发明名称
信号处理方法及装置

摘要
本发明提供至少一种信号处理方法及装置，适用于通信装置，其中一种信号处理装置包括：解速率匹配模块、解码器、信号质量生成模块及控制模块。解速率匹配模块用于对解调后得到的控制信号进行解速率匹配，以得到解速率匹配信号；解码器用于对解速率匹配信号进行解码，以得到解码信号；信号质量生成模块用于根据控制信号和解速率匹配信号产生至少一信号质量指示符，该至少一信号质量指示符包含信号质量生成模块对控制信号和解速率匹配信号执行相似度计算所获取的相似度指示符；控制模块用于根据该至少一信号质量指示符，确定并控制是否停止对当前控制信号的解速率匹配信号的解码操作。本发明的优点之一在于可减少解码操作次数并提高信号检测效率。
1. 一种信号处理装置，适用于通信装置，所述信号处理装置包括：
 控制信号检测模块，用于检测并解码控制信号；
 所述控制信号检测模块进一步包括：
 解速率匹配模块，用于对解调后得到的控制信号进行解速率匹配，以得到所述控制信号的解速率匹配信号；
 解码器，耦接于所述解速率匹配模块，用于对所述解速率匹配信号进行解码，以得到所述控制信号的解码信号；
 信号质量生成模块，耦接于所述解速率匹配模块，用于根据所述控制信号和所述控制信号的所述解速率匹配信号产生至少一信号质量指示符，其中，所述至少一信号质量指示符包含所述信号质量生成模块对所述控制信号和所述解速率匹配信号执行相似度计算所获取的相似度指示符；以及
 第一控制模块，耦接于所述信号质量生成模块和所述解码器，用于根据所述至少一信号质量指示符，确定并控制是否停止对当前控制信号的所述解速率匹配信号的解码操作。

2. 根据权利要求1所述的信号处理装置，其特征在于，所述信号处理装置还包括：
 解调模块，耦接于所述解速率匹配模块，用于对接收信号进行解调处理以获取所述控制信号。

3. 根据权利要求1所述的信号处理装置，其特征在于，所述信号质量生成模块所执行的所述相似度计算是通过对所述控制信号和所述解速率匹配信号执行相关操作来实现的，所述相似度指示符包含所述控制信号和所述解速率匹配信号之间的比值。

4. 根据权利要求1所述的信号处理装置，其特征在于，所述信号质量生成模块所执行的所述相似度计算是通过对所述控制信号和所述解速率匹配信号执行差分操作来实现的，所述相似度指示符包含所述控制信号和解速率匹配平均信号之间的差值，其中，所述解速率匹配平均信号为在预定时段内所述控制信号的所述解速率匹配信号的平均值。

5. 根据权利要求1所述的信号处理装置，其特征在于，当所述至少一信号质量指示符指示所述控制信号和所述解速率匹配信号的相似度低于第一阈值时，所述第一控制模块确定并停止当前的解码操作。

6. 根据权利要求5所述的信号处理装置，其特征在于，所述第一控制模块通过过去能所述解码器和所述解速率匹配模块中的一个或者全部来停止对所述当前控制信号的所述解速率匹配信号的解码操作。

7. 根据权利要求1～6中任一项权利要求所述的信号处理装置，其特征在于，所述信号处理装置还包括：
 编码模块，耦接于所述解码器，用于对所述控制信号的所述解码信号进行重编码，以得到重编码信号；
 误码率生成模块，耦接于所述编码模块和所述信号质量生成模块，用于接收所述控制信号的所述解速率匹配信号和所述重编码信号，并根据所述控制信号的质量生成模块所产生的所述控制信号的合并次数，并根据所述合并次数计算所述重编码信号相对于所述解速率匹配信号的误码率，其中所述合并次数是根据所述控制信号和所述控制信号的所述解速率匹配信号来产生的；
 第一控制模块，耦接于所述误码率生成模块和所述控制信号检测模块，用于根据所述
误码率确定是否去除所选控制信号检测模块。

8. 根据权利要求7所述的信号处理装置，其特征在于，所述信号处理装置还包括：
循环冗余校验检测模块，耦接于所述解码器与所述编码模块，用于对所述控制信号的
所述解码信号进行循环冗余校验检测，并将成功通过循环冗余校验检测的所述解码信号输
入所述编码模块。

9. 根据权利要求8所述的信号处理装置，其特征在于，所述第二控制模块通过去能所述
解码器和所述解速率匹配模块中的一个或全部来去除所述控制信号检测模块。

10. 根据权利要求1所述的信号处理装置，其特征在于，所述控制信号为在下行物理控
制信道上传送的下行控制信号，或者所述控制信号为在上行物理控制信道上传送的上行控
制信号。

11. 一种信号处理方法，适用于通信装置，所述信号处理方法包括：
检测并解码控制信号，其中对所述控制信号进行检测并解码的步骤包括：
对解调后得到的控制信号进行解速率匹配，以得到所述控制信号的解速率匹配信号；
对所述解速率匹配信号进行解码，以得到所述控制信号的解码信号；

根据所述控制信号和所述控制信号的所述解速率匹配信号产生至少一个质量指示符，所述至少一个质量指示符包含所述控制信号和所述解速率匹配信号执行相似度计算所获取的相似度指示符；以及

