destroys the keys generated at blocks
902, 904, 908, and 912 (block 916). Destroying the keys
provides further protection against the keys being accessed
in undesirable manners. The example process of FIG. 9
returns the STR header signature, the STR SG table signa-
ture, and the STR DRAM key (block 918) to a calling
function or process such as the example process of FIG. 6.
The example process of FIG. 9 then ends.

Although the example process of FIG. 9 is described as
generating three signatures (i.e., the signatures generated at
blocks 906, 910, and 914), in other examples, fewer signa-
tures (e.g., one signature or two signatures) or more signa-
tures (e.g., more than three signatures) may be generated for
use in authenticating/signing the STR data structure 216.

FIG. 10 illustrates an example flow diagram representa-
tive of computer readable instructions that may be executed
to verify the validity the STR data structure 216 (FIG. 2).
The example process of FIG. 10 may be used to implement
the operation of 712 of FIG. 7A when verifying DRAM
during a resume process from the suspend-to-RAM power
state 104 of FIG. 1. To confirm the validity of the STR data
structure 218, the example process is used to generate keys
and signatures in the same manner as described above in
connection with FIG. 9. As discussed above, the keys used
to generate the signatures are identically re-creatable by the
secure CPU 204 at subsequent times, for example, by
seeding a key generator with the same seed value as used in
the process of FIG. 9. The keys are then used to generate
signatures based on the STR data structure 216 to compare
against the signatures stored in the STR data structure 216
(e.g., in the STR header signature field 302, the STR
scatter/gather table signature field 304, and the STR DRAM
signature field 306 of FIG. 3). Because the keys generated in
the example process of FIG. 10 are identical to the keys
generated in the example process of FIG. 9, the signatures
generated in the verification process of FIG. 10 when
resuming from the suspend-to-RAM power state 104 should
match the signatures generated in the authentication process
of FIG. 9 when entering the suspend-to-RAM power state
104, if the contents of the STR data structure 216 have not
been altered (e.g., have not been compromised by a potential
attacker).

As shown in FIG. 10, initially, the secure CPU 204
generates a STR root generation key (block 1002). For
example, the secure CPU 204 can generate the STR root
generation key in the same manner as it generated the STR
root generation key at block 902 of FIG. 9. The secure CPU
204 generates a STR header key (block 1004), for example,
in the same manner as it generated the STR header key at
block 904 of FIG. 9. The secure CPU 204 generates an STR
header signature (block 1006), for example, in the same
manner as it generated the STR header signature (e.g., of the
STR header signature field 302) at block 906 of FIG. 9.

The secure CPU 204 verifies the STR header of the STR
data structure 216 (block 1008). For example, the secure
CPU 204 compares the STR header signature generated at
block 1006 to the STR header signature stored in the STR
data structure 216 (e.g., in the STR header signature field
302 of FIG. 3) to determine whether the STR header (e.g.,
the STR header in the STR header field 308 of FIG. 3) of the
STR data structure 216 is valid. If the STR header has not
changed since the processor system 100 entered the sus-

10

15

20

25

30

35

40

45

50

55

60

65

18

pend-to-RAM power state 104, the signatures will match to
confirm that the STR header is valid.

The secure CPU 204 generates an STR scatter/gather
table key (block 1010), for example, in the same manner as
it generated the STR scatter/gather table key at block 908 of
FIG. 9. The secure CPU 204 generates an STR scatter/gather
table signature (block 1012), for example, in the same
manner as it generated the STR scatter/gather table signature
at block 910 of FIG. 9. The secure CPU 204 verifies the STR
scatter/gather table of the STR data structure 216 (block
1014). For example, the secure CPU 204 compares the STR
scatter/gather signature generated at block 1006 to the STR
scatter/gather signature stored in the STR data structure 216
(e.g., in the STR scatter/gather signature field 304 of FIG. 3)
to determine whether the STR scatter/gather table (e.g., the
STR scatter/gather table location and size information in the
STR scatter/gather table 310 of FIG. 3) of the STR data
structure 216 is valid. If the STR scatter/gather table infor-
mation has not changed since the processor system 100
entered the suspend-to-RAM power state 104, the signatures
will match to confirm that the STR scatter/gather table
information is valid.

