A 000 N O O

WO 03/085562 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

16 October 2003 (16.10.2003) PCT WO 03/085562 Al
(51) International Patent Classification”: GO6F 17/30 CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
(21) International Application Number: PCT/US03/09649 LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

(22) International Filing Date: 28 March 2003 (28.03.2003)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

10/114,423 2 April 2002 (02.04.2002) US

(71) Applicant and
(72) Inventor: WOZNY, Keith, A. [US/US]; 26 Hackett Court,
Poolesville, MD 20837-2508 (US).

(74) Agent: HOUSER, Kirk, D.; Eckert Seamans Cherin &
Mellott, LL.C, 44th Floor, 600 Grant Street, Pittsburgh, PA
15219 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,

SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ,

VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SEARCHING A DATABASE WITH A KEY TABLE

210

sy

(57) Abstract: A method for searching a database in-
cludes receiving a search criteria including a plural-
ity of search elements corresponding to at least some
of the record elements of a database (272, 278, 282).
Each of the search elements is capable of returning one
or more corresponding search results from the records
of the database. The search elements of the search cri-
teria are ordered based upon an expected size of the
corresponding search results from the database (286).

WO 03/085562 PCT/US03/09649

10

15

20

25

30

METHOD FOR SEARCHING A DATABASE, SEARCH ENGINE SYSTEM
FOR SEARCHING A DATABASE, AND METHOD OF PROVIDING A KEY
TABLE FOR USE BY A SEARCH ENGINE FOR A DATABASE

BACKGROUND OF THE INVENTION

Field of the Invention

This invention relates to methods for searching a database and, more
particularly, to methods for matching textual strings and searching a relational
database, such as a name/address database. The invention also relates to a search
engine system for searching a database. The invention further relates to a method of
providing a key table for use by a database search engine.

Background Information

Many software applications make use of a database containing
information about individuals. This information usually includes the person’s name,
address, employer, and other information. Examples of such databases include
marketing databases, databases of current customers, such as those maintained by a
video rental store or a long distance telephone service provider, and law enforcement
databases. These applications almost always provide a mechanism fér accessing the
information stored about a particular person based on one or more key attributes of
that person. For example, a clerk at a video store will most likely be able to access an
individual’s account information based only on the person’s telephone number or
social security number. If such key information is available, then obtaining the
desired database record is straightforward and current database technology permits
highly efficient retrieval.

Software applications have arisen, however, in which correct,
unambiguous information about the database entry being sought is not available. For
example, law enforcement maintains vast databases of incidents, cases, and
individuals. The information available to law enforcement and entered into these
databases is very often less than absolute. For example, a database may contain
information about an individual known only as John Smith of Elm Street. A user of
the database may be interested in finding any entry involving Jonathan E. Smyth of
304 Elm Circle. Under straightforward database query techniques, a linkage between

the two entities will not be observed because there is no exact match. Therefore,

WO 03/085562 PCT/US03/09649

10

15

20

25

30

techniques have been produced to query the database for sets of records that are in
some way similar to the search target. These sets are usually presented to a human
user who makes the determination as to whether one of the records in the set is indeed
the record being sought.

Many techniques exist to query a database, list, directory or index for a
set of records that are similar to, or close to, a query target under some distance
metric. For example, there is the case of constructing a set of records that differ from
the query target only by the transformation of a Character Transposition. Character
Transposition is a transformation in which the order of two consecutive characters is
reversed. If two entries can be made to match with one application of the Character
Transposition, then they could be said to be a distance of one apart. Similarly, if two
entries can be made to match with two Character Transpositions, then they are said to
be a distance of two apart. Hence, “Reid” and ‘“Ried” are a distance of one apart, and
“Farmer” and “Framre” are a distance of two apart.

Generally, an algorithm of this type will allow the use of a number of
different transformations and compute a distance metric based on the type of
transformations required, the number of transformations required, and sometimes the
order in which the transformations are required, in order to compute an overall
distance between a specific entry and the query target. Transformations include those
generally directed at correction of typographic errors, such as Character
Transposition, Character Insertion, Character Deletion, and Character Substitution.
Common Transformations also include those directed at phonetic issues such as the
Soundex method (e.g., a "sounds-like" search, in which a search string is tested
against database records for similarity in sound), applications of Kenyon and Knott
phonetic transformations, and unigram, bigram, trigram, and multigram approaches.
Still other transformations exist which are directed at particular types of errors or
deception attempts.

While these distance-based approaches have demonstrated good results
for specific types of noise, or combinations of noise, they are usually computationally
intensive over the types of variations seen in many name search applications. The
computational complexity limits the usefulness of many of these approaches for real-

time applications by making the algorithm unsuitably slow. Further, few, if any, of

WO 03/085562 PCT/US03/09649

10

15

20

25

30

the known distance-metric search techniques preserve the substantial power inherent
in Structured Query Language (SQL) over an indexed, relational database.

It is, therefore, reasonable to search for new techniques that preserve
the quality of matches obtained by computationally intensive distance metric
calculations while leveraging the power of SQL over an indexed database.

There is, therefore, room for improvement in database searching
techniques and systems.

SUMMARY OF THE INVENTION

These needs and others are met by the present invention, which
achieves high efficiency in constructing a set of database entries that potentially
match a search target. In particular, the invention may be employed to provide
matching against a name/address database.

As one aspect of the invention, a method for searching a database
including a plurality of records, with at least some of the records having a plurality of
record fields and a plurality of record elements, comprises: receiving a search criteria
including a plurality of search elements corresponding to at least some of the record
elements of the database, each of the search elements being capable of returning one
or more corresponding search results from the records of the database; ordering the
search elements of the search criteria based upon an expected size of the
corresponding search results from the database; and searching the database with one
of the search elements, which is expected to provide a first group of the search results,
before searching the database with another one of the search elements, which is
expected to provide a second group of the search results, the second group being
larger in size than the first group.

The method may further comprise constructing a search priority array
including a plurality of records, with each of the records of the search priority array
having a plurality of fields; employing a search priority field as one of the fields of the
records of the search priority array; and calculating the search priority field for each
of the records of the search priority array. The method may further comprise
employing an array of replacement words including a plurality of records; employing
with each of the records of the array of replacement words an original word, a

replacement word and a priority constant; and for at least some of the search elements

WO 03/085562 PCT/US03/09649

10

15

20

25

30

of the search criteria, determining if one of the at least some of the search elements
corresponds to one of the replacement words of the array of replacement words and
responsively employihg a corresponding one of the priority constants of the array of
replacement words in the step of ordering the search elements of the search criteria.

The method may further comprise parsing each of the search elements
of the search criteria. At least one word is employed for some of the search elements
of the search criteria; a suffix table is employed including a plurality of first suffixes
and a plurality of corresponding replacement suffixes; and it is determined if any of
the words ends in one of the first suffixes of the suffix table and, if so, the one of the
first suffixes is responsively replaced with the corresponding replacement suffix.

The method may further comprise employing a string reduction table
including a plurality of first character strings, a plurality of corresponding conditions
and a plurality of corresponding replacement character strings; and recursively
searching for one of the first character strings in any of the words, determining if the
corresponding condition is met, and responsively replacing the one of the first
character strings with the corresponding replacement character string.

Preferably, the string reduction table is stored in the memory; and the
string reduction table may be adjusted.

As another aspect of the invention, a search engine system for
searching a database including a plurality of records each of which has a plurality of
record fields and a plurality of record elements, comprises: means for receiving a
search criteria including a plurality of search elements corresponding to at least some
of the record elements of the database, with each of the search elements being capable
of returning one or more corresponding search results from the records of the
database; means for ordering the search elements of the search criteria based upon an
expected size of the corresponding search results from the database; and means for
searching the database with one of the search elements, which is expected to provide a
first group of the search results, before searching the database with another one of the
search elements, which is expected to provide a second group of the search results, the
second group being larger in size than the first group.

As another aspect of the invention, a method of providing a key table

for use by a search engine for a database, which includes a plurality of records, with

WO 03/085562 PCT/US03/09649

10

15

20

25

30

each of the records having a plurality of record fields and a plurality of record
elements, comprises: parsing the record elements of the record fields of the database
and extracting at least one word for each of the record elements; assigning a field type
value to each of the words based upon its origin from a corresponding one of the
record fields of the database; assigning a word position value to each of the words
based upon its origin from a particular word position in the corresponding one of the
record fields of the database; constructing the key table including a plurality of
records, each of which corresponds to one of the words; employing a plurality of
fields with each of the records of the key table, the fields of the records of the key
table comprising a record identifier field, a field type field, a word position field, an
original word field, a replacement word field, a consonant key field and a vowel key
field; assigning a unique value to each of the record identifier fields; for each of the
words, assigning the field type value to a corresponding one of the field type fields,
assigning the word position value to a corresponding one of the word position fields,
and assigning the word to a corresponding one of the original word fields; employing
an array of replacement words including a plurality of records having an original
word and a replacement word; for at least some of the words, determining a
corresponding one of the replacement words from the array of replacement words and
assigning the corresponding one of the replacement words to a corresponding one of
the replacement word fields; and for each of the words, determining a corresponding
consonant key value and a corresponding vowel key value, assigning the consonant
key value to a corresponding one of the consonant key fields, and assigning the vowel
key value to a corresponding one of the vowel key fields.

The method may further comprise parsing each of the words.
Preferably, at least one word for some of the search elements of the search criteria is
employed; a suffix table is employed including a plurality of first suffixes and a
plurality of corresponding replacement suffixes; and it is determined if any of the
words ends in one of the first suffixes of the suffix table and, if so, the one of the first
suffixes is responsively replaced with the corresponding replacement suffix.

The method may further comprise employing a pseudo-phonetic string
reduction table including a plurality of first character strings, a plurality of

corresponding conditions and a plurality of corresponding replacement character

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-6-

strings; and recursively searching for one of the first character strings in any of the
words, determining if the corresponding condition is met and responsively replacing
the one of the first character strings with the corresponding replacement character
string.

The pseudo-phonetic string reduction table may be stored in memory;
and the pseudo-phonetic string reduction table may be adjusted in the memory.

The method may further comprise storing the array of replacement
words in a memory before constructing the key table; updating one of the original
words or one of the replacement words in the array of replacement words in the
memory; and reconstructing the key table after the step of updating one of the original
words or one of the replacement words.

BRIEF DESCRIPTION OF THE DRAWINGS

A full understanding of the invention can be gained from the following
description of the preferred embodiments when read in conjunction with the
accompanying drawings in which:

Figure 1 is a block diagram showing graphical user interfaces of a
search engine system for searching a database by enabling the linking of a search
engine and an associated name-keys database with an existing name/address database
in accordance with the present invention.

Figure 2 is block diagram and flowchart of a search engine in
accordance with an embodiment of the present invention.

Figures 3A-3D are simplified flowcharts of key generation routines for
the search engine of Figure 2.

Figures 4A-4F are flowcharts of request processing routines for the
search engine of Figure 2.

Figure 5 is a block diagram of a graphical user interface for entering
Search Criteria data for the search engine of Figure 2.

Figure 6 is a flowchart of a routine for adding, editing or deleting
replacement words in the replacement word table and updating of the key table of
Figure 2.

Figure 7 is a flowchart showing the algorithm for scoring and ordering

records in the result set of Figure 2.

WO 03/085562 PCT/US03/09649

10

15 .

20

25

30

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention will be described as applied to a relational

database, such as a name/address (e.g., name and address) database, although it is to
be understood that a wide range of databases (e.g., general web searching on fields
that may consist of a web site description or "Meta Tags"; a database about dogs may
be mapped to fields such as hair type, color, region; a hospital database on medicines
may contain information on side effects, which are mapped to corresponding side
effects fields) may be employed.

Figure 1 is a block diagram of graphical user interfaces (GUIs) of a
database search engine system 2, which enables linking of a search engine 4 with a
database server 5 (having a database 6 and an associated name-keys table 7 (not to be
confused with Table 7)) and with local storage or file 8 for name/address information.
These linkages are performed as part of a set-up process, which is completed prior to
any database searches. Typically, database 6 includes a plurality of records each of
which has a plurality of record fields and a plurality of record elements.

The system 2 includes a suitable processor, such as, for example, a
personal computer 9, which runs the search engine 4 and interfaces the name-keys
table 7 and local file 8, although a wide range of other processors such as, for
example, mainframe computers, mini-computers, workstations, microcomputers, and
other microprocessor-based computers may be employed.

As one non-limiting example, the processor 9 may be a personal
computer (e.g., having a 450 MHz processor and 64 Mb memory) including a suitable
operating system (e.g., Windows 2000 Server®) and suitable database interface
software (e.g., SQL 2000®), although a wide range of operating systems and database
software may be employed.

The GUI 10 allows the user to specify the server 5, the name-keys
table 7 and the owner of such table, which is generally dedicated for use by the search
engine 4. The GUI 12 allows the user to specify the server 5, the name/address
database 6 and the owner of such database. Typically, the name/address database 6 is
an existing database and is usually configured for access by other software in addition

to the search engine 4, although such database 6 may be dedicated to the search

WO 03/085562 PCT/US03/09649

10

15

20

25

-8-

engine 4. The GUI 14 enables the user to map the individual record fields in the local
file 8 and database 6 to the fields expected by the search engine 4.

The GUI 14 shows a number of exemplary search engine fields such
as, for example, “Full Name”, “First Name”, “Middle Name”, “Last Name”,
“Company Name”, “Address”, “City”, “State”, “Postal Code” (e.g., zip code), “PR
Urbanization”, “Country” and “Record Identifier”. Most installations are expected to
use some, many or all of these fields, however, the only required field is the “Record
Identifier”. A unique Record Identifier is employed in order that when the results are
returned, the search engine 4 may retrieve the "real record" from the user’s database.
Any subset of the remaining fields may be mapped or left unmapped. Fields are left
unmapped if they either do not exist in the local file 8 and database 6, or if it is
determined that the search engine 4 need not, or should not, make use of them.
Leaving an entry blank in the GUI 14 indicates that the field should be left unmapped.

After configuration, the software of the search engine 4 is linked to the
database 6 containing database records and performs a pre-processing routine 16 as
shown in Figures 3A-3D. This pre-processing routine 16 extracts information from
the records in the database 6 and employs the same to construct a separate database
table 18, namely the Key Table of Figure 2. The Key Table 18 is subsequently
employed by the search engine 4 to facilitate searches of the database 6. An example

of a Key Table is shown in Table 1.