所述所述至少一个质量指示符，确定并控制是否停止对所述控制信号的所述解速率
匹配信号的解码操作。

12. 根据权利要求11所述的信号处理方法，其特征在于，所述控制信号是通过对所述通
信装置的接收信号进行解调处理而获取的。

13. 根据权利要求11所述的信号处理方法，其特征在于，所述相似度计算是通过对所述
控制信号和所述解速率匹配信号执行相关操作来实现的，所述相似度指示符包含所述控制
信号和所述解速率匹配信号之间的比值。

14. 根据权利要求11所述的信号处理方法，其特征在于，所述相似度计算是通过对所述
控制信号和所述解速率匹配信号执行差分操作来实现的，所述相似度指示符包含所述控制
信号和解速率匹配平均信号之间的差值，其中，所述解速率匹配平均信号为预定时段内所
述控制信号的解速率匹配信号的平均信号。

15. 根据权利要求11所述的信号处理方法，其特征在于，当所述至少一个质量指示符
指示所述控制信号和所述解速率匹配信号的相似度低于第一阈值时，确定并控制停止当前
的解码操作。

16. 根据权利要求15所述的信号处理方法，其特征在于，通过停止所述解码操作和所述
解速率匹配操作中的一个或者全部来停止当前的解码操作。

17. 根据权利要求11～16中任一项权利要求所述的信号处理方法，其特征在于，所述信
号处理方法还包括：
对所述控制信号的所述解码信号进行重编码，以得到重编码信号；
接收所述控制信号的所述解速率匹配信号和所述重编码信号，以及所述控制信号的合
并次数，并根据所述合并次数计算所述重编码信号相对于所述解速率匹配信号的误码率，
其中所述合并次数是根据所述控制信号和所述控制信号的所述解速率匹配信号来产生的；
根据所述误码率确定是否停止对控制信号的检测和解码。

18. 根据权利要求17所述的信号处理方法，其特征在于，所述信号处理还包括：

在对所述控制信号的所述解码信号进行重编码之前，对所述控制信号的所述解码信号
进行循环冗余校验检测，若所述解码信号成功通过循环冗余校验检测，则对成功通过循环
冗余校验检测的所述解码信号进行重编码。

19. 根据权利要求18所述的信号处理方法，其特征在于，通过停止所述解速率匹配操作
和所述解码操作中的一个或者全部来停止对控制信号的检测和解码。

20. 根据权利要求11所述的信号处理方法，其特征在于，所述控制信号为在下行物理控
制信道上传送的下行控制信号，或者所述控制信号为在上行物理控制信道上传送的上行控
制信号。
信号处理方法及装置

【技术领域】
[0001] 本发明涉及通信技术领域，尤其涉及至少一种信号处理方法及装置。

【背景技术】
[0002] 目前，在终端(例如，用户设备UE)与基站(Base Station, BS)之间进行通信时，可以进行相应信号的传输，用以实现基站对终端的调度或者终端对基站的请求等。对于收到的信号，接收端都需要对信号进行一系列处理。例如，UE在与基站进行通信时，需要对物理下行控制信道(Physical Downlink Control Channel, PDCCH)进行检测并解码(decoding)，以获取基站通过PDCCH所发送的下行控制信息(Downlink Control Information, DCI)。然而，在当前的长期演进(Long Term Evolution, LTE)通信系统中，由于多个UE可连接至一个或多个基站(例如，演进型B节点eNB)；在同一时间，UE并不知晓基站所发送的控制信息(DCI)是针对哪个UE，因此，在给定的传输时段(Transmission Time Interval, TTI)及/或时隙(Time Slot)内，UE需检测并解码所有的PDCCH数据，并根据解码后所有PDCCH数据来获取UE所需的DCI数据。

[0003] 然而，通过对所有PDCCH数据进行解码所获取的部分DCI数据可能有重叠或者并非对应于当前UE，因此，对于部分数据的检测和解码将造成计算资源的浪费以及电力的消耗，并且延长了UE获取有效信息的时间，影响了终端的性能，造成用户体验不佳。

【发明内容】
[0004] 有鉴于此，本发明实施例提供了至少一种信号处理方法及装置，可避免或减少解码操作次数，缩短了获取有效信息的时间，从而提高了信号的检测效率。

【0005】本发明实施例的一方面，提供一种信号处理装置，适用于通信装置，所述信号处理装置包括：控制信号检测模块，用于检测并解码控制信号；所述控制信号检测模块包含：解速率匹配(De-rate Matching)模块，用于对解调后得到的控制信号进行解速率匹配，以得到所述控制信号的解速率匹配信号；解码器，耦接于所述解速率匹配模块，用于对所述解速率匹配信号进行解码，以得到所述控制信号的解码信号；信号质量生成模块，耦接于所述解速率匹配模块，用于接收所述控制信号和所述控制信号的所述解速率匹配信号，并对所述控制信号和所述解速率匹配信号执行相似度计算，以获取至少一信号质量指示符；以及第一控制模块，耦接于所述信号质量生成模块和所述解码器，用于根据所述至少一信号质量指示符，确定并控制是否停止当前的解码操作。