The secure CPU 204 generates an STR DRAM key (block
1016), for example, in the same manner as it generated the
STR DRAM key at block 912 of FIG. 9. The secure CPU
204 generates an STR DRAM signature (block 1018), for
example, in the same manner as it generated the STR
DRAM signature at block 914 of FIG. 9. The secure CPU
204 verifies the STR DRAM area pointed to by the STR data
structure 216 (block 1020). For example, the secure CPU
204 compares the STR DRAM signature generated at block
1018 to the STR DRAM signature stored in the STR data
structure 216 (e.g., in the STR DRAM signature field 306 of
FIG. 3) to determine whether the 16-byte aligned buffer of
the protected regions 218 pointed to by the pointer-0 312 of
FIG. 3 is valid. If the information in the 16-byte aligned
buffer has not changed since the processor system 100
entered the suspend-to-RAM power state 104, the signatures
will match to confirm that the 16-byte aligned buffer of the
protected regions 218 pointed to by the pointer in the
pointer-0 field 312 is valid.

The secure CPU 204 destroys the keys generated at blocks
1002, 1004, 1010, and 1016 (block 1022). Destroying the
keys provides further protection against the keys being
accessed in undesirable manners. The example process of
FIG. 10 returns the verification status to a calling function or
process such as the example process of FIGS. 7A and 7B,
and the example process of FIG. 10 ends.

Although the example process of FIG. 10 is described as
generating three signatures (i.e., the signatures generated at
blocks 1006, 1012, and 1018), in other examples, fewer
signatures (e.g., one signature or two signatures) or more
signatures (e.g., more than three signatures) may be gener-
ated for use in verifying the validity of the STR data
structure 216. In any case, the same number of signature(s)
should be generated in the example process of FIG. 10 as
generated in the example process of FIG. 9.

Disclosed example methods manage power states in a
processor system. Some disclosed example methods
involve, when transitioning a processor system to a low-
power mode, generating at least a first signature based on a
data structure storing memory addresses of memory regions
to be protected during the low-power mode. Some disclosed
example methods also involve, during a resume process of
the processor system from the low-power mode, generating
at least a second signature based on the data structure storing
the memory addresses of the memory regions to be protected

US 9,542,114 B2

19

during the low-power mode. Some disclosed example meth-
ods also involve resuming the processor system from the
low-power mode when the first signature matches the sec-
ond signature, and/or generating an error when the first
signature does not match the second signature. In some
examples, the low-power mode is a suspend-to-random
access memory power state in which operating states of
platform software are stored in a random access memory
that remains powered during the suspend-to-random access
memory power state.

Some disclosed examples also involve generating at least
one key and a random or pseudo-random value, and using
the at least one key and the random or pseudo-random value
in combination with information in the data structure to
generate the first signature. In some examples, the informa-
tion in the data structure includes at least one of a data
structure header or memory addresses and data sizes of the
protected memory regions. Some disclosed examples also
involve re-generating the at least one key, retrieving the
random or pseudo-random value from a continuously pow-
ered memory during the resume process, and using the
re-generated key and the retrieved random or pseudo-ran-
dom value to generate the second signature.

Some disclosed examples also involve determining at
least one or some of the memory regions to be protected
based on a manufacturer required regions table in which a
hardware manufacturer of the processor system or a com-
ponent of the processor system specifies the at least some of
the memory regions to be protected. Some disclosed
examples also involve determining another of the memory
regions to be protected based on a third-party required
regions table in which a third party specifies the another of
the memory regions to be protected.

Some disclosed examples also involve storing a pointer to
the data structure in a continuously powered memory during
the low-power mode. Some disclosed examples also involve
retrieving the pointer from the continuously powered
memory during the resume process, and locating the data
structure during the resume process based on the pointer.

Also disclosed are example tangible computer readable
storage media comprising example disclosed instructions
that, when executed, cause a machine to perform at least
some example methods disclosed herein.

Disclosed example apparatus suspend a processor system.
Some disclosed example apparatus include a first memory,
and a processor in communication with the first memory. In
some examples, the first memory is to remain powered when
the processor system is in a low-power mode, and the first
memory is to store a random or pseudo-random value, and
a pointer to a data structure. In some examples, the data
structure is to store at least a first signature to authenticate
information stored in the data structure that specifies
memory regions to store an operating state of the processor
system during the low-power mode. In some examples, the
processor is to generate the first signature based on the data
structure and the random or pseudo-random value when the
processor system is transitioning to the low-power mode. In
some examples, when the processor system is in a resume
process to resume from the low-power mode, the processor
is to generate at least a second signature based on the data
structure and the random or pseudo-random value, and
determine whether the data structure is valid based on a
comparison of at least the first signature and the second
signature. In some examples, the low-power mode is a
suspend-to-random access memory power state in which the
operating state is stored in a random access memory that
remains powered during the suspend-to-random access

10

20

25

30

35

40

45

55

65

20

memory power state. In some examples, the first memory is
an embedded static random access memory, and example
apparatus further comprise a dynamic random access
memory to store the data structure.