Table 1
Record Field | Word Original | Replacement | Consonant { Vowel
Identifier Type | Position | Word Word Key Key
000604257894 | 1 1 Bill William WLM ITA
000604257894 | 1 2 Bob Robert RBRT OE
000604257894 | 1 3 Smyth | Smith SMTH I

The Key Table 18 consists of seven fields, or columns, as shown in
Table 1. The pre-processing routine 16 places a record into the Key Table 18 for each
Word, as defined by the search engine 4, in the database 6. A Word is a character

string (e.g., a token) that results from parsing data in a database field with a parsing

WO 03/085562 PCT/US03/09649

10

15

20

25

30

algorithm 20 of Figures 4A and 4B. Specifically, the Key Table 18 has one record for
each Word of each field of each record in the database 6.

As shown in Table 1, the fourth column contains the “Original Word”,
which is the name or address fragment as it was entered, or as it appears in the
database 6, verbatim. The fifth column contains the “Replacement Word” which is
the name or address fragment after substitution is performed from the “Replacement
Word Table” 22 of Figure 2. The sixth column contains the “consonant key” of the
“Replacement Word” after it is subjected to a suitable cleansing process. The seventh
column contains the “vowel key” of the “Replacement Word" after it is subjected to a
suitable cleansing process. The third column contains the “word position” of the
fragment, or the ordinal position of the fragment relative to all other fragments in the
name or address under consideration. The Key Table 18 may also include an
"alternate key", which is discussed below in connection with Figure 4C.

Figure 2 shows the process 24 for generating the Key Table 18, adding
or editing entries in the Key Table 18, and conducting searches by the search engine
4. The process 24 is responsive to one of three different user requests: (1) a generate
keys request 26; (2) a user add/edit keys request 28; and (3) a user search request 30.
Responsive to the generate keys request 26, at 32, the Replacement Word Array is
loaded into memory (e.g., of processor 9 of Figure 1) from the Replacement Word
Table 22. At 32 (or 60), the Prefix Array is loaded from the Replacement Word Table
22 using a predetermined priority of "2". At 33, if the Priority field from the current
record of the Replacement Word Table 22 contains the number "2", then that record is
loaded into the Prefix Array in memory, otherwise this record is loaded into the
Replacement Word Array in memory. Combining the Prefix Table and Replacement
Words into one table (i.e., the Replacement Word Table 22) is preferably done to
avoid a second call (if there were two tables) to the name-keys table 7 for faster
loading of the two arrays.

Next, at 34, an empty Key Array is created in memory. At 36, a
Pseudo-Phonetic String Reduction Array 245 (Figure 4C) is loaded into memory from
a corresponding Pseudo-Phonetic String Reduction Table (see Table 6, below). Then,
at 38, an empty Search Priority Key Array 309 (Figure 4D) is created in memory.
Next, at 40, the first record is retrieved from a names/addresses table 42. The field

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-10 -

mapping from Figure 1 is stored locally in the file 8 (e.g., for Microsoft®, the registry)
and resides where the search engine 4 is installed. The mapping information is
employed to obtain the records (e.g., database server, table names, field names) each
time the search engine 4 is called.

Following step 40, the process request routine 44 of Figure 4A is
executed. For ease of disclosure, the routine 44 is shown with three output paths A
46, B 48 and C 50, which correspond to the respective requests 26, 28 and 30,
although it is to be understood that three separate routines 44 or a single routine with a
single return to its calling routine may be provided. Following steps 40 and 44 to
output path A 46, at 52, the Keys from the Key Array (e.g., from steps 260,262 of
Figure 4C) are saved in the Key Table 18. Next, at 54, the next record is retrieved
from the names/addresses table 42. If, however, there are no more such records, at
56, then the process 24 exits at 58. On the other hand, if there are one or more such
records, at 56, then the routine 44 is executed.

Following the user add/edit keys request 28, and similar to steps 32, 34
and 36, at step 60, the Replacement Word Array is loaded into memory from the
Replacement Word Table 22. Next, at 62, an empty Key Array is created in memory.
At 64, a Pseudo-Phonetic String Reduction Array 245 (Figure 4C) is loaded into
memory from a corresponding Pseudo-Phonetic String Reduction Table (see Table 6,
below). Then, the process request routine 44 of Figure 4A is executed. Following
steps 64 and 44 to output path B 48, at 66, any matching Keys are deleted from the
Key Table 18. Next, at 68, the added or edited Keys from the Key Array (e.g., from
steps 260,262 of Figure 4C) are saved in the Key Table 18 before the process 24 exits
at 58.

Following the user search request 30, the steps 60, 62 and 64 are
executed as discussed above in connection with the user add/edit keys request 28.
Following steps 64 and 44 to output path C 50, at 70, the user's results are provided as
discussed below in connection with the Results Ordering Algorithm 156 of Figure 7.

Figures 3A-3D show simplified flowcharts of the key generation
routines as employed by the pre-processing routine 16. After starting at 80 of Figure
3A, the pre-processing routine 16 first gathers information to be stored in the file 8 of

Figure 1, and assigns the name-keys table 7 of Figure 1, at 82, and the

WO 03/085562 PCT/US03/09649

10

15

20

25

30

11 -

names/addresses table 42 of Figure 3B at 84. Next, at 86, the mapping information is
stored in the local file 8 from the fields in the names/addresses table 42 to their
associated mapping names as shown in Figure 1 at 14. At 88, the Key Table 18, the
Replacement Word Table 22 and the stored procedures are created, before the
Generate Keys routine 90 (Figure 3B) is executed. Three SQL stored procedures on
the Database SQL Server are created to allow users the flexibility to modify them as
needed. (SQL stored procedures are specific to SQL servers and are code that can be
executed by a SQL Server.) The stored procedures include: (1)
NAGlobal_GetRecByld has one input parameter which is the record identifier; the
resulting fields that are returned are user configurable; (2) NAGlobal GetRecs has
one input parameter, “temp table name”, that allows the user to add a return field
named “Other” (for assignment of other information for display in the resulting list of
records); and (3) NAGlobal_InsertUpdate uses the field mapping information
identified in Figure 1 at 14 to be used as the input parameters. This allows the user
the flexibility to add additional code to the stored procedure for any additional
requirements. It is also not called by the search engine itself and is provided only as a
convenience.

At 92 of Figure 3B, it is determined if there is another record in the
names/addresses table 42. If not, then the routine 90 exits at 94. On the other hand, if
there is another record in the names/addresses table 42, then the pre-processing
routine 16 loops through each mapped field in the current record until there are no
more mapped fields to process. At 96, if there is no name and address field in the
current record, then step 92 is repeated. Otherwise, if there is another field, then at
98, the field is parsed into separate words. Next, at 100, it is determined if there is
another word in the current field. If not, then step 96 is repeated. Otherwise, if there
is another word, then at 102, the Build Keys routine 102 of Figure 3C is executed
before step 100 is executed.

Figure 3C shows the Build Keys routine 102. The functions of Figures
3C and 3D are discussed in greater detail, below, in connection with Figures 4B and
4C. First, at 104, the variables "Word_To_Use", "Consonant_Key" and
"Vowel_Key" are defined. Next, at 106, the word, as detected at 100, is looked for in

the Replacement Word Array (which was loaded into memory from the Replacement

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-12 -

Word Table 22 at 32 of Figure 2). At 108, if the word is found in the Replacement
Word Array, then the variable "Word_To Use" is set equal to the Replacement Word
from the Replacement Word Array. Otherwise, if the word was not found in the
Replacement Word Array, then the variable "Word_To_Use" is set equal to the
Original Word, which was detected at 100.

Following either step 110 or 112, at 114, the variables "Vowel Key"
and "Consonant_Key" are both set equal to an empty string of characters. Next, the
Process "Word_To_Use" routine 116 (Figure 3D) is executed. After the routine 116,
at 118, it is determined if the "Consonant Key" length, as established at step 142 of
Figure 3D, has a length of greater than three characters. If so, then at 120, the Keys
are appended to the Key Table 18 and, at 122, the third character is removed from the
"Consonant_Key". On the other hand, if the "Consonant_Key" length, at 118, is three
or less, or after step 122, then the Keys are appended to the Key Table 18. Finally,
the routine 102 returns at 126. Steps 120 and 124 update the Record Identifier from
the Name and Address record, Original Word (Real Name), Replacement Word
(Name), Consonant Key, Vowel Key, Word Position, and Field (Word) type.

Figure 3D shows the Process "Word_To_Use" routine 116. First, at
130, it is determined if there is another character in "Word_To_Use". If not, then the
routine 116 returns at 132. Otherwise, at 134, it is determined if the current character
from the "Word_To_Use" matches the previous character from the "Word To Use".
If so, then step 130 is repeated to determine if there is another character in
"Word To Use", thereby skipping any consecutive matching characters. If not, then
at 136, it is determined if the current character is a vowel. If so, at 138, the current
vowel character is appended to the "Vowel Key" before step 130 is repeated. On the
other hand, if the current character is not a vowel, at 140, it is determined if the
current character is any character between A and Z, inclusive, thereby determining if
the current character is a consonant. If so, at 142, the current consonant character is
appended to the "Consonant Key" before step 130 is repeated. Otherwise, if the
current character was neither a vowel nor a consonant (e.g., a number, a punctuation
mark), then step 130 is repeated.

Figure 4A shows the process request routine 44 of Figure 2. After

starting, at 150, the routine 44 determines if the request is for searching (as initiated at

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-13 -

step 30 of Figure 2), at 152. If so, then the Intelligent Conical Reduction Algorithm
154 of Figure 4D is executed. Next, the Results Ordering Algorithm 156 of Figure 7
is executed. Then, at 158, the search results are retrieved from the names/addresses
table 42 of Figure 2, where the Record ID in such table 42 matches the corresponding
Record ID of the Temporary Destination_Table of the Algorithm 156 of Figure 7.
Those search results are preferably ordered by descending values of ORD and include
the Last Name followed by the First Name. This step may call the stored procedure
"NAGlobal_GetRecs" which returns the results as stated, but can be modified by the
user. At 160, the Temporary Destination_Tables are destroyed before the routine 44
returns at 170. The Conical Reduction Algorithm 156 uses as many temporary tables
as there are words to be searched against. The last temporary table (temp table #0) is
employed at 158.

On the other hand, if the request is not for searching (as initiated at
step 26 or 28 of Figure 2), at 152, then the first input field is obtained at 162. Next, at
163, the Parsing Algorithm 20 of Figure 4B is executed. Then, the Heuristic
Reduction Algorithm 164 of Figure 4C is executed. At 166, the next input field is
obtained. Next, at 168, it is determined if there are any more fields to process. If so,
then step 163 is repeated. Otherwise, the routine 44 returns at 170.

Referring to Figure 4B, the Parsing Algorithm 20 receives, as input, a
string of characters that may contain letters, numbers, spaces, punctuation marks and
other characters. The Parsing Algorithm 20 produces, as its output 179, a sequence of
one or more other cleansed strings, most of which are sub-strings of the original
string. These output strings are referred to as “Words” (e.g., tokens). A Word is
defined to be a string that contains only letters and/or numbers and excludes other
characters (e.g., spaces, punctuation marks).

After starting, at 180, the Parsing Algorithm 20 removes, at 182, all
apostrophes or single quotes from the input string. This transforms words such as, for
example, “watson’s” and “o’riley” into “watsons” and “oriley”, respectively. If
multiple consecutive apostrophes are encountered, then the algorithm 20 behaves in a
similar fashion. For example, “don’’’”’t” is transformed into “dont”.

Next, at 184, if the field being parsed is a name field or a company

field, then, at 186 and 188, the parsing algorithm 20 examines the input string and

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-14 -

considers all non-letter characters to be delimiters of the Words in the string.
Specifically, digits (or numeric values at step 186) and spaces, tabs, punctuation
marks and all other non-letter characters (step 188) are considered delimiters. For
example, if the input string is “Best4You Building Supplies”, then the following set of
four Words is provided: “Best”, “You”, “Building”, and “Supplies”.

On the other hand, if the field being parsed is not a name field or a
company field (e.g., if it is an address, city, state, zip, Puerto Rico (PR) urbanization,
or country field), then, at 188, the parsing algorithm 20 examines the input string and
considers all non-letter, non-digit characters, to be delimiters of the Words in the
string. Specifically, spaces, tabs, punctuation marks and all other non-letter, non-digit
characters are considered delimiters. For example, if the input string is “12 Allen-
Vancarson Ave. Apt 37, then the following set of six Words is produced: “12”,
“Allen”, “Vancarson”, “Ave”, “Apt”, and “3”.

Next, at 190, the first word in the cleansed string is obtained. Steps
192,194,196,198,200,204 of the Parsing Algorithm 20 compare each of the words
produced by steps 182,184,186,188,190 against the Prefix Table, which is created in
memory from the values in the Replacement Word Table 22 of Figure 2 that have a
priority of "2". The Prefix Table is a table containing prefixes of words that should be
parsed from the input words when one of such input words begins with a prefix. The
Prefix Table contains a list of character strings to be processed as “word prefixes”.

Table 2 is an example of a portion of the Prefix Table with some sample data.

Table 2

Prefix
VAN
VON
DELA

At 192, it is determined if a word in the Replacement Word Array
(which was loaded into memory from the Replacement Word Table 22 at 32 of Figure
2) matches the current input word. If not, then at 194, it is determined if a word in the
Prefix Array (which was also loaded into memory from the Replacement Word Table
22 at 32 of Figure 2) matches the prefix of the current input word. If so, then the

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-15-

Prefix is separated from the current input word in the cleansed string by a "space" at
196, and the remainder of the word is employed as the next word at 198. Next, at
200, it is determined if there are any more words to process. If so, then step 192 is
repeated. Otherwise, the cleansed string 179 is output at 202. On the other hand, if
the test of 192 is yes or the test of 194 is no, then, at 204, the next word in the
cleansed string is obtained before step 200 is executed.

To continue with the example, above, for step 188, when the six Words
are examined against the Prefix Table (e.g., Table 2), five of those words are
unaffected. Specifically, “12”, “Allen”, “Ave”, “Apt”, and “3” are unaffected. The
word “Vancarson”, however, begins with “Van” which is found to be one of the
prefixes in the Prefix Table. Thus, “Vancarson” is parsed further, at 196, into two
separate Words, “Van” and “carson”. The word “carson” is then recursively checked,
after 200, at 192, against the Prefix Table to see if it contains a prefix. In this
example, it does not so it would be unaffected by this second check. The final result
of the even steps 192-204 is seven Words: “12”, “Allen”, “Van”, “carson”, “Ave”,
“Apt”, and “3”.

