用于激光光源的荧光粉轮、激光光源和激光投影显示装置

摘要

本发明公开一种用于激光光源的荧光粉轮、激光光源和激光投影显示装置，解决感应器与荧光粉轮一起采用密封腔体密封后，感应器无法正常工作的技术问题。荧光粉轮包括荧光粉轮基板，荧光粉轮基板的正面附着有受激光激发产生荧光的荧光层；在荧光粉轮基板的背面标有黑色标记。将用于标示基色光初始位置的黑色标记从马达侧表面移到荧光粉轮的背面，使得感应器与荧光粉轮之间的距离增大，增大的距离足以容纳密封荧光粉轮的密封腔体的侧壁，能够将感应器隔离到密封腔体以外，从而感应器不会受到温度高影响而产生失效或者性能衰减。
1. 用于激光光源的荧光粉轮，包括荧光粉轮基板，所述荧光粉轮基板的正面附着有受激光激发产生荧光的荧光体；其特征在于，在所述荧光粉轮基板的背面标有黑色标记。

2. 根据权利要求1所述的用于激光光源的荧光粉轮，其特征在于，所述黑色标记由无机材料组成。

3. 根据权利要求2所述的用于激光光源的荧光粉轮，其特征在于，组成所述黑色标记的无机材料，使用激光打标或喷涂的方式标记于所述荧光粉轮基板的背面。

4. 一种激光光源，包括激光器、感应器，荧光粉轮，所述激光器置于所述荧光粉轮的正面，产生激光打在所述荧光粉轮上，使得所述荧光粉轮发出荧光；所述感应器发出探测光束，记录荧光基色光的起始位置，其特征在于，还包括密封腔体，用于密封所述荧光粉轮；所述荧光粉轮包括荧光粉轮基板，所述荧光粉轮基板的背面标有黑色标记，所述感应器置于所述密封腔体的外侧，与所述荧光粉轮基板相对设置。

5. 根据权利要求4所述的激光光源，其特征在于，所述感应器发出探测光束的方向垂直于所述荧光粉轮基板的背面。

6. 根据权利要求4所述的激光光源，其特征在于，所述密封腔体对应所述感应器的位置设置有透明窗口。

7. 根据权利要求4所述的激光光源，其特征在于，所述黑色标记由无机材料组成。

8. 根据权利要求4所述的激光光源，其特征在于，组成所述黑色标记的无机材料，使用激光打标或喷涂的方式标记于所述荧光粉轮基板的背面。

9. 根据权利要求4所述的激光光源，其特征在于，所述密封腔体还用于密封所述激光器。

10. 激光投影显示装置，包括激光光源，光机，镜头和投影屏幕，所述激光光源为光机提供照明，并由所述镜头投射至所述投影屏幕显示图像，其特征在于，包括如权利要求4-9任一项所述的激光光源。
用于激光光源的荧光粉轮、激光光源和激光投影显示装置

技术领域

本发明涉及激光光源技术领域，尤其涉及用于激光光源的荧光粉轮、激光光源和激光投影显示装置。

背景技术

激光投影显示技术具有色彩好、亮度高、成本低等诸多优势，其总体上分为三个部分：激光光源系统、光机照明系统和镜头成像系统。

如图1所示，现有的激光光源系统包括激光器、荧光粉轮11、感应器12等部件，其基本工作原理为：激光器发出的蓝色激光打在高速旋转的荧光粉轮11上，荧光粉轮11上附有受激光激发能发出不同于蓝色激光颜色光的荧光体，能够按照时序产生投影显示所需要的基本光源；基本光源再经光机照明系统和镜头成像系统后最终在屏幕上合成彩色画面；其中，荧光粉轮11通过连接在其轴心上的马达13驱动而高速旋转。

感应器12的作用是检测荧光粉轮11的转速以及各个基色光的初始位置，具体如图2所示。在荧光粉轮11背面的马达13的圆周侧表面贴附有一块黑色胶带标记14，荧光粉轮11在高速旋转过程中，马达13上的黑色标记14也随之高速旋转，结合图3所示，感应器12在对黑色标记14上方固定，与黑色标记14的垂直距离为2mm-10mm，可理解为感应器的正常工作距离，在黑色标记14高速旋转过程中，感应器12会发出一束光，这种光打在黑色标记14上时，光被吸收而不会反射回来。而这束光打在黑色标记14以外的马达侧表面时，光会反射而被感应器12接收到。因此，感应器12依据有无感应到反射光来区分黑色标记14在一段时序中的位置，根据该位置记录各个基色光的初始位置，所以感应器12的作用就是用来结合荧光粉轮转速和感应反射光的时间间隔来确定各个基色光的时序位置的；从而保证后端各基色光按规定的时序出射，否则可能会造成混光，即在画面上出现一条条的竖线，造成图像显示质量的下降。