In some examples, the processor is further to determine at
least some of the memory regions based on a manufacturer
required regions table in which a hardware manufacturer of
the processor system or a component of the processor
system specifies the at least some of the memory regions. In
some examples, the processor is further to determine a
second one of the memory regions based on a third-party
required regions table in which a third party specifies the
second one of the memory regions. In some examples, the
processor is to generate the first and second signatures based
on at least one of a data structure header or memory
addresses and data sizes of the protected memory regions.

In some examples, the processor is a secure processor in
communication with a host processor. In such some
examples, when the data structure is not valid based on the
comparison of at least the first signature and the second
signature, the secure processor is to communicate an error
status to the host processor, and the host processor is to
perform a hardware reset based on the error status.

Although certain example methods, apparatus and articles
of manufacture have been described herein, the scope of
coverage of this patent is not limited thereto. On the con-
trary, this patent covers all methods, apparatus and articles
of manufacture fairly falling within the scope of the claims
of this patent.

What is claimed is:

1. An apparatus to manage power states in a processor

system, comprising:
a memory to remain powered when a processor system is
in a low-power mode;
a secure processor in communication with the memory,
the secure processor to sign a suspend-to-RAM (STR)
data structure in response to a low-power mode instruc-
tion by:
generating a STR header key, a STR scatter/gather table
key and a dynamic random access memory (DRAM)
key using a root key generated by the secure pro-
Cessor;

generating a STR header signature using the STR
header key, the STR header signature based on a
STR table header and a random or pseudo-random
value;

generating a STR scatter/gather table signature using
the STR scatter/gather table key, the STR scatter/
gather table signature based on a STR scatter/gather
table header and a random or pseudo-random value;

generating a DRAM signature using the DRAM key
and a value from a region of DRAM; and

storing the STR header signature, the STR scatter/
gather table signature and the DRAM signature in
the STR data structure; and

a host processor to:
resume the processor system from the low-power mode

when the STR data structure is valid based on a
comparison of a first signature and a second signa-
ture, the first signature based on at least one of the
STR header signature, the STR scatter/gather table
signature or the DRAM signature, the second signa-
ture generated in response to a resume instruction.
2. The apparatus of claim 1, wherein memory addresses of
memory regions to be protected during the low-power mode
are stored in the STR data structure, the memory regions

US 9,542,114 B2

21

including a first region based on a manufacturer required
regions table and a second region based on a third-party
required regions table.

3. The apparatus of claim 1, wherein the value from a
region of DRAM used to generate the DRAM signature
corresponds to a first 16-byte aligned buffer of protected
regions pointed to by a pointer stored in a pointer field of the
scatter/gather table.

4. The apparatus of claim 1, wherein the low-power mode
is a suspend-to-random access memory power state in which
an operating state is stored in a random access memory that
remains powered during the suspend-to-random access
memory power state.

5. The apparatus of claim 1, wherein the secure processor
is to destroy the STR header key, the STR scatter/gather
table key and the dynamic random access memory (DRAM)
key after the STR header signature, the STR scatter/gather
table signature and the DRAM signature have been gener-
ated.

6. The apparatus of claim 1, wherein the host processor is
in communication with the secure processor, and when the
data structure is not valid based on the comparison of the
first signature and the second signature:

the secure processor is to communicate an error status to

the host processor; and

the host processor is to perform a hardware reset based on

the error status.

7. The apparatus of claim 1, further including an on-die
key generator to generate a key during a resume process:

the on-die key generator is to re-generate the key; and

the secure processor is to access the random or pseudo-
random value from a continuously powered memory,
and use the re-generated key and the random or pseudo-
random value to generate the second signature.