As a further example to illustrate the recursive nature of the even steps
192-204 for the Prefix Table (e.g., Table 2), consider the word “vonvandelatora”.
This word is first parsed into “von” and “vandelatora”, then “vandelatora” is parsed
into “van” and “delatora”, then “delatora™ is parsed into “dela” and “tora”, and then
“tora” is checked against the Prefix Table and remains unchanged. In this manner, the
Parsing Algorithm 20 parses “vonvandelatora”, recursively, into four words: “von”,
“van”, “dela” and “tora”.

As a still further example of the even steps 192-204 for the Prefix
Table, consider the word “advance”. This word contains the string “van”, which is
listed in the Prefix Table of Table 2, but it is not at the beginning of the word.
Therefore, “advance” is unaffected and this word is output without any parsing.

To construct the Key Table 18 of Figure 2, every mapped field of
every record of the database 6 of Figure 1 is examined. Each mapped field is parsed
with the Parsing Algorithm 20 of Figure 4B, and an entry is made in the Key Table 18
for each word that results from the Parsing Algorithm 20. As shown in Table 1,
above, the first column or field of the Key Table 18 is the unique “Record Identifier”,

WO 03/085562 PCT/US03/09649

10

15

20

25

-16 -

which provides a mechanism for uniquely identifying the record containing this word
in the database 6. For example, if the database 6 contains a record with Record
Identifier 000604257894, then any entry in the Key Table 18 that pertains to this
record will have 000604257894 in the “Record Identifier”.

The second column or field is the “Field Type”, which contains a code
indicating the type of field of this entry. In the exemplary embodiment, seven Field
Types are employed: Name = 1, Company = 2, Address = 3 (and/or PR
Urbanization=3 (not shown)), City = 4, State =5, Zip = 6, and Country = 7, although
the invention is applicable to a wide range of counts (e.g., two or more) of Field
Types. An exemplary listing of Field Types is shown in Table 3, which shows the
correspondence between the various name/address fields and the Field Type codes.
All of the sample data in Table 1, above, has data with a Field Type of 1. This
indicates that this data is from a Name field. Thus, the Field Type is readily
determined from the field related to the entry in the Key Table 18.

The Field Type Table assigns Field Type = 1 to each component of the
name and address. This allows various components of the name/address entry to be
processed together. For example, Full Name, First Name, Middle Name and Last
Name are all of Field Type = 1 and, hence, First Name, Middle Name and Last Name
are processed together. The result is that matches are found even if it is not clear

which parts of the name is the individual's first, middle or last name.

Table 3
Field Type Group Field Sort
Name Code Number Order
Full Name 1 1 4
First Name 1 1 4
Middle Name 1 1 4
Last Name 1 1 4
Company 2 1 1
Address 3 2 2
City 4 3 3
State 5 4 5
Zip 6 5 6
Country 7 6 7

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-17 -

The third column or field of the Key Table 18 is the “Word Position”,
which indicates the ordinal position of the word within the field after the field has
been parsed into individual words. For example, if the Full Name field contains the
entry “Bill Bob Smyth”, then three entries are made in the Key Table 18 as shown in
Table 1. The Word Position of “Bill” is “1”, “Bob” is “2”, and “Smyth” is “3”, since
these three words were parsed from the string “Bill Bob Smyth”. Further, the Field

6‘1”

Type of each of these entries is “1”, since they were obtained from the Full Name
field, which has a Field Type of “1” as indicated in Table 3.

The fourth column or field in the Key Table 18 is the Original Word
field. This field contains the word exactly as it appears after the parsing operation,
which isolates it from the rest of the string.

The last three columns or fields in the Key Table 18 are the
Replacement Word, and the Consonant Key and the Vowel Key, which are obtained
from step 110 of Figure 3C, and steps 142 and 138 of Figure 3D (and the Heuristic
Reduction Algorithm 164 of Figure 4C), respectively.

Referring again to Figure 2, the fifth field or column of the Key Table
18, the "Replacement Word", is derived from a Replacement Word Array, which is
loaded into memory (e.g., RAM memory), at 32, from the Replacement Word Table
22. The Replacement Word Array and the Replacement Word Table 22 have identical
structures and can be referred to interchangeably except that the array exists in
memory and the table exists in the table 7 of Figure 1. An example of a portion of the
Replacement Word Table 22 is shown in Table 4, below. For example, by
dynamically loading the Replacement Word Table 22 from the database into RAM, a
substantial speed advantage is provided in that the Replacement Word Array is |
accessed many times during the acquisition of the Replacement Words for the Key
Table 18.

The Replacement Word Table 22 contains a list of “Original Words”
and for each “Original Word” provides an associated “Replacement Word”. Table 4
is populated so as to relate known spelling variations of “Original Words” to a
common root, or key, for those names that appear in the Replacement Word field. For
example, the Original Words “abdel”, “abdou”, and “abduh” are all mapped to the

Replacement Word “abdul”. This enables the search engine 4 of Figure 1 to associate

WO 03/085562 PCT/US03/09649

10

15

20

25

-18 -

seemingly unrelated names based on domain-specific knowledge, specifically, in this

case, common spelling variations of names.

Table 4
Priority
Original Word | Replacement Word Constant
AAN ANNETTE 1
AARON AHRON 1
ABBI ABBEY 1
ABDEL ABDUL 1
ABDOU ABDUL 1
ABDUH ABDUL 1
ABE ABEL 1
ABRAMSON | ABRAMS 1
ACCOUNT 6
ADRIANA ADRIAN 1

Although not shown in Table 4, the Replacement Word Table 22 may
contain words which, based on knowledge of the subject domain, can be reduced into
synonymous words. For example, the words “Bill”, “Billy”, “Will”, “Willy” and
“William” may all have entries in the Replacement Word Table 22 with the
Replacement Word of “William”.

As shown in Figure 3C, to obtain the fifth field in the Key Table 18,
the Replacement Word, an attempt is made, at 106, to locate the Original Word in the
Original Word field of the Replacement Word Array. If the Original Word is found
and has a corresponding non-null entry in the Replacement Word field, at 108, then
the entry in the Replacement Word field of the array is used as the Replacement Word
at 110. On the other hand, if the Original Word is found and has a corresponding
entry in the Replacement Word field that is null (e.g., as shown in Table 4 with the
Original Word ACCOUNT), or if the Original Word is not found in the Replacement
Word Array, then the Original Word is used as the Replacement Word, at 112.

Maintaining the Replacement Words in a database table, such as 22, as
opposed to hard coding them in the program, has a number of advantages. For
example, the Replacement Word Table 22 may be dynamically changed without

necessitating recompilation of code or rebuilding the entire Key Table 18.

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-19-

Specifically, if the Replacement Words are hard coded and this list becomes modified,
for example, through version update, then the entire Key Table 18 would have to be
rebuilt, which could take a number of hours, if not days. Alternatively, keeping the
Replacement Words in the Key Table 18 enables such Table to be synchronized with
the Replacement Word Table 22 by updating only the relatively few entries in the Key
Table 18 that are affected by changes to the words in the Replacement Word Table
22. Hence, the Replacement Word Table 22 and the Key Table 18 can be maintained
in real time. This aspect of the Tables 18 and 22 is discussed in greater detail, below,
in connection with Figure 6.

Referring to Figure 4C, the Heuristic Reduction Algorithm 164
processes each word in the Replacement Word field of the Key Table 18 of Figure 2
with the following three-step algorithm. At the completion of this algorithm, the
resulting word is used to produce the Consonant Key and the Vowel Key in the Key
Table 18. Specifically, the Heuristic Reduction Algorithm 164 receives a single word
as input and performs the following three general functions: (1) even steps 212-218;
(2) steps 220, 222, 223-225 and even steps 226-238; and (3) even steps 240-252.

First, after stating at 210, the Heuristic Reduction Algorithm 164
determines at even steps 212-218 if the single word ends in one of the suffixes listed
in a Suffix Table 211. Table 5, below, shows an example of a Suffix Table with some
sample data. The exemplary even steps 212-218 implement that sample data,
although a wide range of Suffix Table data and corresponding replacement steps may
be employed. The Suffix Table contains a list of character strings to be considered
“word suffix” and for each suffix gives the replacement value. If the word ends in a
suffix listed in the Suffix Table, then the suffix is replaced with the Replacement
Suffix listed in such Suffix Table. For example, if the original word is “Fries”, then
each of the suffixes in the Suffix Table is checked (e.g., in the order listed), against
the input word “Fries”. In this example, the Algorithm 164 determines that the suffix
of “Fries” is “ies” and, thus, replaces this Suffix with the Replacement Suffix "y".
Hence, “Fries” is changed to “Fry”.

In particular, at 212, it is determined if the current word ends with
"ies". If so, then "ies" is replaced with "y" at 214, after which execution resumes at

220. Otherwise, at 216, it is determined if the current word ends with "es" or "s". If

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-20 -

so, then the "es" or "s" is removed at 218, after which execution resumes at 220.
Regardless, if the tests of steps 212 and 216 are not met, then step 220 is executed.
As another example, step 216 determines whether the suffix is "es" or

"s" and, if so, removes the suffix at 218. For example, "Acomns" would be replaced

by "Acorn".
Table 5
Suffix Replacement Suffix
IES Y
ES
S

As the second function of the Algorithm 164, steps 220, 222, 223-225
and even steps 226-238 recursively remove all consecutive duplicate characters from
the Word. Specifically, any two consecutive identical characters are replaced, by the
test at 238 (since steps 242 or 252 are not executed for this iteration), with a single
occurrence of that character and then step 223 is repeated. For example, if the input
word is “carr”, an application of step 238 changes this word to “car”. Similarly, if the
input word is “99999thh”, then step 238 eventually reduces this string to “Oth”.

First, at 220, it is determined if the word length is greater than 1. If
not, then execution resumes at 254. Otherwise, at 222, variables are initialized as
follows: Pos = 0; Vowel Key=""; Main_Key =""; Alternate Key =""; and
Last_Char ="", wherein "" represents an empty string of characters. At 223, it is
determined if the current character is greater than "". If so, then at 224, Last_Char is
set equal to the current character. If not, or after 224, at 225, it is determined if Pos is
less than the word length. If not, then execution resumes at 254. Otherwise, at 226,
Pos is incremented by one and, at 228, the character at Pos is obtained. Then, at 238,
if the character from step 228 is equal to Last Char (from the previous iteration of
step 228), then step 223 is repeated. Otherwise, at 240, it is determined if the current
character is a vowel.

As the third function of the Algorithm 164, even steps 240-252
recursively perform a process, Pseudo-Phonetic String Reduction, on the word that

results from the second general function (i.e., steps 220, 222, 223-225 and even steps

WO 03/085562 PCT/US03/09649

10

15

20

221 -

226-238). Table 6, below, shows an example of various Pseudo-Phonetic String
Reductions, although a wide range of such reductions may be employed. For
example, a Pseudo-Phonetic String Reduction Table may be moved from the table 7
of Figure 1 to the Pseudo-Phonetic String Reduction Array 245 in memory. In turn,
such Table and/or Array 245 may be adjusted in that memory (e.g., to add, delete or
modify any or all of the Initial Sub-Strings, Replacement Sub-Strings and/or
Conditions of Table 6).

If the character is a vowel, at 240, then at 242, Vowel Key is set equal
to Vowel Key plus that vowel, after which step 223 is repeated. On the other hand, if
the character is not a vowel, then steps 244 and 246 search the string for Initial Sub-
Strings, in the order in which they are listed in the Array 245, and perform a
replacement based on one of the corresponding Conditions. If it is determined that
the string contains an Initial Sub-string as listed, at 244, and if the corresponding
Condition for such sub-string is met, at 246, then the Initial Sub-String is replaced
with the Replacement Sub-String at 248. Then, at 250, the character at Pos is
obtained, after which, at 252, Main_Key is set equal to Main_Key plus that character

(i.e., a consonant). Otherwise, if the test at 246 is not met, then step 252 is executed.

Table 6

g:;{:_al Replacc'mcnt N

String Sub-String Condition

SION | TION Always

SCH SK If the character following the H is a vowel
ora“Y”

SCH S If the character following the H is not a
vowel or not a “Y”

SC SK Always, unless one of the previous two
Conditions is met

SH S If the character following the H is not a
vowel or nota “Y”

PH F Always

CK K Always

G J If G is the first letter of the word and is
followed by a vowel or a “Y”

J H If J is not the first letter of the word

H If H is not the first letter of the word and is
not preceded by a vowel or a “Y”, “T” or
“C”

KN N If KN are the first two letters of the word
and are followed by a vowel or a “Y”’

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-22-

Steps 223-225 and even steps 226-252 are recursive, in that the word is
checked against each sub-string listed in the Array 245. If any replacements are
made, then such steps are repeated. Specifically, the software checks the word against
all sub-strings in the Array 245 over and over again until an entire pass through the
word does not result in any replacements.

For example, if the input word is “shinsky”, the Algorithm 164 first
looks for the sub-strings “SION”, “SCH” and "SC" as set forth in the sample Table 6.
Since none of these sub-strings is found in the input word, the Algorithm next looks
for the substring “SH”, which is found in the word. Since the character following the
“H” is a vowel, specifically an “I”, the condition is not met. Therefore, no
replacement is made and the Algorithm 164 continues to look for the sub-strings
“PH”, “CK”, “G”, and “J”. The Algorithm 164 does not find any of these sub-strings
and, thus, looks for the sub-string “H”, which is found in the string. Then, the
corresponding Condition is checked. Since “H” is not the first letter of the word and
is not preceded by a vowel or “Y”, “T” or “C”, it is replaced with the Replacement
String. Since the Replacement string is empty (e.g., nothing, null, an empty string),
the “H” is effectively deleted and is replaced with nothing. The word at this point
would be “sinsky”. Since a replacement was made during this pass through Table 6,
steps 223-225 and even steps 226-252 are repeated for the remainder of the word and
all sub-strings in Table 6 are again checked against the current string “sinsky”. In this
example, a second pass through Table 6 results in no substitutions and, therefore, the
steps 223-225 and even steps 226-252 of the Algorithm 164 are completed.

