Abstract: An efficient and user-friendly application service access method utilizing network dynamic conditions and application traffic requirements is provided. This method allows applications to register their servers' location information and traffic requirements with the network and provides an optimal connection to application service without specifying an application server location for an end user and based on network conditions and application requirements.
Optimal Path Selection for Accessing Networked Applications

Field of the Technology

The present application relates to access application services in a network, and more particularly to user friendly provision of end user connection, to an application service, which is optimally based on the network dynamic conditions and application requirements in a network.

BACKGROUND OF THE INVENTIONS

Background: Path Computation Elements (PCE) and Applications

As Internet based applications grow rapidly, network service providers need to support different bandwidth-on-demand services. Examples include large file downloading, on-line video gaming, and on-line conferencing. These kinds of applications sometimes require a peer to peer connection with a dedicated bandwidth between a user and an application; and the application could be offered concurrently on multiple servers that are physically attached to the network at different locations. The user can initiate a connection request to any one of these servers for the application service from anywhere within the network.

Figure 3 illustrates an example: a user attaches to a network at St. Louis; several servers attach to the network at New York, Chicago, Dallas, and Los Angeles, respectively. Assume all servers are running a "StarWar" application. When the user wants to play this online video game, the game proxy program on the user computer must connect to the network with adequate bandwidth. In this example, suppose that the best service would occur if the Chicago site is used for the connection. However, how is this optimal connection to be discovered? If the user or user application specifies a different target address (e.g. Los Angeles), the user's program will be attached to that server, even if the server is overloaded or the connection routes to it have bottlenecks.

Connection between two network entities requires path computation. Path computation is especially challenging in today's large, multi-domain, multi-region
and multi-layers networks. A network can have multiple domains, because a path might cross between the networks of different service providers. A network can include multiple regions, since connected entities might be located at different geographic areas. A network can have multiple layers, because an IP network might be built on Multi-Protocol Label Switching (MPLS) or Generalized Multi Protocol Label Switching (GMPLS) based optical network networks.

A path computation solution in large, multi-domain and multi-layer networks with special computational components and cooperation between the elements in different domains has been proposed. A Path Computation Element ("PCE") is an entity that is capable of computing a network path or route based on a network graph, and of applying computational constraints during the computation. The PCE entity is an application that can be located within a network node or component, on an out-of-network server, etc.

Figure 4 illustrates a PCE based network architecture. The connection request comes to a Path Computation Client ("PCC") first. A PCC (not shown in Figure 4) is normally co-located with a Network Node or Network Element ("NE"). A PCC is a client application requesting a path computation to be performed by the PCE. PCC then sends a path computation request to a PCE through the PCE protocol ("PCEP"). PCE computes a path and sends the selected path information back to PCC using PCEP.

Figure 4 shows two PCEs in the networks. Each is capable of computing a path within its own network domain. A domain is any collection of network elements within a common sphere of address management or path computation responsibility. Examples of domains include IGP areas, Autonomous Systems (ASes), and multiple ASes within a Service Provider network. Domains of path computation responsibility may also exist as sub-domains of areas or ASes. When a connection is across two domains (or sub-domains), both PCEs may get involved with the path computation process to find an inter-domain path.

Overview of the PCE-Based Architecture

Composite PCE
Figure 5 shows the components of a typical composite PCE node (that is, a NE such as router also implements the PCE functionality) that utilizes path computation. The routing protocol is used to exchange TE information from which the Traffic Engineering Database ("TED") is constructed. Service requests to provision TE LSPs (Traffic Engineering Label Switching Paths) are received by the node and converted into signaling requests, but this conversion may require path computation that is requested from a PCE. The PCE operates on the TED subject to local policy in order to respond with the requested path.

Note that the routing adjacency between the composite PCE and any other router may be performed by means of direct connectivity or any tunneling mechanism.

External PCE

Figure 6 shows a PCE that is external to the requesting network element. A service request is received by the head-end node, and before it can initiate signaling to establish the service, it makes a path computation request to the external PCE. The PCE uses the TED subject to local policy as input to the computation and returns a response.

Note that in this case, the node that supports the PCE function may also be an LSR (Label Switching Router) or router performing forwarding in its own right (i.e., it may be a composite PCE node), but those functions are purely orthogonal to the operation of the function in the instance being considered here.

