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Description

FIELD OF THE INVENTION

[0001] The present disclosure relates generally to audio signal processing.

BACKGROUND

[0002] Digital audio data compression has become an important technique in the audio industry. New formats have
been introduced that allow high quality audio reproduction without the need for the high data bandwidth that would be
required using traditional techniques. AC-3 and more recently Enhanced AC-3 (E-AC-3) coding technology has been
adopted by the Advanced Television Systems Committee (ATSC) as the audio service standard for High Definition
Television (HDTV) in the United States. E-AC-3 has also found applications in consumer media (digital video disc) and
direct satellite broadcast. E-AC-3 is an example of perceptual coding, and provides for coding multiple channels of digital
audio to a bitstream of coded audio and metadata.
[0003] There is interest in efficiently decoding a coded audio bit stream. For example, the battery life of portable devices
is mainly limited by the energy consumption of its main processing unit. The energy consumption of a processing unit
is closely related to the computational complexity of its tasks. Hence, reducing the average computational complexity
of a portable audio processing system should extend the battery life of such a system.
[0004] The term x86 is commonly understood by those having skill in the art to refer to a family of processor instruction
set architectures whose origins trace back to the Intel 8086 processor. As result of the ubiquity of the x86 instructions
set architecture, there also is interest in efficiently decoding a coded audio bit stream on a processor or processing
system that has an x86 instruction set architecture. Many decoder implementations are general in nature, while others
are specifically designed for embedded processors. New processors, such as AMD’s Geode and the new Intel Atom
are examples of 32-bit and 64-bit designs that use the x86 instruction set and that are being used in small portable devices.

SUMMARY

[0005] An aspect of the application relates to a method of operating an audio decoder according to claim 1.
[0006] A further aspect of the application relates to a computer-readable storage medium according to claim 8.
[0007] A further aspect of the application relates to an apparatus for processing audio data according to claim 9.
[0008] A further aspect of the application relates to a system configured to decode audio data according to claim 11.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009]

FIG. 1 shows pseudocode 100 for instructions that, when executed, carry out a typical AC-3 decoding process.
FIGS. 2A-2D show, in simplified block diagram form, some different decoder configurations that can advantageously
use one or more common modules.
FIG. 3 shows a pseudocode and a simplified block diagram of one embodiment of a front-end decode module.
FIG. 4 shows a simplified data flow diagram for the operation of one embodiment of a front-end decode module.
FIG. 5A shows pseudocode and a simplified block diagram of one embodiment of a back-end decode module.
FIG. 5B shows pseudocode and a simplified block diagram of another embodiment of a back-end decode module.
FIG. 6 shows a simplified data flow diagram for the operation of one embodiment of a back-end decode module.
FIG. 7 shows a simplified data flow diagram for the operation of another embodiment of a back-end decode module.
FIG. 8 shows a flowchart of one embodiment of processing for a back-end decode module such as the one shown
in FIG. 7.
FIG. 9 shows an example of processing five blocks that includes downmixing from 5.1 to 2.0 using an embodiment
of the present invention for the case of a non-overlap transform that includes downmixing from 5.1 to 2.0.
FIG. 10 shows another example of processing five blocks that includes downmixing from 5.1 to 2.0 using an em-
bodiment of the present invention for the case of an overlapping transform.
FIG. 11 shows a simplified pseudocode for one embodiment of time domain downmixing.
FIG. 12 shows a simplified block diagram of one embodiment of a processing system that includes at least one
processor and that can carry out decoding, including one or more features of the present invention.
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DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview

[0010] Embodiments of the present invention include a method, an apparatus, and logic encoded in one or more
computer-readable tangible medium to carry out actions.
[0011] Particular embodiments include a method of operating an audio decoder to decode audio data that includes
encoded blocks of N.n channels of audio data to form decoded audio data that includes M.m channels of decoded audio,
M≥1, n being the number of low frequency effects channels in the encoded audio data, and m being the number of low
frequency effects channels in the decoded audio data. The method comprises accepting the audio data that includes
blocks of N.n channels of encoded audio data encoded by an encoding method that includes transforming N.n channels
of digital audio data, and forming and packing frequency domain exponent and mantissa data; and decoding the accepted
audio data. The decoding includes: unpacking and decoding the frequency domain exponent and mantissa data; deter-
mining transform coefficients from the unpacked and decoded frequency domain exponent and mantissa data; inverse
transforming the frequency domain data and applying further processing to determine sampled audio data; and time
domain downmixing at least some blocks of the determined sampled audio data according to downmixing data for the
case M<N. At least one of A1, B1, and C1 is true:

A1 being that the decoding includes determining block by block whether to apply frequency domain downmixing or
time domain downmixing, and if it is determined for a particular block to apply frequency domain downmixing,
applying frequency domain downmixing for the particular block,

B1 being that the time domain downmixing includes testing whether the downmixing data are changed from previously
used downmixing data, and, if changed, applying cross-fading to determine cross-faded downmixing data and time
domain downmixing according to the cross-faded downmixing data, and if unchanged, directly time domain down-
mixing according to the downmixing data, and

C1 being that the method includes identifying one or more non-contributing channels of the N.n input channels, a
non-contributing channel being a channel that does not contribute to the M.m channels, and that the method does
not carry out inverse transforming the frequency domain data and the applying further processing on the identified
one or more non-contributing channels.

[0012] Particular embodiments of the invention include a computer-readable storage medium storing decoding in-
structions that when executed by one or more processors of a processing system cause the processing system to carry
out decoding audio data that includes encoded blocks of N.n channels of audio data to form decoded audio data that
includes M.m channels of decoded audio, M≥1, n being the number of low frequency effects channels in the encoded
audio data, and m being the number of low frequency effects channels in the decoded audio data. The decoding instruc-
tions include: instructions that when executed cause accepting the audio data that includes blocks of N.n channels of
encoded audio data encoded by an encoding method, the encoding method including transforming N.n channels of
digital audio data, and forming and packing frequency domain exponent and mantissa data; and instructions that when
executed cause decoding the accepted audio data. The instructions that when executed cause decoding include: in-
structions that when executed cause unpacking and decoding the frequency domain exponent and mantissa data;
instructions that when executed cause determining transform coefficients from the unpacked and decoded frequency
domain exponent and mantissa data; instructions that when executed cause inverse transforming the frequency domain
data and applying further processing to determine sampled audio data; and instructions that when executed cause
ascertaining if M<N and instructions that when executed cause time domain downmixing at least some blocks of the
determined sampled audio data according to downmixing data if M<N. At least one of A2, B2, and C2 is true:

A2 being that the instructions that when executed cause decoding include instructions that when executed cause
determining block by block whether to apply frequency domain downmixing or time domain downmixing, and in-
structions that when executed cause applying frequency domain downmixing if it is determined for a particular block
to apply frequency domain downmixing,

B2 being that the time domain downmixing includes testing whether the downmixing data are changed from previously
used downmixing data, and, if changed, applying cross-fading to determine cross-faded downmixing data and time
domain downmixing according to the cross-faded downmixing data, and if unchanged, directly time domain down-
mixing according to the downmixing data, and
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C2 being that the instructions that when executed cause decoding include identifying one or more non-contributing
channels of the N.n input channels, a non-contributing channel being a channel that does not contribute to the M.m
channels, and that the method does not carry out inverse transforming the frequency domain data and the applying
further processing on the one or more identified non-contributing channels.

[0013] Particular embodiments include an apparatus for processing audio data to decode the audio data that includes
encoded blocks of N.n channels of audio data to form decoded audio data that includes M.m channels of decoded audio,
M≥1, n being the number of low frequency effects channels in the encoded audio data, and m being the number of low
frequency effects channels in the decoded audio data. The apparatus comprises: means for accepting the audio data
that includes blocks of N.n channels of encoded audio data encoded by an encoding method, the encoding method
including transforming N.n channels of digital audio data, and forming and packing frequency domain exponent and
mantissa data; and means for decoding the accepted audio data. The means for decoding includes: means for unpacking
and decoding the frequency domain exponent and mantissa data; means for determining transform coefficients from
the unpacked and decoded frequency domain exponent and mantissa data; means for inverse transforming the frequency
domain data and for applying further processing to determine sampled audio data; and means for time domain downmixing
at least some blocks of the determined sampled audio data according to downmixing data for the case M<N. At least
one of A3, B3, and C3 is true:

A3 being that the means for decoding includes means for determining block by block whether to apply frequency
domain downmixing or time domain downmixing, and means for applying frequency domain downmixing, the means
for applying frequency domain downmixing applying frequency domain downmixing for the particular block if it is
determined for a particular block to apply frequency domain downmixing,

B3 being that the means for time domain downmixing carries out testing whether the downmixing data are changed
from previously used downmixing data, and, if changed, applies cross-fading to determine cross-faded downmixing
data and time domain downmixing according to the cross-faded downmixing data, and if unchanged, directly applies
time domain downmixing according to the downmixing data, and

C3 being that the apparatus includes means for identifying one or more non-contributing channels of the N.n input
channels, a non-contributing channel being a channel that does not contribute to the M.m channels, and that the
apparatus does not carry out inverse transforming the frequency domain data and the applying further processing
on the one or more identified non-contributing channels.

[0014] Particular embodiments include an apparatus for processing audio data that includes N.n channels of encoded
audio data to form decoded audio data that includes M.m channels of decoded audio, M≥1, n=0 or 1 being the number
of low frequency effects channels in the encoded audio data, and m=0 or 1 being the number of low frequency effects
channels in the decoded audio data. The apparatus comprises: means for accepting the audio data that includes N.n
channels of encoded audio data encoded by an encoding method, the encoding method comprising transforming N.n
channels of digital audio data in a manner such that inverse transforming and further processing can recover time domain
samples without aliasing errors, forming and packing frequency domain exponent and mantissa data, and forming and
packing metadata related to the frequency domain exponent and mantissa data, the metadata optionally including
metadata related to transient pre-noise processing; and means for decoding the accepted audio data. The means for
decoding comprises: one or more means for front-end decoding and one or more means for back-end decoding. The
means for front-end decoding includes means for unpacking the metadata, for unpacking and for decoding the frequency
domain exponent and mantissa data. The means for back-end decoding includes means for determining transform
coefficients from the unpacked and decoded frequency domain exponent and mantissa data; for inverse transforming
the frequency domain data; for applying windowing and overlap-add operations to determine sampled audio data; for
applying any required transient pre-noise processing decoding according to the metadata related to transient pre-noise
processing; and for time domain downmixing according to downmixing data, the downmixing configured to time domain
downmix at least some blocks of data according to downmixing data in the case M<N. At least one of A4, B4, and 4C is true:

A4 being that the means for back end decoding include means for determining block by block whether to apply
frequency domain downmixing or time domain downmixing, and means for applying frequency domain downmixing,
the means for applying frequency domain downmixing applying frequency domain downmixing for the particular
block if it is determined for a particular block to apply frequency domain downmixing,

B4 being that the means for time domain downmixing carries out testing whether the downmixing data are changed
from previously used downmixing data, and, if changed, applies cross-fading to determine cross-faded downmixing
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data and time domain downmixing according to the cross-faded downmixing data, and if unchanged, directly applies
time domain downmixing according to the downmixing data, and

C4 being that the apparatus includes means for identifying one or more non-contributing channels of the N.n input
channels, a non-contributing channel being a channel that does not contribute to the M.m channels, and that the
means for back end decoding does not carry out inverse transforming the frequency domain data and the applying
further processing on the one or more identified non-contributing channels.

[0015] Particular embodiments include a system to decode audio data that includes N.n channels of encoded audio
data to form decoded audio data that includes M.m channels of decoded audio, M≥1, n being the number of low frequency
effects channels in the encoded audio data, and m being the number of low frequency effects channels in the decoded
audio data. The system comprises: one or more processors; and a storage subsystem coupled to the one or more
processors. The system is to accept the audio data that includes blocks of N.n channels of encoded audio data encoded
by an encoding method, the encoding method including transforming N.n channels of digital audio data, and forming
and packing frequency domain exponent and mantissa data; and further to decode the accepted audio data, including
to: unpack and decode the frequency domain exponent and mantissa data; determine transform coefficients from the
unpacked and decoded frequency domain exponent and mantissa data; inverse transform the frequency domain data
and apply further processing to determine sampled audio data; and time domain downmix at least some blocks of the
determined sampled audio data according to downmixing data for the case M<N. At least one of A5, B5, and C5 is true:

A5 being that the decoding includes determining block by block whether to apply frequency domain downmixing or
time domain downmixing, and if it is determined for a particular block to apply frequency domain downmixing,
applying frequency domain downmixing for the particular block,

B5 being that the time domain downmixing includes testing whether the downmixing data are changed from previously
used downmixing data, and, if changed, applying cross-fading to determine cross-faded downmixing data and time
domain downmixing according to the cross-faded downmixing data, and if unchanged, directly time domain down-
mixing according to the downmixing data, and

C5 being that the method includes identifying one or more non-contributing channels of the N.n input channels, a
non-contributing channel being a channel that does not contribute to the M.m channels, and that the method does
not carry out inverse transforming the frequency domain data and the applying further processing on the one or
more identified non-contributing channels.

[0016] In some versions of the system embodiment, the accepted audio data are in the form of a bitstream of frames
of coded data, and the storage subsystem is configured with instructions that when executed by one or more of the
processors of the processing system, cause decoding the accepted audio data.
[0017] Some versions of the system embodiment include one or more subsystems that are networked via a network
link, each subsystem including at least one processor.
[0018] In some embodiments in which A1, A2, A3, A4 or A5 is true, the determining whether to apply frequency domain
downmixing or time domain downmixing includes determining if there is any transient pre-noise processing, and deter-
mining if any of the N channels have a different block type such that frequency domain downmixing is applied only for
a block that has the same block type in the N channels, no transient pre-noise processing, and M<N.
[0019] In some embodiments in which A1, A2, A3, A4 or A5 is true, and wherein the transforming in the encoding
method uses an overlapped-transform and the further processing includes applying windowing and overlap-add oper-
ations to determine sampled audio data, (i) applying frequency domain downmixing for the particular block includes
determining if downmixing for the previous block was by time domain downmixing and, if the downmixing for the previous
block was by time domain downmixing, applying time domain downmixing (or downmixing in a pseudo-time domain) to
the data of the previous block that is to be overlapped with the decoded data of the particular block, and (ii) applying
time domain downmixing for a particular block includes determining if downmixing for the previous block was by frequency
domain downmixing, and if the downmixing for the previous block was by frequency domain downmixing, processing
the particular block differently than if the downmixing for the previous block was not by frequency domain downmixing.
[0020] In some embodiments in which B1, B2, B3, B4 or B5 is true, at least one x86 processor is used whose instruction
set includes streaming single instruction multiple data extensions (SSE) comprising vector instructions, and the time
domain downmixing includes running vector instructions on at least one of the one or more x86 processors.
[0021] In some embodiments in which C1, C2, C3, C4 or C5 is true, n=1 and m=0, such that inverse transforming and
applying further processing are not carried out on the low frequency effect channel. Furthermore, in some embodiments
in which C is true, the audio data that includes encoded blocks includes information that defines the downmixing, and
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wherein the identifying one or more non-contributing channels uses the information that defines the downmixing. Fur-
thermore, in some embodiments in which C is true, the identifying one or more non-contributing channels further includes
identifying whether one or more channels have an insignificant amount of content relative to one or more other channels,
wherein a channel has an insignificant amount of content relative to another channel if its energy or absolute level is at
least 15 dB below that of the other channel. For some cases, a channel has an insignificant amount of content relative
to another channel if its energy or absolute level is at least 18 dB below that of the other channel, while for other
applications, a channel has an insignificant amount of content relative to another channel if its energy or absolute level
is at least 25 dB below that of the other channel.
[0022] In some embodiments the encoded audio data are encoded according to one of the set of standards consisting
of the AC-3 standard, the E-AC-3 standard, a standard backwards compatible with the E-AC-3 standard, the MPEG-2
AAC standard, and the HE-AAC standard.
[0023] In some embodiments of the invention, the transforming in the encoding method uses an overlapped-transform,
and the further processing includes applying windowing and overlap-add operations to determine sampled audio data.
[0024] In some embodiments of the invention, the encoding method includes forming and packing metadata related
to the frequency domain exponent and mantissa data, the metadata optionally including metadata related to transient
pre-noise processing and to downmixing.
[0025] Particular embodiments may provide all, some, or none of these aspects, features, or advantages. Particular
embodiments may provide one or more other aspects, features, or advantages, one or more of which may be readily
apparent to a person skilled in the art from the figures, descriptions, and claims herein.