【0006】本发明实施例的一方面，提供一种信号处理方法，适用于通信装置，所述信号处理方法包括：检测并解码控制信号；其中对所述控制信号进行检测并解码的步骤包括：对解调后得到的控制信号进行解速率匹配，以得到所述控制信号的解速率匹配信号；对所述解速率匹配信号进行解码，以得到所述控制信号的解码信号；接收所述控制信号和所述控制信号的所述解速率匹配信号，并对所述控制信号和所述解速率匹配信号执行相似度计算，以获取至少一信号质量指示符；以及根据所述至少一信号质量指示符，确定并控制是否停止
当前的解码操作。

【附图说明】

【具体实施方式】

了更好的理解本发明的技术方案，下面结合附图对本发明实施例进行详细描述。

在说明书及权利要求当中使用了某些词汇来指称特定的组件。本领域技术人员应可理解，硬件制造商可能会用不同的名词来称呼同一个组件。本说明书及权利要求并不以名称的差异来作为区分组件的方式，而是以组件在功能上的差异来作为区分的准则。在通篇说明书及权利要求当中所提及的“包含”及“包括”为一开放式的用语，故应解释成“包含但不限于”。"大致"是指在可接受的误差范围内，本领域技术人员能够在一定误差范围内解决所述技术问题，基本达到所述技术效果。此外，“耦接”一词在此包含任何直接及间接的电性连接手段。因此，若文中陈述“第一装置耦接于第二装置，则代表该第一装置可直接电性连接于该第二装置，或通过其它装置间接电性连接至该第二装置。以下所述为实施本发明的较佳方式，目的在于说明本发明的精神而非用以限定本发明的保护范围，本发明的保护范围当以所要求的范围为准。

应当理解，本发明文中所使用的术语“和/或”仅仅是一种描述关联对象的关联关系，表示可以存在三种关系，例如，A和/或B，可以表示：单独存在A，同时存在A和B，单独存在B这三种情况。另外，本文中字符“/”，一般表示前后关联对象是一种“或”的关系。在本发明实施例中使用的术语是仅用于描述特定实施例的目的，而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式，除非上下文清楚地表示其他含义。应当理解，尽管在本发明实施例中所采用的“第一”、“第二”等描述，仅用于区分相同名称的部件、模块或操作，但并不用以指示其相互之间存在次序上的任何关系。取决于语境，如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地，取决于语境，短语“如果确定”或“如果检测（陈述的条件或事件）”可以被解释成为“当确定时”或“响应于确定”或“当检测（陈述的条件或事件）时”或“响应于检测（陈述的条件或事件）”
请参考图1，图1为根据本发明一实施例所提供的信号处理装置100的示意图。在该实施例中，信号处理装置100可以是通信装置或者通信装置中的一部分，其中通信装置可例如笔记本电脑、移动电话、便携式游戏装置、便携式多媒体播放器、全球定位系统（Global Positioning System, GPS）、接收器、个人数字助理、台式电脑或其他类似装置。如图1所示，信号处理装置100包括：接收模块11，解调（demodulation）模块15，控制信号检测模块103。

接收模块11可包含射频模块（图中未示）和基带模块（图中未示），用于从网络端接收下行链路信号并对接收到的信号进行射频处理和基带处理，例如，接收模块11可将通过天线接收到的射频信号转换为基带信号，并对基带信号进行基带处理，其中基带处理器可例如模拟转换（Analog-to-Digital Conversion, ADC），增益调整，解调，解码等。接收模块11可包含用于执行射频转换和基带信号处理的多个硬件元件。根据本发明一实施例，接收模块11也可包含至少一天线。

解调模块15耦接于接收模块11，用于对经过射频处理和基带处理后的下行链路信号进行解调，并通过解调获取解调后的下行信号中的下行控制（DCI）信号，所获取的DCI将发送至控制信号检测模块103中的解码模块102进行解码处理。

在本实施例中，控制信号检测模块103用于检测在PDCCH上传送的DCI信号，并对其进行解码，如图1所示，控制信号检测模块103包含解码模块102，信号质量生成模块12和第一控制模块13。解码模块102用于接收通过解调所获取的DCI信号，并对其进行解码操作。解码模块102进一步包含解速率匹配模块16和解码器14，其中，解速率匹配模块16用于对解调后得到的DCI信号进行解速率匹配，以得到DCI信号的解速率匹配信号；解码器14耦接于解速率匹配模块16，用于对上述解速率匹配信号进行解码，以得到上述解速率匹配信号的解码信号。信号质量生成模块12耦接于解速率匹配模块16，用于根据解速率匹配操作之后的DCI信号和解速率匹配操作之后的上述解速率匹配信号产生至少一信号质量指示符。第一控制模块13耦接于信号质量生成模块12和解码模块102，用于根据该至少一信号质量指示符来确定并控制是否停止当前的解码操作。

根据本发明一实施例，信号质量生成模块12对解速率匹配操作之前的DCI信号和解速率匹配操作之后的上述解速率匹配信号执行相似度计算，以获取一相似度指示符，该相似度指示符可包含于上述至少一信号质量指示符之中。当所述至少一信号质量指示符指示执行解速率匹配操作之前的DCI信号和执行解速率匹配操作之后的DCI信号的所述解速率匹配信号的相似度低于第一阈值时，则第一控制模块13可确定并停止当前的解码操作，其中，该第一阈值可依据实际设计需求来设定，或者也可由本领域技术人员根据经验值或者其它数据所预先设定。本发明并不以此为限。具体地，第一控制模块13可通过去能（disable）解码器14和解速率匹配模块16中的一个或者全部来停止当前的解码操作。

