A clamping device (10) that rigidly secures a web camera (170) to a monitor (160). The clamping device (10) includes a body portion (12) and a clamping portion (40). Springs (80, 90) are provided within the device (10) that allow the clamping portion (40) to be slid away from the body portion (12) against the bias of the springs (80, 90). A first flipper (102) is mounted to one side of the body portion (12) and a second flipper (132) is mounted to an opposite side of the body portion (12). The clamping device (10) is positioned on the top edge of the monitor (160) so that a front support portion (62) of the clamping portion (40) is positioned against a front surface (162) of the monitor (160) above the screen and the flippers (102, 132) are positioned against a back panel (166) of the monitor (160). The spring tension between the clamping portion (40) and the flippers (102, 132) rigidly secures the clamping device (10) to the monitor (160).
before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments. For two-letter codes and other abbreviations, refer to the “Guidance Notes on Codes and Abbreviations” appearing at the beginning of each regular issue of the PCT Gazette.
SPRING LOADED CLAMPING MECHANISM

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] This invention relates generally to a device for mounting an object to a computer monitor and, more particularly, to a spring loaded clamping device for mounting a web camera to a computer monitor, where the clamping device includes rotatable flippers having ribs that can be inserted into ventilation slots in a back panel of the monitor.

2. Discussion of the Related Art

[0002] Web cameras are known in the art for transmitting video over the internet. The web camera is sometimes mounted to a monitor associated with a computer from which a user accesses the internet so that an image of the user can be transmitted to other persons who the user may be communicating with over the internet. Effectively securing the web camera to the monitor provides certain design challenges. Known devices for securing a web camera to a monitor have heretofore been unreliable in that the devices easily fall off the monitor or shift out of position in response to the slightest tug on the camera’s connection cable. Therefore, it is desirable to provide a securing device that more reliably secures a web camera to a computer monitor.

SUMMARY OF THE INVENTION

[0003] In accordance with the teachings of the present invention, a clamping device is disclosed that reliably secures a web camera, or other object, to a computer monitor. The clamping device includes a body portion and a clamping portion. Springs are provided within the device that allow the clamping
portion to be moved away from the body portion against the bias of the springs. A first flipper is rotatably mounted to one side of the body portion and a second flipper is rotatably mounted to an opposite side of the body portion. The clamping device is positioned on the top edge of the monitor so that a front support portion of the clamping portion is positioned against a front surface of the monitor above the screen and the flippers are positioned against a back panel of the monitor. The spring tension between the clamping portion and the flippers rigidly secures the clamping device to the monitor.

[0004] Additional features of the present invention will become apparent from the following description and appended claims, taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Figure 1 is a blown-apart perspective view of a clamping device for securing an object to a computer monitor, according to an embodiment of the present invention;

[0006] Figure 2 is a perspective view of the clamping device shown in figure 1;

[0007] Figure 3 is a top view of the clamping device shown in figure 1;

[0008] Figure 4 is a side view of the clamping device shown in figure 1;

[0009] Figure 5 is a bottom view of the clamping device shown in figure 1;

[0010] Figure 6 is a front view of the clamping device shown in figure 1;

[0011] Figure 7 is a back view of the clamping device shown in figure 1;

[0012] Figure 8 is a front view of a computer monitor and a web camera mounted to the monitor with the clamping device of the invention; and

[0013] Figure 9 is a back perspective view of the computer monitor and the web camera mounted to the monitor with the clamping device of the invention.
DETAILED DESCRIPTION OF THE EMBODIMENTS

[0014] The following discussion of the embodiments of the invention directed to a clamping device for securing an object to a computer monitor is merely exemplary in nature, and is in no way intended to limit the invention or its applications or uses. Particularly, the discussion below will describe a clamping device for effectively clamping a web camera to a computer monitor. However, the clamping device of the invention has application for clamping other objects to a computer monitor.

[0015] Figure 1 is a blown-apart perspective view, figure 2 is a perspective view, figure 3 is a top view, figure 4 is a side view, figure 5 is a bottom view, figure 6 is a front view and figure 7 is a back view of a clamping device 10 for mounting an object, such as a web camera, to a computer monitor, according to an embodiment of the present invention. As will be appreciated by those skilled in the art, the clamping device 10 of the invention may have application for clamping any suitable object to a computer monitor. In one embodiment, the clamping device 10 is an assembly of plastic molded parts that are secured together in a snap fit arrangement. However, it is within the scope of the present invention that the clamping device 10 includes any suitable materials assembled in any suitable manner, consistent with the claims.

[0016] The clamping device 10 includes a body portion 12 having a top portion 14 and a bottom portion 16 defining a cavity 26 within the body portion 12. The top portion 14 and the bottom portion 16 also define a cylindrical channel 30 that accepts a mounting portion of a web camera, or other object, as will be discussed in more detail below. The top portion 14 includes pins 18 and 20 extending into the cavity 26 that are positioned within corresponding openings 22 and 24 in the bottom portion 16. A bolt 28 is threaded through a bottom surface 32 of the bottom portion 16 to secure the top portion 14 to the bottom portion 16.