Decoding an encoded stream

[0026] Embodiments of the present invention are described for decoding audio that has been coded according to the
Extended AC-3 (E-AC-3) standard to a coded bitstream. The E-AC-3 and the earlier AC-3 standards are described in
detail in Advanced Television Systems Committee, Inc., (ATSC), "Digital Audio Compression Standard (AC-3, E-AC-
3)," Revision B, Document A/52B, 14 June 2005, retrieved 1 December 2009 on the World Wide Web of the Internet at
www^dot^atsc^dot^org/standards/a 52b^dot^pdf, (where ^dot^ denoted the period (".") in the actual Web address). The
invention, however, is not limited to decoding a bitstream encoded in E-AC-3, and may be applied to a decoder and for
decoding a bitstream encoded according to another coding method, and to methods of such decoding, apparatuses to
decode, systems that carry out such decoding, to software that when executed cause one or more processors to carry
out such decoding, and/or to tangible storage media on which such software is stored. For example, embodiments of
the present invention are also applicable to decoding audio that has been coded according to the MPEG-2 AAC (ISO/IEC
13818-7) and MPEG-4 Audio (ISO/IEC 14496-3) standards. The MPEG-4 Audio standard includes both High Efficiency
AAC version 1 (HE-AAC v1) and High Efficiency AAC version 2 (HE-AAC v2) coding, referred to collectively as HE-AAC
herein.
[0027] AC-3 and E-AC-3 are also known as DOLBY ® DIGITAL and DOLBY ® DIGITAL PLUS. A version of HE-AAC
incorporating some additional, compatible improvements is also known as DOLBY ® PULSE. These are trademarks of
Dolby Laboratories Licensing Corporation, the assignee of the present invention, and may be registered in one or more
jurisdictions. E-AC-3 is compatible with AC-3 and includes additional functionality.

The x86 architecture

[0028] The term x86 is commonly understood by those having skill in the art to refer to a family of processor instruction
set architectures whose origins trace back to the Intel 8086 processor. The architecture has been implemented in
processors from companies such as Intel, Cyrix, AMD, VIA, and many others. In general, the term is understood to imply
a binary compatibility with the 32-bit instruction set of the Intel 80386 processor. Today (early 2010), the x86 architecture
is ubiquitous among desktop and notebook computers, as well as a growing majority among servers and workstations.
A large amount of software supports the platform, including operating systems such as MS-DOS, Windows, Linux, BSD,
Solaris, and Mac OS X.
[0029] As used herein, the term x86 means an x86 processor instruction set architecture that also supports a single
instruction multiple data (SIMD) instruction set extension (SSE). SSE is a single instruction multiple data (SIMD) instruction
set extension to the original x86 architecture introduced in 1999 in Intel’s Pentium III series processors, and now common
in x86 architectures made by many vendors.

AC-3 and E-AC-3 bitstreams

[0030] An AC-3 bitstream of a multi-channel audio signal is composed of frames, representing a constant time interval
of 1536 pulse code modulated (PCM) samples of the audio signal across all coded channels. Up to five main channels
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and optionally a low frequency effects (LFE) channel denoted ".1" are provided for, that is, up to 5.1 channels of audio
are provided for. Each frame has a fixed size, which depends only on sample rate and coded data rate.
[0031] Briefly, AC-3 coding includes using an overlapped transform-the modified discrete cosine transform (MDCT)
with a Kaiser Bessel derived (KBD) window with 50% overlap-to convert time data to frequency data. The frequency
data are perceptually coded to compress the data to form a compressed bitstream of frames that each includes coded
audio data and metadata. Each AC-3 frame is an independent entity, sharing no data with previous frames other than
the transform overlap inherent in the MDCT used to convert time data to frequency data.
[0032] At the beginning of each AC-3 frame are the SI (Sync Information) and BSI (Bit Stream Information) fields. The
SI and BSI fields describe the bitstream configuration, including sample rate, data rate, number of coded channels, and
several other systems-level elements. There are also two CRC (cyclic redundancy code) words per frame, one at the
beginning and one at the end, that provide a means of error detection.
[0033] Within each frame are six audio blocks, each representing 256 PCM samples per coded channel of audio data.
The audio block contains the block switch flags, coupling coordinates, exponents, bit allocation parameters, and man-
tissas. Data sharing is allowed within a frame, such that information present in Block 0 may be reused in subsequent blocks.
[0034] An optional aux data field is located at the end of the frame. This field allows system designers to embed private
control or status information into the AC-3 bitstream for system-wide transmission.
[0035] E-AC-3 preserves the AC-3 frame structure of six 256-coefficient transforms, while also allowing for shorter
frames composed of one, two, and three 256-coefficient transform blocks. This enables the transport of audio at data
rates greater than 640 kbps. Each E-AC-3 frame includes metadata and audio data.
[0036] E-AC-3 allows for a significantly larger number of channels than AC-3’s 5.1, in particular, E-AC-3 allows for the
carriage of 6.1 and 7.1 audio common today, and for the carriage of at least 13.1 channels to support, for example,
future multichannel audio sound tracks. The additional channels beyond 5.1 are obtained by associating the main audio
program bitstream with up to eight additional dependent substreams, all of which are multiplexed into one E-AC-3
bitstream. This allows the main audio program to convey the 5.1-channel format of AC-3, while the additional channel
capacity comes from the dependent bitstreams. This means that a 5.1-channel version and the various conventional
downmixes are always available and that matrix subtraction-induced coding artifacts are eliminated by the use of a
channel substitution process.
[0037] Multiple program support is also available through the ability to carry seven more independent audio streams,
each with possible associated dependent substreams, to increase the channel carriage of each program beyond 5.1
channels.
[0038] AC-3 uses a relatively short transform and simple scalar quantization to perceptually code audio material. E-
AC-3, while compatible with AC-3, provides improved spectral resolution, improved quantization, and improved coding.
With E-AC-3, coding efficiency has been increased from that of AC-3 to allow for the beneficial use of lower data rates.
This is accomplished using an improved filterbank to convert time data to frequency domain data, improved quantization,
enhanced channel coupling, spectral extension, and a technique called transient pre-noise processing (TPNP).
[0039] In addition to the overlapped transform MDCT to convert time data to frequency data, E-AC-3 uses an adaptive
hybrid transform (AHT) for stationary audio signals. The AHT includes the MDCT with the overlapping Kaiser Bessel
derived (KBD) window, followed, for stationary signals, by a secondary block transform in the form of a non-windowed,
non-overlapped Type II discrete cosine transform (DCT). The AHT thus adds a second stage DCT after the existing AC-
3 MDCT/KBD filterbank when audio with stationary characteristics is present to convert the six 256-coefficient transform
blocks into a single 1536-coefficient hybrid transform block with increased frequency resolution. This increased frequency
resolution is combined with 6-dimensional vector quantization (VQ) and gain adaptive quantization (GAQ) to improve
the coding efficiency for some signals, e.g., "hard to code" signals. VQ is used to efficiently code frequency bands
requiring lower accuracies, while GAQ provides greater efficiency when higher accuracy quantization is required.
[0040] Improved coding efficiency is also obtained through the use of channel coupling with phase preservation. This
method expands on AC-3’s channel coupling method of using a high frequency mono composite channel which recon-
stitutes the high-frequency portion of each channel on decoding. The addition of phase information and encoder-controlled
processing of spectral amplitude information sent in the bitstream improves the fidelity of this process so that the mono
composite channel can be extended to lower frequencies than was previously possible. This decreases the effective
bandwidth encoded, and thus increases the coding efficiency.
[0041] E-AC-3 also includes spectral extension. Spectral extension includes replacing upper frequency transform
coefficients with lower frequency spectral segments translated up in frequency. The spectral characteristics of the trans-
lated segments are matched to the original through spectral modulation of the transform coefficients, and also through
blending of shaped noise components with the translated lower frequency spectral segments.
[0042] E-AC-3 includes a low frequency effects (LFE) channel. This is an optional single channel of limited (<120 Hz)
bandwidth, which is intended to be reproduced at a level +10 dB with respect to the full bandwidth channels. The optional
LFE channel allows high sound pressure levels to be provided for low frequency sounds. Other coding standards, e.g.,
AC-3 and HE-AAC also include an optional LFE channel.
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[0043] An additional technique to improve audio quality at low data rates is the use of transient pre-noise processing,
described further below.

AC-3 decoding

[0044] In typical AC-3 decoder implementations, in order to keep memory and decoder latency requirements as small
as possible, each AC-3 frame is decoded in a series of nested loops.
[0045] A first step establishes frame alignment. This involves finding the AC-3 synchronization word, and then con-
firming that the CRC error detection words indicate no errors. Once frame synchronization is found, the BSI data are
unpacked to determine important frame information such as the number of coded channels. One of the channels may
be an LFE channel. The number of coded channels is denoted N.n herein, where n is the number of LFE channels, and
N is the number of main channels. In currently used coding standards, n=0 or 1. In the future, there may be cases where n>1
[0046] The next step in decoding is to unpack each of the six audio blocks. In order to minimize the memory requirements
of the output pulse code modulated data (PCM) buffers, the audio blocks are unpacked one-at-a-time. At the end of
each block period the PCM results are, in many implementations, copied to output buffers, which for real-time operation
in a hardware decoder typically are double- or circularly buffered for direct interrupt access by a digital-to-analog converter
(DAC).
[0047] The AC-3 decoder audio block processing may be divided into two distinct stages, referred to here as input
and output processing. Input processing includes all bitstream unpacking and coded channel manipulation. Output
processing refers primarily to the windowing and overlap-add stages of the inverse MDCT transform.
[0048] This distinction is made because the number of main output channels, herein denoted M≥1, generated by an
AC-3 decoder does not necessarily match the number of input main channels, herein denoted N, N≥1 encoded in the
bitstream, with typically, but not necessarily, N≥M. By use of downmixing, a decoder can accept a bitstream with any
number N of coded channels and produce an arbitrary number M, M≥1, of output channels. Note that in general, the
number of output channels is denoted M.m herein, where M is the number of main channels, and m is the number of
LFE output channels. In today’s applications, m=0 or 1. It may be possible to have m>1 in the future.
[0049] Note that in the downmixing, not all of the coded channels are included in the output channels. For example,
in a 5.1 to stereo downmix, the LFE channel information is usually discarded. Thus, in some downmixing, n=1 and m=0,
that is, there is no output LFE channel.
[0050] FIG. 1 shows pseudocode 100 for instructions, that when executed, carry out a typical AC-3 decoding process.
[0051] Input processing in AC-3 decoding typically begins when the decoder unpacks the fixed audio block data, which
is a collection of parameters and flags located at the beginning of the audio block. This fixed data includes such items
as block switch flags, coupling information, exponents, and bit allocation parameters. The term "fixed data" refers to the
fact that the word sizes for these bitstream elements are known a priori, and therefore a variable length decoding process
is not required to recover such elements.
[0052] The exponents make up the single largest field in the fixed data region, as they include all exponents from each
coded channel. Depending on the coding mode, in AC-3, there may be as many as one exponent per mantissa, up to
253 mantissas per channel. Rather than unpack all of these exponents to local memory, many decoder implementations
save pointers to the exponent fields, and unpack them as they are needed, one channel at a time.
[0053] Once the fixed data are unpacked, many known AC-3 decoders begin processing each coded channel. First,
the exponents for the given channel are unpacked from the input frame. A bit allocation calculation is then typically
performed, which takes the exponents and bit allocation parameters and computes the word sizes for each packed
mantissa. The mantissas are then typically unpacked from the input frame. The mantissas are scaled to provide appro-
priate dynamic range control, and if needed, to undo coupling operation, and then denormalized by the exponents.
Finally, an inverse transform is computed to determine pre-overlap-add data, data in what is called the "window domain,"
and the results are downmixed into the appropriate downmix buffers for subsequent output processing.
[0054] In some implementations, the exponents for the individual channel are unpacked into a 256-sample long buffer,
called the "MDCT buffer." These exponents are then grouped into as many as 50 bands for bit allocation purposes. The
number of exponents in each band increases toward higher audio frequencies, roughly following a logarithmic division
that models psychoacoustic critical bands.
[0055] For each of these bit allocation bands, the exponents and bit allocation parameters are combined to generate
a mantissa word size for each mantissa in that band. These word sizes are stored in a 24-sample long band buffer, with
the widest bit allocation band made up of 24 frequency bins. Once the word sizes have been computed, the corresponding
mantissas are unpacked from the input frame and stored in-place back into the band buffer. These mantissas are scaled
and denormalized by the corresponding exponent, and written, e.g., written in-place back into the MDCT buffer. After
all bands have been processed, and all mantissas unpacked, any remaining locations in the MDCT buffer are typically
written with zeros.
[0056] An inverse transform is performed, e.g., performed in-place in the MDCT buffer. The output of this processing,
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the window domain data, can then be downmixed into the appropriate downmix buffers according to downmix parameters,
determined according to metadata, e.g., fetched from pre-defined data according to metadata.
[0057] Once the input processing is completed and the downmix buffers have been fully generated with window domain
downmixed data, the decoder can perform the output processing. For each output channel, a downmix buffer and its
corresponding 128-sample long half-block delay buffer are windowed and combined to produce 256 PCM output samples.
In a hardware sound system that includes a decoder and one or more DACs, these samples are rounded to the DAC
word width and copied to the output buffer. Once this is done, half of the downmix buffer is then copied to its corresponding
delay buffer, providing the 50% overlap information necessary for proper reconstruction of the next audio block.