根据本发明一实施例，信号质量生成模块12所执行的所述相似度计算是通过对执行解速率匹配操作前的DCI信号及其解速率匹配信号执行相关（correlation）操作来实现的，该相似度指示符可以是执行解速率匹配操作前的DCI信号及其解速率匹配信号之间的比值。当该比值低于一阈值时，代表执行解速率匹配操作前的DCI信号的相关度较低，二者的相似度较低，亦即当前正在处理的DCI信号质量较差，则第一控制模块13可确定并停止对当前DCI信号的解速率匹配信号的进一步解码操作。根据本发明一实施例，信号质量生成模块12所执行的所述相似度计算是通过对执行解速率匹配操作前的DCI信号及其解速率
匹配信号执行差分(differential)操作来实现的，该相似度指示符可以是执行解速率匹配操作前的DCI信号与执行速率匹配操作后的DCI信号的解速率匹配平均信号之间的差值，其中该解速率匹配平均信号为预定义时段内DCI信号的解速率匹配信号的平均值。当该差值高于一阈值时，代表执行解速率匹配操作前后的DCI信号之间的差异较大，二者的相似度较低，亦即当前正在处理的DCI信号质量较差，则第一控制模块13可确定并停止对当前DCI信号的解速率匹配信号的进一步解码操作。请注，以上仅为举例说明，本发明并不仅限于此，本领域技术人员亦可知晓它的相似度计算方法，均可用于指示计算解速率匹配操作前的DCI信号及其解速率匹配信号的相似度。

[0022] 如图1所示，根据本发明一实施例的信号处理装置100可进一步包含CRC检测模块101，用于对解码模块102所输出的DCI的解码信号进行CRC检测，以对解码信号进行差错校验，当解码信号成功通过CRC检测时，方可用于后续处理，以便通信装置可根据通过CRC检测的DCI解码信号进行数据信号的收发控制。

[0023] 在根据本发明多个实施例的信号处理装置100中，采用了相似度计算来作为评估解速率匹配前后的DCI信号的质量评估指标之一，当信号质量生成模块12所产生的至少一信号质量指示符指示执行解速率匹配操作之前的DCI信号和执行解速率匹配操作之后的DCI信号的所述解速率匹配信号的相似度较小时，可停止对信号质量不佳的当前DCI信号的解速率匹配信号的进一步解码操作，因而降低了解码操作次数，避免了或减少了不必要的电力消耗，从而提高了信号检测效率。

[0024] 如参考图2或图2为根据本发明另一实施例的信号处理装置200的示意图。该实施例中，信号处理装置200同样可以是通信装置或者通信装置中的一部分，该通信装置可例如笔记本电脑、移动电话、个人数字助理等，本发明并不以此为限。请注意，图2中的部分模块采用了与图1相同的数字标号，其仅用于指代具有相同数字标志的模块可实现相同的功能，对于相应的硬件结构并不作具体限定。图1和图2所示的信号处理装置200进一步包含编码模块17，误码率(Symbol Error Rate, SER)生成模块18和第二控制模块19。编码模块17将接于解码器14，用于对解码器14所输出的DCI解码信号进行重编码，以得到DCI解码信号的重编码信号。SER生成模块18将接于编码模块17和信号质量生成模块12，用于接收DCI信号的解速率匹配信号、DCI解码信号的重编码信号以及信号质量生成模块12所产生的DCI信号的解速率匹配操作中的合并次数，并参考所述合并次数计算上述重编码信号相对于上述解速率匹配信号的误码率。其中，该合并次数是根据执行解速率匹配前的DCI信号及其解速率匹配信号所发生的、用以代表DCI信号在执行解速率匹配操作过程中所进行的合并次数。第二控制模块19将接于SER生成模块18和控制信号检测模块103，用于根据SER生成模块18所产生的误码率来确定是否去能控制信号检测模块103。根据本发明一实施例，第二控制模块19可通选去能解码器14和解速率匹配模板16中的一个或者全部去除能控制信号检测模块103，以停止对DCI信号的检测和解码操作。

[0025] 根据本发明一实施例，信号处理装置200进一步包含耦接于解码模块102和编码模块17的CRC检测模块101。CRC检测模块101用于对解码模块102所输出的DCI的解码信号进行CRC检测，以对DCI的解码信号进行差错校验，当解码信号成功通过CRC检测时，方可用于后续处理，以便通信装置可根据通过CRC检测的DCI解码信号进行数据信号的收发控制。在本实施例中，CRC检测模块101对解码器14输出的DCI解码信号进行CRC检测，并将成功通过CRC
检测的DCI解码信号输入编码模块17进行重编码以产生DCI解码信号的重编码信号。SER生成模块18接收该重编码信号，以及DCI信号的解速率匹配信号和信号质量生成模块12所生产的DCI信号在解速率匹配操作中的合并次数，并参考该合并次数计算上述重编码信号相对于解速率匹配信号的误码率。第二控制模块19耦接于SER生成模块18，并根据SER生成模块18所产生的误码率来判断是否去能对DCI信号的控制信号检测模块103。具体地，第二控制模块19可将误码率与第二阈值作比较，当SER生成模块18所产生的误码率低于第二阈值时，第二控制模块19确定并去能所述控制信号检测模块103。其中，该第二阈值可依据实际设计需求来设定，或者也可由本领域技术人员根据经验值或者其它数据预先设定，本发明并不以此为限。