[0017] The clamping device 10 also includes a clamping portion 40 having a top portion 42 and a bottom portion 44 defining a cavity 46 therein. The top portion 42 includes pins 48 and 50 extending into the cavity 46. The bottom
portion 44 includes a rectangular extended member 62 to which is mounted a resilient member 52 by adhesive or the like. The resilient member 52 includes parallel ribs 34 that provide a gripping force for purposes that will become apparent from the discussion herein. The resilient member 52 can be made of any suitable material, such as rubber.

[0018] The top portion 42 includes a first leg 54 having an end plate 56 and a second leg 58 having an end plate 60. Prior to the top portion 14 being secured to the bottom portion 16, the end of the leg 54 including the plate 56 is positioned within the cavity 26 where the leg 54 extends through a recess 66. Likewise, an end of the leg 58 including the plate 60 is positioned in the cavity 26 where the leg 58 extends through a recess 68. A back side of the plate 56 is positioned against an edge stop 70 within the cavity 26 and a back side of the plate 60 is positioned against an edge stop 72 within the cavity 26. In this manner, the clamping portion 40 is slidable relative to the body portion 12, where the legs 54 and 58 move into and out of the cavity 26 through the recesses 66 and 68 and are prevented from being completely removed from the body portion 12 by the edge stops 70 and 72.

[0019] A spring 80 is positioned within a central bore 82 of the leg 54. A first hook end 84 of the spring 80 is hooked to the pin 48 and a second hook end 86 of the spring 80 is hooked to the pin 18. Likewise, a spring 90 is positioned within a central bore 92 of the leg 58. A first hook end (not shown) of the spring 90 is hooked to the pin 50 and a second hook end 94 of the spring 90 is hooked to the pin 20. Therefore, the clamping portion 40 is slidable away from the body portion 12 against the bias of the springs 80 and 90.

[0020] A shaft 100 extends from one side of the bottom portion 16. A flipper 102 is rotatably mounted to the shaft 100. The flipper 102 includes a lever portion 104 and a cylindrical base portion 106. The shaft 100 extends into an opening 108 in the base portion 106, and a bolt 114 secures the flipper 102 to the shaft 100. A torsional spring 110 is positioned on the shaft 100 within the base portion 106. One end of the spring 110 is positioned within an opening (not shown) in the bottom portion 16 and an opposite end of the spring 110 is positioned within an opening (not shown) within the base portion 106. A pin (not
shown) extending from the base portion 106 is positioned within a specially configured opening 112 proximate a base of the shaft 100. When the flipper 102 is rotated on the shaft 100, the pin and the opening 112 provide a limit stop to limit the range of rotation of the flipper 102, such as 90° of rotation. A flipper lower portion 116 is secured to the lever portion 104 and the base portion 106 in a snap fit engagement so that a cylindrical member 120 is positioned within an end of the opening 108. A rubber pad member 118 is secured to the lower portion 116 by adhesive or the like. The rubber pad member 118 includes three parallel ribs 122 that will be inserted within ventilation slots of the computer monitor, as will be discussed in more detail below.

[0021] A shaft 130 extends from an opposite side of the bottom portion 16 from the shaft 110, and a flipper 132 is rotatably mounted to the shaft 130. The flipper 132 includes a lever portion 134 and a cylindrical base portion 136. The shaft 130 extends into an opening 138 of the base portion 136, and a bolt 140 secures the flipper 132 to the shaft 130. A torsional spring 142 is positioned on the shaft 130 to provide spring tension for the rotation of the flipper 132, as discussed above for the flipper 102. A pin 148 extending from the base portion 136 is positioned within a specially configured opening in the bottom portion 16 to provide a limit stop, as discussed above for the flipper 102. A flipper lower portion 144 is snap fit to the lever portion 134 and the base portion 136. A rubber pad member 146 is secured to the lower portion 144, where the pad member 144 includes ribs 150.

[0022] Figure 8 is a front view of an LCD computer monitor 160 including a front panel 162 and an LCD screen 164. Figure 9 is a back perspective view of the monitor 160 including a back panel 166. A web camera 170 is mounted to the monitor 160 with the clamping device 10. Particularly, a resilient mounting sleeve 172 is positioned over a mounting arm 174 connected to the web camera 170. The mounting sleeve 172 with the mounting arm 174 therein is then inserted into the cylindrical opening 30 in a friction fit so that the web camera 170 is rigidly secured to the clamping device 10. A cable of the web camera 170 extends through the arm 174.

[0023] Prior to the web camera 170 being secured to the clamping
device 10, a user will grasp the clamping portion 40 and the body portion 12 to slide the clamping portion 40 away from the body portion 20 against the bias of the springs 80 and 90 and position the clamping device 10 on a top of the monitor 160. The extended member 62 is positioned against the front panel 162, where the ribs 34 provide a friction force to prevent the clamping device from sliding. The flippers 102 and 132 are positioned against a curved portion of the back panel 166 where the spring tension of the torsional springs 110 and 142 push the flippers 102 and 132, respectively, against the curved portion. The ribs 122 and 150 are inserted in parallel ventilation slots 180 in the back panel 166 so that a front end of the ribs 122 and 150 is positioned against a top end of the ventilation slots 180. In this configuration, the springs 80 and 90 provide a clamping force between the extended member 62 positioned against the front panel 162 and the front end of the ribs 122 and 150 positioned against the ends of the ventilation slots 180 to hold the clamping device 10 to the monitor 160. The spring force provided by the torsional springs 110 and 142 is not significant enough to interfere with the clamping force provided by the springs 80 and 90.