E-AC-3 decoding

[0058] Particular embodiments of the present invention include a method of operating an audio decoder to decode
audio data that includes a number, denoted N.n of channels of encoded audio data, e.g., an E-AC-3 audio decoder to
decode E-AC-3 encoded audio data to form decoded audio data that includes M.m channels of decoded audio, n=0 or
1, m=0 or 1, and M≥1. n=1 indicates an input LFE channel, m=1 indicates an output LFE channel. M<N indicates
downmixing, M>N indicates upmixing.
[0059] The method includes accepting the audio data that includes N.n channels of encoded audio data, encoding by
the encoding method, e.g., by an encoding method that includes transforming using an overlapped-transform N channels
of digital audio data, forming and packing frequency domain exponent and mantissa data, and forming and packing
metadata related to the frequency domain exponent and mantissa data, the metadata optionally including metadata
related to transient pre-noise processing, e.g., by an E-AC-3 encoding method.
[0060] Some embodiments described herein are designed to accept encoded audio data encoded according to the
E-AC-3 standard or according to a standard backwards compatible with the E-AC-3 standard, and may include more
than 5 coded main channels.
[0061] As will be described in more detail below, the method includes decoding the accepted audio data, decoding
including: unpacking the metadata and unpacking and decoding the frequency domain exponent and mantissa data;
determining transform coefficients from the unpacked and decoded frequency domain exponent and mantissa data;
inverse transforming the frequency domain data; applying windowing and overlap-add to determine sampled audio data;
applying any required transient pre-noise processing decoding according to the metadata related to transient pre-noise
processing; and, in the case M<N, downmixing according to downmixing data. The downmixing includes testing whether
the downmixing data are changed from previously used downmixing data, and, if changed, applying cross-fading to
determine cross-faded downmixing data and downmixing according to the cross-faded downmixing data, and if un-
changed, directly downmixing according to the downmixing data.
[0062] In some embodiments of the present invention, the decoder uses at least one x86 processor that executes
streaming single-instruction- multiple-data (SIMD) extensions (SSE) instructions, including vector instructions. In such
embodiments, the downmixing includes running vector instructions on at least one of the one or more x86 processors.
[0063] In some embodiments of the present invention, the decoding method for E-AC-3 audio, which might be AC-3
audio, is partitioned into modules of operations that can be applied more than once, i.e., instantiated more than once in
different decoder implementations. In the case of a method that includes decoding, the decoding is partitioned into a
set of front-end decode (FED) operations, and a set of back-end decode (BED) operations. As will be detailed below,
the front-end decode operations including unpacking and decoding frequency domain exponent and mantissa data of
a frame of an AC-3 or E-AC-3 bitstream into unpacked and decoded frequency domain exponent and mantissa data for
the frame, and the frame’s accompanying metadata. The back-end decode operations include determining of the trans-
form coefficients, inverse transforming the determined transform coefficients, applying windowing and overlap-add op-
erations, applying any required transient pre-noise processing decoding, and applying downmixing in the case there are
fewer output channels than coded channels in the bitstream.
[0064] Some embodiments of the present invention include a computer-readable storage medium storing instructions
that when executed by one or more processors of a processing system cause the processing system to carry out decoding
of audio data that includes N.n channels of encoded audio data, to form decoded audio data that includes M.m channels
of decoded audio, M≥1. In today’s standards, n=0 or 1 and m=0 or 1, but the invention is not so limited. The instructions
include instructions that when executed cause accepting the audio data that includes N.n channels of encoded audio
data encoded by an encoding method, e.g., AC-3 or E-AC-3. The instructions further include instructions that when
executed cause decoding the accepted audio data.
[0065] In some such embodiments, the accepted audio data are in the form of an AC-3 or E-AC-3 bitstream of frames
of coded data. The instructions that when executed cause decoding the accepted audio data are partitioned into a set
of reusable modules of instructions, including a front-end decode (FED) module, and a back-end decode (BED) module.
The front-end decode module including instructions that when executed cause carrying out the unpacking and decoding
the frequency domain exponent and mantissa data of a frame of the bitstream into unpacked and decoded frequency
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domain exponent and mantissa data for the frame, and the frame’s accompanying metadata. The back-end decode
module including instructions that when executed cause determining of the transform coefficients, inverse transforming,
applying windowing and overlap-add operations, applying any required transient pre-noise processing decoding, and
applying downmixing in the case that there are fewer output channels than input coded channels.
[0066] FIGS. 2A-2D show in simplified block diagram forms some different decoder configurations that can advanta-
geously use one or more common modules. FIG. 2A shows a simplified block diagram of an example E-AC-3 decoder
200 for AC-3 or E-AC-3 coded 5.1 audio. Of course the use of the term "block" when referring to blocks in a block diagram
is not the same as a block of audio data, the latter referring to an amount of audio data. Decoder 200 includes a front-
end decode (FED) module 201 that is to accept AC-3 or E-AC-3 frames and to carry out, frame by frame, unpacking of
the frame’s metadata and decoding of the frame’s audio data to frequency domain exponent and mantissa data. Decoder
200 also includes a back-end decode (BED) module 203 that accepts the frequency domain exponent and mantissa
data from the front-end decode module 201 and decodes it to up to 5.1 channels of PCM audio data.
[0067] The decomposition of the decoder into a front-end decode module and a back-end decode module is a design
choice, not a necessary partitioning. Such partitioning does provide benefits of having common modules in several
alternate configurations. The FED module can be common to such alternate configurations, and many configurations
have in common the unpacking of the frame’s metadata and decoding of the frame’s audio data to frequency domain
exponent and mantissa data as carried out by an FED module.
[0068] As one example of an alternate configuration, FIG. 2B shows a simplified block diagram of an E-AC-3 decod-
er/converter 210 for E-AC-3 coded 5.1 audio that both decodes AC-3 or E-AC-3 coded 5.1 audio, and also converts an
E-AC-3 coded frame of up to 5.1 channels of audio to an AC-3 coded frame of up to 5.1 channels. Decoder/converter
210 includes a front-end decode (FED) module 201 that accepts AC-3 or E-AC-3 frames and to carry out, frame by
frame, unpacking of the frame’s metadata and decoding of the frame’s audio data to frequency domain exponent and
mantissa data. Decoder/converter 210 also includes a back-end decode (BED) module 203 that is the same as or similar
to the BED module 203 of decoder 200, and that accepts the frequency domain exponent and mantissa data from the
front-end decode module 201 and decodes it to up to 5.1 channels of PCM audio data. Decoder/converter 210 also
includes a metadata converter module 205 that converts metadata and a back-end encode module 207 that accepts
the frequency domain exponent and mantissa data from the front-end decode module 201 and to encode the data as
an AC-3 frame of up to 5.1 channels of audio data at no more than the maximum data rate of 640 kbps possible with AC-3.
[0069] As one example of an alternate configuration, FIG. 2C shows a simplified block diagram of an E-AC-3 decoder
that decodes an AC-3 frame of up to 5.1 channels of coded audio and also to decode an E-AC-3 coded frame of up to
7.1 channels of audio. Decoder 220 includes a frame information analyze module 221 that unpacks the BSI data and
identifies the frames and frame types and provides the frames to appropriate front-end decoder elements. In a typical
implementation that includes one or more processors and memory in which instructions are stored that when executed
cause carrying out of the functionality of the modules, multiple instantiations of a front-end decode module, and multiple
instantiations of a back-end decode module may be operating. In some embodiments of an E-AC-3 decoder, the BSI
unpacking functionality is separated from the front-end decode module to look at the BSI data. That provides for common
modules to be used in various alternate implementations. FIG. 2C shows a simplified block diagram of a decoder with
such architecture suitable for up to 7.1 channels of audio data. FIG. 2D shows a simplified block diagram of a 5.1 decoder
240 with such architecture. Decoder 240 includes a frame information analyze module 241, a front-end decode module
243, and a back-end decode module 245. These FED and BED modules can be similar in structure to FED and BED
modules used in the architecture of FIG. 2C.
[0070] Returning to FIG. 2C, the frame information analyze module 221 provides the data of an independent AC-3/E-
AC3 coded frame of up to 5.1 channels to a front-end decode module 223 that accepts AC-3 or E-AC-3 frames and to
carry out, frame by frame, unpacking of the frame’s metadata and decoding of the frame’s audio data to frequency
domain exponent and mantissa data. The frequency domain exponent and mantissa data are accepted by a back-end
decode module 225 that is the same as or similar to the BED module 203 of decoder 200, and that accept the frequency
domain exponent and mantissa data from the front-end decode module 223 and to decode the data to up to 5.1 channels
of PCM audio data. Any dependent AC-3/E-AC3 coded frame of additional channel data are provided to another front-
end decode module 227 that is similar to the other FED module, and so unpacks the frame’s metadata and decode the
frame’s audio data to frequency domain exponent and mantissa data. A back-end decode module 229 that accepts the
data from FED module 227 and to decode the data to PCM audio data of any additional channels. A PCM channel
mapper module 231 is used to combine the decoded data from the respective BED modules to provide up to 7.1 channels
of PCM data.
[0071] If there are more than 5 coded main channels, i.e., case N>5, e.g., there are 7.1 coded channels, the coded
bitstream includes an independent frame of up to 5.1 coded channels and at least one dependent frame of coded data.
In software embodiments for such a case, e.g., embodiments comprising a computer-readable medium that stores
instructions for execution, the instructions are arranged as a plurality of 5.1 channel decode modules, each 5.1 channel
decode module including a respective instantiation of a front-end decode module and a respective instantiation of a
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back-end decode module. The plurality of 5.1 channel decode modules includes a first 5.1 channel decode module that
when executed causes decoding of the independent frame, and one or more other channel decode modules for each
respective dependent frame. In some such embodiments, the instructions include a frame information analyze module
of instructions that when executed causes unpacking the Bit Stream Information (BSI) field from each frame to identify
the frames and frame types and provides the identified frames to the appropriate front-end decoder module instantiation,
and a channel mapper module of instructions that when executed and in the case N>5 cause combining the decoded
data from respective back-end decode modules to form the N main channels of decoded data.

A method for operating an AC-3/E-AC-3 dual decoder converter.

[0072] One embodiment of the invention is in the form of a dual decoder converter (DDC) that decodes two AC-3/E-
AC-3 input bitstreams, designated as "main" and "associated," with up to 5.1 channels each, to PCM audio, and in the
case of conversion, converts the main audio bitstream from E-AC-3 to AC-3, and in the case of decoding, decodes the
main bitstream and if present associated bitstream. The dual decoder converter optionally mixes the two PCM outputs
using mixing metadata extracted from the associated audio bitstream.
[0073] One embodiment of the dual decoder converter carries out a method of operating a decoder to carry out the
processes included in decoding and/or converting the up to two AC-3/E-AC-3 input bitstreams. Another embodiment is
in the form of a tangible storage medium having instructions, e.g., software instructions thereon, that when executed by
one or more processors of a processing system, causes the processing system to carry out the processes included in
decoding and/or converting the up to two AC-3/E-AC-3 input bitstreams.
[0074] One embodiment of the AC-3/E-AC-3 dual decoder converter has six subcomponents, some of which include
common subcomponents. The modules are:

Decoder-converter: The decoder-converter is configured when executed to decode an AC-3/E-AC-3 input bitstream
(up to 5.1 channels) to PCM audio, and/or to convert the input bitstream from E-AC-3 to AC-3. The decoder-converter
has three main subcomponents, and can implement an embodiment 210 shown in FIG. 2B above. The main sub-
components are:

Front-end decode: The FED module is configured, when executed, to decode a frame of an AC-3/E-AC-3 bitstream
into raw frequency domain audio data and its accompanying metadata.

Back-end decode: The BED is module is configured, when executed, to complete the rest of the decode process
that was initiated by the FED module. In particular, the BED module decodes the audio data (in mantissa and
exponent format) into PCM audio data.

Back-end encode: The back-end encode module is configured, when executed to encode an AC-3 frame using
six blocks of audio data from the FED. The back-end encode module is also configured, when executed, to syn-
chronize, resolve and convert E-AC-3 metadata to Dolby Digital metadata using an included metadata converter
module.

5.1 Decoder: The 5.1 decoder module is configured when executed to decode an AC-3/E-AC-3 input bitstream (up
to 5.1 channels) to PCM audio. The 5.1 decoder also optionally outputs mixing metadata for use by an external
application to mix two AC-3/E-AC-3 bitstreams. The decoder module includes two main subcomponents: an FED
module as described herein above and a BED module as described herein above. A block diagram of an example
5.1 decoder is shown in FIG. 2D.

Frame information: The frame information module is configured when executed to parse an AC-3/E-AC-3 frame
and unpack its bitstream information. A CRC check is performed on the frame as part of the unpacking process.

Buffer descriptors: The buffer descriptors module contains AC-3, E-AC-3 and PCM buffer descriptions and functions
for buffer operations.

Sample rate converter: The sample rate converter module is optional, and configured, when executed to upsample
PCM audio by a factor of two.

External mixer: The external mixer module is optional, and configured when executed to mix a main audio program
and an associated audio program to a single output audio program using mixing metadata supplied in the associated
audio program.
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Front-end decode module design

[0075] The front-end decode module decodes data according to AC-3’s methods, and according to E-AC-3 additional
decoding aspects, including decoding AHT data for stationary signals, E-AC-3’s enhanced channel coupling, and spectral
extension.
[0076] In the case of an embodiment in the form of a tangible storage medium, the front-end decode module comprises
software instructions stored in a tangible storage medium that when executed by one or more processors of a processing
system, cause the actions described in the details provided herein for the operation of the front-end decode module. In
a hardware implementation, the front-end decode module includes elements that are configured in operation to carry
out the actions described in the details provided herein for the operation of the front-end decode module.
[0077] In AC-3 decoding, block-by-block decoding is possible. With E-AC-3, the first audio block-audio block 0 of a
frame includes the AHT mantissas of all 6 blocks. Hence, block-by-block decoding typically is not used, but rather several
blocks are processed at once. The processing of actual data, however, is of course carried out on each block.
[0078] In one embodiment, in order to use a uniform method of decoding/architecture of a decoder regardless of
whether the AHT is used, the FED module carries out, channel-by-channel, two passes. A first pass includes unpacking
metadata block-by-block and saving pointers to where the packed exponent and mantissa data are stored, and a second
pass includes using the saved pointers to the packed exponents and mantissas, and unpacking and decoding exponent
and mantissa data channel-by-channel.
[0079] FIG. 3 shows a simplified block diagram of one embodiment of a front-end decode module, e.g., implemented
as a set of instructions stored in a memory that when executed causes FED processing to be carried out. FIG. 3 also
shows pseudocode for instructions for a first pass of two-pass front-end decode module 300, as well as pseudocode for
instructions for the second pass of two-pass front-end decode module. The FED module includes the following modules,
each including instructions, some such instructions being definitional in that they define structures and parameters:

Channel: The channel module defines structures for representing an audio channel in memory and provides in-
structions to unpack and decode an audio channel from an AC-3 or E-AC-3 bitstream.

Bit allocation: The bit allocation module provides instructions to calculate the masking curve and calculate the bit
allocation for coded data.

Bitstream operations: The bitstream operations module provides instructions for unpacking data from an AC-3 or
E-AC-3 bitstream.

Exponents: The exponents module defines structures for representing exponents in memory and provides instruc-
tions configured when executed to unpack and decode exponents from an AC-3 or E-AC-3 bitstream.

Exponents and mantissas: The exponents and mantissas module defines structures for representing exponents
and mantissas in memory and provides instructions configured when executed to unpack and decode exponents
and mantissas from an AC-3 or E-AC-3 bitstream.

Matrixing: The matrixing module provides instructions configured when executed to support dematrixing of matrixed
channels.

Auxiliary data: The auxiliary data module defines auxiliary data structures used in the FED module to carry out
FED processing.

Mantissas: The mantissas module defines structures for representing mantissas in memory and provides instruc-
tions configured when executed to unpack and decode mantissas from an AC-3 or E-AC-3 bitstream.

Adaptive hybrid transform: The AHT module provides instructions configured when executed to unpack and
decode adaptive hybrid transform data from an E-AC-3 bitstream.

Audio frame: The audio frame module defines structures for representing an audio frame in memory and provides
instructions configured when executed to unpack and decode an audio frame from an AC-3 or E-AC-3 bitstream.

Enhanced coupling: The enhanced coupling module defines structures for representing an enhanced coupling
channel in memory and provides instructions configured when executed to unpack and decode an enhanced coupling
channel from an AC-3 or E-AC-3 bitstream. Enhanced coupling extends traditional coupling in an E-AC-3 bitstream
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by providing phase and chaos information.

Audio block: The audio block module defines structures for representing an audio block in memory and provides
instructions configured when executed to unpack and decode an audio block from an AC-3 or E-AC-3 bitstream.

Spectral extension: The spectral extension module provides support for spectral extension decoding in an E-AC-
3 bitstream.

Coupling: The coupling module defines structures for representing a coupling channel in memory and provides
instructions configured when executed to unpack and decode a coupling channel from an AC-3 or E-AC-3 bitstream.