荧光粉轮11的正面和背面一般分别设置有准直透镜组，用于对激光光束进行会聚，形成小的光斑打到荧光粉轮正面的，以及，对经荧光粉轮正面表面反射的荧光进行准直。激光光束射出荧光粉轮后，会经由荧光粉轮背面的准直透镜再次准直出射。一方面，因为环境的原因，如果荧光粉轮表面积累灰尘就会造成荧光激发效率的下降，同时，如果两侧的准直透镜组光学镜片的表面积累了灰尘光学镜片的穿透率会减低，由此造成穿过光学镜片的光量减少，使得整个激光投影显示系统的亮度降低，因此，为保证荧光激发效率以及光学镜片的高穿透率，一种解决方案是将荧光粉轮及其周边的光学器件使用结构件密封起来达到防尘的目的，也能降低荧光粉轮高速旋转产生的噪音，但根据前述工作原理，感应器12需要置于黑色标记的垂直上方，而要保证二者的相对位置，感应器需要紧贴荧光粉轮背面放置，二者之间间隙狭小，通常只有1-2mm，受限于狭小的距离空间，当需要使用密封腔体密封荧光粉轮时，感应器难以置于密封腔体之外，需要同荧光粉轮一起密封。

但将感应器同荧光粉轮一起密封又存在以下问题：随着投影显示激光功率的增大，打在荧光粉轮上的高功率激光将产生越来越多的热量，密封腔内的热量无法散出，使
得感应器周围的温度很高，在长时间工作后，周围温度可能会达到 85° 以上，这超过了感应
器承受的温度范围，会因为温度过高而产生失效或者性能衰退而无法正常工作。

发明内容

[0007] 本发明的目的是提供一种用于激光光源的荧光粉轮、激光光源和激光投影显示装
置，解决感应器与荧光粉轮一起密封后，感应器受高温影响无法正常工作的技术问题。
[0008] 本发明的目的是通过以下技术方案实现的：

提供一种用于激光光源的荧光粉轮，包括荧光粉轮基板，所述荧光粉轮基板的正面附
着有受激光激发产生荧光的荧光体；在所述荧光粉轮基板的背面标有黑色标记。
[0009] 提供一种激光光源，包括激光器、感应器、荧光粉轮，所述激光器置于所述荧光粉
轮的正面，产生激光打在所述荧光粉轮上，使得所述荧光粉轮发出荧光，所述感应器发出探测
光束，记录荧光基色光的初始位置；所述激光光源还包括密封腔体，用于密封所述荧光粉轮
；所述荧光粉轮包括荧光粉轮基板，在所述荧光粉轮基板的背面标有黑色标记，所述感应
器置于所述密封腔体的外侧，与所述荧光粉轮基板相对设置。
[0010] 提出一种激光投影显示装置，包括激光光源、光机、镜头和投影屏幕，所述激光光
源为光机提供照明，并由所述镜头投射至所述投影屏幕显示图像；所述激光光源包括激光器、
感应器、荧光粉轮，所述激光器置于所述荧光粉轮的正面，产生激光打在所述荧光粉轮
上，使得所述荧光粉轮发出荧光，所述感应器发出探测光束，记录荧光基色光的初始位置；
所述激光光源还包括密封腔体，用于密封所述荧光粉轮；所述荧光粉轮包括荧光粉轮基板。
在所述荧光粉轮基板的背面标有黑色标记，所述感应器置于所述密封腔体的外侧，与所述
荧光粉轮基板相对设置。
[0011] 本发明实施例技术方案，其具有的技术效果或者优点是：