[0026] 在根据本发明多个实施例的信号处理装置200中，不仅采用了相似度计算来作为一种评估解速率匹配前后的DCI信号的质量评估指标之一，可停止对当前信号质量不佳的DCI信号的进一步解码操作，从而减少不必要的解码次数，而且进一步通过对DCI解码信号的重编码信号与解速率匹配信号的误码率进行评估，并可当获取的误码率在第一可接受范围内（例如，误码率低于阈值）时，提前停止对DCI信号的检测和解码，从而进一步减少了对DCI信号的解码次数，避免/减少了资源浪费，并提高了信号的检测效率。

[0027] 在以上根据本发明所提供的信号处理装置100、200和信号处理方法300的多个实施例中，虽然仅以对下行控制信号DCI进行处理的通信装置为例进行了说明，然而本发明所提供的上述多个实施例的信号处理装置100、200和信号处理方法300，也可适用于对在物理上行控制信道（Physical Uplink Control Channel，PUCH）上发送的上行控制信号（Uplink Control Information，UCI）进行处理的基站，本发明并不以此为限。

[0028] 参见图1，根据本发明又一实施例的信号处理装置100，可以是通信装置或者通信装置的一部分，该通信装置装置可以是基站（BS），节点B（Node B，NB），演进型节点B（e-NB）等，本发明并不以此为限。如图1所示，信号处理装置100包括接收模块11，解调（demodulation）模块15，控制信号检测模块103。接收模块11可包含射频模块（图中未示）和基带模块（图中未示），用于从网络端接收上行链路信号并对接收到的信号进行射频处理和基带处理，例如，接收模块11可将通过天线接收到的射频信号转换为基带信号，并对基带信号进行基带处理，其中基带处理可例如ADC、增益调整、解调、解码等。接收模块11可包含用于执行射频转换和基带信号处理的硬件元件。根据本发明一实施例，接收模块11也可包含至少一天线。解调模块15耦接于接收模块11，用于对经过射频处理和基带处理后的上行链路信号进行解调，并通过解调获取解调后的在PUCCH上传送的上行控制（UCI）信号，所获取的UCI将发送至控制信号检测模块103中的解码模块102进行解码处理。

[0029] 在本实施例中，控制信号检测模块103用于检测在PUCCH上传送的UCI信号，并对其进行解码。如图1所示，控制信号检测模块103包含解码模块102，信号质量生成模块12和第一控制模块13。解码模块102用于接收通过解调所获取的UCI信号，并对其进行解码操作。解码模块102进一步包含解速率匹配模块16和解码器14，其中，解速率匹配模块16用于对解调后收到的UCI信号进行解速率匹配，以得到UCI信号的解速率匹配信号；解码器14耦接于解速率匹配模块16，用于对上述解速率匹配信号进行解码，以得到上述解速率匹配信号的解码信号。信号质量生成模块12耦接于解速率匹配模块16，用于根据解速率匹配操作之前的UCI信号的解速率匹配操作之后的上述解速率匹配信号产生至少一信号质量指示符。第一
控制模块13耦接于信号质量生成模块12和解码模块102，用于根据该至少一信号质量指示符，来确定并控制是否停止当前的解码操作。

【0030】根据本发明一实施例，信号质量生成模块12对解速率匹配操作之前的UCI信号和解速率匹配操作之后的上述解速率匹配信号执行相似度计算，以获取一相似度指示符，该相似度指示符可包含于上述至少一信号质量指示符之中。当所述至少一信号质量指示符指示执行解速率匹配操作之后的UCI信号和解速率匹配操作之后的UCI信号的所述解速率匹配信号的相似度低于第三阈值时，则第一控制模块13可确定并停止对当前UCI信号的解速率匹配信号的进一步解码操作，其中，该第三阈值可依据实际设计需求来设定，或者也可由本领域技术人员根据经验值或者其它数据所预先设定，本发明并不以此为限。具体地，第一控制模块13可通过去能解码器14和解速率匹配模块16中的一个或者全部来停止当前的解码操作。