[0080] FIG. 4 shows a simplified data flow diagram for the operation of one embodiment of the front-end decode
module 300 of FIG. 3 that describes how the pseudocode and sub-modules elements shown in FIG. 3 cooperate to
carry out the functions of a front-end decode module. By a functional element is meant an element that carries out a
processing function. Each such element may be a hardware element, or a processing system and a storage medium
that includes instructions that when executed carry out the function. A bitstream unpacking functional element 403
accepts an AC-3/E-AC-3 frame and generates bit allocation parameters for a standard and/or AHT bit allocation functional
element 405 that produces further data for the bitstream unpacking to ultimately generate exponent and mantissa data
for an included standard/enhanced decoupling functional element 407. The functional element 407 generates exponent
and mantissa data for an included rematrixing functional element 409 to carry out any needed rematrixing. The functional
element 409 generates exponent and mantissa data for an included spectral extension decoding functional element 411
to carry out any needed spectral extension. Functional elements 407 to 411 use data obtained by the unpacking operation
of the functional element 403. The result of the front-end decoding is exponent and mantissa data as well as additional
unpacked audio frame parameters and audio block parameters.
[0081] Referring in more detail to the first pass and second pass pseudocode shown in FIG. 3, the first pass instructions
are configured, when executed to unpack metadata from an AC-3/E-AC-3 frame. In particular, the first pass includes
unpacking the BSI information, and unpacking the audio frame information. For each block, starting with block 0 to block
5 (for 6 blocks per frame), the fixed data are unpacked, and for each channel, a pointer to the packed exponents in the
bitstream is saved, exponents are unpacked, and the position in the bitstream at which the packed mantissas reside is
saved. Bit allocation is computed, and, based on bit allocation, mantissas may be skipped.
[0082] The second pass instructions are configured, when executed, to decode the audio data from a frame to form
mantissa and exponent data. For each block starting with block 0, unpacking includes loading the saved pointer to
packed exponents, and unpacking the exponents pointed thereby, computing bit allocation, loading the saved pointer
to packed mantissas, and unpacking the mantissas pointed thereby. Decoding includes performing standard and en-
hanced decoupling and generating the spectral extension band(s), and, in order to be independent from other modules,
transferring the resulting data into a memory, e.g., a memory external to the internal memory of the pass so that the
resulting data can be accessed by other modules, e.g., the BED module. This memory, for convenience, is called the
"external" memory, although it may, as would be clear to those skilled in the art, be part of a single memory structure
used for all modules.
[0083] In some embodiments, for exponent unpacking, the exponents unpacked during first pass are not saved in
order to minimize memory transfers. If AHT is in use for a channel, the exponents are unpacked from block 0 and copied
to the other five blocks, numbered 1 to 5. If AHT is not in use for a channel, pointers to packed exponents are saved. If
the channel exponent strategy is to reuse exponents, the exponents are unpacked again using the saved pointers.
[0084] In some embodiments, for coupling mantissa unpacking, if the AHT is used for the coupling channel, all six
blocks of AHT coupling channel mantissas are unpacked in block 0, and dither regenerated for each channel that is a
coupled channel to produce uncorrelated dither. If the AHT is not used for the coupling channel, pointers to the coupling
mantissas are saved. These saved pointers are used to re-unpack the coupling mantissas for each channel that is a
coupled channel in a given block.

Back-end decode module design

[0085] The back-end decode (BED) module is operative to take frequency domain exponent and mantissa data and
to decode it to PCM audio data. The PCM audio data are rendered based on user selected modes, dynamic range
compression, and downmix modes.
[0086] In some embodiments, in which the front-end decode module stores exponent and mantissa data in a memory-
we call it the external memory-separate from the working memory of the front-end module, the BED module uses block-
by-block frame processing to minimize downmix and delay buffer requirements, and, to be compatible with the output
of the front-end module, uses transfers from the external memory to access exponent and mantissa data to process.
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[0087] In the case of an embodiment in the form of a tangible storage medium, the back-end decode module comprises
software instructions stored in a tangible storage medium that when executed by one or more processors of a processing
system, cause the actions described in the details provided herein for the operation of the back-end decode module. In
a hardware implementation, the back-end decode module includes elements that are configured in operation to carry
out the actions described in the details provided herein for the operation of the back-end decode module.
[0088] FIG. 5A shows a simplified block diagram of one embodiment of a back-end decode module 500 implemented
as a set of instructions stored in a memory that when executed causes BED processing to be carried out. FIG. 5A also
shows pseudocode for instructions for the back-end decode module 500. The BED module 500 includes the following
modules, each including instructions, some such instructions being definitional:

Dynamic range control: The dynamic range control module provides instructions, that when executed cause
carrying out functions for controlling the dynamic range of the decoded signal, including applying gain ranging, and
applying dynamic range control.

Transform: The transform module provides instructions, that when executed cause carrying out the inverse trans-
forms, including carrying out an inverse modified discrete cosine transform (IMDCT), which includes carrying out
pre-rotation used for calculating the inverse DCT transform, carrying post-rotation used for calculating the inverse
DCT transform, and determining the inverse fast Fourier transform (IFFT).

Transient pre-noise processing: The transient pre-noise processing module provides instructions, that when
executed cause carrying out transient pre-noise processing.

Window & overlap-add: The window and overlap-add module with delay buffer provides instructions, that when
executed cause carrying out the windowing, and the overlap/add operation to reconstruct output samples from
inverse transformed samples.

Time domain (TD) downmix: The TD downmix module provides instructions, that when executed cause carrying
out downmixing in the time domain as needed to a fewer number of channels.

[0089] FIG. 6 shows a simplified data flow diagram for the operation of one embodiment of the back-end decode
module 500 of FIG. 5A that describes how the code and sub-modules elements shown in FIG. 5A cooperate to carry
out the functions of a back-end decode module. A gain control functional element 603 accepts exponent and mantissa
data from the front-end decode module 300 and applies any required dynamic range control, dialog normalization, and
gain ranging according to metadata. The resulting exponent and mantissa data are accepted by a denormalize mantissa
by exponents functional element 605 that generates the transform coefficients for inverse transforming. An inverse
transform functional element 607 applies the IMDCT to the transform coefficients to generate time samples that are pre-
windowing and overlap-add. Such pre overlap-add time domain samples are called "pseudo-time domain" samples
herein, and these samples are in what is called herein the pseudo-time domain. These are accepted by a windowing
and overlap-add functional element 609 that generates PCM samples by applying windowing and overlap-add operations
to the pseudo-time domain samples. Any transient pre-noise processing is applied by a transient pre-noise processing
functional element 611 according to metadata. If specified, e.g., in the metadata or otherwise, the resulting post transient
pre-noise processing PCM samples are downmixed to the number M.m of output channels of PCM samples by a
Downmixing functional element 613.
[0090] Referring again to FIG. 5A, the pseudocode for the BED module processing includes, for each block of data,
transferring the mantissa and exponent data for blocks of a channel from the external memory, and, for each channel:
applying any required dynamic range control, dialog normalization, and gain ranging according to metadata; denormal-
izing mantissas by exponents to generate the transform coefficients for inverse transforming; computing an IMDCT to
the transform coefficients to generate pseudo-time domain samples; applying windowing and overlap-add operations
to the pseudo-time domain samples; applying any transient pre-noise processing according to metadata; and, if required,
time domain downmixing to the number M.m of output channels of PCM samples.
[0091] Embodiments of decoding shown in FIG. 5A include carrying out such gain adjustments as applying dialogue
normalization offsets according to metadata, and applying dynamic range control gain factors according to metadata.
Performing such gain adjustments at the stage that data are provided in mantissa and exponent form in the frequency
domain is advantageous. The gain changes may vary over time, and such gain changes made in the frequency domain
results in smooth cross-fades once the inverse transform and windowing/overlap-add operations have occurred.
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Transient Pre-Noise Processing

[0092] E-AC-3 encoding and decoding were designed to operate and provide better audio quality at lower data rates
than in AC-3. At lower data rates the audio quality of coded audio can be negatively impacted, especially for relatively
difficult-to-code, transient material. This impact on audio quality is primarily due to the limited number of data bits available
to accurately code these types of signals. Coding artifacts of transients are exhibited as a reduction in the definition of
the transient signal as well as the "transient pre-noise" artifact which smears audible noise throughout the encoding
window due to coding quantization errors.
[0093] As described above and in FIGS. 5 and 6, the BED provides for transient pre-noise processing. E-AC-3 encoding
includes transient pre-noise processing coding, to reduce transient pre-noise artifacts that may be introduced when
audio containing transients is encoded by replacing the appropriate audio segment with audio that is synthesized using
the audio located prior to the transient pre-noise. The audio is processed using time scaling synthesis so that its duration
is increased such that it is of appropriate length to replace the audio containing the transient pre-noise. The audio
synthesis buffer is analyzed using audio scene analysis and maximum similarity processing and then time scaled such
that its duration is increased enough to replace the audio which contains the transient pre-noise. The synthesized audio
of increased length is used to replace the transient pre- noise and is cross-faded into the existing transient pre-noise
just prior to the location of the transient to ensure a smooth transition from the synthesized audio into the originally coded
audio data. By using transient pre-noise processing, the length of the transient pre-noise can be dramatically reduced
or removed, even for the case when block-switching is disabled.
[0094] In one E-AC-3 encoder embodiment, time scaling synthesis analysis and processing for the transient pre-noise
processing tool is performed on time domain data to determine metadata information, e.g., including time scaling pa-
rameters. The metadata information is accepted by the decoder along with the encoded bitstream. The transmitted
transient pre-noise metadata are used to perform time domain processing on the decoded audio to reduce or remove
the transient pre-noise introduced by low bit-rate audio coding at low data rates.
[0095] The E-AC-3 encoder performs time scaling synthesis analysis and determines time scaling parameters, based
on the audio content, for each detected transient. The time scaling parameters are transmitted as additional metadata,
along with the encoded audio data.
[0096] At an E-AC-3 decoder, the optimal time scaling parameters provided in E-AC-3 metadata are accepted as part
of accepted E-AC-3 metadata for use in transient pre-noise processing. The decoder performs audio buffer splicing and
cross- fading using the transmitted time scaling parameters obtained from the E-AC-3 metadata.
[0097] By using the optimal time scaling information and applying it with the appropriate cross-fading processing, the
transient pre-noise introduced by low-bit rate audio coding can be dramatically reduced or removed in the decoding.
[0098] Thus, transient pre-noise processing overwrites pre-noise with a segment of audio that most closely resembles
the original content. The transient pre-noise processing instructions, when executed, maintain a four-block delay buffer
for use in copy over. The transient pre-noise processing instructions, when executed, in the case where overwriting
occurs, cause performing a cross fade in and out on overwritten pre-noise.

Downmixing

[0099] Denote by N.n the number of channels encoded in the E-AC-3 bitstream, where N is the number of main
channels, and n=0 or 1 is the number of LFE channels. Often, it is desired to downmix the N main channels to a smaller
number, denoted M, of output main channels. Downmixing from N to M channels, M<N is supported by embodiments
of the present invention. Upmixing also is possible, in which case M>N.
[0100] Thus, in the most general implementation, audio decoder embodiments are operative to decode audio data
that includes N.n channels of encoded audio data to decode audio data that includes M.m channels of decoded audio,
and M≥1, with n, m indicating the number of LFE channels in the input, output respectively. Downmixing is the case
M<N and according to a set of downmixing coefficients is included in the case M<N.

Frequency domain vs. time domain downmixing.

[0101] Downmixing can be done entirely in the frequency domain, prior to the inverse transform, in the time domain
after the inverse transform but, in the case of overlap-add block processing prior to the windowing and overlap-add
operations, or in the time domain after the windowing and overlap-add operation.
[0102] Frequency domain (FD) downmixing is much more efficient than time domain downmixing. Its efficiency stems,
e.g., from the fact that any processing steps subsequent to the downmixing step are only carried out on the remaining
number of channels, which is generally lower after the downmixing. Thus, the computational complexity of all processing
steps subsequent to the downmixing step is reduced by at least the ratio of input channels to output channels.
[0103] As an example, consider a 5.0 channel to stereo downmix. In this case, the computational complexity of any
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subsequent processing step will be reduced by approximately a factor of 5/2 = 2.5.
[0104] Time domain (TD) downmixing is used in typical E-AC-3 decoders and in the embodiments described above
and illustrated with FIGS. 5A and 6. There are three main reasons that typical E-AC-3 decoders use time domain
downmixing:

Channels with different block types

[0105] Depending on the to-be-encoded audio content, an E-AC-3 encoder can choose between two different block
types - short block and long block - to segment the audio data. Harmonic, slowly changing audio data is typically
segmented and encoded using long blocks, whereas transient signals are segmented and encoded in short blocks. As
a result, the frequency domain representation of short blocks and long blocks is inherently different and cannot be
combined in a frequency domain downmixing operation.
[0106] Only after the block type specific encoding steps are undone in the decoder, the channels can be mixed together.
Thus, in the case of block-switched transforms, a different partial inverse transform process is used, and the results of
the two different transforms cannot be directly combined until just prior to the window stage.
[0107] Methods are known, however, for first converting the short-length transform data to the longer frequency domain
data, in which case, the downmixing can be carried out in the frequency domain. Nevertheless, in most known decoder
implementations, downmixing is carried out post inverse transforming according to downmixing coefficients.

Up-mix

[0108] If the number of output main channels is higher than the number of input main channels, M>N, a time domain
mixing approach is beneficial, as this moves the up-mixing step towards the end of the processing, reducing the number
of channels in processing.

TPNP

[0109] Blocks that are subject to transient pre-noise processing (TPNP) may not be downmixed in the frequency
domain, because TPNP operates in the time domain. TPNP requires a history of up to four blocks of PCM data (1024
samples), which must be present for the channel in which TPNP is applied. Switching to time domain downmix is hence
necessary to fill up the PCM data history and to perform the pre-noise substitution.

Hybrid downmixing using both frequency domain and time domain downmixing

[0110] The inventors recognize that channels in most coded audio signals use the same block type for more than 90%
of the time. That means that the more efficient frequency domain downmixing would work for more than 90% of the data
in typical coded audio, assuming there is no TPNP. The remaining 10% or less would require time domain downmixing
as occurs in typical prior art E-AC-3 decoders.
[0111] Embodiments of the present invention include downmix method selection logic to determine block-by-block
which downmixing method to apply, and both time domain downmixing logic, and frequency domain downmixing logic
to apply the particular downmixing method as appropriate. Thus a method embodiment includes determining block by
block whether to apply frequency domain downmixing or time domain downmixing. The downmix method selection logic
operates to determine whether to apply frequency domain downmixing or time domain downmixing, and includes de-
termining if there is any transient pre-noise processing, and determining if any of the N channels have a different block
type. The selection logic determines that frequency domain downmixing is to be applied only for a block that has the
same block type in the N channels, no transient pre-noise processing, and M<N.
[0112] FIG. 5B shows a simplified block diagram of one embodiments of a back-end decode module 520 implemented
as a set of instructions stored in a memory that when executed causes BED processing to be carried out. FIG. 5B also
shows pseudocode for instructions for the back-end decode module 520. The BED module 520 includes the modules
shown in FIG. 5A that only use time domain downmixing, and the following additional modules, each including instructions,
some such instructions being definitional:

Downmix method selection module that checks for (i) change of block type; (ii) whether there is no true downmixing
(M<N), but rather upmixing, and (iii) whether the block is subject to TPNP, and if none of these is true, selecting
frequency domain downmixing. This module carries out determining block by block whether to apply frequency
domain downmixing or time domain downmixing.

Frequency domain downmix module that carries out, after denormalization of the mantissas by exponents, fre-
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quency domain downmixing. Note that the Frequency domain downmix module also includes a time domain to
frequency domain transition logic module that checks whether the preceding block used time domain downmix, in
which case the block is handled differently as described in more detail below. In addition, the transition logic module
also deals with processing steps associated with certain, non-regularly reoccurring events, e.g. program changes
such as fading out channels.

FD to TD downmix transition logic module that checks whether the preceding block used frequency domain
downmix, in which case the block is handled differently as described in more detail below. In addition, the transition
logic module also deals with processing steps associated with certain, non-regularly reoccurring events, e.g. program
changes such as fading out channels.