本发明提出的用于激光光源的荧光粉轮、激光光源和激光投影显示装置中，荧光粉轮
基板的背面标有黑色标记，该黑色标记用于标示荧光粉轮受激光激发产生的基色光的初始
位置，并能被置于荧光粉轮基板背面的感应器所感应；当达驱动荧光粉轮高速旋转时，黑色
标记随荧光粉轮一起高速旋转，由于黑色标记色标的是各个基色光的初始位置，在一段时
序中，其被感应器感应一次，就能够确定一次各个基色光的时序位置；由于感应器与黑色标记
的距离保持在 2~10mm 就能够感应到黑色标记，则感应器与荧光粉轮之间的距离保持在 2~10mm 即可；而现有技术中，黑色标记设置于马达的侧面，感应器为了能够
感应到黑色标记，需要设置于马达的上方，使得感应器与荧光粉轮之间的距离为 1~2mm，
相比之下，本发明改变了黑色标记设置的位置，从而使得感应器的相对设置位置也发生了
变化，通过黑色标记设置位置的改变，增大了感应器与荧光粉轮基板之间的垂直距离，从而
在需要使用密封腔体密封荧光粉轮的时候，增大了荧光粉轮基板与感应器之间的距离足够
用于容纳密封腔体的侧壁，使得感应器能放置于密封腔体以外，保证感应器能够正常放置
和工作。
[0012] 当将荧光粉轮密封于密学腔体时，由于黑色标记位于荧光粉轮的背侧，增大了感
应器与荧光粉轮基板之间的距离，一方面既能够有足够空间容纳密封腔体的侧壁，同时感
应器位于密封腔体的外侧其放置位置的选择灵活性也更强，而不必像现有技术中一样，由
于黑色标记位于荧光粉轮马达圆周侧表面，使得感应器与荧光粉轮之间的距离太近而必须
一起密封，当激光光源中的激光器功率增大时，造成位于腔体内部的感应器由于温度过高而产生失效或者性能衰退，从而解决了现有技术中荧光粉轮采用密封腔体密封后，感应器受高温影响无法正常工作的技术问题。

[0013] 在激光投影显示装置中，激光光源功率增大时，由于黑色标记位于荧光粉轮的背面，由于感应器和标记之间的相对位置关系保持不变，从而感应器的设置位置也开始相对变化，从而也加大了荧光粉轮与感应器之间的距离，因此，在需要密封荧光粉轮时，可以将感应器置于密封腔体外面，即使激光器的功率增大，使得密封腔体内温度过高，也不会引起感应器失效或者性能衰退，从而能够正常工作。

附图说明
[0014] 图 1 为现有技术中激光光源的结构图；
图 2 为现有技术中荧光粉轮以及黑色标记位置结构图；
图 3 为现有技术中激光光源的结构图；
图 4 为本发明实施例提出的用于激光光源的荧光粉轮的结构示意图；
图 5 为本发明实施例提出的激光光源的结构图；
图 6 为本发明实施例提出的激光粉轮的结构图；
图 7 为本发明实施例中使用密封腔体密封荧光粉轮的激光光源结构图。

具体实施方式
[0015] 为了使本发明的目的、技术方案和优点更加清楚，下面将结合附图对本发明作进一步地详细描述，显然，所描述的实施例仅仅是本发明一部分实施例，而不是全部的实施例。基于本发明中的实施例，本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例，都属于本发明保护的范围。

[0016] 本发明的核心思想是：感应器与黑色标记之间的距离在 2-10mm 时，感应器即可感应到黑色标记，现有技术中，黑色标记设置于荧光粉轮背面的马达的周围侧表面上，感应器为了能感应到黑色标记，需要相对马达周围侧表面垂直放置，距离保持在 2-10mm，由于马达用来驱动荧光粉轮而与荧光粉轮轴心连接，这使得感应器必须贴近荧光粉轮设置，二者之间距离一般在 1-2mm，造成二者之间距离太小；本发明中，将黑色标记设置于荧光粉轮基板的背面，使感应器相对荧光粉轮而不是相对马达侧表面垂直放置，这使得感应器与荧光粉轮基板背面之间由原来的相互垂直变成相互平行的位置关系，两者之间的距离增大到 2-10mm，能够有足够的空间容纳密封腔体的侧壁，当需要密封荧光粉轮时，可以使感应器位于密封腔体的外侧，避免了感应器由于温度过高而产生失效或者性能衰退。

[0017] 下面将结合附图，对本发明实施例提供的技术方案进行详细说明。

[0018] 如图 4 所示，为本发明实施例提出的用于激光光源的荧光粉轮，包括荧光粉轮基板 41，该荧光粉轮基板的正面附着有受激光激发产生荧光的荧光体；在荧光粉轮基板 41 的背面标有黑色标记 42。该黑色标记 42 用于标示荧光粉轮受激光激发产生的基色光的初始位置，能够被置于荧光粉轮基板背面的感应器 43 所感应。