PCE Interface Requires Network Addresses

Normally a PCE requires two explicitly identified addresses to compute a route. In the "StarWar" example above, the PCE requires a source address, i.e. the network address of the player the user is using (for example, a mobile phone or laptop PC), and a destination address, the network address of the host of the game server. This requirement is neither flexible and nor user-friendly. A user should not be required to have the knowledge of network topology such that she knows the application server's addresses.

Even if the user is very knowledgeable about the network topology, he still has no knowledge of the connectivity or traffic conditions of the network and application
servers to make an optimal decision to select a destination address. To make an optimal decision, he will have to find the addresses of all the servers hosting the requested application, and then send a request with the address of each server to the network to let PCE compute an optimal path to each server. Finally, he compares multiple paths to determine which one offers the optimal path to the requested service.

Path Selection Policy

A PCE may have a local policy that impacts path computation and selection in response to a path computation request. Such policy may act on information provided by the requesting PCC. The result of applying such policy includes, for example, rejection of the path computation request, or provision of a path that does not meet all of the requested constraints. Further, the policy may support administratively configured paths, or selection among transit providers. Inclusion of policy within PCE may simplify the application of policy within the path computation/selection process.

Similarly, a PCC may apply local policy to the selection of a PCE to compute a specific path, and to the constraints that are requested.

In a PCE context, the policy may be sensitive to the type of path that is being computed. For example, a different set of policies may be applied for an intra-area or single-layer path than would be provided for an inter-area or multi-layer path.

Again, how a user finds out and stores local policy about the application the user is using are outside the scope of the PCE architecture. For instance, applications have different requirements on uplink and downlink bandwidths, and application servers support various maximum number of users. PCE specifications did not address those issues, but they are nevertheless very important for the growth of Internet applications based on PCE architecture.

Summary of the Invention

The present application provides new approaches for end users to access application services with optimal routing. The preferred embodiment allows an end user to send a request for service to the network by using application or service name. Then the network finds a server that provides requested services with optimal route
between the user and the server based on dynamic network conditions and application requirements, and connects the end user with that server. The teachings in this document enable an end user accessing a service concurrent running at multiple servers at different network locations.

The advantages of the proposed approaches are highlighted as follows:

- The new approaches offer user-friendly interface by using application or service names to access application services instead of using network addresses; and
- The new approaches provide end users with optimal connection to the requested service based on current network conditions and application requirements.
- A net result is that users see higher service quality.
- Another result is that the network is like to have fewer bottlenecks.

Another result is that the network’s capacity is used more efficiently.

Brief Description of the Drawings

The disclosed inventions will be described with reference to the accompanying drawings, which show important sample embodiments of the invention and which are incorporated in the specification hereof by reference, wherein:

Figure 1 shows an example of a new PCE based network architecture.

Figure 2 shows how the new approach provides a user optimal access to an application service.

Figure 3 shows an example with one user attempting to access a gaming service that could be offered at one of multiple game servers on different network locations.

Figure 4 shows an example of a PCE’ s Architecture.

Figure 5 shows a PCE’ s Architecture, for the case of a composite PCE node.

Figure 6 shows a PCE’ s Architecture, for the case of an external PCE node.
Detailed Description of the Invention

The numerous innovative teachings of the present application will be described with particular reference to the presently preferred embodiment (by way of example, and not of limitation).

Service Application Registration

Generally when an application server is physically connected to the network, certain bandwidth is allocated between the network node and the server. The preferred embodiment allows a newly added server to register its applications with the network. A database system can be used to store application information such as service name, address, bandwidth requirement, server capacity, and maximum number of users supported, etc. Note that for various reasons, such as transport resource saving, fault tolerance or load balancing, multiple servers can host the same application concurrently, therefore, there could be multiple addresses for one service name. Figure 1 shows an example PCE based network architecture with two application servers (AS1 110 and AS2 120) and one service register database (DB) 130. A registration protocol is needed between a server and the database. The protocol will let server to update its application information in the database. However, the design and selection of this protocol is outside the scope of this application and should be obvious to one with ordinary skills in the art.

To sum up the options for this protocol, the network could allow an application server to register its applications to a node to which the server is connected 150, then network node passes the information to the database 160; alternatively the network could allow a server to directly send information to the database through Internet or other communication channel 140. The database in Figure 1 is separated from PCE. However, another class of embodiments can integrate the service database with PCE. In such a design, each PCE maintains the service information from the application server attached to its domain; the registration protocol is deployed between PCE and network node/server.