[0113] Furthermore, the modules that are in FIG. 5A might behave differently in embodiments that include hybrid
downmixing, i.e., both FD and TD downmixing depending on one or more conditions for the current block.
[0114] Referring to the pseudocode of FIG. 5B, some embodiments of the back end decoding method include, after
transferring the data of a frame of blocks from external memory, ascertaining whether FD downmixing or TD downmixing.
For FD downmixing, for each channel, the method includes (i) applying dynamic range control and dialog normalization,
but, as discussed below, disabling gain ranging; (ii) denormalizing mantissas by exponents; (iii) carrying out FD down-
mixing; and (iv) ascertaining if there are fading out channels or if the previous block was downmixed by time domain
downmixing, in which case, the processing is carried out differently as described in more detail below. For the case of
TD downmixing, and also for FD downmixed data, the process includes for each channel: (i) processing differently blocks
to be TD downmixed in the case the previous block was FD downmixed and also handling any program changes; (ii)
determining the inverse transform (iii). Carrying out window overlap add; and, in the case of TD downmixing, (iv) performing
any TPNP and downmixing to the appropriate output channel.
[0115] FIG. 7 shows a simple data flow diagram. Block 701 corresponds to the downmix method selection logic that
tests for the three conditions: block type change, TPNP, or upmixing, and any condition is true, directs the dataflow to
a TD downmixing branch 721 that includes in 723 FD downmix transition logic to process differently a block that occurs
immediately following a block processed by FD downmixing, program change processing, and in 725 denormalizing the
mantissa by exponents. The dataflow after block 721 is processed by common processing block 731. If the downmix
method selection logic block 701 tests determines the block is for FD downmixing the dataflow branches to FD downmixing
processing 711 that includes a frequency domain downmix process 713 that disables gain ranging, and for each channel,
denormalizes the mantissas by exponents and carries out FD downmixing, and a TD downmix transition logic block 715
to determine whether the previous block was processed by TD downmixing, and to process such a block differently, and
also to detect and handle any program changes, such as fading out channels. The dataflow after the TD downmix
transition block 715 is to the same common processing block 731.
[0116] The common processing block 731 includes inverse transforming and any further time domain processing. The
further time domain processing includes undoing gain ranging, and windowing and overlap-and processing. If the block
is from the TD downmixing block 721, the further time domain processing further includes any TPNP processing and
time domain downmixing.
[0117] FIG. 8 shows a flowchart of one embodiment of processing for a back-end decode module such as the one
shown in FIG. 7. The flowchart it partitioned as follows, with the same reference numerals used as in FIG. 7 for similar
respective functional dataflow blocks: a downmix method selection logic section 701 in which a logical flag FD_dmx is
used to indicate when 1 that frequency domain downmixing is used for the block; a TD downmixing logic section 721
that includes a FD downmix transition logic and program change logic section 723 to process differently a block that
occurs immediately following a block processed by FD downmixing and carry out program change processing, and a
section to denormalize the mantissa by exponents for each input channel. The dataflow after block 721 is processed by
a common processing section 731. If the downmix method selection logic block 701 determines the block is for FD
downmixing, the dataflow branches to FD downmixing processing section 711 that includes a frequency domain downmix
process that disables gain ranging, and for each channel, denormalizes the mantissas by exponents and carries out FD
downmixing, and a TD downmix transition logic section 715 to determine for each channel of the previous block whether
there is a channel fading out or whether the previous block was processed by TD downmixing, and to process such a
block differently. The dataflow after the TD downmix transition section 715 is to the same common processing logic
section 731. The common processing logic section 731 includes for each channel inverse transforming and any further
time domain processing. The further time domain processing includes undoing gain ranging, and windowing and overlap-
add processing. If FD_dmx is 0, indicating TD downmixing, the further time domain processing in 731 also includes any
TPNP processing and time domain downmixing.
[0118] Note that after the FD downmixing, in the TD downmix transition logic section 715, in 817, the number of input
channels N is set to be the same as the number of output channels M, so that the remainder of the processing, e.g., the
processing in common processing logic section 731 is carried out only on the downmixed data. This reduces the amount
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of computation. Of course the time domain downmixing of the data from the previous block when there is a transition
from a block that was TD downmixed-such TD downmixing shows as 819 in section 715-is carried out on all of those of
the N input channels that are involved in the downmixing.

Transition handling

[0119] In decoding, it is necessary to have smooth transitions between audio blocks. E-AC-3 and many other encoding
methods use a lapped transform. e.g., a 50% overlapping MDCT. Thus, when processing a current block, there is 50%
overlap with the previous block, and furthermore, there will be 50% overlap with the following block in the time domain.
Some embodiments of the present invention use overlap-add logic that includes an overlap-add buffer. When processing
a present block, the overlap-add buffer contains data from the previous audio block. Because it is necessary to have
smooth transitions between audio blocks, logic is included to handle differently transitions from TD downmixing to FD
downmixing, and from FD downmixing to TD downmixing.
[0120] FIG. 9 shows an example of processing five blocks, denoted as block k, k+1, ..., k+4 of five channel audio
including as is common: left, center, right, left surround and right surround channels, denoted L, C, R, LS, and RS,
respectively, and downmixing to a stereo mix using the formula:

and 

[0121] FIG. 9 supposes that a non-overlapped transform is used. Each rectangle represents the audio contents of a
block. The horizontal axes from left to right represents the blocks k, ..., k+4 and the vertical axes from top to bottom
represents the decoding progress of data. Suppose block k is processed by TD downmixing, blocks k+1 and k+2
processed by FD downmixing, and blocks k+3 and k+4 by TD downmixing. As can be seen, for each of the TD downmixing
blocks, the downmixing does not occur until after the time domain downmixing towards the bottom after which the
contents are the downmixed L’ and R’ channels, while for the FD downmixed block, the left and right channels in the
frequency domain are already downmixed after frequency domain downmixing, and the C, LS, and RS channel data
are ignored. Since there is no overlap between blocks, no special case handling is required when switching from TD
downmixing to FD downmixing or from FD downmixing to TD downmixing.
[0122] FIG. 10 describes the case of 50% overlapped transforms. Suppose overlap-add is carried out by overlap-add
decoding using an overlap-add buffer. In this diagram, when the data block is shown as two triangles, the lower left
triangle is data in the overlap-add buffer from the previous block, while the top right triangle shows the data from the
current block.

Transition handling for a TD downmix to FD downmix transition

[0123] Consider block k+1 which is a FD downmixing block that immediately follows a TD downmixing block. After the
TD downmixing, the overlap-add buffer contains the L, C, R, LS, and RS data from the last block which needs to be
included for the present block. Also included is the current block k+1’s contribution, already FD downmixed. In order to
properly determine the downmixed PCM data for output, both the present block’s and the previous block’s data needs
to be included. For this, the previous block’s data needs to be flushed out and, since it is not yet downmixed, downmixed
in the time domain. The two contributions need to be added to determine the downmixed PCM data for output. This
processing is included in the TD downmix transition logic 715 of FIGS. 7 and 8, and by the code in the TD downmix
transition logic included in the FD downmix module shown in FIG. 5B. The processing carried out therein is summarized
in the TD downmix transition logic section 715 of FIG. 8. In more detail, transition handling for a TD downmix to FD
downmix transition includes:

• Flush out overlap buffers by feeding zeros into overlap-add logic and carrying out windowing and overlap-add. Copy
the flushed out output from the overlap-add logic. This is the PCM data of the previous block of the particular channel
prior to downmixing. Overlap buffer now contains zeroes.

• Time domain downmix the PCM data from the overlap buffers to generate PCM data of the TD downmix of the
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previous block.

• Frequency domain downmix of the new data from the current block. Carry out the inverse transform and feed new
data after FD downmixing and inverse transform into overlap-add logic. Carry out windowing and overlap-add, and
so forth with the new data to generate PCM data of the FD downmix of the current block.

• Add the PCM data of the TD downmix and of the FD downmix to generate PCM output.

[0124] Note that in an alternate embodiment, assuming there was no TPNP in the previous block, the data in the
overlap-add buffers are downmixed, then an overlap-add operation is performed on the downmixed output channels.
This avoids needing to carry out an overlap-add operation for each previous block channel. Furthermore, as described
above for AC-3 decoding, when a downmix buffer and its corresponding 128-sample long half-block delay buffer is used
and windowed and combined to produce 256 PCM output samples, the downmix operation is simpler because the delay
buffer is only 128 samples rather than 256. This aspect reduces the peak computational complexity that is inherent to
the transition processing. Therefore, in some embodiments, for a particular block that is FD downmixed following a block
whose data was TD downmixed, the transition processing includes applying downmixing in the pseudo-time domain to
the data of the previous block that is to be overlapped with the decoded data of the particular block.

Transition handling for a FD downmix to TD downmix transition.

[0125] Consider block k+3 which is a TD downmixing block that immediately follows a FD downmixing block k+2.
Because the previous block was a FD domain downmixing block, the overlap-add buffer at the earlier stages, e.g., prior
to TD downmixing contain the downmixed data in the left and right channels, and no data in the other channels. The
current block’s contributions are not downmixed until after the TD downmixing. In order to properly determine the down-
mixed PCM data for output, both the present block’s and the previous block’s data needs to be included. For this, the
previous block’s data needs to be flushed out. The present block’s data needs to be downmixed in the time domain and
added to the inverse transformed data that was flushed out to determine the downmixed PCM data for output. This
processing is included in the FD downmix transition logic 723 of FIGS. 7 and 8, and by the code in the FD downmix
transition logic module shown in FIG. 5B. The processing carried out therein is summarized in the FD downmix transition
logic section 723 of FIG. 8. In more detail, assuming there are output PCM buffers for each output channel, transition
handling for a FD downmix to TD downmix transition includes:

• Flush the overlap buffers by feeding zeros into overlap-add logic and carrying out windowing and overlap-add. Copy
the output into the output PCM buffer. The data flushed out is the PCM data of the FD downmix of the previous
block. The overlap buffer now contains zeros.

• Carry out inverse transforming of the new data of the current block to generate pre- downmixing data of the current
block. Feed this new time domain data (after transform) into the overlap-add logic.

• Carry out windowing and overlap-add, TPNP if any, and TD downmix with the new data from the current block to
generate PCM data of the TD downmix of the current block

• Add the PCM data of the TD downmix and of the FD downmix to generate PCM output.

[0126] In addition to transitions from time domain downmixing to frequency domain downmixing, program changes
are handled in the time domain downmix transition logic and program change handler. Newly emerging channels are
automatically included in the downmix and hence do not need any special treatment. Channels which are no longer
present in the new program need to be faded out. This is carried out, as shown in section 715 in FIG. 8 for the FD
downmixing case, by flushing out the overlap buffers of the fading channels. Flushing out is carried out by feeding zeros
into the overlap-add logic and carrying out windowing and overlap-add.
[0127] Note that the flowchart shown and in some embodiments, the Frequency domain downmix logic section 711
includes disabling the optional gain ranging feature for all channels that are part of the frequency domain downmix.
Channels may have different gain ranging parameters which would induce different scaling of a channel’s spectral
coefficients, thus preventing a downmix.
[0128] In an alternative implementation, the FD downmixing logic section 711 is modified such that the minimum of
all gains is used to perform gain ranging for a (frequency domain) downmixed channel.
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Time domain downmixing with changing downmixing coefficients and need for explicit cross fading

[0129] Downmixing can create several problems. Different downmix equations are called for in different circumstances,
thus, the downmix coefficients may need to change dynamically based on signal conditions. Metadata parameters are
available that allow tailoring the downmix coefficients for optimal results.
[0130] Thus, the downmixing coefficients can change over time. When there is a change from a first set of downmixing
coefficients to a second set of downmixing coefficients, the data should be cross-faded from the first set to the second set.
[0131] When downmixing is carried out in the frequency domain, and also in many decoder implementations, e.g., in
a prior art AC-3 decoder, such as shown in FIG. 1, the downmixing is carried out prior to the windowing and overlap-
add operations. The advantage of carrying out downmixing in the frequency domain, or in the time domain prior to
windowing and overlap-add is that there is inherent cross-fading as a result of the overlap-add operations. Hence, in
many known AC-3 decoders and decoding methods in which the downmixing is carried out in the window domain after
inverse transforming, or in the frequency domain in the hybrid downmixing implementations, there is no explicit cross-
fade operation.
[0132] In the case of time domain downmixing and transient pre-noise processing (TPNP), there would be a one block
delay in transient pre-noise processing decoding caused by program change issues, e.g., in a 7.1 decoder. Thus, in
embodiments of the present invention, when downmixing is carried out in the time domain and TPNP is used, time
domain downmixing is carried out after the windowing and overlap-add. The order of processing in the case time domain
downmixing is used, is: carrying out the inverse transform, e.g., MDCT, carrying out windowing and overlap-add, carrying
out any transient pre-noise processing decoding (no delay), and then time domain downmixing.
[0133] In such a case, the time domain downmixing requires cross-fading of previous and current downmixing data,
e.g., downmixing coefficients or downmixing tables to ensure that any change in downmix coefficients are smoothed out.
[0134] One option is to so carry out cross-fade operation to compute the resultant coefficient. Denote by c[i] the mixing
coefficient to use, where i denotes the time index of 256 time domain samples, so that the range is i=0,...,255. Denote
by w2[i]. a positive window function such that w2[i] + w2[255 - i] = 1 for i=0,...,255. Denote by cold the pre-update mixing
coefficient and by cnew the updated mixing coefficient. The cross-fade operation to apply is:

[0135] After each pass through the coefficient cross fade operation, the old coefficients are updated with the new, as
cold ← cnew.
[0136] In the next pass, if the coefficients are not updated,

[0137] In other words, the influence of the old coefficient set is completely gone!
[0138] The inventors observed that in many audio streams and downmixing situations, mixing coefficients do not often
change. To improve the performance of the time domain downmixing process, embodiments of the time domain down-
mixing module include testing to ascertain if the downmixing coefficients have changed from their previous value, and
if not, to carry out downmixing, else, if they have changed, to carry out cross-fading of the downmixing coefficients
according to a pre-selected positive window function. In one embodiment, the window function is the same window
function as used in the windowing and overlap-add operations. In another embodiment, a different window function is used.
[0139] FIG. 11 shows simplified pseudocode for one embodiment of downmixing. The decoder for such an embodiment
uses at least one x86 processor that executes SSE vector instructions. The downmixing includes ascertaining if the new
downmixing data are unchanged from the old downmixing data. If so, the downmixing includes setting up for running
SSE vector instructions on at least one of the one or more x86 processors, and downmixing using the unchanged
downmixing data including executing at least one running SSE vector instruction. Otherwise, if the new downmixing data
are changed from the old downmixing data, the method includes determining cross-faded downmixing data by cross-
fading operation.