A second example is the word “schnaubbelt”, which the Algorithm
164, through step 238, transforms into “schnaubelt”. Then, the first Initial Sub-String
to match is “SCH” and since it is followed by a consonant, N, the word is transformed
into “snaubelt”. In this example, no other sub-strings in the word match, no
additional replacement is made, and this step is complete, with the resulting word
being “snaubelt”.

Steps 242 and 252 of the Algorithm 164 output a string of vowels and
a string of consonants, which are employed as the Vowel Key 243 and the Main Key
253, respectively. For example, “snaubelt” results in a Main Key 253 (Consonant

Key) of “snblt” and a Vowel Key 243 of “aue”. Once the Main Key 253 is separated

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-23-

from the Vowel Key 243, one additional step to the Consonant Key is performed
based on one of the following conditions (even steps 254-258): (1) if the Main Key
253 is less than three characters in length, at 254, then nothing more is done to such
Key and both the Main Key 253 (Consonant Key) and Vowel Key 243 are appended
to the Key Table 18 at 262. On the other hand, if the Main Key 253 is greater than
three characters in length, at 254, then the Alternate Key 255 is set equal to the Main
Key 253, at 256, the third character is removed from the Alternate Key 255, at 258,
and the Alternate Key 255 (modified Consonant Key) and Vowel Key 243 are
appended to the Key Table 18 at 260. After step 262, the Algorithm 164 returns at
264.

The Algorithm 164 updates the Key Table 18 of Figure 2 while adding
new records or updating existing records. If a replacement word from the
Replacement Word Table 22 is employed in building the Keys, then, by using Table 1
as an example, the following applies: if the Original Word does not match the
Replacement Word, then an additional Key Table record (along with the one already
inserted) is constructed and added to the Key Table 18 using the Original Word as the
Replacement Word. For example, if “Snaubelt” were to be in the Replacement Word
Table 22 (not shown in Table 4), then for “Snaubelt”, three keys are created: (1)
Consonant Key (Main Key) = “snblt”; (2) Vowel Key = “aue”; and (3) Alternate Key
= “snlt”.

After the Key Table 18 has been populated by the pre-processing
routine 16 of Figures 3A-3D, the search engine 4 of Figure 1 performs searches
against the database 6. During a search, a user enters information about any or all of
the supported search fields. Figure 5 shows an example of a GUI screen 380, which
the user may employ for conducting searches against the database 6. In the
exemplary embodiment, examples of these fields include: “Full Name” 381, “First
Name” 382, “Middle Name” 384, “Last Name” 386, "Company" 388", “Address”
390, “PR Urbanization” (not shown), “City” 392, “State” 394, “Postal Code” 396, and
“Country” 398. The GUI screen 380 enables the user to enter name and address
(and/or company) information in any, some or all of the even fields 382-398, select
the type of search (e.g., Exact) through the exemplary drop down entry field 400, and

initiate the search through the “Search” button 402, which causes the search engine 4

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-4 -

to query the database 6 for names and addresses in response t;) the Search Criteria
entered in the GUI screen 380.

After the user enters Search Criteria and clicks the “Search” button
402, the search engine 4 is invoked and the search is performed. The search result at
step 70 of Figure 2 is a set of records that match, or are suitably similar to, the data
entered into the GUI screen 380.

Speed and accuracy are the primary objectives of any search engine.
The techniques disclosed herein demonstrate high accuracy in terms of the records
returned relative to the user’s intent and also deliver the results with suitably high
speed. Accuracy is obtained with the heuristics and reductions disclosed above, and
speed is obtained with the database access ordering/search strategy, the Intelligent
Conical Reduction Algorithm 154, as disclosed below in connection with Figures 4D-
4F. The speed of a search is a direct result of accessing the database 6 with a strategy
that constructs supersets of the result set at intermediate points and reduces these
supersets in succession until the final result set is obtained. The insight of this
technique is that the overall speed is dependent on the order in which the intermediate
results are obtained. In this regard, the search elements of the Search Criteria are
ordered based upon the relative expected size of the corresponding search results from
the database 6. In turn, the database is searched with one of those search elements,
which is expected to provide a relatively smaller sized group of the search results,
before searching the database 6 with another one of the search elements, which is
expected to provide a relatively larger sized group of the search results.

The search engine 4 searches the database 6 for a variety of exact or
near word matches across a number of database fields. Searching for these
conditions, either manually or by relying on an advanced database engine, without
any ordering of the criteria, may cause the intermediate results to be very large which
would jeopardize the speed of the search. Therefore, the Intelligent Conical
Reduction Algorithm 154 of Figure 4D determines the order in which the various
Search Criteria should be applied, in order to minimize, with some likelihood, the size
of the intermediate result sets at each step of such Algorithm.

The Intelligent Conical Reduction Algorithm 154 orders all of the

elements of the Search Criteria based on the likelihood that an individual element will

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-25.

produce a relatively small result set. Such elements of the Search Criteria that are
expected to produce a small result set are applied early in the search and other such
elements that are not likely to produce small result sets are applied later. This strategy
will, with some degree of certainty, reduce the size of the intermediate result sets and
increase the speed of the search.

For example, there may be a database search for an individual with
first name of "John", last name of "Smith", and a specific word from address, say
“McKernon”. If the first Search Criterion or element to be applied is the first name of
John, then the first intermediate result set is likely to be very large, since many
“Johns” may exist in the database. If the second Search Criterion or element to be
applied is the last name of Smith, then this second search would again produce a
relatively large intermediate result set. Specifically, the second search is against a
relatively large set and has a likelihood of returning a large subset of that set as the
second result set. Applying the third and final Search Criterion or element of the
word from the address to this set would reduce the set to the final result set, which
would probably consist of one or a few records. If, alternatively, the most restrictive
search is applied first (e.g., the word from the address), then the first intermediate
result set is probably relatively small and all subsequent intermediate result sets are
also small. Therefore, the search is faster.

The exemplary Intelligent Conical Reduction Algorithm 154 uses
specific information about the Search Criteria, as entered, and general information
about the data in the database to order each element of the Search Criteria based on its
likelihood of producing small result sets. The approach is to list all elements of the
Search Criteria, specifically each Word in the search criteria, in an array in internal
(e.g., RAM) memory. This array is referred to as the Search Pribrity Key Array 309,
an example of which is shown in Table 7, below. The Search Priority Key Array 309
has a similar structure to the Key Table 18 (Table 1), in that each Word in the Search
Criteria is listed as a separate record in the array 309. There is, however, no column
for Record Identifier in the Search Priority Key Array 309, and there are additional
columns called "Field Sort Order", “Priority Constant”, “Size Ordinal” and “Search

Priority”. The additional columns are designed to allow the records, or the Search

WO 03/085562 PCT/US03/09649

10

15

20

25

-26 -

Criteria elements, to be ordered so as to achieve, with some likelihood, fast search

speed.
Table 7
Field
Field | Sort Word Original Replace- Conso- Vowel Prior- Size Search
Type | Order | Posi- Word ment nant Key Key ity Ordi- | Prior-
tion Word Con- nal ity
stant

2 1 1 International International | NTRNTNL | IEAIOA |1 0 1

2 1 2 Association Association SCTN AQIAIO |1 1 2

2 1 3 of of F [o] 6 0 6

2 1 1 Attorney Attorney TRN AOEY 1 2 3

Figures 4D and 4E show the steps employed by the Algorithm 154 to
construct the Search Priority Key Array 309 in memory. The Search Priority Key
Array 309 is populated with data entered by the user as the Search Criteria.
Specifically, one record is placed into this array 309 for each Word of each field of
the Search Criteria as entered (Figure 5) by the user. Also, the Parsing Algorithm 20
(Figure 4B) used in the search engine 4 is the same as the one used to populate the
Key Table 18. For each Word obtained from the Parsing Algorithm 20, the first and
the second through and including the seventh columns or fields of the Search Priority
Key Array 309 are populated the same as they were in the population of the Key
Table 18. Once these fields are populated, the Search Priority field for each record is
obtained and the records are ordered as described below in connection with steps 314,
316 of Figure 4E. Four general steps are employed. First, if the Replacement Word
field was obtained from the Replacement Word Table 22 (Tables 4 and 8), then the
Priority Constant is obtained from the Replacement Word Table 22 and is employed
as the Priority Constant for this word. Otherwise, if the Original Word does not exist
in the Replacement Word Table 22, then the Priority Constant for this word is set to
zero. Third, if the Replacement Word is a string consisting of all digits, then “10” is
added to the Priority Constant for this word. This causes all words that are
completely numeric to have a lower priority (i.e., a greater Priority Constant) than any
of the non-numeric words. Fourth, as discussed in connection with steps
272,278,282,286 of Figure 4D, for the following three fields: Name Field, Company

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-27-

Field, and Address Field, the words are grouped into sets according to their Priority
Constant values.

The Intelligent Conical Reduction Algorithm 154 begins at 270. If the
Company Field is not empty at 272, then Group_Type is set to 1 and Field Type is set
to 2 at 274. Although Figure 4D shows exemplary group and field types (e.g., as
shown in Table 3), it is understood that these are example values and a wide range of
other suitable values may be employed. Then, the Process Sort Field routine 276 of
Figure 4E is executed. On the other hand, if the Company Field was empty at 272 or
after 276, it is determined if the Address Field is empty at 278. If it was not empty,
then Group Type is set to 2 and Field Type is set to 3 at 280. Then, at 281, the
Process Sort Field routine 276 is executed. On the other hand, if the Address Field
was empty at 278 or after 281, it is determined if the Name Field is empty at 282. Ifit
was not empty, then Group_ Type is set to 1 and Field Type is set to 1 at 284. Then,
at 285, the Process Sort Field routine 276 is executed. On the other hand, if the Name
Field was empty at 282 or after 285, the Search Priority Key Array 309 of Figure 4F
is sorted by ascending Priority (as set at step 316 of Figure 4E) and descending word
length at 286.

Next, at 290, it is determined if the City Field is empty at 290. If'it
was not empty, then Group Type is set to 3 and Field Type is set to 4 at 292. Then,
at 294, the Process Other Fields routine 294 of Figure 4E is executed. On the other
hand, if the City Field was empty at 290 or after 294, it is determined if the State Field
is empty at 296. If it was not empty, then Group Type is set to 4 and Field Type is
set to 5 at 298. Then, at 299, the Process Other Fields routine 294 is executed. On
the other hand, if the State Field was empty at 296 or after 299, it is determined if the
Zip Code Field is empty at 300. If it was not empty, then Group Type is set to 5 and
Field Type is set to 6 at 302. Then, at 303, the Process Other Fields routine 294 is
executed. On the other hand, if the Zip Code Field was empty at 300 or after 303, it is
determined if the Country Field is empty at 304. If it was not empty, then
Group_Type is set to 6 and Field Type is set to 7 at 306. Then, at 307, the Process
Other Fields routine 294 is executed. On the other hand, if the Country Field was
empty at 304 or after 307, the Build Query routine 308 of Figure 4F is executed to
build the query from the Search Priority Key Array 309.

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-28 -

For example, suppose the Company Name field is: “Association of
International Attorneys”. Table 8 shows the Replacement Words and Priority
Constants for the words in this example string. The words in the Company Name are
grouped into the following two sets: (1) {ASSOCIATION, INTERNATIONAL,
ATTORNEYS}; and (2) {OF}, since the words in the first set have a Priority
Constant of 1, and the word in the second set has a Priority Constant of 6. The
Original Word “ATTORNEY™ is obtained after the word “ATTORNEYS” was

parsed.
Table 8
Original Word Replacement Word Priority Constant
ASSOCIATION ASSOCIATION 1
ATTORNEY ATTORNEY 1
INTERNATIONAL | INTERNATIONAL 1
OF OF 6

The Process Sort Field routine 276 of Figure 4E begins at 310, clears
the Key Array (step 34 of Figure 2) at 311, and executes the Parsing Algorithm 20 of
Figure 4B at 312. Next, at 313, the Heuristic Reduction Algorithm 164 of Figure 4C
is applied to these words to construct corresponding Consonant Keys. As an example,
the Consonant Keys for these words and other entries in the Search Priority Key
Array 309 are shown in Table 7. Next, the Key Array is sorted based upon ascending
Priority (see Table 7) and descending word length at 314. At 316, Priority is set equal
to Priority Constant plus the Size Ordinal (see Table 7). Then, at 318, the values:
Name Key, Vowel Key, Field Type, Group Type; Word_Pos and Priority are
appended to the Search Priority Key Array 309, before the routine 276 returns at 320.

At step 314 of Figure 4E, the words in each of the two exemplary sets
are replaced by the corresponding Consonant Keys. For example,
INTERNATIONAL is replaced with NTRNTNL, ASSOCIATION is replaced with
SCTN, ATTORNEY is replaced with TRN, and OF is replaced with F. Hence, the
two sets become: (1) {SCTN, NTRNTNL, TRN}; and (2) {F}.

Also, at step 314, the words are ordered in each set by decreasing

length. For example, the two sets in this example are reordered by decreasing word

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-29.-

length, with the first set being changed to: {NTRNTNL, SCTN, TRN}, and the
second set remaining unchanged, namely: {F}.

Further, at step 314, a Size Ordinal is assigned to each word as follows.
For each one of the changed sets, the words are numbered from left to right starting
with the number zero. Thus, the Size Ordinal of the words in the example above is:
(1) {NTRNTNL=0, SCTN=1, TRN=2} for the first changed set; and (2) {F=0} for the
second changed set.

At step 316, the Priority is calculated for each word as follows:
Priority = Priority Constant (e.g., a user determined value) + Size Ordinal. The
calculated priority is inserted into the Search Priority Key Array 309 as shown, for
example, in Table 7.

The steps 330,331,332,333,334 of the Process Other Fields routine 294
are identical to the corresponding steps 310,311,312,313,318, respectively, of the
Process Sort Field routine 276. The routine 294 does not include the steps 314 or 316.