【0031】根据本发明一实施例，信号质量生成模块12所执行的所述相似度计算是通过对执行解速率匹配操作前的UCI信号及其解速率匹配信号执行相关操作来实现的，该相似度指示符是执行解速率匹配操作前的UCI信号及其解速率匹配信号之间的比率。当所述比率低于一阈值时，代表执行解速率匹配操作前的UCI信号的相关度较低，二者的相似度较低，亦即当前正在处理的UCI信号质量较差，则第一控制模块13可确定并停止对当前UCI信号的解速率匹配信号的进一步解码操作。根据本发明另一实施例，信号质量生成模块12所执行的所述相似度计算是通过对执行解速率匹配操作前的UCI信号及其解速率匹配信号执行差分操作来实现的，该相似度指示符是执行解速率匹配操作前的UCI信号和执行解速率匹配操作后的UCI信号的解速率匹配平均信号之间的差值，其中所述解速率匹配平均信号为在预定期间内UCI信号的解速率匹配信号的平均值。当所述差值高于一阈值时，代表执行解速率匹配操作前的UCI信号和执行解速率匹配操作后的UCI信号的相似度较大，二者的相似度较高，亦即当前正在处理的UCI信号质量较差，则第一控制模块13可确定并停止对当前UCI信号的解速率匹配信号的进一步解码操作。请注意，以上仅为举例说明，本发明并不仅限于此，本领域技术人员亦可知晓其他的相似度计算方法，均可用于此处计算解速率匹配操作前的UCI信号及其解速率匹配信号的相似度。

【0032】如图1所示，根据本发明一实施例的信号处理装置100可进一步包含CRC检测模块101，用于对解码模块102所输出的UCI的解码信号进行CRC检测，以对解码信号进行差错校验，当解码信号通过通过CRC检测时，可用于后续处理，以便通信装置可根据根据通过CRC检测的UCI解码信号进行数据信号的收发控制。

【0033】在根据本发明上述多个实施例的信号处理装置100中，采用了相似度计算来作为评估解速率匹配前后的UCI信号的质量评估指标之一，当信号质量生成模块12所产生的至少一信号质量指示符指示执行解速率匹配操作之前的UCI信号和执行解速率匹配操作之后的UCI信号的所述解速率匹配信号的相似度较低时，可停止对信号质量不佳的当前UCI信号的解速率匹配信号的进一步解码操作，因而减少解码操作次数，避免或降低了不必要的电力消耗，从而提高了信号检测效率。

【0034】请参见图2，根据本发明一实施例的信号处理装置200，可以是通信装置或者通信装置的一部分，该通信装置可例如BS，Node B，e-NB等，本发明并不以此为限。与图1相比，图2所示的信号处理装置200进一步包含编码模块17，SER生成模块18和第二控制模块19，编
码模块17耦接于解码器14，用于对接解码器14所输出的UCI解码信号进行重编码，以得到UCI解码信号的重编码信号。SER生成模块18耦接于编码模块17和信号质量生成模块12，用于接收UCI信号的解速率匹配信号和UCI解码信号的重编码信号，以及信号质量生成模块12所产生的UCI信号在解速率匹配操作中的合并次数，并参考所述合并次数计算上述重编码信号相对于上述解速率匹配信号的误码率。其中，该合并次数是根据执行解速率匹配前的UCI信号及其解速率匹配信号所产生的，用以代表UCI信号在执行解速率匹配操作过程中所进行的合并次数。第二控制模块19耦接于SER生成模块18和控制信号检测模块103，用于根据SER生成模块18所产生的误码率来确定是否去能控制信号检测模块103。根据本发明一实施例，第二控制模块19可过去能解码器14和解速率匹配模块16中的一个或者全部来去能控制信号检测模块103，以停止对UCI信号的检测和解码操作。[0035]根据本发明一实施例，信号处理装置200进一步包含耦接于解码模块102和编码模块17的CRC检测模块101。在本实施例中，CRC检测模块101对解码器14输出的UCI解码信号进行CRC检测，并成功通过CRC检测的UCI解码信号输入编码模块17进行重编码以产生UCI解码信号的重编码信号。SER生成模块18接收该重编码信号，以及UCI信号的解速率匹配信号和信号质量生成模块12所产生的UCI信号在解速率匹配操作中的合并次数，并参考所述合并次数计算上述重编码信号相对于解速率匹配信号的误码率。第二控制模块19耦接于SER生成模块18，并根据SER生成模块18所产生的误码率来确定是否去能对UCI信号的控制信号检测模块103。具体地，第二控制模块19可将误码率与第四阈值作比较，当SER生成模块18所产生的误码率低于第四阈值时，第二控制模块19确定去能所述控制信号检测模块103。其中，该第四阈值可依据实际设计需求来设定，或者也可由本领域技术人员根据经验值或其他数据所预先设定，本发明并不以此为限。[0036]在根据本发明上述多个实施例的信号处理装置200中，不仅采用了相似度计算来作为评估解速率匹配前后的UCI信号的质量评估指标之一，可停止对当前信号质量不佳的UCI信号的进一步解码操作，从而减少不必要的解码次数，而且进一步通过对UCI解码信号的重编码信号与解速率匹配信号的误码率进行评估，并可当获取的误码率在可接受范围内（例如，误码率低于阈值）时，提前停止对UCI信号的检测和解码，从而进一步减少了对UCI信号的解码次数，避免减少了资源浪费，并提高了信号的检测效率。[0037]图3为根据本发明一实施例的信号处理方法300的流程图，在本实施例中，结合了图1所示的信号处理装置100和图2所示的信号处理装置200。在本实施例中，信号处理方法300适用于通信装置，并用于通过控制信号检测模块103对在PDCCI上传送的DCI信号进行检测和解码，其中该通信装置可例如笔记本电脑、移动电话、个人数字助理等，本发明并不以此为限。如图3所示，信号处理方法300可包括以下步骤：[0038]S301，对解调后得到的DCI信号进行解速率匹配，以得到DCI信号的解速率匹配信号，根据本发明一实施例，步骤S301中的DCI信号可通过对图1所示的解调模块15对经过射频处理和基带处理后的下行链路信号进行解调处理来获取。[0039]S302，对DCI信号的上述解速率匹配信号进行解码，以得到DCI信号的解码信号。[0040]S303，根据执行解速率匹配操作之前的DCI信号及其解速率匹配信号产生至少一信号质量指示符。其中，该至少一信号质量指示符包含对执行解速率匹配操作之前的DCI信号及其解速率匹配信号执行相似度计算所获取的相似度指示符。根据本发明一实施例，信
匹配操作和所述解码操作中的一个或者全部来停止对DCI信号的检测和解码。