When an application is activated or deactivated on a server, the server needs to update the database on the current status of the application. The preferred embodiment
provides auto-refresh method. This method requires each application server periodically sending an announcement message to the database. If the database does not receive the message for certain period of time, the information for this application or application location will be removed from the database.

A modified service discovery protocol could be used to implement registration and auto refresh.

End-user Access to Service

Figure 2 illustrates how the new approach provides a user optimal access to an application service. Sample steps are:

1. A user application sends a connection request with a service name and user device bandwidth constraint information to the PCC (NEA) the user device is attached to. There could be other parameters too such as delay constraint, access duration, and etc.

2. The PCC sends a message with the service name to the database.

3. The database does a lookup and sends back to PCC a list of server node addresses that user could connect to, along with those servers' traffic information: bandwidth requirement, maximum number of users supported or current number of users served.

4. PCC sends the path computation request to PCE with one source node address and a list of destination addresses, as well as the servers' traffic information.

5. PCE calculates the paths from source address to every destination address and select one optimal path for PCC based on the selection criteria (described below)

6. PCE sends the selected path information back to the PCC.

7. PCC sets up the connection path via **MPLS** or **GMPLS** signaling.

Alternatively, in another class of embodiments, the PCC sends the path computation request to PCE with the service name directly. The PCE communicates with the database to get destination node addresses; then it computes paths, selects an
optimal one, and sends the path information back to the PCC. This method is preferred when the database is integrated with the PCE.

The new approach needs some protocol enhancement on existing path communication protocol (PCEP) defined by IETF. In the preferred embodiment, PCEP should allow PCC to specify single path selection when one source and multiple destination address given in a PCC request. Alternatively, PCEP has to distinguish the regular path computation from the path computation given service name. The server name could be specified in the existing object with a new attribute or in a new object. It also needs to add a type object in the request message to differentiate the different types of path computation requests.

PCE uses some policies as selection criteria for the path selection. Some of these can include:

- Shortest distance;
- Available bandwidth or bandwidth allocation between server and its attached node;
- Weighted available bandwidth or bandwidth allocation between server and its attached node. In this case, if a server only has a small scale capacity, even it has a large available bandwidth connected to the network; the server can only handle certain load. Therefore, it could specify the equivalent allowed bandwidth in the database.
- Comprehensive rule combined from above.

(Note that this is not an exhaustive list.)

When there are many servers supporting the same application, it may become a burden for PCE to compute all the paths and select only one path for PCC. A selective method can alternatively be used. In this method, either the database or PCC limits the maximum number of destination addresses to be sent to PCE. Thus, PCE only needs to compute a small set of paths dynamically.

Another way to achieve path selection when there is one source and multiple destinations exist, is: the PCC sends each source/destination pair to the PCE for the path computation. The PCC will collect all the paths computed by the PCE and select
one path (based on some policy residing in the PCC) and go through the path establishment.

For networks that support traffic engineering, the connection path is set up with bandwidth reservation along the path. For networks that do not support traffic engineering, the connection path is set up without bandwidth reservation. The new approach disclosed here applies to both types of networks.

Connection Request at UNI and NNI

ASON/GMPLS control plane allows a user to request connection through user and network interface (UNI) and a network to request connection from another network through network to network interface (NNI). The new approach can enhance ASON/GMPLS by enabling a user or network to specify a connection request by using a service name. The network is responsible to find a proper application location.

Scheduled Connection Request

The new approach can also be used in scheduled connection request. User could send a connection request ahead of service time to scheduler by giving service name, service time, source location address, etc. The request will be stored in a reservation system. At the service time, the reservation system sends the connection request to PCC to set up the connection. When a user starts running the application, the connection is already established.

Modifications and Variations

As will be recognized by those skilled in the art, the innovative concepts described in the present application can be modified and varied over a tremendous range of applications, and accordingly the scope of patented subject matter is not limited by any of the specific exemplary teachings given.

Some examples of modifications and variations are briefly mentioned above, but many others are possible.

For example, in one preferred embodiment the service database is an independent entity separate from other entities in the network. However, in other
embodiments, the database can be integrated with either PCE or NE such that the registration information can be distributed to multiple databases with each one maintaining the information of the application and its servers within its domain.