At step 286 of Figure 4D, after a Search Priority has been calculated
for each record in the Search Priority Key Array 309 (Table 7), the entries are ordered
in this array so as to produce efficient database queries. The strategy is to sort the
records in the Search Priority Key Array 309 by the following three fields: (1) Priority
(ascending); (2) Field Sort Order (ascending); and (3) Word Length (descending),
respectively. An example of the way the Search Priority Key Array 309 looks after
the sorting algorithm is applied is shown in Table 9, which shows a portion of a sorted

Search Priority Key Array.
Table 9
Field
Field | Sort Word | Original Replacement | Consonant Vowel Prior- Size Search
Type | Order | Posi- Word Word Key Key ity Ordi- | Prior-
tion Con- nal ity
stant
2 1 1 International International NTRNTNL TEAIOA 1 0 1
2 1 2 Association Association SCTN AQIAIO |1 1 2
2 1 4 Attorney Attorney TRN AOEY 1 2 3
2 1 3 Of Oof F [0] 6 0 6

The sorting algorithm 286 first sorts the entries in the Search Priority
Key Array 309 by the Search Priority field. Then, within any groups of items that

have the same Search Priority, the items are sorted by Field Sort Order. Then, within

WO 03/085562 PCT/US03/09649

10

15

20

25

-30-

any groups of items that have the same Search Priority and the same Field Sort Order,
the items are sorted by decreasing Word Length.

Table 10 shows another example depicting the order of some of the
entries in the Search Priority Key Array 309 after sorting. The “Search Priority” field
is the most significant sorting field, the “Field Sort Order” is the next highest sorting
field, and “Word Length” is the least significant sorting field.

Table 10
Field
Search Sort Word
Item Priority Order Length
Item 1 0 3 5
Ttem 2 0 3 4
Item 3 0 4 5
Item 4 1 1 4
Item S 1 1 3
Item 6 1 2 8
Item 7 2 1 3
Item 8 2 3 5
Item 9 2 3 3

Next, as discussed in connection with steps 290,296,300,304,306 of
Figure 4D, after the items in the Search Priority Key Array 309 have been sorted, at
286, the words from the remaining fields: City, State, Zip Code and Country are
appended, in the order listed, to the Search Priority Key Array 309 as the last records
in such Array.

Once the Search Priority Key Array 309 is constructed and sorted as
described above, conducting the search is straightforward as discussed in connection
with routine 308 of Figure 4F. The Search Criterion record, which is listed first in the
Search Priority Key Array 309, is applied against the database 6 of Figure 1 and an
intermediate result set is obtained, at 358. If a second Search Criterion record is listed
in the Search Priority Key Array 309, it is applied to the intermediate result set and a
second intermediate result set is constructed at 348. If a third Search Criterion record
is present in the Search Priority Key Array 309, then it too is applied against the most-
recent intermediate result set at the next iteration of 348. This process is continued

until all records in the Search Priority Key Array 309 have been applied. Since the

WO 03/085562 PCT/US03/09649

15

20

25

30

-31-

Search Criteria are applied in the order described, relatively small intermediate result
sets and a relatively fast search are provided.

The Build Query routine 308 of Figure 4F starts at 340. At 342, the
variable Row_Num is set equal to zero. Next, at 344, the row at Row_Num is
obtained from the Search Priority Key Array 309. At 346, if the Row_Num is greater
than zero, then, at 348, the Source_Table is set equal to the Destination Table, and the
Destination Table is set equal to the User Name plus String(Number of Rows -
Row_Num). On the other hand, if the Row_Num is not greater than zero, then, at
358, the Source Table is set equal to the Name Key Table, and the Destination Table
is set equal to the User Name plus String(Number of Rows - Row_Num). For
example, the row number (Row_Num) starts at 0, using a zero based array. If there is
only one row in the Key Array, then the Name Key Table for that value is queried and
the results are placed into a temporary table named for a username (e.g., “Keith”) +
“0” = “Keith0”. Then, those results are employed to query the names/addresses table
42 using the Record Identifier in both tables, “Keith0” and “Names and Address”,
respectively. If there are more than one row in the Key Array (e.g., three for this
example), then the Name Key Table is queried against the values in the first row and
the values in the second row and those results are put into a temporary table for user
name “Keith” + (number of rows 3 - row number 2) = “Keith1”. Then, it is
determined that Row_Num is now zero and the Name Key Table is queried against
the results from the “Keith1” temporary table along with the values in row number 0.
Those results are placed into a temporary table named “Keith0”. Hence, regardless of
the initial count of rows, the final query is against the temporary table that ends in 0
(Keith0) and the names/addresses table 42.

After either of steps 348 and 358, even steps 360-372 describe four
exemplary types of searches: (1) “Exact Search” (step 372 if all of the tests fail at
steps 360,364,368); (2) “Near Search” (step 362 as selected by the test at step 360);
(3) “Pseudo-Phonetic Search” (step 366 as selected by the test at step 364); and (4)
“Wide Pseudo-Phonetic Search” (step 370 as selected by the test at step 368). The
selection of one of those searches is determined by the drop down entry field 400

(e.g., “Exact”) of Figure 5.

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-32-

Steps 362,366,370,372 create the Temporary Destination_Table from
the Source_Table under different scenarios as discussed below. After those steps, the
Row_Num is incremented at 374. Then, at 376, it is determined if the count of rows
in the Search Priority Key Array 309 is greater than Row Num. If so, then step 346
is repeated. Otherwise, the routine 308 returns at 378.

As employed herein, a Exact Search at step 372 is defined to be a
search of the database 6 that produces a resulting record set of database records such
that all records in the result set match the Search Criteria exactly across the following
four fields: (1) Field Type; (2) Word Position; (3) Replacement Word; and (4)
Consonant Key. The Search Criteria words are matched only against words in the
Key Table 18 that have been obtained from an identical Field Type and Word
Position. For example, searching for the last name of “Dawson” matches entries such
as “Susan Dawson” or “Desmond Dawson”, but does not match entries such as
“Dawson Smith” because the search criterion is searching for Dawson as a last name,
not as a first name or middle name. Additionally, if the Search Criteria searches for
“Dawson” as last name and “Electric” as company name (first word position), then
the search matches entries such as “Susan Dawson” with a company name of
“Electric Designs” because both the Word Positions and Field Types of the Search
Criteria match the Word Positions and Field Types of the record of the database 6.
However, the search does not find a match between the above Search Criteria and the
database record having name “Susan Dawson” and company “Dawson Electric”. This
is because the word “Electric” has a Word Position of "1" in the Search Criteria, but
has a Word Position of "2" in the phrase “Dawson Electric”.

As another example, consider the Search Criteria of “Dawson” as last
name and “12 Main” as an address. This search matches entries such as “Susan
Dawson” with address “12 Main Street” because both Word Positions and Field
Types match for all three words: “Dawson”, “12” and “Main”. However, this search
would not find “Susan Dawson” at address “12 North Main” since the word “Main”
has a Word Position of "2" in the Search Criteria and has a Word Position of "3" in
the database record.

Finally, the Search Criteria having “Bill Dawson” as a name matches

database records having “William Dawson” as the name, since "William" matches

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-33 -

"Bill" in the Replacement Word Array (e.g., see Table 4, which shows the
corresponding Replacement Word Table 22).

As employed herein, a Near Search at step 362 is defined to be a
search of the database 6 that produces a resulting record set of database records such
that all records in the result set match the Search Criteria exactly across the following
three fields: (1) Replacement Word; (2) Consonant Key; and (3) Group Number (as
shown in Table 3). In this search, Field Types of “1” and “2”, Name and Company,
respectively, are allowed to match each other since they both have Group Number
“1”. All other Field Types must match exactly.

When the user conducts a “Near Search,” the Search Criteria words are
matched only against words in the Key Table 18 that have been obtained from
identical Group Numbers. For example, searching for the last name of “Dawson”
matches entries such as “Susan Dawson” or “Dawson Smith” because the Search
Criterion is searching for Dawson as a last name and the Near Search, unlike the
Exact Search, allows matching across Word Positions. This example Search Criterion
also matches entries such as “Dawson Electric” since the Near Search matches a word
against words with the same Group Number. Again, as is shown by Table 3, above,
both the Name Field and the Company Field have the Group Number of "1".
Therefore, the “Dawson” in the Name Field of the Search Criteria matches the
“Dawson” in the Company Field of the database record, with the Word Position being
ignored for this type of search.

As another example, for the Search Criteria of “Dawson” as last name
and “12 Main” as an address, this search matches entries such as “Susan Dawson”
with address “12 Main Street” and “Susan Dawson” at address “12 North Main” since
the Word Position is ignored.

As a further example, for the Search Criteria of “Bill Dawson” as a
name, this search matches database records having “William Chen” as the name and
“Dawson Electronics” as the company, but does not match “William Chen” with a
company name of “Electric Designs” and an address of “12 Dawson Street”. This is
because the Name Field and the Address Field do not have the same Group Number.

As employed herein, a Pseudo-Phonetic Search at step 366 is defined

to be a search of the database 6 that produces a resulting record set of database

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-34-

records such that all records in the result set match the Search Criterion exactly across
the following two fields: (1) Consonant Key; and (2) Group Number (as shown in
Table 3). Again, Field Types of “1” and “2”, Name and Company, respectively, are
allowed to match each other since they both have Group Number “1”. All other Field
Types must match exactly. The Pseudo-Phonetic Search is i(ientical to the Near
Search, except that the Replacement Word is ignored in the former search. This
produces a result set that is a superset of the result set produced by a Near Search with
the same Search Criteria. For example, where Robert Smith was returned in the Near
Search, the Pseudo-Phonetic Search would return Robert Smith, but could also return
Robert Smooth.

For example, for the Search Criterion having the last name of
“Dawson”, this matches entries such as “Susan Dawson” or “Dawson Smith” because
the Search Criterion is searching for Dawson as a last name. Furthermore, additional
database records could also be returned such as, for example, “Dewsean Advertising”
since both “Dawson” and “Dewsean” have the same Consonant Key, which is “dwn”
(i.e., "dwsn" less the third consonant "s").

For the Pseudo-Phonetic Search in which the search key (e.g., Name
Key) for the Search Criterion has an exact count of “3” consonants in length, then the
searching is done by retrieving database records that match the consonants in such
Name Key and the resulting database records must have a count of exactly three
consonants. For example, for “Dawson”, since there are two keys created, “dwsn”
(Consonant Key) and “dwn” (Alternate Key), there is a search of the Name Keys for
Name Key = “dwsn” or Name Key = “dwn”. One key has a consonant length of 3
and the other key has a consonant length of 4.

As employed herein, a Wide Pseudo-Phonetic Search at step 370 is
defined to be a search of the database 6 that produces a resulting record set of
database records such that all records in the result set have: (1) a Consonant Key that
contains the Consonant Key of the word in the Search Criteria as a prefix; and (2)
Group Number (as shown in Table 3). Again, Field Types of “1” and “2”, Name and
Company, respectively, are allowed to match each other since they both have Group

Number “1”. The Wide Pseudo-Phonetic Search is identical to the Pseudo-Phonetic

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-35-

Search except that the prefix part of the Consonant Key in the database records
matches the Consonant Key of the Search Criteria.

The Field Type Table of Table 3, above, has a column titled “Group
Number”. This column allows the assignment of a Group Number to multiple field
types. For example, the various Name fields and the Company field each have a
Group Number of “1”, whereas the other entries in Table 3 are assigned different
group numbers. The Field Type Group Numbers are applied differently for the
various searches that can be conducted.

For example, the word “Smithson” in a database record will not match
the word “Smith” as the Search Criterion in the Pseudo-Phonetic Search because the
two words have different Consonant Keys: “SMTHSN” and “SMTH?” respectively.
(There are also two different Alternate Keys: “SMHSN” and “SMH?”, respectively.)
On the other hand, these words match under the Wide Pseudo-Phonetic Search since
the Consonant Key “SMTH?” is a prefix of the Consonant Key “SMTHSN”.
Similarly, under the Wide Pseudo-Phonetic Search, a search criterion of “Smithson”
will not match database records containing the word “Smith” since “SMTHSN?” is not
a prefix of “SMTH”. This produces a result set that is a superset meaning that the
Pseudo-Phonetic Search would return “Smith”, while the Wide Pseudo-Phonetic
Search would return “Smith”, but could also return “Smithson” if Smithson were in
the database.

Figure 6 shows a routine 410 for adding, editing or deleting
Replacement Words in the Replacement Word Table 22 and updating of the Key
Table 18 of Figure 2. The routine 410 has three entry points 412,413,414 based upon
whether Replacement Words are to be added, edited or deleted, respectively. At 415,
after 412, the new Real Name, Replace Name, and Priority are appended as Original
Word, Replacement Word and Priority Constant values, respectively, of the
Replacement Word Table 22. At 416, after 413, the Real Name, Replace Name, and
Priority are updated in the corresponding Original Word, Replacement Word and
Priority Constant values, respectively, in the Replacement Word Table 22. At 417,
after 414, the corresponding values are deleted from the Replacement Word Table 22,
where the Real Name in the request matches the Real Name (Original Word) in the
Table 22.

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-36 -

After 415,416 or 417, at 418 and 419, the Parsing Algorithm 20 of
Figure 4B and the Heuristic Reduction Algorithm 164 of Figure 4C are respectively
executed. Next, at 420, all records are obtained from the Name Key Table 18 of
Figure 2, where the Real Name of that Table is equal to the Old Real Name of the
request. Then, at 422, the first record from step 420 is read into the variables
N_Record Id, S Real Name, N Word_Pos, and N_Priority. At 424, it is determined
if there were no further records (in this first instance, there may have been no records
at 420). If so, then the routine 410 ends at 426. Otherwise, at 428, the record of the
Name_Key Table is deleted where the Record Id is equal to N_Record_Id, and the
Real Name is equal to S_Real_Name, and the Word_Pos is equal to N_Word_Pos,
and the Priority is equal to N_Priority. At 430, the variable Row_Num is set to zero
and, at 432, the row at Row_Num is obtained from the Key Array (e.g., from steps
260,262 of Figure 4C).

Next, at 434, the New Keys from the Heuristic Reduction Algorithm
164 are inserted into the Name Key Table using N_Record_Id. At 436, if the count
of Rows of the Key Array is greater than the Row_Num, then step 432 is repeated.
Otherwise, at 438, the next record from step 420 is read into the variables
N_Record_Id, S Real Name, N_Word Pos, and N_Priority before step 424 is
executed.

Figure 7 shows the Results Ordering Algorithm 156, which is executed
for each of the records of the Result Set. Once the search engine 4 of Figure 1 returns
the Result Set of records which match the Search Criteria, each record in the Result
Set is assigned a Score. The Score indicates the degree to which each record matches
the Search Criteria. Records are then preferably presented to the user in order of
decreasing score. This approach enables the user to view the “best” records first, then
proceed down the list through the records that do not appear to be the "best" until the
record(s) of interest are found. Initially, all records begin with an initial score of zero.