Excluding processing unneeded data

[0140] In some downmixing situations, there is at least one channel that does not contribute to the downmixed output.
For example, in many cases of downmixing from 5.1 audio to stereo, the LFE channel is not included, so that the downmix
is 5.1 to 2.0. The exclusion of the LFE channel from the downmix may be inherent to the coding format, as is the case
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for AC-3, or controlled by metadata, as is the case for E-AC-3. In E-AC-3, the lfemixlevcode parameter determines
whether or not the LFE channel is included in the downmix. When the lfemixlevcode parameter is 0, the LFE channel
is not included in the downmix.
[0141] Recall that downmixing may be carried out in the frequency domain, in the pseudo-time domain after inverse
transforming but before the windowing and overlap add operation, or in the time domain after inverse transforming and
after the windowing and overlap add operation. Pure time domain downmixing is carried out in many known E-AC-3
decoders, and in some embodiments of the present invention, and is advantageous, e.g., because of the presence of
TPNP, pseudo-time domain downmixing is carried out in many AC-3 decoders and in some embodiments of the present
invention, and is advantageous because the overlap-add operation provides inherent cross-fading that is advantageous
for when downmixing coefficients change, and frequency domain downmixing is carried out in some embodiments of
the present invention when conditions allow.
[0142] As discussed herein, frequency-domain downmixing is the most efficient downmixing method, as it minimizes
the number of inverse transform and windowing and overlap-add operations required to produce a 2-channel output
from a 5.1-channel input. In some embodiments of the present invention, when FD downmixing is carried out, e.g., in
FIG. 8, in the FD downmix loop section 711 in the loop that starts with element 813, ends with 814 and increments in
815 to the next channel, those channels not included in the downmix are excluded in the processing.
[0143] Downmixing in either the pseudo-time domain after the inverse transform but before the windowing and overlap-
add, or in the time domain after the inverse transform and the windowing and overlap-add is less computationally efficient
than in the frequency domain. In many present day decoders, such as present-day AC-3 decoders, downmixing is carried
out in the pseudo-time domain. The inverse transform operation is carried out independently from downmixing operation,
e.g., in separate modules. The inverse transform in such decoders is carried out on all input channels. This is compu-
tationally relatively inefficient, because, in the case of the LFE channel not being included, the inverse transform is still
carried out for this channel. This unnecessary processing is significant because, even though the LFE channel is limited
bandwidth, applying the inverse transform to the LFE channel requires as much computation as applying the inverse
transform to any full bandwidth channel. The inventors recognized this inefficiency. Some embodiments of the present
invention include identifying one or more non-contributing channels of the N.n input channels, a non-contributing channel
being a channel that does not contribute to the M.m output channels of decoded audio. In some embodiments, the
identifying uses information, e.g., metadata that defines the downmixing. In the 5.1 to 2.0 downmixing example, the LFE
channel is so identified as a non-contributing channel. Some embodiments of the invention include performing a frequency
to time transformation on each channel which contributes to the M.m output channels, and not performing any frequency
to time transformation on each identified channel which does not contribute to the M.m channel signal. In the 5.1 to 2.0
example in which the LFE channel does not contribute to the downmix, the inverse transform, e.g., an IMCDT is only
carried out on the five full-bandwidth channels, so that the inverse transform portion is carried out with roughly 16%
reduction of the computational resources required for all 5.1 channels. Since the IMDCT is a significant source of
computational complexity in the decoding method, this reduction may be significant.
[0144] In many present day decoders, such as present-day E-AC-3 decoders, downmixing is carried out in the time
domain. The inverse transform operation and overlap-add operations are carried out prior to any TPNP and prior to
downmixing, independent from the downmixing operation, e.g., in separate modules. The inverse transform and the
windowing and overlap-add operations in such decoders are carried out on all input channels. This is computationally
relatively inefficient, because, in the case of the LFE channel not being included, the inverse transform and window-
ing/overlap add are still carried out for this channel. This unnecessary processing is significant because, even though
the LFE channel is limited bandwidth, applying the inverse transform and overlap-add to the LFE channel requires as
much computation as applying the inverse transform and windowing/overlap-add to any full bandwidth channel. In some
embodiments of the present invention, downmixing is carried out in the time domain, and in other embodiments, down-
mixing may be carried out in the time domain depending on the outcome of applying the downmix method selection
logic. Some embodiments of the present invention in which TD downmixing is used include identifying one or more non-
contributing channels of the N.n input channels. In some embodiments, the identifying uses information, e.g., metadata
that defines the downmixing. In the 5.1 to 2.0 downmixing example, the LFE channel is so identified as a non-contributing
channel. Some embodiments of the invention include performing an inverse transform, i.e., frequency to time transfor-
mation on each channel which contributes to the M.m output channels, and not performing any frequency to time
transformation and other time-domain processing on each identified channel which does not contribute to the M.m
channel signal. In the 5.1 to 2.0 example in which the LFE channel does not contribute to the downmix, the inverse
transform, e.g., an IMCDT, the overlap-add, and the TPNP are only carried out on the five full-bandwidth channels, so
that the inverse transform and windowing/overlap-add portions are carried out with roughly 16% reduction of the com-
putational resources required for all 5.1 channels. In the flowchart of FIG. 8, in the common processing logic section
731, one feature of some embodiments includes that the processing in the loop starting with element 833, continuing to
834, and including the increment to next channel element 835 is carried out for all channels except the non-contributing
channels. This happens inherently for a block that is FD downmixed.
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[0145] While in some embodiments, the LFE is a non-contributing channel, i.e., is not included in the downmixed
output channels, as is common in AC-3 and E-AC-3, in other embodiments, a channel other than the LFE is also or
instead a non-contributing channel and is not included in the downmixed output. Some embodiments of the invention
include checking for such conditions to identify which one or more channels, if any, are non-contributing in that such a
channel is not included in the downmix, and, in the case of time domain downmixing, not performing processing through
inverse transform and window overlap-add operations for any identified non-contributing channel.
[0146] For example, in AC-3 and E-AC-3, there are certain conditions in which the surround channels and/or the center
channel are not included in the downmixed output channels. These conditions are defined by metadata included in the
encoded bitstream taking predefined values. The metadata, for example, may include information that defines the down-
mixing including mix level parameters.
[0147] Some such examples of such mix level parameters are now described for illustration purposes for the case of
E-AC-3. In downmixing to stereo in E-AC-3, two types of downmixing are provided: downmix to an LtRt matrix surround
encoded stereo pair and downmix to a conventional stereo signal, LoRo. The downmixed stereo signal (LoRo, or LtRt)
may be further mixed to mono. A 3-bit LtRt surround mix level code denoted ltrtsurmixlev, and a 3-bit LoRo surround
mix level code denoted lorosurmixlev indicate the nominal downmix level of the surround channels with respect to the
left and right channels in a LtRt, or LoRo downmix, respectively. A value of binary ’111’ indicates a downmix level of 0,
i.e., -∞dB. 3-bit LtRt and LoRo center mix level codes denoted ltrtcmixlev, lorocmixlev indicate the nominal downmix
level of the center channel with respect to the left and right channels in an LtRt and LoRo downmix, respectively. A value
of binary ’111’ indicates a downmix level of 0, i.e., -∞dB.
[0148] There are conditions in which the surround channels are not included in the downmixed output channels. In E-
AC-3 these conditions are identified by metadata. These conditions include the cases where surmixlev=’10’ (AC-3 only),
ltrtsurmixlev=’ 111’, and lorosurmixlev=’ 111’. For these conditions, in some embodiments, a decoder includes using
the mix level metadata to identify that such metadata indicates the surround channels are not included in the downmix,
and not processing the surround channels through the inverse transform and windowing/overlapadd stages. Additionally,
there are conditions in which the center channel is not included in the downmixed output channels, identified by ltrtc-
mixlev==’ 111’, lorocmixlev==’111’. For these conditions, in some embodiments, a decoder includes using the mix
level metadata to identify that such metadata indicates the center channel is not included in the downmix, and not
processing the center channel through the inverse transform and windowing/overlap-add stages.
[0149] In some embodiments, the identifying of one or more non-contributing channels is content dependent. As one
example, the identifying includes identifying whether one or more channels have an insignificant amount of content
relative to one or more other channels. A measure of content amount is used. In one embodiment, the measure of
content amount is energy, while in another embodiment, the measure of content amount is the absolute level. The
identifying includes comparing the difference of the measure of content amount between pairs of channels to a settable
threshold. As an example, in one embodiment, identifying one or more non-contributing channels includes ascertaining
if the surround channel content amount of a block is less than each front channel content amount by at least a settable
threshold in order to ascertain if the surround channel is a non-contributing channel.
[0150] Ideally, the threshold is selected to be as low as possible without introducing noticeable artifacts into the
downmixed version of the signal in order to maximize identifying channels as non-contributing to reduce the amount of
computation required, while minimizing the quality loss. In some embodiments, different thresholds are provided for
different decoding applications, with the choice of threshold for a particular decoding application representing an ac-
ceptable balance between quality of downmix (higher thresholds) and computational complexity reduction (lower thresh-
olds) for the specific application.
[0151] In some embodiments of the present invention, a channel is considered insignificant with respect to another
channel if its energy or absolute level is at least 15 dB below that of the other channel. Ideally, a channel is insignificant
relative to another channel if its energy or absolute level is at least 25 dB below that of the other channel.
[0152] Using a threshold for the difference between two channels denoted A and B that is equivalent to 25dB is roughly
equivalent to saying that the level of the sum of the absolute values of the two channels is within 0.5 dB of the level of
the dominant channel. That is, if channel A is at -6 dBFS (dB relative to full scale) and channel B is at -31 dBFS, the
sum of the absolute values of channel A and B will be roughly -5.5 dBFS, or about 0.5 dB greater than the level of channel A.
[0153] If the audio is of relatively low quality, and for low cost applications, it may be acceptable to sacrifice quality to
reduce complexity, the threshold could be lower than 25 dB. In one example, a threshold of 18dB is used. In such a
case, the sum of the two channels may be within about 1 dB of the level of the channel with the higher level. This may
be audible in certain cases, but should not be too objectionable. In another embodiment, a threshold of 15 dB is used,
in which case the sum of the two channels is within 1.5 dB of the level of the dominant channel.
[0154] In some embodiments, several thresholds are used, e.g., 15dB, 18dB, and 25dB.
[0155] Note that while identifying non-contributing channels is described herein above for AC-3 and E-AC-3, the
identifying non-contributing channel feature of the invention is not limited to such formats. Other formats, for example,
also provide information, e.g., metadata regarding the downmixing that is usable for the identifying of one or more non-
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contributing channels. Both MPEG-2 AAC (ISO/IEC 13818-7) and MPEG-4 Audio (ISO/IEC 14496-3) are capable of
transmitting what is referred to by the standard as a "matrix-mixdown coefficient." Some embodiments of the invention
for decoding such formats use this coefficient to construct a stereo or mono signal from a 3/2, i.e., Left, Center, Right,
Left Surround, Right Surround signal. The matrix-mixdown coefficient determines how the surround channels are mixed
with the front channels to construct the stereo or mono output. Four possible values of the matrix-mixdown coefficient
are possible according to each of these standards, one of which is 0. A value of 0 results in the surround channels not
being included in the downmix. Some MPEG-2 AAC decoder or MPEG-4 Audio decoder embodiments of the invention
include generating a stereo or mono downmix from a 3/2 signal using the mixdown coefficients signalled in the bitstream,
and further include identifying a non-contributing channel by a matrix-mixdown coefficient of 0, in which case, the inverse
transforming and windowing/overlap-add processing is not carried out.
[0156] FIG. 12 shows a simplified block diagram of one embodiment of a processing system 1200 that includes at
least one processor 1203. In this example, one x86 processor whose instruction set includes SSE vector instructions is
shown. Also shown in simplified block form is a bus subsystem 1205 by which the various components of the processing
system are coupled. The processing system includes a storage subsystem 1211 coupled to the processor(s), e.g., via
the bus subsystem 1205, the storage subsystem 1211 having one or more storage devices, including at least a memory
and in some embodiments, one or more other storage devices, such as magnetic and/or optical storage components.
Some embodiments also include at least one network interface 1207, and an audio input/output subsystem 1209 that
can accept PCM data and that includes one or more DACs to convert the PCM data to electric waveforms for driving a
set of loudspeakers or earphones. Other elements may also be included in the processing system, and would be clear
to those of skill in the art, and that are not shown in FIG. 12 for the sake of simplicity.
[0157] The storage subsystem 1211 includes instructions 1213 that when executed in the processing system, cause
the processing system to carry out decoding of audio data that includes N.n channels of encoded audio data, e.g., E-
AC-3 data to form decoded audio data that includes M.m channels of decoded audio, M≥1 and, for the case of downmixing,
M<N. For today’s known coding formats, n=0 or 1 and m=0 or 1, but the invention is not so limited. In some embodiments,
the instructions 1211 are partitioned into modules. Other instructions (other software) 1215 also typically are included
in the storage subsystem. The embodiment shown includes the following modules in instructions 1211: two decoder
modules: an independent frame 5.1 channel decoder module 1223 that includes a front-end decode module 1231 and
a back-end decode module 1233, a dependent frame decoder module 1225 that includes a front-end decode module
1235 and a back-end decode module 1237, a frame information analyze module of instructions 1221 that when executed
causes unpacking Bit Stream Information (BSI) field data from each frame to identify the frames and frame types and
to provide the identified frames to appropriate front-end decoder module instantiations 1231 or 1235, and a channel
mapper module of instructions 1227 that when executed and in the case N>5 cause combining the decoded data from
respective back-end decode modules to form the N.n channels of decoded data.
[0158] Alternate processing system embodiments may include one or more processors coupled by at least one network
link, i.e., be distributed. That is, one or more of the modules may be in other processing systems coupled to a main
processing system by a network link. Such alternate embodiments would be clear to one of ordinary skill in the art. Thus,
in some embodiments, the system comprises one or more subsystems that are networked via a network link, each
subsystem including at least one processor.
[0159] Thus, the processing system of FIG. 12 forms an embodiment of an apparatus for processing audio data that
includes N.n channels of encoded audio data to form decoded audio data that includes M.m channels of decoded audio,
M≥1, in the case of downmixing, M<N, and for upmixing, M>N. While for today’s standards, n=0 or 1 and m=0 or 1, other
embodiments are possible. The apparatus includes several functional elements expressed functionally as means for
carrying out a function. By a functional element is meant an element that carries out a processing function. Each such
element may be a hardware element, e.g., special purpose hardware, or a processing system that includes a storage
medium that includes instructions that when executed carry out the function. The apparatus of FIG. 12 includes means
for accepting the audio data that includes N channels of encoded audio data encoded by an encoding method, e.g., an
E-AC-3 coding method, and in more general terms, an encoding method that comprises transforming using an overlapped-
transform N channels of digital audio data, forming and packing frequency domain exponent and mantissa data, and
forming and packing metadata related to the frequency domain exponent and mantissa data, the metadata optionally
including metadata related to transient pre-noise processing.
[0160] The apparatus includes means for decoding the accepted audio data.
[0161] In some embodiments the means for decoding includes means for unpacking the metadata and means for
unpacking and for decoding the frequency domain exponent and mantissa data, means for determining transform co-
efficients from the unpacked and decoded frequency domain exponent and mantissa data; means for inverse transforming
the frequency domain data; means for applying windowing and overlap-add operations to determine sampled audio
data; means for applying any required transient pre-noise processing decoding according to the metadata related to
transient pre-noise processing; and means for TD downmixing according to downmixing data. The means for TD down-
mixing, in the case M<N, downmixes according to downmixing data, including in some embodiment, testing whether the
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downmixing data are changed from previously used downmixing data, and, if changed, applying cross-fading to determine
cross-faded downmixing data and downmixing according to the cross-faded downmixing data, and if unchanged directly
downmixing according to the downmixing data.
[0162] Some embodiments include means for ascertaining for a block whether TD downmixing or FD downmixing is
used, and means for FD downmixing that is activated if the means for ascertaining for a block whether TD downmixing
or FD downmixing is used ascertains FD downmixing, including means for TD to FD downmix transition processing.
Such embodiments also include means for FD to TD downmix transition processing. The operation of these elements
is as described herein.
[0163] In some embodiments, the apparatus includes means for identifying one or more non-contributing channels of
the N.n input channels, a non-contributing channel being a channel that does not contribute to the M.m channels. The
apparatus does not carry out inverse transforming the frequency domain data and the applying further processing such
as TPNP or overlap-add on the one or more identified non-contributing channels.
[0164] In some embodiments, the apparatus includes at least one x86 processor whose instruction set includes stream-
ing single instruction multiple data extensions (SSE) comprising vector instructions. The means for downmixing in op-
eration runs vector instructions on at least one of the one or more x86 processors.
[0165] Alternate apparatuses to those shown in FIG. 12 also are possible. For example, one or more of the elements
may be implemented by hardware devices, while others may be implemented by operating an x86 processor. Such
variations would be straightforward to those skilled in the art.
[0166] In some embodiments of the apparatus, the means for decoding includes one or more means for front-end
decoding and one or more means for back-end decoding. The means for front-end decoding includes the means for
unpacking the metadata and the means for unpacking and for decoding the frequency domain exponent and mantissa
data. The means for back-end decoding includes the means for ascertaining for a block whether TD downmixing or FD
downmixing is used, the means for FD downmixing that includes the means for TD to FD downmix transition processing,
the means for FD to TD downmix transition processing, the means for determining transform coefficients from the
unpacked and decoded frequency domain exponent and mantissa data; for inverse transforming the frequency domain
data; for applying windowing and overlap-add operations to determine sampled audio data; for applying any required
transient pre-noise processing decoding according to the metadata related to transient pre-noise processing; and for
time domain downmixing according to downmixing data. The time domain downmixing, in the case M<N, downmixes
according to downmixing data, including, in some embodiments, testing whether the downmixing data are changed from
previously used downmixing data, and, if changed, applying cross-fading to determine cross-faded downmixing data
and downmixing according to the cross-faded downmixing data, and if unchanged, downmixing according to the down-
mixing data.
[0167] For processing E-AC-3 data of more than 5.1 channels of coded data, means for decoding includes multiple
instances of the means for front-end decoding and of the means for back-end decoding, including a first means for front-
end decoding and a first means for back-end decoding for decoding the independent frame of up to 5.1 channels, a
second means for front-end decoding and a second means for back-end decoding for decoding one or more dependent
frames of data. The apparatus also includes means for unpacking Bit Stream Information field data to identify the frames
and frame types and to provide the identified frames to appropriate means of front-end decoding, and means for combining
the decoded data from respective means for back-end decoding to form the N channels of decoded data.
[0168] Note that while E-AC-3 and other coding methods use an overlap-add transform, and in the inverse transforming,
include windowing and overlap-add operations, it is known that other forms of transforms are possible that operate in a
manner such that inverse transforming and further processing can recover time domain samples without aliasing errors.
Therefore, the invention is not limited to overlap-add transforms, and whenever is mentioned inverse transforming
frequency domain data and carrying out windowed-overlap-add operation to determine time domain samples, those
skilled in the art will understand that in general, these operations can be stated as "inverse transforming the frequency
domain data and applying further processing to determine sampled audio data."
[0169] Although the terms exponent and mantissa are used throughout the description because these are the terms
used in AC-3 andE-AC-3, other coding formats may use other terms, e.g., scale factors and spectral coefficients in the
case of HE-AAC, and the use of the terms exponent and mantissa does not limit the scope of the invention to formats
which use the terms exponent and mantissa.
[0170] Unless specifically stated otherwise, as apparent from the following description, it is appreciated that throughout
the specification discussions utilizing terms such as "processing," "computing," "calculating," "determining," "generating"
or the like, refer to the action and/or processes of a hardware element, e.g., a computer or computing system, a processing
system, or similar electronic computing device, that manipulate and/or transform data represented as physical, such as
electronic, quantities into other data similarly represented as physical quantities.
[0171] In a similar manner, the term "processor" may refer to any device or portion of a device that processes electronic
data, e.g., from registers and/or memory to transform that electronic data into other electronic data that, e.g., may be
stored in registers and/or memory. A "processing system" or "computer" or a "computing machine" or a "computing
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platform" may include one or more processors.
[0172] Note that when a method is described that includes several elements, e.g., several steps, no ordering of such
elements, e.g., steps is implied, unless specifically stated.
[0173] In some embodiments, a computer-readable storage medium is configured with, e.g., is encoded with, e.g.,
stores instructions that when executed by one or more processors of a processing system such as a digital signal
processing device or subsystem that includes at least one processor element and a storage subsystem, cause carrying
out a method as described herein. Note that in the description above, when it is stated that instructions are configured,
when executed, to carry out a process, it should be understood that this means that the instructions, when executed,
cause one or more processors to operate such that a hardware apparatus, e.g., the processing system carries out the
process.
[0174] The methodologies described herein are, in some embodiments, performable by one or more processors that
accept logic, instructions encoded on one or more computer-readable media. When executed by one or more of the
processors, the instructions cause carrying out at least one of the methods described herein. Any processor capable of
executing a set of instructions (sequential or otherwise) that specify actions to be taken is included. Thus, one example
is a typical processing system that includes one or more processors. Each processor may include one or more of a CPU
or similar element, a graphics processing unit (GPU), and/or a programmable DSP unit. The processing system further
includes a storage subsystem with at least one storage medium, which may include memory embedded in a semicon-
ductor device, or a separate memory subsystem including main RAM and/or a static RAM, and/or ROM, and also cache
memory. The storage subsystem may further include one or more other storage devices, such as magnetic and/or optical
and/or further solid state storage devices. A bus subsystem may be included for communicating between the components.
The processing system further may be a distributed processing system with processors coupled by a network, e.g., via
network interface devices or wireless network interface devices. If the processing system requires a display, such a
display may be included, e.g., a liquid crystal display (LCD), organic light emitting display (OLED), or a cathode ray tube
(CRT) display. If manual data entry is required, the processing system also includes an input device such as one or
more of an alphanumeric input unit such as a keyboard, a pointing control device such as a mouse, and so forth. The
term storage device, storage subsystem, or memory unit as used herein, if clear from the context and unless explicitly
stated otherwise, also encompasses a storage system such as a disk drive unit. The processing system in some con-
figurations may include a sound output device, and a network interface device.
[0175] The storage subsystem thus includes a computer-readable medium that is configured with, e.g., encoded with
instructions, e.g., logic, e.g., software that when executed by one or more processors, causes carrying out one or more
of the method steps described herein. The software may reside in the hard disk, or may also reside, completely or at
least partially, within the memory such as RAM and/or within the memory internal to the processor during execution
thereof by the computer system. Thus, the memory and the processor that includes memory also constitute computer-
readable medium on which are encoded instructions.
[0176] Furthermore, a computer-readable medium may form a computer program product, or be included in a computer
program product.
[0177] In alternative embodiments, the one or more processors operate as a standalone device or may be connected,
e.g., networked to other processor(s), in a networked deployment, the one or more processors may operate in the
capacity of a server or a client machine in server-client network environment, or as a peer machine in a peer-to-peer or
distributed network environment. The term processing system encompasses all such possibilities, unless explicitly ex-
cluded herein. The one or more processors may form a personal computer (PC), a media playback device, a tablet PC,
a set-top box (STB), a Personal Digital Assistant (PDA), a game machine, a cellular telephone, a Web appliance, a
network router, switch or bridge, or any machine capable of executing a set of instructions (sequential or otherwise) that
specify actions to be taken by that machine.
[0178] Note that while some diagram(s) only show(s) a single processor and a single storage subsystem, e.g., a single
memory that stores the logic including instructions, those skilled in the art will understand that many of the components
described above are included, but not explicitly shown or described in order not to obscure the inventive aspect. For
example, while only a single machine is illustrated, the term "machine" shall also be taken to include any collection of
machines that individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the
methodologies discussed herein.
[0179] Thus, one embodiment of each of the methods described herein is in the form of a computer-readable medium
configured with a set of instructions, e.g., a computer program that when executed on one or more processors, e.g.,
one or more processors that are part of a media device, cause carrying out of method steps. Some embodiments are
in the form of the logic itself. Thus, as will be appreciated by those skilled in the art, embodiments of the present invention
may be embodied as a method, an apparatus such as a special purpose apparatus, an apparatus such as a data
processing system, logic, e.g., embodied in a computer-readable storage medium, or a computer-readable storage
medium that is encoded with instructions, e.g., a computer-readable storage medium configured as a computer program
product. The computer-readable medium is configured with a set of instructions that when executed by one or more
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processors cause carrying out method steps. Accordingly, aspects of the present invention may take the form of a
method, an entirely hardware embodiment that includes several functional elements, where by a functional element is
meant an element that carries out a processing function. Each such element may be a hardware element, e.g., special
purpose hardware, or a processing system that includes a storage medium that includes instructions that when executed
carry out the function. Aspects of the present invention may take the form of an entirely software embodiment or an
embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of program
logic, e.g., in a computer readable medium, e.g., a computer program on a computer-readable storage medium, or the
computer readable medium configured with computer-readable program code, e.g., a computer program product. Note
that in the case of special purpose hardware, defining the function of the hardware is sufficient to enable one skilled in
the art to write a functional description that can be processed by programs that automatically then determine hardware
description for generating hardware to carry out the function. Thus, the description herein is sufficient for defining such
special purpose hardware.
[0180] While the computer readable medium is shown in an example embodiment to be a single medium, the term
"medium" should be taken to include a single medium or multiple media (e.g., several memories, a centralized or
distributed database, and/or associated caches and servers) that store the one or more sets of instructions. A computer
readable medium may take many forms, including but not limited to non-volatile media and volatile media. Non-volatile
media includes, for example, optical, magnetic disks, and magneto-optical disks. Volatile media includes dynamic mem-
ory, such as main memory.
[0181] It will also be understood that embodiments of the present invention are not limited to any particular implemen-
tation or programming technique and that the invention may be implemented using any appropriate techniques for
implementing the functionality described herein. Furthermore, embodiments are not limited to any particular programming
language or operating system.
[0182] Reference throughout this specification to "one embodiment" or "an embodiment" means that a particular
feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment
of the present invention. Thus, appearances of the phrases "in one embodiment" or "in an embodiment" in various places
throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, the particular
features, structures or characteristics may be combined in any suitable manner, as would be apparent to one of ordinary
skill skilled in the art from this disclosure, in one or more embodiments.
[0183] Similarly it should be appreciated that in the above description of example embodiments of the invention, various
features of the invention are sometimes grouped together in a single embodiment, figure, or description thereof for the
purpose of streamlining the disclosure and aiding in the understanding of one or more of the various inventive aspects.
This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed invention requires
more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in
less than all features of a single foregoing disclosed embodiment. Thus, the claims following the DESCRIPTION OF
EXAMPLE EMBODIMENTS are hereby expressly incorporated into this DESCRIPTION OF EXAMPLE EMBODIMENTS,
with each claim standing on its own as a separate embodiment of this invention.
[0184] Furthermore, while some embodiments described herein include some but not other features included in other
embodiments, combinations of features of different embodiments are meant to be within the scope of the invention, and
form different embodiments, as would be understood by those skilled in the art. For example, in the following claims,
any of the claimed embodiments can be used in any combination.
[0185] Furthermore, some of the embodiments are described herein as a method or combination of elements of a
method that can be implemented by a processor of a computer system or by other means of carrying out the function.
Thus, a processor with the necessary instructions for carrying out such a method or element of a method forms a means
for carrying out the method or element of a method. Furthermore, an element described herein of an apparatus embod-
iment is an example of a means for carrying out the function performed by the element for the purpose of carrying out
the invention.
[0186] In the description provided herein, numerous specific details are set forth. However, it is understood that
embodiments of the invention may be practiced without these specific details. In other instances, well-known methods,
structures and techniques have not been shown in detail in order not to obscure an understanding of this description.
[0187] As used herein, unless otherwise specified, the use of the ordinal adjectives "first", "second", "third", etc., to
describe a common object, merely indicate that different instances of like objects are being referred to, and are not
intended to imply that the objects so described must be in a given sequence, either temporally, spatially, in ranking, or
in any other manner.
[0188] It should be appreciated that although the invention has been described in the context of the E-AC-3 standard,
the invention is not limited to such contexts and may be utilized for decoding data encoded by other methods that use
techniques that have some similarity to E-AC-3. For example, embodiments of the invention are applicable also for
decoding coded audio that is backwards compatible with E-AC-3. Other embodiments are applicable for decoding coded
audio that is coded according to the HE-AAC standard, and for decoding coded audio that is backwards compatible with
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HE-AAC. Other coded streams can also be advantageously decoded using embodiments of the present invention.
[0189] Any discussion of prior art in this specification should in no way be considered an admission that such prior art
is widely known, is publicly known, or forms part of the general knowledge in the field.
[0190] In the claims below and the description herein, any one of the terms comprising, comprised of or which comprises
is an open term that means including at least the elements/features that follow, but not excluding others. Thus, the term
comprising, when used in the claims, should not be interpreted as being limitative to the means or elements or steps
listed thereafter. For example, the scope of the expression a device comprising A and B should not be limited to devices
consisting of only elements A and B. Any one of the terms including or which includes or that includes as used herein
is also an open term that also means including at least the elements/features that follow the term, but not excluding
others. Thus, including is synonymous with and means comprising.
[0191] Similarly, it is to be noticed that the term coupled, when used in the claims, should not be interpreted as being
limitative to direct connections only. The terms "coupled" and "connected," along with their derivatives, may be used. It
should be understood that these terms are not intended as synonyms for each other. Thus, the scope of the expression
a device A coupled to a device B should not be limited to devices or systems wherein an output of device A is directly
connected to an input of device B. It means that there exists a path between an output of A and an input of B which may
be a path including other devices or means. "Coupled" may mean that two or more elements are either in direct physical
or electrical contact, or that two or more elements are not in direct contact with each other but yet still co-operate or
interact with each other.
[0192] Thus, while there has been described what are believed to be the preferred embodiments of the invention,
those skilled in the art will recognize that other and further modifications may be made thereto without departing from
the scope of the invention. For example, any formulas given above are merely representative of procedures that may
be used. Functionality may be added or deleted from the block diagrams and operations may be interchanged among
functional elements. Steps may be added or deleted to methods described within the scope of the present invention.