For another example, instead of using an auto-refresh method to update application status, other classes of embodiments can instead implement update on demand. The database maintains the registration information on permanent basis, and only updates the information when requested by servers. This method can avoid the overhead of frequent periodical refresh messages from servers in the network.

For another example, instead of implementing optimal path selection on PCE, this logic can alternatively be implemented on PCC, or even in the user application. This alternative minimizes the modifications required to the PCE architecture as defined by IETF, by distributing the intelligence of optimal path selection to PCC or user applications.

In yet another embodiment, instead of requiring user to supply parameters such as user device bandwidth constraint, PCC will automatically collect such information and supply those parameters to PCE.

In various alternative embodiments, a PCE can use various policies as selection criteria for the path selection. Some examples include: Shortest distance; Available bandwidth or bandwidth allocation between server and its attached node; Available bandwidth or bandwidth allocation between server and user end-to-end; Available processing capacity of the server; Weighted available bandwidth or bandwidth allocation between server and its attached node, and/or end-to-end; and/or combinations of these factors, possibly with other factors.
CLAIMS

1. A method for connecting a user to a service in a network, comprising:

 requesting a service by service name, and not by a unique address specifier;

 accessing a data repository to resolve the service name into a list of multiple addresses;

 resolving the list of multiple addresses into an estimated optimal path; and

 connecting the user to the service accordingly.

2. The method of Claim 1, wherein the data repository is a database system.

3. The method of Claim 1, wherein the service name is a domain name.

4. The method of Claim 1, wherein the address is an IP address.

5. The method of Claim 1, wherein the resolution of name to addresses is accomplished by a PATH COMPUTATION ELEMENT network.

6. The method of Claim 1, wherein a PATH COMPUTATION ELEMENT network computes the optimal path.

7. The method of Claim 6, wherein the optimal path determination is dependent of traffic information including number of current users at ones of the servers at the addresses.

8. The method of Claim 1, wherein the optimal path determination is dependent of at least one of shortest path distance, available bandwidth and bandwidth allocation.

9. A method for optimally accessing application services in a transport network, comprising:
registering at least one service application instance with the transport network, wherein a user can send a request to the transport network for the application service which is specified merely by a name, and not by a full address; and

in a control plane, dynamically routing the requests through the transport network, using performance information for the transport network and information from the registering action to make an optimal determination of a server offering the application service and of a route to the server.

10. The method of Claim 9, wherein the registering action uses at least one of a database system, a Lightweight Directory Access Protocol, a domain name server (DNS) protocol and a X.500 based directory service.

11. The method of Claim 9, wherein the registering information includes service name or ID, server addresses and traffic requirements.

12. The method of Claim 9, wherein the registering information includes service name or ID, server addresses, bandwidth required for uplink and downlink at individual servers, and maximum number of users supported at ones of the server.

13. The method of Claim 12, wherein the traffic information indicates number of current users at ones of the servers.

14. The method of Claim 9, wherein the control plane is built on PATH COMPUTATION ELEMENT network architecture.

15. The method of Claim 9, wherein the optimal server and route determination is dependent of at least one of shortest path distance, available bandwidth and bandwidth allocation.
16. A method for connecting a user to a service in a network, comprising:

monitoring network performance in a transport level network, to obtain dynamic information accessible through a corresponding control plane;

denominating requests for service offered at multi-destination locations, in the transport level network, by name and not by full address; and

in the control plane, resolving optimal routing to one of destinations in dynamic dependence on the dynamic information in the control plane.

17. The method of Claim 16, wherein the network is an MPLS network or a GMPLS network.

18. The method of Claim 16, wherein the control plane is based on PATH COMPUTATION ELEMENT architecture.

19. The method of Claim 16, wherein the dynamic information includes at least one of shortest path distance, on available bandwidth and bandwidth allocation.

20. A network architecture providing connection between a user and a requested application service in a network, comprising:

plural servers wherein an application service installed and in operation;

a database system wherein one of the servers registering and updating the application service and the servers' information;

a PATH COMPUTATION CLIENT which receives the user's request for the application service referenced by name instead of address; and

a PATH COMPUTATION ELEMENT;

wherein the PATH COMPUTATION CLIENT and the PATH COMPUTATION ELEMENT cooperatively retrieve the application service and the servers' information.
from the database for selecting optimally one of the servers in dynamic dependence on
the servers' information and network performance information and connecting the user to
an optimal server.