The Algorithm 156 begins at 450 after which a field, ORD, is
appended to a Temporary Destination_Table 451 at 452. The initial value of this field
ORD is set to zero. Next, at 454, the variable Row_Num is set to zero and, at 456, the
row at Row_Num is obtained from the Search Priority Key Array 309 (Figure 4D). If
Group_Type(Row_Num) of the Array 309 is equal to one at 458 and if

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-37-

Field_Type(Row_Num) is equal to one at 459, then a first set of corresponding
constants (AddOrd1 = 10, AddOrd2 = 100, AddOrd3 = 1000) for the Name Fields is
initialized at 460. On the other hand, if the Field Type(Row_Num) is not one at 459,
then a second set of corresponding constants (AddOrd1 = 10000, AddOrd2 = 100000,
AddOrd3 = 1000000) for the Company Field is initialized at 461.

Otherwise, if Group_Type(Row_Num) of the Array 309 is not one at
458 and if Group Type(Row_Num) is equal to two at 462, then a third set of
corresponding constants (AddOrd1 = 0, AddOrd2 = 10000000, AddOrd3 =
100000000) for the Address Field is initialized at 463. On the other hand, if the
Group_Type(Row_Num) is not two at 462, then a fourth set of corresponding
constants (AddOrd1 =0, AddOrd2 = 1, AddOrd3 = 1) for all other Fields (e.g., City,
State, Zip Code, Country) is initialized at 464.

The exemplary weighting factors generally favor those search results
for the Address field over the Company field, the Company field over the Name Field,
and the Name Field over all the other fields. This is true, except for step 472, which
favors the Company field over the Name Field, and the Name field over all the other
fields.

Even steps 472-484 update each record in the Temporary
Destination_Table and adjust the corresponding values of ORD where a defined
portion of the Search Criteria matches a corresponding defined portion of the
particular Row_Num of the Search Priority Key Array 309. Step 472 is executed
after steps 460 or 461. Step 474 is executed after steps 463, 464 or 472.

At 472, the value of ORD is incremented by the value of AddOrd1
where the Replacement Name and the Group_Type of the Search Criteria matches
the corresponding portion (i.e., Replacement Word and Group Type, which is defined
by the Field Type) of the Row_Num of the Search Priority Key Array 309.

At 474, the value of ORD is incremented by the value of AddOrd2
where the Replacement Name and the Field_Type of the Search Criteria matches the
corresponding portion (i.e., Replacement Word and Field Type) of the Row_Num of
the Search Priority Key Array 309.

At 476, the value of ORD is incremented by the value of AddOrd2
where the Replacement_Name, Field_Type and Word_Pos of the Search Criteria

WO 03/085562 PCT/US03/09649

10

15

20

25

30

-38-

matches the corresponding portion (i.e., Replacement Word, Field Type and Word
Position) of the Row_Num of the Search Priority Key Array 309.

At 478, the value of ORD is incremented by the value of AddOrd3
where the Real Name and Field_Type of the Search Criteria matches the
corresponding portion (i.e., Original Word and Field Type) of the Row_Num of the
Search Priority Key Array 309.

At 480, the value of ORD is incremented by the value of AddOrd3
where the Prefix(Real Name) and Group_Type of the Search Criteria matches the
corresponding portion (i.e., Prefix(Original Word) and Group Type, which is defined
by the Field Type) of the Row_Num of the Search Priority Key Array 309.

At 482, the value of ORD is incremented by one where: (i) the
Prefix(Name Key) and Field Type of the Search Criteria matches the corresponding
portion (i.e., Prefix(Consonant Key) and Field Type) of the Row_Num of the Search
Priority Key Array 309; and (ii) the first character of the Vowel_Key of the Search
Criteria matches the corresponding portion (i.e., the first character of the
Vowel Key(Row Num)) at the Row_Num of the Search Priority Key Array 309.

At 484, the value of ORD is incremented by one where: (i) the
Prefix(Replacement Name) and Field Type of the Search Criteria matches the
corresponding portion (i.e., Prefix (Replacement Word) and Field Type) of the
Row_Num of the Search Priority Key Array 309; and (ii) the first character of the
Vowel Key of the Search Criteria matches the corresponding portion (i.e., the first
character of the Vowel Key(Row_ Num)) at the Row_Num of the Search Priority Key
Array 309.

After step 484, the Row_Num is incremented at 486. At 488, if the
count of Rows of the Search Priority Key Array 309 is greater than the Row_Num,
then step 456 is repeated. Otherwise, the Algorithm 156 returns at 490.

Table 11 shows an example of the final scoring of the search results for
a set of Search Criteria over Name, Company and Address fields. The left-most
column contains the example Search Criteria. The next column presents the
information from the records of the database 6 of Figure 1. The next three columns
contain individual score components: Name Score, Company Score and Address

Score. The final column sums the Name, Company and Address scores to produce

WO 03/085562

10

15

20

-39-

the corresponding record of the Temporary Destination_Table.

PCT/US03/09649

the overall score. This represents the corresponding value of ORD after step 484 for

Table 11
Search Criteria Matching Record
Name Field Name Fields
Company Field (First, M., Last) Name { Company Address Total
Address Field Company Field Score Score Score Score
Address Field
William Walter William Walter Smith
Smith Poolesville-Smith Corporation
Poolesville Corp 112 Brad Ave 7640 3320000 | 660000000 | 663327640
112 Brad Ave
William Walter William Walter Smith
Smith Poolesville Corporation
Poolesville Corp 112 Bradford Ave 6630 3420000 || 560000000 | 563426630
112 Brad Ave
William Walter Bill Walter Smith
Smith Poolesville-Smith Corporation
Poolesville Corp | 112 Bradford Heights Ave 5640 § 3320000 | 550000000 | 553325640
112 Brad Ave
William Walter Bill Walter Smyth
Smith Poolesville-Smyth Corporation
Poolesville Corp 112 Bradford Avenue 2640 3320000 | 460000000 | 463322640
112 Brad Ave
William Walter Walter Bill Smyth
Smith Poolesville-Smyth Corporation
Poolesville Corp 112 West Bradford Avenue 2440 3320000 | 440000000 | 443322440
112 Brad Ave

Although the Address Score is weighted relatively higher than the

Company Score, which is weighted relatively higher than the Name Score, the method
and apparatus of the invention may employ a wide range of weighting factors having
different sets of constants and having different relative weights.

The method and search engine 4 disclosed herein perform relatively
fast, domain-cognizant searches against the database 6. The method includes the pre-
processing routine 16, which obtains statistical insight into the structure of the
database 6 and the nature of the data present and which employs this information in
the search strategy to make each step in the search as fast as possible, based on the
statistics obtained. The method includes a strategy for efficiently maintaining
domain-specific knowledge, separate from the search algorithm itself, and to have the
pre-processing results track with changes to both the domain-specific knowledge and
also the data in the database 6 on an incremental basis. This eliminates the need to

repeat pre-processing after changes to the knowledge base or to the database 6. The

10

15

WO 03/085562 PCT/US03/09649

-40 -

method and search engine 4 may be configured to access an existing database or a
database, which is completely dedicated to such search engine.

It is believed that the exemplary search engine 4 provides significant
improvements in accessing a database, such as a name and address database. For
example, with a single 450 MHz processor having 64 Mb of memory, and with a
name and address database having 4.1 million records, each of which has some sort of
duplication from other records, search results including about 16 to about 48 records
are returned in about 16 to about 22 seconds.

Although for convenience of disclosure reference is made herein to
various arrays and tables, it will be appreciated that such structures may be employed
in memory and/or in disk storage and/or in any suitable storage area.

While specific embodiments of the invention have been described in
detail, it will be appreciated by those skilled in the art that various modifications and
alternatives to those details could be developed in light of the overall teachings of the
disclosure. Accordingly, the particular arrangements disclosed are meant to be
illustrative only and not limiting as to the scope of the invention which is to be given

the full breadth of the claims appended and any and all equivalents thereof.

WO 03/085562 PCT/US03/09649

-41 -

What is Claimed Is:

1. A method for searching a database including a plurality of
records, at least some of said records having a plurality of record fields and a plurality
of record elements, said method comprising:

receiving a search criteria including a plurality of search
elements corresponding to at least some of the record elements of said database, each
of said search elements being capable of returning one or more corresponding search
results from the records of said database;

ordering the search elements of said search criteria based upon
an expected size of the corresponding search results from said database; and

searching said database with one of said search elements, which
is expected to provide a first group of said search results, before searching said
database with another one of said search elements, which is expected to provide a
second group of said search results, said second group being larger in size than said
first group.

2. The method of Claim 1 further comprising

employing at least two of said search elements.

3. The method of Claim 1 further comprising

employing a first one of said search elements, which is
expected to provide said first group of said search results;

employing a second one of said search elements, which is
expected to provide said second group of said search results;

employing a third one of said search elements, which is
expected to provide a third group of said search results, said third group being larger
in size than said second group; and

sequentially searching said database with said first one, said
second one, and said third one of said search elements, respectively.

4. The method of Claim 1 further comprising

constructing a search priority array including a plurality of
records, each of said records of said search priority array having a plurality of fields;
employing a search priority field as one of the fields of said

records of said search priority array; and

WO 03/085562 PCT/US03/09649

-42 -

calculating the search priority field for each of said records of
said search priority array.
5. The method of Claim 4 further comprising
employing an array of replacement words including a plurality
of records;
employing with each of the records of said array of replacement
words an original word, a replacement word and a priority constant; and
for at least some of the search elements of said search criteria,
determining if one of said at least some of the search elements corresponds to one of
the replacement words of said array of replacement words and responsively
employing a corresponding one of the priority constants of said array of replacement
words in said step of ordering the search elements of said search criteria.
6. The method of Claim 5 further comprising
for at least some of the search elements of said search criteria,
determining if one of said at least some of the search elements does not correspond to
any of the replacement words of said array of replacement words and responsively
employing a predetermined priority constant in said step of ordering the search
élements of said search criteria.
7. The method of Claim 6 further comprising
employing zero as said predetermined priority constant.
8. The method of Claim 5 further comprising
for at least some of the search elements of said search criteria,
determining if one of said at least some of the search elements is a string of a plurality
of digits and responsively adding a predetermined priority constant to the
corresponding one of the priority constants of said array of replacement words in said
step of ordering the search elements of said search criteria.
9. The method of Claim 8 further comprising
employing ten as said predetermined priority constant.
10. The method of Claim 5 further comprising
employing with each of the records of said search priority array
a plurality of fields including a replacement word field, a consonant key field, a

priority constant field, a size ordinal field and a search priority field,

WO 03/085562 PCT/US03/09649

-43 -

populating at least some of the replacement word fields and the
priority constant fields of said search priority array with corresponding pairs of the
replacement words and priority constants, respectively, from said array of
replacement words;
calculating the consonant key field including at least one
* consonant for each of said replacement word fields;
for each unique value of the priority constant fields, assigning a
first size ordinal value to the size ordinal field which corresponds to the constant key
field having a largest count of said at least one constant, and assigning progressively
larger size ordinal values to the other size ordinal fields which have progressively
smaller counts of said at least one constant; and
calculating each of the search priority fields from the sum of
the corresponding priority constant field and the corresponding size ordinal field.
11. The method of Claim 10 further comprising
employing zero as the first size ordinal value.
12. The method of Claim 11 further comprising
employing one as a second size ordinal value for at least one of
the size ordinal fields which has a second largest count of said at least one constant.
13. The method of Claim 10 further comprising
receiving said search criteria including a plurality of search
fields each of which includes at least one of said search elements;
further employing with each of the records of said search
priority array a sort order field for each of said search fields;
ordering said search elements of said search criteria based upon
progressively larger values of the corresponding search priority field; and
for each of said search elements having identical values of the
corresponding search priority field, further ordering said search elements having
identical values based upon progressively larger values of the corresponding sort
order fields.
14. The method of Claim 13 further comprising
for each of said search elements having identical values of the

corresponding search priority field and identical values of the corresponding sort

WO 03/085562 PCT/US03/09649

- 44 -

order field, further ordering said search elements having the last said identical values
based upon progressively smaller sizes of the corresponding consonant key field.
15. The method of Claim 13 further comprising
employing as said record fields a company field, a name field,
an address field and a city field.
16. The method of Claim 15 further comprising
employing as the record elements of said name field a full
name element, a first name element, a middle name element and a last name element.
17. The method of Claim 15 further comprising
assigning progressively larger values to the sort order fields for
each of said search fields corresponding to the company field, the address field, the
city field and the name field, respectively.
18. The method of Claim 17 further comprising
further employing as said record fields a state field, a zip code
field and a country field;
receiving said search criteria including a plurality of other
search fields corresponding to said state field, said zip code field and said country
field;
progressively ordering said other search fields after all of the
search elements corresponding to the company field, the address field, the city field
and the name field based upon said state field, said zip code field, and said country
field, respectively; and
progressively searching said database with said other search
fields.
19. The method of Claim 1 further comprising
parsing each of the search elements of said search criteria.
20. The method of Claim 19 further comprising
for each of the search elements of said search criteria, receiving
a first string of characters including at least one of a plurality of letters, numbers,
spaces, punctuation marks, and other characters; and
producing an output including a sequence of a plurality of

second strings having at least one of a plurality of letters and a plurality of numbers.

WO 03/085562 PCT/US03/09649

-45 -

21. The method of Claim 20 further comprising
receiving said search criteria including a name field as one of
said search fields including at least one of said search elements;
searching for contiguous sets of at least one numeric value in
said name field; and
replacing each of said contiguous sets with a space character.
22. The method of Claim 20 further comprising
receiving said search criteria including at least one of a
company field, an address field and a city field as said search fields including at least
one of said search elements;
searching for contiguous sets of non-letter, non-numeric values
in each of the search elements of said company field, said address field and said city
field; and
replacing each of said contiguous sets with a space character.
23. The method of Claim 20 further comprising
employing a prefix table including a plurality of prefixes;
comparing each of the second strings of the output with each of
the prefixes of the prefix table to provide at least one prefix match; and
for each of said at least one prefix match, providing a new
output comprising a corresponding one of said at least one prefix match, a space
character, and a corresponding one of said second strings excluding the corresponding
one of said at least one prefix match.
24. The method of Claim 5 further comprising
employing with said search criteria a name field including a
plurality of words corresponding to one of the record fields of said database;
employing a plurality of field type values, each of which
corresponds to one of the record fields of said database;
employing a plurality of word position values, each of which
corresponds to one of the words of said name field;
employing with each of the records of said search priority array
a plurality of fields including a field type field, a replacement word field, a consonant

key field and a word position field;

WO 03/085562 PCT/US03/09649

-46 -

populating each of the field type fields with a corresponding
one of the field type values;

populating at least some of the replacement word fields with
corresponding replacement words from said array of replacement words;

calculating the consonant key fields including at least one
consonant from a corresponding one of said replacement word fields;

populating each of the word position fields with a
corresponding one of the word position values; and

providing one of said search results which exactly matches said
field type field, said replacement word field, said consonant key field and said word
position field.