8. An method to manage power states in a processor
system, comprising:

configuring a secure processor to:

sign a suspend-to-RAM (STR) data structure by:

generating a STR header key, a STR scatter/gather table
key and a dynamic random access memory (DRAM)
key using a root key generated by the secure pro-
Cessor;

generating a STR header signature using the STR
header key, the STR header signature based on a
STR table header and a random or pseudo-random
value;

generating a STR scatter/gather table signature using
the STR scatter/gather table key, the STR scatter/
gather table signature based on a STR scatter/gather
table header and a random or pseudo-random value;

generating a DRAM signature using the DRAM key
and a value from a region of DRAM; and

storing the STR header signature, the STR scatter/
gather table signature and the DRAM signature in
the STR data structure; and

resume the processor system from the low-power mode
when the STR data structure is valid based on a
comparison of a first signature and a second signa-
ture, the first signature based on at least one of the
STR header signature, the STR scatter/gather table
signature or the DRAM signature, the second signa-
ture generated in response to a resume instruction.

9. The method of claim 8, wherein memory addresses of
memory regions to be protected during the low-power mode
are stored in the STR data structure, the memory regions

10

15

20

25

30

35

45

50

55

60

22

including a first region based on a manufacturer required
regions table and a second region based on a third-party
required regions table.

10. The method of claim 8, wherein the value from a
region of DRAM used to generate the DRAM signature
corresponds to a first 16-byte aligned buffer of protected
regions pointed to by a pointer stored in a pointer field of the
scatter/gather table.

11. The method of claim 8, wherein the low-power mode
is a suspend-to-random access memory power state in which
an operating state is stored in a random access memory that
remains powered during the suspend-to-random access
memory power state.

12. The method of claim 8, further including destroying
the STR header key, the STR scatter/gather table key and the
dynamic random access memory (DRAM) key after the STR
header signature, the STR scatter/gather table signature and
the DRAM signature have been generated.

13. The method of claim 8, further including, when the
data structure is not valid based on the comparison of the
first signature and the second signature:

communicating an error status to a host processor; and

performing, via the host processor, a hardware reset based

on the error status.

14. The method of claim 8, further including, during the
resume process:

re-generating the key via the secure processor;

accessing, via the secure processor, the random or pseudo-

random value from a continuously powered memory;
and

using, via the secure processor, the re-generated key and

the random or pseudo-random value to generate the
second signature.

15. An integrated circuit comprising instructions that,
when executed, cause a machine to at least:

when transitioning a processor system to a low-power

mode, sign a suspend-to-RAM (STR) data structure by:

generating a STR header key, a STR scatter/gather table
key and a dynamic random access memory (DRAM)
key using a root key generated by a secure processor;

generating a STR header signature using the STR
header key, the STR header signature based on a
STR table header and a random or pseudo-random
value;

generating a STR scatter/gather table signature using
the STR scatter/gather table key, the STR scatter/
gather table signature based on a STR scatter/gather
table header and a random or pseudo-random value;

generating a DRAM signature using the DRAM key
and a value from a region of DRAM; and

storing the STR header signature, the STR scatter/
gather table signature and the DRAM signature in
the STR data structure; and

resume the processor system from the low-power mode
when the STR data structure is valid based on a
comparison of a first signature and a second signa-
ture, the first signature based on at least one of the
STR header signature, the STR scatter/gather table
signature or the DRAM signature, the second signa-
ture generated in response to a resume instruction.

16. The integrated circuit of claim 15, wherein memory
addresses of memory regions to be protected during the
low-power mode are stored in the STR data structure, the
memory regions including a first region based on a manu-
facturer required regions table and a second region based on
a third-party required regions table.

US 9,542,114 B2

23

17. The integrated circuit of claim 15, wherein the value
from a region of DRAM used to generate the DRAM
signature corresponds to a first 16-byte aligned buffer of
protected regions pointed to by a pointer stored in a pointer
field of the scatter/gather table.

18. The integrated circuit of claim 15, wherein the low-
power mode is a suspend-to-random access memory power
state in which an operating state is stored in a random access
memory that remains powered during the suspend-to-ran-
dom access memory power state.

19. The integrated circuit of claim 15, wherein the instruc-
tions are further to cause the machine to destroy the STR
header key, the STR scatter/gather table key and the
dynamic random access memory (DRAM) key after the STR
header signature, the STR scatter/gather table signature and
the DRAM signature have been generated.

20. The integrated circuit of claim 15, wherein when the
data structure is not valid based on the comparison of the
first signature and the second signature, the instructions are
to further cause the machine to:

communicate an error status to a host processor; and

perform a hardware reset based on the error status.

21. The integrated circuit of claim 15, wherein the instruc-
tions are further to cause the machine to, during the resume
process:

re-generate the key;

access the random or pseudo-random value from a con-

tinuously powered memory; and

use the re-generated key and the random or pseudo-

random value to generate the second signature.

#* #* #* #* #*

10

15

20

25

30

24