21. The architecture of Claim 20, wherein the database update is based on at least
one of a directory system, auto-refresh, and events of the servers.

22. The architecture of Claim 20, wherein the registered information includes an
application service name/Id and the servers' information.

23. The architecture of Claim 20, wherein the traffic information includes number of
current users at the servers.

24. The architecture of Claim 20, wherein the optimal selection depends on at least
one of shortest path distances between the user and the servers, available bandwidth and
bandwidth allocation.

25. The architecture of Claim 20, wherein the cooperation of the PATH
COMPUTATION CLIENT and the PATH COMPUTATION ELEMENT further
comprises:

the PATH COMPUTATION CLIENT retrieves the application and the servers' information from the database and sends request to the PATH COMPUTATION ELEMENT with the service name replaced with plural addresses of the servers; and

the PATH COMPUTATION ELEMENT selects optimally one of the servers in
dynamic dependence on the servers' information and network performance information and connecting the user to the optimal server.
26. The architecture of Claim 20, wherein the cooperation between the PATH COMPUTATION CLIENT and the PATH COMPUTATION ELEMENT further comprises:

the PATH COMPUTATION CLIENT forwards request from the user;

the PATH COMPUTATION ELEMENT retrieves the application and the servers' information from the database and computes and selects optimally one of the servers in dynamic dependence on the servers' information and network performance information and connecting the user to the optimal server.

27. The architecture of Claim 20, wherein the cooperation between the PATH COMPUTATION CLIENT and the PATH COMPUTATION ELEMENT further comprises:

the PATH COMPUTATION CLIENT retrieves the application and the servers' information from the database and sends request to the PATH COMPUTATION ELEMENT with the service name replaced with plural addresses of the servers;

the PATH COMPUTATION ELEMENT computes optimally optimal routes to ones of the servers in dynamic dependence on the network performance information and returns the routes to the PATH COMPUTATION CLIENT; and

the PATH COMPUTATION ELEMENT selects optimally one of the servers and route in dynamic dependence on the servers' information and network performance information and connecting the user to the optimal server.
TED Synchronization Mechanism (e.g. Routing Protocol)

TED

PCE

Request/Response

Head end node

Service Request

Signalizing Protocol

Adjacent Node

FIG.6
INTERNATIONAL SEARCH REPORT

International application No

PCT/CN2008/070567

A **CLASSIFICATION OF SUBJECT MATTER**

H04L 12/56 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B **FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

IPC H04L12/-, H04L29/-

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNPAT, CNKI, WPI, EPDOC PAI NAME SERVICE ADDRESS NETWORK OPTIMAL RESOLV+
PCE PATH COMPUT+

C **DOCUMENTS CONSIDERED TO BE RELEVANT**

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP2003273905A (FUJITSU LTD) 26 Sep 2003 (26 09 2003) See the whole document</td>
<td>1-27</td>
</tr>
<tr>
<td>A</td>
<td>WO2005083975A2 (KONINK PHILIPS ELECTRONICS NV) 09 Sep 2005 (09 09 2005) See the whole document</td>
<td>1-27</td>
</tr>
<tr>
<td>A</td>
<td>CN 1777 113A (UNIV BEIJING JIAOTONG [CN]) 24 May 2006 (24 05 2006) See the whole document</td>
<td>1-27</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

See patent family annex

* Special categories of cited documents
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim (S) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search

22 June 2008 (22 06 2008)

Date of mailing of the international search report

10 Jul. 2008 (10.07.2008)

Name and mailing address of the ISA/CN

The State Intellectual Property Office, the PR China
6 Xitucheng Rd , Jimen Bridge, Haidian District, Beijing, China 100088
Facsimile No 86-10-6201945 1

Form PCT/ISA/210 (second sheet) (April 2007)

Authorized officer
WANG Zhiwei

Telephone No (86-10)6241 1285
INTERNATIONAL SEARCH REPORT

Information on patent family members

<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP2003273905A</td>
<td>26. 09. 2003</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR20060123568 A</td>
<td>01. 12. 2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2007526689T</td>
<td>13. 09. 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>INCHENP200603407E</td>
<td>06. 07. 2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1998218 A</td>
<td>11. 07. 2007</td>
</tr>
<tr>
<td>CN1 7771 13A</td>
<td>24. 05. 2006</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2007)