图4为根据本发明又一实施例的信号处理方法400的流程图。在本实施例中，结合了图1所示的信号处理装置100和图2所示的信号处理装置200。在本实施例中，信号处理方法400适用于通信装置，并用于通过控制信号检测模块103对在PUCCHI上传送的UCI信号进行检测和解码，其中该通信装置可例如为BS、Node B、eNB等，本发明并不以此为限。如图4所示，信号处理方法400可包括以下步骤：

S401，对解调后得到的UCI信号进行解速率匹配，以得到UCI信号的解速率匹配信号。根据本发明一实施例，步骤S401中的UCI信号可通过图1所示的解调模块15对经过射频处理和带处理后的下行链路信号进行解调处理来获取。

S402，对UCI信号的上述解速率匹配信号进行解码，以得到UCI信号的解码信号。

S403，根据执行解速率匹配操作之前的UCI信号及其解速率匹配信号产生至少一信号质量指示符。其中，该至少一信号质量指示符包含对执行解速率匹配操作之前的UCI信号及其解速率匹配信号执行相似度计算所获取的相似度指示符。根据本发明一实施例，信号质量生成模块12所执行的所述相似度计算是通过对执行解速率匹配操作前的UCI信号及其解速率匹配信号执行相关操作来实现的，该相似度指示符可以是执行解速率匹配操作前的UCI信号及其解速率匹配信号之间的比值。根据本发明另一实施例，信号质量生成模块12所执行的所述相似度计算是通过对执行解速率匹配操作前的UCI信号及其解速率匹配信号执行差分操作来实现的，该相似度指示符可以是执行解速率匹配操作前的UCI信号和执行解速率匹配后的UCI信号的解速率匹配平均信号之间的差值，其中，该解速率匹配平均信号为在预定位段内UCI信号的解速率匹配信号的平均值。请注意，以上仅为举例说明，本发明并不限于此，本领域技术人员亦可知晓其它的相似度计算方法，均可用于此处计算解速率匹配操作前的UCI信号及其解速率匹配信号的相似度。

S404，根据该至少一信号质量指示符，确定并控制是否停止对当前的UCI信号的解速率匹配信号的解码操作。更具体地，根据本发明一实施例，当所述至少一信号质量指示符指示执行解速率匹配操作前的UCI信号和执行解速率匹配操作后的UCI信号的解速率匹配信号的相似度高于第二阈值时（步骤S411中判断为“是”），则第一控制模块13可确定并停止对当前的UCI信号的解速率匹配信号的解码操作，并转至步骤S401，重复执行步骤S402至步骤S411，继续对后续的UCI解调信号进行处理，直至所述至少一信号质量指示符指示执行解速率匹配操作前的UCI信号和执行解速率匹配操作后的UCI信号的解速率匹配信号的相似度低于第一阈值（步骤S411中判断为“否”）。其中，该第三阈值可依据实际设计需求来设定，或者也可由本领域技术人员根据经验值或者其它数据来预先设定，本发明并不以此为限。更进一步，第一控制模块13可通过停止所述解码操作和所述解速率匹配操作中的一个或者全部来停止当前的解码操作。

S405，根据本发明一实施例，信号处理方法400可进一步包含：

S405，对UCI解码信号进行重编码，以得到UCI解码信号的重编码信号。根据本发明一实施例，UCI解码信号在进行重编码之前，可先进行CRC检测（图4中未示）。如图2所示，当解码器14输出的UCI解码信号在输入编码模块17之前，可先输入CRC检测模块101进行CRC检测。编码模块可对成功通过CRC检测的UCI解码信号进行重编码。

S406，接收UCI信号的解速率匹配信号和重编码信号，并参考UCI信号在解速率匹
配操作中所进行的合并次数计算所述重编码信号相对于所述解速率匹配信号的误码率。其中，上述合并次数是由信号质量产生模块12根据执行解速率匹配操作之前的UCI信号及其解速率匹配信号来产生的，用以代表UCI信号在执行解速率匹配操作过程中所进行的合并次数。