Claims

1. A method of operating an audio decoder to decode audio data that includes encoded blocks of N.n channels of
audio data to form decoded audio data that includes M,m channels of decoded audio, M≥1, n being the number of
low frequency effects channels in the encoded audio data, and m being the number of low frequency effects channels
in the decoded audio data, the method comprising:

accepting the audio data that includes blocks of N.n channels of encoded audio data encoded by an encoding
method, the encoding method including transforming N.n channels of digital audio data, and forming and packing
frequency domain exponent and mantissa data; and
decoding the accepted audio data, the decoding including:

unpacking and decoding the frequency domain exponent and mantissa data;
determiningtransform coefficients from the unpacked and decoded frequency domain exponent and man-
tissa data;
inverse transforming the frequency domain data and applying further processing to determine sampled
audio data; and
time domain downmixing at least some blocks of the determined sampled audio data according to down-
mixing data for the case M<N,

wherein the accepted audio data comprises metadata;
wherein the method includes identifying (835) one or more non-contributing channels of the N.n input channels
based on the metadata, a non-contributing channel being a channel that does not contribute to the M.m channels, and
wherein the method carries out unpacking and decoding the frequency domain exponent and mantissa data for the
one or more identified non-contributing channels but wherein the method need not carry out inverse transforming
the frequency domain data and need not carry out applying further processing on the one or more identified non-
contributing channels.

2. The method according to claim 1, wherein the transforming in the encoding method uses an overlapped-transform,
and wherein the further processing includes applying windowing and overlap-add operations (609) to determine
sampled audio data.

3. The method according to any one of claim 1 to claim 2, wherein the encoding method includes forming and packing
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metadata related to the frequency domain exponent and mantissa data, the metadata optionally including metadata
related to transient pre-noise processing and to downmixing,

4. The method according to any one of claim 1 to claim 3, wherein the accepted audio data are in the form of a bitstream
of frames of coded data, and wherein the decoding is partitioned into a set of front-end decode operations (201),
and a set of back-end decode operations (203), the front-end decode operations including the unpacking and
decoding the frequency domain exponent and mantissa data of a frame of the bitstream into unpacked and decoded
frequency domain exponent and mantissa data for the frame, and metadata accompanying the frame, the back-end
decode operations including the determining of the transform coefficients, the inverse transforming and applying
further processing, applying any required transient pre-noise processing decoding, and downmixing in the case M<N.

5. The method according to claim 4, wherein the front-end decode operations are carried out in a first pass followed
by a second pass, the first pass comprising unpacking metadata block-by-block and saving pointers to where the
packed exponent and mantissa data are stored, and the second pass comprising using the saved pointers to the
packed exponents and mantissa, and unpacking and decoding exponent and mantissa data channel-by-channel.

6. The method according to any one of claim 1 to claim 5, wherein the encoded audio data are encoded according to
one of the set of standards consisting of the AC-3 standard, the E-AC-3 standard, a standard backwards compatible
with the E-AC-3 standard, and HE-AAC standard, and a standard backwards compatible with HE-AAC.

7. The method according to any preceding claim, wherein the decoder (200) uses at least one x86 processor whose
instruction set includes streaming single instruction multiple data extensions (SSE) comprising vector instructions,
and wherein the time domain downmixing includes running vector instructions on at least one of the one or more
x86 processors.