[0019] 如图 5 所示，当马达 44 驱动荧光粉轮高速旋转时，黑色标记 42（图中未示出）随荧光粉轮基板 41 一起高速旋转，由于黑色标记 42 标示的是各个基色光的初始位置，故在
一段时序中，其每被感应器感应一次，就自能够确定一次黑色标记 42 在一段时序中的时序位置，结合荧光粉轮转速和感应反射光的时间间隔即可确定各个基色光的时序位置。

0020 如图 6 所示，感应器 43 与黑色标记 42 的距离保持在 2-10mm 就能够感应到黑色标记 42，则感应器 43 与荧光粉轮之间的距离 D 保持在 2-10mm 即可。

0021 而现有技术中，如图 3 所示，感应器为了能够感应到贴附在马达侧表面上的黑色标记，需要与马达侧表面保持 2-10mm 的距离，而因为马达连接于荧光粉轮的外侧，且侧表面宽度较窄，使得感应器需要紧贴荧光粉轮基板背面放置，二者之间的距离仅为 1～2mm。相比之下，本发明将黑色标记从马达的周围侧表面移动到荧光粉轮基板的背面，由于感应器和标记之间的相对位置关系保持不变，从而感应器的设置位置也发生相对变化，这也改变了感应器与荧光粉轮之间的距离，使二者之间的距离由现有的 1～2mm 增大到 2～10mm。

0022 当将荧光粉轮、准直透镜组等元件密封于密封腔内时，由于感应器与荧光粉轮之间的距离较大，因此能够有足够空间容纳密封腔体的侧壁，使感应器位于密封腔体的外侧，而不必像现有技术中一样，使感应器与荧光粉轮之间的距离狭小而不得不将感应器也密封于密封腔体内，从而解决了现有技术中感应器与荧光粉轮采用密封腔体密封后，随着激光功率的增大，感应器受温度升高影响而无法正常工作的技术问题，由此，能够通过本发明提出的在荧光粉轮背面标记黑色标记的方法，将感应器置于密封腔体之外，不会因为温度升高而产生失效或性能衰退。

0023 而且，感应器位于密封腔体的外侧时，其放置位置的选择灵活性也更强。

0024 现有技术中，黑色标记通常采用胶体，例如胶带，贴附在马达侧表面，这种固定方式存在以下问题：1、随着激光投影显示装置的激光功率的增大，打在荧光粉轮上的高功率激光产生越来越多的热量，导致马达表面温度很高，这造成贴附黑色标记的胶体失效而导致黑色标记脱落，从而无法确定基色光的初始位置，最终导致荧光粉轮停止工作。2、胶水因为是有机胶，在高温下容易挥发有机物质附着在荧光粉轮表面的光学镜片上，导致光学镜片的穿透率下降，造成穿透光学镜片的激光量减少，使得整个激光投影显示系统的亮度很快衰减。

0025 针对上述问题，本发明实施例提出的用于激光光源的荧光粉轮中，黑色标记 42 由无机材料组成，并使用激光打标或者喷涂的方式标记于荧光粉轮基板的背面。无机材料例如可以为由激光照射后碳化的金属材质，化学稳定性较高，无机材料能耐高温，不会挥发物质附着在荧光粉轮表面的光学镜片上，导致光学镜片的穿透率下降，也不会在高温下脱落造成无法确定基色光的初始位置的问题。

0026 基于上述提出的用于激光光源的荧光粉轮，本发明实施例还提出一种激光光源，如图 6 和图 7 所示，该激光光源包括激光器，荧光粉轮，驱动荧光粉轮高速旋转的马达 44，密封腔体 82 和感应器 43；激光器置于荧光粉轮的正面，产生激光打在荧光粉轮上，使得荧光粉轮发出荧光基色光；荧光粉轮包括有荧光粉轮基板 41，在荧光粉轮基板的背面标有黑色标记，密封腔体 82 用于密封荧光粉轮；感应器 43 置于密封腔体 82 的外侧，与荧光粉轮相对设置，发出探测光束感应黑色标记，从而记录荧光基色光初始位置。具体的，感应器 43 发出的光束打在荧光粉轮基板背面时，能够被反射，但打在黑色标记上时，会被吸收而不会反射，即在荧光粉轮高速旋转过程中，当黑色标记转过感应器的感应范围时，感应器接收不到反射光而感应到黑色标记，从而能够依次判断黑色标记在一段时
序中的位置，进而判断出各个基色光的时序位置。