【0054】S407，根据所产生的误码率判定是否停止对UCI信号的检测和解码。根据本发明一实施例，图2所示第二控制模块19根据SER生成模块18所产生的误码率判定是否停止对UCI信号的检测和解码。具体地，第二控制模块19可将SER生成模块18所产生的误码率与第四阈值作比较，当SER生成模块18所产生的误码率不低于第二阈值时（步骤S421中判断为“是”），第二控制模块19不停止对UCI信号的检测和解码，信号处理装置200持续执行对UCI信号的解调和解码，并重复上述步骤；当SER生成模块18所产生的误码率低于第四阈值时（步骤S421中判断为“否”），第二控制模块19确定停止对UCI信号的检测和解码（步骤S422）。其中，该第四阈值可依据实际设计需求来设定，或者也可由本领域技术人员根据经验值或者其它数据所预先设定，本发明并不以此为限。进一步地，第二控制模块19可通过停止所述解速率匹配操作和所述解码操作中的一个或者全部来停止对UCI信号的检测和解码。

【0055】根据本发明多个实施例中所的信号处理装置及信号处理方法，采用了相似度计算来作为评估解速率匹配前后的控制信号的质量评估指标之一，可停止对当前信号质量不佳的控制信号(DCI/UCI)的进一步解码操作，从而减少不必要的解码次数；更进一步，通过对控制信号(DCI/UCI)的解码信号的重编码信号与解速率匹配信号的误码率进行评估，并可当获取的误码率在可接受范围内（例如，误码率低于阈值）时，提前停止对上行/下行控制信号的检测和解码，从而进一步减少了对控制信号(DCI/UCI)的解码次数，避免/减少了资源浪费，并提高了信号的检测效率。

【0056】请注意，本发明的上述实施例可以多种方式来实施，例如，上述多个实施例可使用硬件、软件、固件或其任意组合来实施。本领域技术人员能够理解，作为分离部件说明的单元可以是或者也可以不是物理上分开的部分，在本发明各个实施例中的各功能单元/模块可以集成在一个处理单元中，也可以是单独物理存在，也可以两个或两个以上单元/模块集成在一个单元/模块中。执行上述功能的元件(component)、模块或元件/模块组合也可采用控制上述功能的一个或多个处理器来实现。上述一个或多个处理器可实施为多种方式，如使用专用硬件、或采用使用微码(microcode)或软件编程来执行上述功能的通用硬件。本领域技术人员也可根据实际的需要选择其中的某部分或者全部单元/元件/模块来实现本实施例方案的目的。

【0057】上述以软件功能单元的形式实现的集成的单元，可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中，包括若干指令用以使得一台计算机装置(可以是个人计算机，服务器，或者网络装置等)或处理器(Processor)执行本发明各个实施例所述方法的步骤，所述存储介质包括：U盘、移动硬盘、只读存储器(Read-Only Memory，ROM)、随机存取存储器(Random Access Memory，RAM)，磁碟或者光盘等可以存储程序代码的介质。

【0058】以上所述仅为本发明的较佳实施例而已，并不用以限制本发明，凡在本发明的精神和原则之内，所做的任何修改、等同替换、改进等，均应包含在本发明保护的范围之内，本发明的保护范围当视后附的权利要求所界定者为准。
开始

对解调后得到的DCI信号进行解速率匹配，以得到DCI信号的解速率匹配信号

S301

对DCI信号的上述解速率匹配信号进行解码，以得到DCI信号的解码信号

S302

根据执行解速率匹配操作之前的DCI信号及其解速率匹配信号产生至少一信号质量指示符，其中该至少一信号质量指示符包含对执行解速率匹配操作之前的DCI信号及其解速率匹配信号执行相似度计算所获取的相似度指示符

S303

确定并停止对当前DCI信号的解速率匹配信号的解码操作

S312

根据该至少一信号质量指示符，确定并控制对当前DCI信号的解速率匹配信号的解码操作

S304

所述至少一信号质量指示符指示执行解速率匹配操作之前的DCI信号及其解速率匹配信号的相似度高于第一阈值？

S311

对DCI解码信号进行重编码，以得到DCI解码信号的重编码信号

S305

接收DCI信号的解速率匹配信号和重编码信号，并参考DCI信号在解速率匹配操作中所进行的合并及差数计算所述重编码信号相对于所述解速率匹配信号的误码率

S306

根据所产生的误码率确定是否停止对DCI信号的检测和解码

S307

误码率低于第二阈值？

S321

否

是

停止对DCI信号的检测和解码

S322

结束

图3
开始

对解调后得到的UCI信号进行解速率匹配，以得到UCI信号的解速率匹配信号

对UCI信号的上述解速率匹配信号进行解码，以得到UCI信号的解码信号

根据执行解速率匹配操作之前的UCI信号及其解速率匹配信号产生至少一信号质量指示符，其中该至少一信号质量指示符包含对执行解速率匹配操作之前的UCI信号及其解速率匹配信号执行相似度计算所获取的相似度指示符

确定并停止对当前UCI信号的解速率匹配信号的解码操作

根据该至少一信号质量指示符，确定并控制对当前UCI信号的解速率匹配信号的解码操作

是

所述至少一信号质量指示符指示执行解速率匹配操作之前的UCI信号及其解速率匹配信号的相似度高于第三阈值？

否

对UCI解码信号进行重编码，以得到UCI解码信号的重编码信号

接收UCI信号的解速率匹配信号和重编码信号，并参考UCI信号在解速率匹配操作中所进行的合并次数计算所述重编码信号相对于所述解速率匹配信号的误码率

根据所产生的误码率确定是否停止对UCI信号的检测和解码

误码率低于第四阈值？

否

是

停止对UCI信号的检测和解码

结束