[0024] As discussed above, the clamping device 10 has particular application for clamping the web camera 170 to the LCD monitor 160 including the ventilation slots 180. However, the clamping device 10 also has application for clamping the web camera 170, or other object, to other types of monitors, including square monitors. For these types of monitors, the flippers 102 and 132 are rotated against the bias of the springs 110 and 132, respectively, until the flippers 102 and 132 are substantially aligned in an up and down manner relative to the bottom portion 16. In this position, the clamping force between the extended member 62 and the flippers 102 and 132 still provides the mechanism for securing the clamping device 10 to the computer monitor.

[0025] The foregoing discussion discloses and describes merely exemplary embodiments of the present invention. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims, that various changes, modifications or variations can be made therein without departing from the spirit and scope of the invention as defined in the following claims.
What is claimed is:

1. A clamping device (10) for securing a web camera (170) to a computer monitor (160), said device (10) comprising:
 a body portion (12);
 a clamping portion (40) slidably mounted to the body portion (12);
 at least one clamping spring (80, 90) secured to the body portion (12) and the clamping portion (40) for providing a spring bias for the clamping portion (40); and
 at least one flipper (102, 132) rotatably mounted to the body portion (12), said flipper (102, 132) including a flipper spring (110, 142) for providing a spring bias to the flipper (102, 132) where the at least one clamping spring (80, 90) provides a clamping force between the clamping portion (40) and the at least one flipper (102, 132) to clamp the clamping device (10) to the monitor (160).

2. The clamping device (10) according to claim 1 wherein the clamping portion (40) includes a first leg (54) and a second leg (58) each having a central bore (82, 92), said at least one clamping spring (80, 90) being a first clamping spring (80) and a second clamping spring (90) where the first clamping spring (80) is positioned within the bore (82) of the first leg (54) and includes a first end (84) secured to the clamping portion (40) and a second end (86) secured to the body portion (12), and the second clamping spring (90) is positioned within the bore (92) of the second leg (58) and includes a first end secured to the clamping portion (40) and a second end (94) secured to the body portion (12).

3. The clamping device (10) according to claim 1 wherein the at least one flipper (102, 132) is a first flipper (102) mounted to one side of the body portion (12) and a second flipper (132) mounted to an opposite side of the body portion (12), where both the first flipper (102) and the second flipper (132) include a flipper spring (110, 142) for providing a spring bias against the rotation of the flipper (102, 132).
4. The clamping device (10) according to claim 1 wherein the at least one flipper (102, 132) includes a plurality of parallel ribs (122, 150), said parallel ribs (122, 150) being configured to be positioned within parallel ventilation slots (180) in the computer monitor (160).

5. The clamping device (10) according to claim 4 wherein the clamping device (10) is secured to the computer monitor (160) by a clamping force between the clamping portion (40) and a front end of the ribs (122, 150) positioned against an end of the ventilation slots (180).

6. The clamping device (10) according to claim 1 wherein the at least one flipper (102, 132) includes a resilient pad (118, 146) to be positioned against the monitor (160).

7. The clamping device (10) according to claim 1 wherein the clamping portion (40) includes a support portion (62) to be positioned against a front panel (162) of the monitor (160).

8. The clamping device (10) according to claim 1 wherein the body portion (12) includes a shaft (100, 130), said at least one flipper spring (110, 140) being wound around the shaft (100, 130) and said at least one flipper (102, 132) being rotatably mounted to the shaft (100, 130).

9. The clamping device (10) according to claim 8 wherein the body portion (12) includes a limit stop (112) for limiting the rotation of the at least one flipper (100, 132) on the shaft (100, 130).

10. The clamping device (10) according to claim 1 wherein the monitor (160) is an LCD monitor (160).
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
INV. F16B2/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
F16B F16M A47B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal , IBM-TDB

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6 679 463 B1 (CHEN ZHEN-BANG [TW]) 20 January 2004 (2004-01-20) column 2, line 49 - column 3, line 43; figures 3a-6b</td>
<td>1-3, 7, 10</td>
</tr>
</tbody>
</table>

D

Further documents are listed in the continuation of Box C

See patent family annex

* Special categories of cited documents

A document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents such combination being obvious to a person skilled in the art

* document member of the same patent family

Date of the actual completion of the international search

15 November 2006

Date of mailing of the international search report

22/11/2006

Name and mailing address of the ISA

European Patent Office, P B 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-20 20, Fax (+31-70) 340-30 16

Authorized officer

Martin, Christophe
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US 6738094 B1</td>
<td>18-05-2004</td>
</tr>
<tr>
<td>US 6679463 B1</td>
<td>20-01-2004</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>