[0027] 感应器43置于密封腔体外侧时，限定条件为与荧光粉轮相对设置，以保证当荧光
粉轮转动时，当黑色标记进入感应器感应范围时，能够被感应器感应到，从而能够确定基色
光的时序位置；如图6所示，感应器的一种具体实施方式是，设置感应器43的位置，使得感
应器发出探测光束的方向垂直于荧光粉轮基板的背面，并在密封腔体对应感应器的位置设
置透明窗口，保证感应器发出的探测光束能完全透射入密封腔体。当然，方案并不限定感应
器发出的探测光束必须垂直于荧光粉轮基板的背面，只要保证黑色标记在转动过程中能够
进入感应器的感应范围即可。

[0028] 如图7所示，当用密封腔体82密封荧光粉轮时（图中所示的密封腔体还密封了包
括光学镜片、激光器等元器件），由于荧光粉轮与感应器之间的距离为2-10mm，这之间的空
间足以容纳密封腔体的侧壁，使感应器43位于密封腔体的外侧，而不必像现有技术中一
样，由于感应器与荧光粉轮基板背面之间的距离狭小难以设计结构固定件而不得不将感应
器也密封于密封腔体中，从而解决了因荧光粉轮与感应器距离太近，在使用密封腔体密封
荧光粉轮时，也同时密封感应器，使感应器因温度升高而无法正常工作的问题；由
此，能够通过本发明提出的在荧光粉轮背面标黑色标记的方法，由于感应器和标记之间的
相对位置关系保持不变，从而感应器的设置位置也发生相对变化，将感应器置于密封腔体
之外且与荧光粉轮基板背面相对设置，不会因为温度过高而产生失效或者性能衰退。

[0029] 本申请实施例提出的激光光源中，用于激光光源的荧光粉轮中，黑色标记由无机
材料组成，并使用激光打标或者喷涂的方式标于荧光粉轮基板的背面。无机材料例如是
碳化的金属材质，耐高温，不会挥发物质附着在荧光粉轮周边的光学镜片上，导致光学镜
片的穿透率下降，也不会在高温下脱落造成无法确定基色光的初始位置的问题。

[0030] 基于上述的激光光源，本发明实施例还提出一种激光投影显示装置，该装置包括
激光光源、光机、镜头和投影屏幕，激光光源为光机提供照明，并由镜头投射至投影屏幕显
示图像。这里的激光光源为上述本申请实施例提出的激光光源。该激光光源中，黑色标靶荧
光粉轮基板的背面，密封腔体将荧光粉轮密封后，感应器设置在密封腔体的外侧，与荧光粉
轮相对设置，当荧光粉轮高速运转时，黑色标记转过感应器的感应范围内时，被感应器所感
应，从而能够判断出荧光基色光的时序位置。密封腔体中由于高功率激光产生的热量使得
密封腔体内的温度升高，但由于感应器位于密封腔体之外，高温不会影响到感应器，从而感
应器不会受温度升高的影响而出现失效或者性能衰减的现象，从而保证了激光投影显示装
置的品质。

[0031] 上述本申请实施例提出的用于激光光源的荧光粉轮、激光光源和激光投影显示装
置中，将现有技术中使用胶体贴附在马达侧表面的黑色标记，移到荧光粉轮的背面标记，由
于感应器和标记之间的相对位置关系保持不变，从而感应器的设置位置也发生相对变化，
由原来的与荧光粉轮基板背面相互垂直变成相互平行的位置关系，这使得感应器与荧光粉轮
基板背面之间的距离从现有技术中的1-2mm增大到2-10mm，增大了距离空间能够容纳密封
荧光粉轮的密封腔体的侧壁，使得密封腔体可以在将荧光粉轮密封起来的同时，将感应器
隔离开来而不密封，因此，当激光器功率增大时，感应器不会受到越来越多温度的影响，也
就不会因为温度过高而产生失效或者性能衰减；黑色标记采用无机材料，使用激光打标或
者喷涂的方式标记在荧光粉轮基板的背面，能够耐高温，不会脱落也不会因为挥发物附着
在光学镜片上而影响光学镜片的性能;因此,这种在荧光粉粉轮背面标记黑色标记的设计,提高了感应器的性能,也从整体上提高了激光光源和激光投影显示装置的性能,也提高了产品的可靠性以及寿命。

【0032】尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。

【0033】显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。