25. The method of Claim 5 further comprising

employing a plurality of group number values, each of which
corresponds to at least one of the record fields of said database;

employing with each of the records of said search priority array
a plurality of fields including a group number field, a replacement word field and a
consonant key field;

populating each of the group number fields with a
corresponding one of the group number values;

populating at least some of the replacement word fields with
corresponding replacement words from said array of replacement words;

calculating the consonant key fields including at least one
consonant from a corresponding one of said replacement word fields; and

providing one of said search results which exactly matches said
group number field, said replacement word field and said consonant key field.

26. The method of Claim 5 further comprising

employing a plurality of group number values, each of which
corresponds to at least one of the record fields of said database;

employing with each of the records of said search priority array
a plurality of fields including a group number field, a replacement word field and a

consonant key field;

WO 03/085562 PCT/US03/09649

-47 -

populating each of the group number fields with a
corresponding one of the group number values; ’
calculating the consonant key fields including at least one
consonant from a corresponding one of said replacement word fields; and
providing one of said search results which exactly matches said
group number field and said consonant key field.
27. The method of Claim 26 further comprising
employing as said search criteria a search word having a count
of three consonants; and
providing one of said search results which exactly matches said
group number field and a first two of said three consonants, and which has a count of
three consonants.
28. The method of Claim 5 further comprising
employing a plurality of group number values, each of which
corresponds to at least one of the record fields of said database;
employing with each of the records of said search priority array
a plurality of fields including a group number field and a consonant key field;
populating each of the group number fields with a
corresponding one of the group number values;
calculating the consonant key fields including at least one
consonant from a corresponding one of said replacement word fields;
employing as said search criteria a plurality of search words;
and
providing one of said search results which exactly matches said
group number field and a prefix of said consonant key field.
29. The method of Claim 19 further comprising
employing at least one word for some of the search elements of
said search criteria;
employing a suffix table including a plurality of first suffixes

and a plurality of corresponding replacement suffixes; and

WO 03/085562 PCT/US03/09649

-48 -

determining if any of said words ends in one of the first
suffixes of the suffix table and responsively replacing said one of the first suffixes
with the corresponding replacement suffix.
30. The method of Claim 29 further comprising
employing three characters, IES, as one of said first suffixes;
and
employing one character, Y, as the corresponding one of said
replacement suffixes.
31. The method of Claim 29 further comprising
employing two characters, ES, as one of said first suffixes; and
employing no characters as the corresponding one of said
replacement suffixes, thereby deleting said two characters.
32. The method of Claim 29 further comprising
employing one character, S, as one of said first suffixes; and
employing no characters as the corresponding one of said
replacement suffixes, thereby deleting said one character.
33. The method of Claim 29 further comprising
prior to said step of determining if any of said words ends in
one of the first suffixes of the suffix table, recursively replacing any two consecutive
identical characters in any of said words with one of said identical characters.
34. The method of Claim 29 further comprising
employing a string reduction table including a plurality of first
character strings, a plurality of corresponding conditions and a plurality of
corresponding replacement character strings; and
recursively searching for one of the first character strings in any
of said words, determining if the corresponding condition is met, and responsively
replacing said one of the first character strings with the corresponding replacement
character string.
35. The method of Claim 34 further comprising
constructing a search priority array including a plurality of

records;

WO 03/085562 PCT/US03/09649
-49-

employing with each of the records of said search priority array
a plurality of fields including a consonant key field and a vowel key field; and
producing said consonant key field and said vowel key field in
the search priority array for each of said words.
36. The method of Claim 35 further comprising
determining if a count of consonants in the consonant key field
is greater than three characters in length; and
removing the third character from said consonant key field.
37. The method of Claim 34 further comprising
employing at least some of SION, SCH, SCH, SC, SH, PH,
CK, G, J, H, and KN as said first character strings; and
employing at least some of TION, SK, S, SK, S, F, K, J, H, no
characters, and N as said corresponding replacement character strings, respectively.
38. The method of Claim 37 further comprising
always replacing SION, PH and CK, with TION, F and K,
respectively.
39. The method of Claim 37 further comprising
replacing (i) SCH, (ii) SCH and (iii) SC, with (i) SK, (ii) S and
(iii) SK, (i) if a character following H in SCH is a vowel or a Y, (ii) if a character
following H in SCH is not a vowel or not a Y and (iii) unless a character following SC
is H, respectively.
40. The method of Claim 37 further comprising
replacing (i) SH, (ii) G, (iii) J, (iv) H, and (v) KN with (i) S, (ii)
J, (iii) H, (iv) no characters, and (v) N if (i) if a character following H in SH is not a
vowel or not a Y, (ii) if G is a first character of said first character string and is
followed by a vowel or a Y, (iii) if J is not a first character of said first character
string, (iv) if H is not a first character of said first character string and is not preceded
by a vowel, Y, T, or C, and (v) if KN is the first two characters of said first character
string and is followed by a vowel or Y, respectively.
41. The method of Claim 34 further comprising
repeating said step of recursively searching if any of said one of

the first character strings is responsively replaced.

WO 03/085562 PCT/US03/09649
-50-

42. The method of Claim 4 further comprising
producing a plurality of output records from said database as
said search results; and
producing a plurality of scores associated with said output
records, each of said scores representing a degree of match between one of said output
records and said search criteria.
43. The method of Claim 42 further comprising
employing with each of the records of said search priority array
a plurality of fields including a field type field having a plurality of values;
associating each of the search elements of said search criteria
with one of the values of said field type field;
producing said scores from a plurality of sets of weighting
factors; and
for each of the search elements, assigning one of said sets of
weighting factors based upon said one of the values of said field type field.
44, The method of Claim 43 further comprising
employing with each of the records of said search priority array
a plurality of fields including a replacement word field and a field type field;
employing with said one of said sets of weighting factors a first
weighting factor; and
for each of the search elements, receiving said replacement
word field and said field type field from said search priority array, and for each of the
output records, determining if said replacement word field matches one of the record
elements of at least one of the record fields which corresponds to said field type field
of said search element, and responsively increasing the score of said output record
with said first weighting factor.
45. The method of Claim 44 further comprising
employing as said field type field a name field;
employing as said at least one of the record fields of said output
records a name field and an address field; and
associating the name and address fields of said output records

with said name field of said search element.

WO 03/085562 PCT/US03/09649
-51 -

46. The method of Claim 44 further comprising
employing with said one of said sets of weighting factors a
second weighting factor; and
for each of the search elements and for each of the output
records, determining if said replacement word field matches one of the record
elements of one of the record fields which corresponds to said field type field of said
search element, and responsively increasing the score of said output record with said
second weighting factor.
47. The method of Claim 46 further comprising
employing said second weighting factor, which is greater than
said first weighting factor.
48. The method of Claim 46 further comprising
employing as said field type field a name field; and
employing as said one of the record fields of said output
records a name field.
49. The method of Claim 46 further comprising
further employing with each of the records of said search
priority array a word position field; and
for each of the search elements, receiving said word position
field from said search priority array, and for each of the output records, determining if
said replacement word field matches one of the record elements of one of the record
fields which corresponds to said field type field and said word position field of said
search element, and responsively increasing the score of said output record with said
second weighting factor.
50. The method of Claim 46 further comprising
further employing with each of the records of said search
priority array an original word field;
employing with said one of said sets of weighting factors a
third weighting factor; and
for each of the search elements and for each of the output
records, determining if said original word field matches one of the record elements of

one of the record fields which corresponds to said field type field of said search

WO 03/085562 PCT/US03/09649
-52 -

element, and responsively increasing the score of said output record with said third
weighting factor.
51. The method of Claim 50 further comprising
employing said third weighting factor, which is greater than
said second weighting factor.
52. The method of Claim 43 further comprising
employing a name field, a company field and an address field
as some of the fields of said search priority array; and
employing as said sets of weighting factors a first set of
constants associated with the name field, a second set of constants associated with the
company field, and a third set of constants associated with the address field.
53. The method of Claim 52 further comprising
weighting said second set of constants greater than said first set
of constants; and
weighting said third set of constants greater than said second
set of constants.
54. The method of Claim 52 further comprising
employing a city field, a state field, a zip code field and a
country field as some of the fields of said search priority array; and
further employing as said sets of weighting factors a fourth set
of constants associated with said city field, said state field, said zip code field and said
country field.
55. The method of Claim 54 further comprising
weighting said fourth set of constants less than said first set of
constants.
56. The method of Claim 34 further comprising
storing said string reduction table in memory; and
adjusting said string reduction table.
57. A search engine system for searching a database including a
plurality of records each of which has a plurality of record fields and a plurality of

record elements, said system comprising:

WO 03/085562 PCT/US03/09649
-53.

means for receiving a search criteria including a plurality of
search elements corresponding to at least some of the record elements of said
database, each of said search elements being capable of returning one or more
corresponding search results from the records of said database;

. means for ordering the search elements of said search criteria
based upon an expected size of the corresponding search results from said database;
and

means for searching said database with one of said search
elements, which is expected to provide a first group of said search results, before
searching said database with another one of said search elements, which is expected to
provide a second group of said search results, said second group being larger in size
than said first group.

58. The system of Claim 57 wherein said means for ordering the
search elements includes a pre-processing routine; wherein said means for searching
said database includes a search engine routine; wherein said database is a
predetermined database; and wherein said pre-processing routine associates said
predetermined database with said search engine routine.

59. The system of Claim 58 wherein said predetermined database is
exclusively associated with said search engine routine.

60. The system of Claim 58 wherein said predetermined database is
a global database; and wherein said pre-processing routine links said global database
to said search engine routine.

61. A method of providing a key table for use by a search engine
for a database, said database including a plurality of records, each of said records
having a plurality of record fields and a plurality of record elements, said method
comprising:

parsing the record elements of the record fields of said database
and extracting at least one word for each of said record elements;
assigning a field type value to each of said words based upon

its origin from a corresponding one of the record fields of said database;

WO 03/085562 PCT/US03/09649
-54-

assigning a word position value to each of said words based
upon its origin from a particular word position in the corresponding one of the record
fields of said database;

constructing said key table including a plurality of records,
each of which corresponds to one of said words;

employing a plurality of fields with each of the records of said
key table, said fields of the records of said key table comprising a record identifier
field, a field type field, a word position field, an original word field, a replacement
word field, a consonant key field and a vowel key field;

assigning a unique value to each of the record identifier fields;

for each of said words, assigning the field type value to a
corresponding one of the field type fields, assigning the word position value to a
corresponding one of the word position fields, and assigning said word to a
corresponding one of the original word fields;

employing an array of replacement words including a plurality
of records having an original word and a replacement word;

for at least some of said words, determining a corresponding
one of the replacement words from said array of replacement words and assigning
said corresponding one of the replacement words to a corresponding one of the
replacement word fields; and

for each of said words, determining a corresponding consonant
key value and a corresponding vowel key value, assigning the consonant key value to
a corresponding one of the consonant key fields, and assigning the vowel key value to
a corresponding one of the vowel key fields.

62. The method of Claim 61 further comprising
parsing each of said words.
63. The method of Claim 62 further comprising

for each of said words, receiving a first string of characters
including at least one of a plurality of letters, numbers, spaces, punctuation marks and
other characters; and

producing an output including a sequence of a plurality of

second strings having at least one of a plurality of letters and a plurality of numbers.

WO 03/085562 PCT/US03/09649
-55-

64. The method of Claim 63 further comprising
employing a name field as one of the record fields of said
database;
for each of said words from said name field, searching for
contiguous sets of at least one numeric value in said name field; and
replacing each of said contiguous sets with a space character.
65. The method of Claim 63 further comprising
employing a name field and an address field as some of the
record fields of said database;
for each of said words from said address field, searching for
contiguous sets of non-letter, non-numeric values in said address field; and
replacing each of said contiguous sets with a space character.
66. The method of Claim 63 further comprising
employing a prefix table including a plurality of prefixes;
comparing each of the second strings of the output with each of
the prefixes of the prefix table to provide at least one prefix match; and
for each of said at least one prefix match, providing a new
output comprising a corresponding one of said at least one prefix match, a space
character, and a corresponding one of said second strings excluding the corresponding
one of said at least one prefix match.
67. The method of Claim 62 further comprising
employing a plurality of characters in at least some of said
words;
sequentially extracting the characters from one of said at least
some of said words; and
discarding any one of said characters which matches a previous
one of said characters.
68. The method of Claim 67 further comprising
for each of said words, determining whether any non-discarded
one of said characters is a vowel and responsively appending said vowel to a

corresponding one of the vowel key fields, and determining whether any non-

WO 03/085562 PCT/US03/09649
-56 -

discarded one of said characters is a consonant and responsively appending said
consonant to a corresponding one of the consonant key fields.
69. The method of Claim 68 further comprising
for each of the consonant key fields, determining if a count of
consonants in the consonant key field is greater than three and responsively removing
a third one of said consonants from said consonant key field.
70. The method of Claim 62 further comprising
employing at least one word for some of the search elements of
said search criteria;
employing a suffix table including a plurality of first suffixes
and a plurality of corresponding replacement suffixes; and
determining if any of said words ends in one of the first
suffixes of the suffix table and responsively replacing said one of the first suffixes
with the corresponding replacement suffix.
71. The method of Claim 70 further comprising
employing three characters, IES, as one of said first suffixes;
and
employing one character, Y, as the corresponding one of said
replacement suffixes.
72. The method of Claim 70 further comprising
employing two characters, ES, as one of said first suffixes; and
employing no characters as the corresponding one of said
replacement suffixes, thereby deleting said two characters.
73. The method of Claim 70 further comprising
employing one character, S, as one of said first suffixes; and
employing no characters as the corresponding one of said
replacement suffixes, thereby deleting said one character.
74. The method of Claim 70 further comprising
prior to said step of determining if any of said words ends in
one of the first suffixes of the suffix table, recursively replacing any two consecutive

identical characters in any of said words with one of said identical characters.

WO 03/085562 PCT/US03/09649
-57-

75. The method of Claim 70 further comprising
employing a pseudo-phonetic string reduction table including a
plurality of first character strings, a plurality of corresponding conditions and a
plurality of corresponding replacement character strings; and
recursively searching for one of the first character strings in any
of said words, determining if the corresponding condition is met and responsively
replacing said one of the first character strings with the corresponding replacement
character string.
76. The method of Claim 75 further comprising
determining if a count of consonants in the consonant key field
is greater than three characters in length; and
removing the third character from said consonant key field.
77. The method of Claim 75 further comprising
employing at least some of SION, SCH, SCH, SC, SH, PH,
CK, G,], H, and KN as said first character strings; and
employing at least some of TION, SK, S, SK, S, F, K, J, H, no
characters, and N as said corresponding replacement character strings, respectively.
78. The method of Claim 77 further comprising
always replacing SION, PH and CK, with TION, F and K,
respectively.
79. The method of Claim 75 further comprising
replacing (i) SCH, (ii) SCH and (iii) SC, with (i) SK, (ii) S and
(iii) SK, (i) if a character following H in SCH is a vowel or a Y, (ii) if a character
following H in SCH is not a vowel or not a 'Y and (iii) unless a character following SC
is H, respectively.
80. The method of Claim 75 further comprising
replacing (i) SH, (i) G, (iii) J, (iv) H, and (v) KN with (i) S, (ii)
J, (iii) H, (iv) no characters, and (v) N if (i) if a character following H in SH is not a
vowel or not a Y, (ii) if G is a first character of said first character string and is
followed by a vowel or a Y, (iii) if J is not a first character of said first character

string, (iv) if H is not a first character of said first character string and is not preceded

WO 03/085562 PCT/US03/09649
-58 -

by a vowel, Y, T, or C, and (v) if KN is the first two characters of said first character
string and is followed by a vowel or Y, respectively.
81. The method of Claim 75 further comprising
repeating said step of recursively searching if any of said one of
the first character strings is responsively replaced.
82. The method of Claim 66 further comprising

storing said prefix table in a memory before constructing said

key table;
updating the prefixes in said prefix table in said memory; and
reconstructing said key table.
83. The method of Claim 82 further comprising
adding a new prefix to the prefixes in said prefix table in said
| memory.
84. The method of Claim 82 further comprising
removing a prefix from the prefixes in said prefix table in said
memory.

85. The method of Claim 61 further comprising
storing said array of replacement words in a memory before
constructing said key table;
updating one of the original words or one of the replacement
words in said array of replacement words in said memory; and
reconstructing said key table after said step of updating one of
the original words or one of the replacement words.
86. The method of Claim 85 further comprising
adding another one of the original words and another
corresponding one of the replacement words to said memory.
87. The method of Claim 85 further comprising
removing one of the original words and a corresponding one of
the replacement words from said memory.
88. The method of Claim 85 further comprising
editing one of the original words or a corresponding one of the

replacement words in said memory.

WO 03/085562 PCT/US03/09649
-59.

89. The method of Claim 75 further comprising
storing said pseudo-phonetic string reduction table in memory;
and
adjusting said pseudo-phonetic string reduction table in said

memory.

WO 03/085562

1/14

PCT/US03/09649

r NAME-KEYS Database
smertame: [|
parase: [|
owmer.[|

NAMES AND ADDRESSES
Database

S —

e (Database)
Server | 5

1 mae

Local

Storage

AN
]

|
|
° L

FIELD MAPPING

Full Name:

Lt Name:
FlistName:
WK Name :
Compaly Name:
Address:

o

st
PostalCode:
PR Ubarzatos:
cosy: [COUNTRY

Uikgte Record Ide attfier
RECID

)

N\

| ™

FIG. 1

AN

1

PRoCESSOR.

WO 03/085562

2/14

'2;\"
e
Eeys
19 B
LRGN

PCT/US03/09649

Creste Brpty
Replacemet

AT 1y in memory]

[Aray in

2

Sppend re cord irto
Prefix
Array in

Next
record From

Table

WO 03/085562
o
Start
Assign |92
Keys -
4
Assign -8 (“
Names and Addresses
L TABE |
h J
M@ - Zé
DB Fields
¥
Create Key Table, | 5§
Replacement Table,
And Stored Procedures
y ,
Go
Generate Keys
Frgq. 3A
b

PCT/US03/09649

3/14

Names And Addresses
Table?

Name: And Adaress
Field in Record

o/

Parse field into
Separate words

Flg. 3F

WO 03/085562
4/14

lo%

Define Varisbles Y
«werd_To_Use” 10
“Consonant_Key””
“Yowel Key”

/|0b

¥
Look for Wend vosse
In Rephéement
. ARRA _

lacement|
Teble

PCT/US03/09649

/27/

110
/

Y

Assign
Word_To_Use =Qriginal Ward

Word_To_Use = Replacement Ward

Assign

.
Assign

Vowel_Key =7 | H

Consonart_Key =7

¥ l I \0
Process e
“Word_To_Use”

WO 03/085562 PCT/US03/09649
5/14

1A%

Process
‘“Word_To_Use™

Fig. 3D

WO 03/085562 PCT/US03/09649

¥
Pusing
3 Al@iﬂm L0
Reduction
Algorithm
1sY
v
bl Feeligat
. A Conical Redactin
Get next input
e 4 sL
Resuls)
16D Ordering
1 185
felds Ny T £
process 7 Nume/Address Table
’ Where
by Record ID Matches Record ID in
Destingtion_Table Order by ORD Descending,
Last Nume, First Nome
160
h 4 yd
Destroy all
Tearpority Destingion Tables
- I _
L 170
Rebn
94

—_—

FTq . 4A

WO 03/085562
7/14

|80

A land

R}~ \O L

PCT/US03/09649

IQ"I A 4

- Namne ﬁeld?

Replace with Space
For each contiguous
N Set of rommeric vahues

In irput string

1°75}

Replace with Space
Fer each cartiguous
Set of non-letter, | 168

b 4
Getfist word in)_{G 0

Clemsed string

yX-3

G, 48

WO 03/085562

214,

8/14

PCT/US03/09649

Set Pos=0
Vowel Key =7
Main_Ksy =77
Altemnate Key =7
Last_Char = “”

7120

Y

[Bhain_Key =

Bain_Key +
Chanacter

o

>

AN
@/I— Altemae sz Main Keny

3-'dmmfmnanmm Key]

N

260

Append Altemate Key

Apend | 9000

Vowrel Keyt*o’ Key: Amay

EL&. de

16y

WO 03/085562 PCT/US03/09649

9/14
287
294
298
b Y
" {8q
30T
Y Field tzpe =1
Process | |4 21 b
Sort Fisld ng.
r ("':"C\ LBS
Soat AN
Prinrity Key Am))’ L 19
Pricrity Ascending 200
Length Descending e
Y Field tiy:pe =7
Process | L4204
Othermld{
15 ¥ 3
- Build Quary fom | | 209D
309

FT¢, 4D

WO 03/085562

3\

3137

Priority Ascending

o 20

bt

o

Length Desc

Pricvity =
Priovity Conta +
Size Ordinal

36

Append
Nm_xey ’
Vowel_Key,
.Field type,

Group_type,
Word_Pos,

Search Priority

R3]

Key Amsy —]

3

20

10/14

7S 20.

322

i\

Append
Nume_Key,
Vowel_Key,
Field_type,
Group_type;

Word_Pos,

_} Ky Amy

Search Priority

23b

Craom) <
i A
bV\/

FTq U<

333

PCT/US03/09649

WO 03/085562

11/14

PCT/US03/09649

Row_MNun =0
¥ 24y
Get row 2 Row_Nun
¥ 2‘\4(0
N
Row_than > 0 248
s
N Sowce_Table = Destination Table
PTe.) Destination Table =
/5‘ User Nane + String(Number of Rows - Row_Num)

Source_Table = Nume_Key Table
Destination Table =
User Hame + Siring(Mhowber of Rows - Row Num)

Creats Temporary Creste Tanporary Creste Taxporay Creste Texporary
Destination_Table Destingtion_Table Destinstion_Table Destination_Tsble
From Source_Table From Source_Table From Source_Table Fromm Source_Table
Where Where Where ' Where
Replacemert_Name, Nane Key, Prefix(Nane_Key), Replacement_Nane,
Group_type Group_type Group_type Field_type, Word_Pos,
Much Row Rems Match Row Bemns Match Row Rems Match Row Rems
l v [2 1
Raw;'Nmn
Row Num+1 |~ 31 \I

WO 03/085562 PCT/US03/09649
12/14

[Advenced Subscription Servics

‘\wWinslon 5t 817

WO 03/085562 PCT/US03/09649
13/14

Delete From
Replacement Table
Where .
Real Nane = ’L
Real Nome 47

]

—"———I*.%
Getrow ¢ Row Num | 439
From Key Amsy

et New Keys o
Nant Key: Tohle AL Y2y
Using N_Record _Id

1L - Y23 < Hlo
Delete Ay Rows > ¥
From Nums_Key Table Row_Nun
Where
Record_Id = N_Recard_Id And N
Real_Nume = 5_Real_Name fAnd
Word_Pos = N_Ward_Pos And Reud ";zR“‘“d K%Y
_ Priority =N N_Recard_Id, '
¥ S_Resl_Name,
Row_Nam = 0}- 4 3° N_Word_Pos,
T N _Priority
L
FTG. b

‘{(o

WO 03/085562

14/14

Append Field 4s ORD 10
Temporsry Destingtion_Tsble

Set value of ORD =0

Row_Mam = 0}-45Y

PCT/US03/09649

Getrow ¢ Row_Num |-YSh

l {\—%3

r
AddOndl = 10 Add0rd1 = 10000 | yp ¢ | Addardi=0 AddOrdl =0
/ AddOrd2 = 100 AddOrd2 = 100000 Add0nd2 = 1 AJdOrd2 = 10000000
Add0rd3 = 1000 AddOed3 = 1000000 -AddOrd3 = 1 AJd0rd3 = 100000000
y LO [- |
Updste Fach record in Temporary Destinstion Table
Set value of ORD = ORD + AddOrdl MY R
Whaere
Replacemert_Name, GROUP_type
Match Row Rems From Priority Key Amyy .
| vy i
_¥ — ygL
Update Each record in Temporay Destination Table
- Set value of ORD = ORD + Add0rd2 Where dite Each record i Temporay Destination_Table
Yy Replacement,_Name, FIELD type Setvale of ORD = ORD + 1 Whre
Match Row Rems From Priority Key Amay Prefix(Name _key), fisld type
Match Row Rems From Priority Key Ay And
Tpdite Fachrecond in Temparay Destintion_Table Lettromel by, D) = ‘t"t("";ﬁ"’ (Row_tam), 1)
Set vahue of ORD = ORD + AddOrd2 Where Priocity Key Ausy
| Replacement_Nume, FIELD_type, Word_Pos l Lusy
ln(o Match Row Rens From Priority Key Ay Update Exchrecard in Temporsy Destingtion_Table
Set value of ORD = ORD + 1 Where
Updas Eschre cord in Temporuy Destination_Teble Maeh R nﬁmﬁ?&xﬁlﬂ”m
Setvadue of ORD = ORD + AddOnd3 Where Leftvowel key,1) = Letitvowel key(Row_Mam),1)
\ﬂ g - Real Namne, FIELD_type from Priority Key Amey
Mutch Row Rems m:nmmm Array v
Update Exch record in Teaporay Destination_Teble [Rerw_Fian = R o +11- 48
- Set vabue of ORD = ORD + AJA0rd3 Where &
Y4v Prefix(Re ol_Nane), GROUP_type

(54

FQF

INTERNATIONAL SEARCH REPORT International application No.

PCT/US03/09649
A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) . GOGF 17/30
US CL . 7072

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 7072 :

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EAST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A | US 4,853,882 A (MARSHALL) 01 AUGUST 1989, COLS 1-3 1-89
A 4°US 5,218,536 A (MCWHERTER) 08 JUNE 1993, COL 1-2. 1-89
A /’US 5,333,317 A (DANN) 26 JULY 1994, COL 1-6. 1-89
A //US 5,608,904 A (CHAUDHURI ET AL) 04 MARCH 1997, COL 1-3. 1-89
A B //US 5,724,597 A (CUTHBERTSON ET AL) 03 MARCH 1998, COL 1-2. 1-89
A //US 5,745,898 A (BURROWS) 28 APRIL 1998, COL 1. 1-89
4
Y _77US5,970,490 A (MORGENSTERN) 19 OCTOBER 1999, COL 1-50 19-23, 2441, 56
A 4%5 5,978,795 A (POUTANEN ET AL) 02 NOVEMBER 1999, OCL 1-3 1-89
A //US 6,032,164 A(TSAI) 29 FEBRUARY 2000, COL. 1-2. 1-89

& Further documents are listed in the continuation of Box C. D See patent family annex.

- Special categories of cited documents: “T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A" document defining the general state of the art which is not considered 1o be principle or theory underlying the invention
of particular relevance
“X" document of particular relevance; the claimed invention cannot be
“E” earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step
when the document is taken alone
“L" document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as “Y" document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“O™ document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“P™ document published prior to the international filing date but later than the “&" document member of the same patent family
priority date claimed
Date of the actual completion of the international search Datgof mailing of the international search report
15 May 2003 (15.05.2003) 2 M
Name and mailing address of the ISA/US Aughori icer

Mail Stop PCT, Attn: ISA/US
Commissioner for Patents

P.O. Box 1450
Alexandria, Virginia 22313-1450

Facsimile No. (703)305-3230

Telephone No. 703-305-9700

Form PCT/ISA/210 (second sheet) (July 1998)

PCT/US03/09649
INTERNATIONAL SEARCH REPORT

C. (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A -~ US 6,240,418 B1 (SHADMON) 29 MAY 2001
A .} US 6,256,630 Bl (GILAL ET AL) 03 JULY 2001, COL 14
A,P -] US 6,516,312 Bl (KRAFT ET AL) 04 FEBRUARY 2003, COL 14

X 7] US 6,338,053 B2 (UEHARA) 08 JANUARY 2002, COL. 1-24

AP |- US 6,529,892 Bl (LAMBERT) 04 MARCH 2003, COL 1-13

1-89
1-89
1-89

1-4, 42, 57-60

19-23, 2941, 56

1-89

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