8. A computer-readable storage medium storing decoding instructions that when executed by one or more processors
of a processing system cause the processing system to carry out the method as described in any preceding method
claim.

9. An apparatus (1200) for processing audio data to decode the audio data that includes encoded blocks of N.n channels
of audio data to form decoded audio data that includes M.m channels of decoded audio, M≥1, n being the number
of low frequency effects channels in the encoded audio data, and m being the number of low frequency effects
channels in the decoded audio data, the apparatus comprising means for:

accepting the audio data that includes blocks of N.n channels of encoded audio data encoded by an encoding
method, the encoding method including transforming N.n channels of digital audio data, and forming and packing
frequency domain exponent and mantissa data; and
decoding the accepted audio data, the decoding including:

unpacking and decoding the frequency domain exponent and mantissa data;
determining transform coefficients from the unpacked and decoded frequency domain exponent and man-
tissa data;
inverse transforming the frequency domain data and applying further processing to determine sampled
audio data; and
time domain downmixing at least some blocks of the determined sampled
audio data according to downmixing data for the case M<N,

wherein the accepted audio data comprises metadata;
wherein the apparatus is configured to identify (835) one or more non-contributing channels of the N.n input
channels based on the metadata, a non-contributing channel being a channel that does not contribute to the
M.m channels, and
wherein the apparatus is further configured to carry out unpacking and decoding the frequency domain exponent
and mantissa data for the one or more identified non-contributing channels but to not carry out inverse trans-
forming the frequency domain data and not carry out applying further processing on the one or more identified
non-contributing channels.

10. The apparatus of claim 9, wherein the decoding means (200) uses at least one x86 processor whose instruction
set includes streaming single instruction multiple data extensions (SSE) comprising vector instructions, and wherein



EP 2 698 789 B1

29

5

10

15

20

25

30

35

40

45

50

55

the time domain downmixing includes running vector instructions on at least one of the one or more x86 processors.

11. A system (1200) configured to decode audio data that includes N.n channels of encoded audio data to form decoded
audio data that includes M.m channels of decoded audio, M≥1, n being the number of low frequency effects channels
in the encoded audio data, and m being the number of low frequency effects channels in the decoded audio data,
the system comprising:

one or more processors; and
a storage subsystem coupled to the one or more processors,

wherein the system is configured to accept the audio data that includes blocks of N.n channels of encoded audio
data encoded by an encoding method, the encoding method including transforming N.n channels of digital audio
data, and forming and packing frequency domain exponent and mantissa data,
wherein the storage subsystem includes instructions that when executed cause carrying out the method recited in
any of claims 1 to 7.

Patentansprüche

1. Verfahren zum Betreiben eines Audiodecodierers, um Audiodaten zu decodieren, die codierte Blöcke aus N.n-
Kanälen von Audiodaten umfassen, um decodierte Audiodaten zu bilden, die M.m-Kanäle von decodiertem Audio
umfassen, wobei M ≥ 1, n die Anzahl von Niederfrequenzeffektkanälen in den codierten Audiodaten ist, und m die
Anzahl von Niederfrequenzeffektkanälen in den decodierten Audiodaten ist, wobei das Verfahren aufweist:

Annehmen der Audiodaten, die Blöcke von N.n-Kanälen von codierten Audiodaten umfassen, die durch ein
Codierverfahren codiert sind, wobei das Codierverfahren ein Transformieren von N.n-Kanälen digitaler Audio-
daten und Bilden und Verpacken von Frequenzdomäne-Exponent- und Mantisse-Daten umfasst; und
Decodieren der angenommenen Audiodaten, wobei das Decodieren aufweist:

Entpacken und Decodieren der Frequenzdomäne-Exponent- und Mantisse-Daten;
Bestimmen von Transformationskoeffizienten aus den entpackten und decodierten Frequenzdomäne-Ex-
ponent- und Mantisse-Daten; Invers-Transformieren der Frequenzdomäne-Daten und Anwenden einer
weiteren Verarbeitung, um abgetastete Audiodaten zu bestimmen; und
Zeitdomäne-Abwärtsmischen zumindest einiger Blöcke der bestimmten abgetasteten Audiodaten gemäß
Abwärtsmischen-Daten für den Fall M<N,

wobei die angenommenen Audiodaten Metadaten aufweisen;
wobei das Verfahren ein Identifizieren (835) von einem oder mehreren nicht-beitragenden Kanälen der N.n-Ein-
gangskanäle basierend auf den Metadaten umfasst, wobei ein nicht-beitragender Kanal ein Kanal ist, der nicht zu
den M.m-Kanälen beiträgt, und wobei das Verfahren das Entpacken und Decodieren der Frequenzdomäne-Expo-
nent- und Mantisse-Daten für den einen oder mehrere identifizierte(n) nicht-beitragende(n) Kanal/Kanäle ausführt,
aber wobei das Verfahren-kein Invers-Transformieren der Frequenzdomäne-Daten ausführen muss und kein An-
wenden einer weiteren Verarbeitung auf den einen oder mehrere identifizierte(n) nicht-beitragende(n) Kanal/Kanäle
ausführen muss.

2. Das Verfahren gemäß Anspruch 1, wobei das Transformieren in dem Codierverfahren eine Überlappungstransfor-
mation verwendet, und wobei die weitere Verarbeitung ein Anwenden von Fenster- und Überlappen-Hinzufügen-
Operationen (609) umfasst, um abgetastete Audiodaten zu bestimmen.

3. Das Verfahren gemäß einem von Anspruch 1 bis Anspruch 2, wobei das Codierverfahren ein Bilden und Verpacken
von Metadaten in Bezug auf die Frequenzdomäne-Exponent- und Mantisse-Daten umfasst, wobei die Metadaten
optional Metadaten in Bezug auf ein transientes Vor-Rauschen-Verarbeiten und ein Abwärtsmischen umfassen.

4. Das Verfahren gemäß einem von Anspruch 1 bis Anspruch 3, wobei die angenommenen Audiodaten in der Form
eines Bitstroms von Rahmen von codierten Daten sind, und wobei das Decodieren in einen Satz von Front-End-
Decodier-Operationen (201) und einen Satz von Back-End-Decodier-Operationen (203) aufgeteilt ist, wobei die
Front-End-Decodier-Operationen das Entpacken und Decodieren der Frequenzdomäne-Exponent- und Mantisse-
Daten eines Rahmens des Bitstroms in entpackte und decodierte Frequenzdomäne-Exponent- und Mantisse-Daten
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für den Rahmen und den Rahmen begleitende Metadaten umfassen, wobei die Back-End-Decodier-Operationen
das Bestimmen der Transformationskoeffizienten, das Invers-Transformieren und Anwenden der weiteren Verar-
beitung, das Anwenden eines erforderlichen transienten Vor-Rauschen-Verarbeitungs-Decodierens, und ein Ab-
wärtsmischen in dem Fall von M<N umfassen.

5. Das Verfahren gemäß Anspruch 4, wobei die Front-End-Decodier-Operationen in einem ersten Schritt ausgeführt
werden, gefolgt von einem zweiten Schritt, wobei der erste Schritt ein Entpacken von Metadaten Block-für-Block
und Speichern von Zeigern zu den gespeicherten verpackten Exponent- und Mantisse-Daten aufweist, und der
zweite Schritt ein Verwenden der gespeicherten Zeiger zu den verpackten Exponenten und Mantissen und Entpacken
und Decodieren der Exponent- und Mantisse-Daten Kanal-für-Kanal aufweist.

6. Das Verfahren gemäß einem von Anspruch 1 bis Anspruch 5, wobei die codierten Audiodaten gemäß einem des
Satzes von Standards codiert sind, der aus dem AC-3-Standard, dem E-AC-3-Standard, einem rückwärts mit dem
E-AC-3-Standard kompatiblen Standard, und dem HE-AAC-Standard, und einem rückwärts mit dem HE-AAC kom-
patiblen Standard besteht.

7. Das Verfahren gemäß einem vorhergehenden Anspruch, wobei der Decodierer (200) zumindest einen x86-Prozes-
sor verwendet, dessen Anweisungssatz SSE (streaming single instruction multiple data extensions) umfasst, die
Vektoranweisungen aufweisen, und wobei das Zeitdomäne-Abwärtsmischen ein Laufenlassen der Vektoranwei-
sungen auf zumindest einem des einen oder der mehreren x86-Prozessoren aufweist.

8. Ein computerlesbares Speichermedium, das Decodieranweisungen speichert, die bei Ausführung durch einen oder
mehrere Prozessor(en) eines Verarbeitungssystems das Verarbeitungssystem veranlassen, das Verfahren gemäß
einem vorhergehenden Verfahrensanspruch auszuführen.

9. Eine Vorrichtung (1200) zum Verarbeiten von Audiodaten, um die Audiodaten zu decodieren, die codierte Blöcke
aus N.n-Kanälen von Audiodaten umfassen, um decodierte Audiodaten zu bilden, die M.m-Kanäle von decodiertem
Audio umfassen, wobei M ≥ 1, n die Anzahl von Niederfrequenzeffektkanälen in den codierten Audiodaten ist, und
m die Anzahl von Niederfrequenzeffektkanälen in den decodierten Audiodaten ist, wobei die Vorrichtung Mittel
aufweist zum:

Annehmen der Audiodaten, die Blöcke von N.n-Kanälen von codierten Audiodaten umfassen, die durch ein
Codierverfahren codiert sind, wobei das Codierverfahren ein Transformieren von N.n-Kanälen digitaler Audio-
daten und Bilden und Verpacken von Frequenzdomäne-Exponent- und Mantisse-Daten umfasst; und
Decodieren der angenommenen Audiodaten, wobei das Decodieren aufweist:

Entpacken und Decodieren der Frequenzdomäne-Exponent- und Mantisse-Daten;
Bestimmen von Transformationskoeffizienten aus den entpackten und decodierten Frequenzdomäne-Ex-
ponent- und Mantisse-Daten;
Invers-Transformieren der Frequenzdomäne-Daten und Anwenden einer weiteren Verarbeitung, um ab-
getastete Audiodaten zu bestimmen; und
Zeitdomäne-Abwärtsmischen zumindest einiger Blöcke der bestimmten abgetasteten Audiodaten gemäß
Abwärtsmischen-Daten für den
Fall M<N,

wobei die angenommenen Audiodaten Metadaten aufweisen;
wobei die Vorrichtung konfiguriert ist zum Identifizieren (835) von einem oder mehreren nicht-beitragenden Kanälen
der N.n-Eingangskanäle basierend auf den Metadaten, wobei ein nicht-beitragender Kanal ein Kanal ist, der nicht
zu den M.m-Kanälen beiträgt, und
wobei die Vorrichtung weiter konfiguriert ist zum Ausführen eines Entpackens und Decodierens der Frequenzdo-
mäne-Exponent- und Mantisse-Daten für den einen oder mehrere identifizierte(n) nicht-beitragende(n) Kanal/Ka-
näle, aber kein Ausführen eines Invers-Transformierens der Frequenzdomäne-Daten und kein Ausführen eines
Anwendens einer weiteren Verarbeitung auf den einen oder mehrere identifizierte(n) nicht-beitragende(n) Kanal/Ka-
näle.

10. Die Vorrichtung gemäß Anspruch 9, wobei das Decodierermittel (200) zumindest einen x86-Prozessor verwendet,
dessen Anweisungssatz SSE (streaming single instruction multiple data extensions) umfasst, die Vektoranweisun-
gen aufweisen, und wobei das Zeitdomäne-Abwärtsmischen ein Laufenlassen der Vektoranweisungen auf zumin-
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dest einem des einen oder der mehreren x86-Prozessoren aufweist.

11. Ein System (1200), das konfiguriert ist zum Decodieren von Audiodaten, die N.n-Kanäle von Audiodaten umfassen,
um decodierte Audiodaten zu bilden, die M.m-Kanäle von decodiertem Audio umfassen, wobei M ≥ 1, n die Anzahl
von Niederfrequenzeffektkanälen in den codierten Audiodaten ist, und m die Anzahl von Niederfrequenzeffektka-
nälen in den decodierten Audiodaten ist, wobei das System aufweist:

einen oder mehrere Prozessor(en); und
ein Speicherteilsystem, das mit dem einen oder mehreren Prozessor(en) gekoppelt ist,

wobei das System konfiguriert ist zum Annehmen der Audiodaten, die Blöcke von N.n-Kanälen von codierten Au-
diodaten umfassen, die durch ein Codierverfahren codiert sind, wobei das Codierverfahren ein Transformieren von
N.n-Kanälen digitaler Audiodaten und Bilden und Verpacken von Frequenzdomäne-Exponent- und Mantisse-Daten
umfasst,
wobei das Speicherteilsystem Anweisungen umfasst, die bei Ausführung ein Ausführen des Verfahrens gemäß
einem der Ansprüche 1 bis 7 veranlassen.

Revendications

1. Procédé de fonctionnement d’un décodeur audio pour décoder des données audio qui comportent des blocs codés
de N.n canaux de données audio pour former des données audio décodées qui comportent M.m canaux de l’audio
décodé, M ≥ 1, n étant le nombre de canaux à effets basses fréquences dans les données audio codées, et m étant
le nombre de canaux à effets basses fréquences dans les données audio décodées, le procédé comprenant le fait :

d’accepter les données audio qui comportent des blocs de N.n canaux de données audio codées, codées par
un procédé de codage, le procédé de codage comportant le fait de transformer N.n canaux de données audio
numériques, et de former et de condenser des données de mantisse et d’exposant dans le domaine fréquentiel ;
et
de décoder les données audio acceptées, le décodage comportant le fait :

de décondenser et de décoder les données de mantisse et d’exposant dans le domaine fréquentiel ;
de déterminer des coefficients de transformée à partir des données de mantisse et d’exposant dans le
domaine fréquentiel décondensées et décodées ;
de soumettre les données dans le domaine fréquentiel à une transformée inverse et d’appliquer un traitement
ultérieur pour déterminer des données audio échantillonnées ; et
de soumettre au moins certains blocs des données audio échantillonnées déterminées à un mixage réduc-
teur dans le domaine temporel selon les données de mixage réducteur pour le cas M < N,

où les données audio acceptées comprennent des métadonnées ;
où le procédé comporte l’identification (835) d’un ou plusieurs canaux non contribuants des N.n canaux d’entrée
sur la base des métadonnées, un canal non contribuant étant un canal qui ne contribue pas aux M.m canaux, et
où le procédé effectue une décondensation et un décodage des données de mantisse et d’exposant dans le domaine
fréquentiel pour les un ou plusieurs canaux non contribuants identifiés mais où le procédé n’a pas besoin d’effectuer
une transformée inverse des données dans le domaine fréquentiel et n’a pas besoin d’effectuer une application
d’un traitement ultérieur sur les un ou plusieurs canaux non contribuants identifiés.

2. Procédé selon la revendication 1, dans lequel la transformation dans le procédé de codage utilise une transformée
à chevauchement, et dans lequel le traitement ultérieur comporte l’application d’opérations de fenêtrage et de
chevauchement-addition (609) pour déterminer des données audio échantillonnées.

3. Procédé selon l’une quelconque des revendications 1 et 2, dans lequel le procédé de codage comporte le fait de
former et de condenser des métadonnées relatives aux données de mantisse et d’exposant dans le domaine
fréquentiel, les métadonnées comportant éventuellement des métadonnées relatives à un traitement de pré-bruit
transitoire et à un mixage réducteur.

4. Procédé selon l’une quelconque des revendications 1 à 3, dans lequel les données audio acceptées se présentent
sous la forme d’un flux binaire de trames de données codées, et dans lequel le décodage est divisé en un ensemble
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d’opérations de décodage frontal (201), et en un ensemble d’opérations de décodage arrière (203), les opérations
de décodage frontal comportant la décondensation et le décodage des données de mantisse et d’exposant dans
le domaine fréquentiel d’une trame du flux binaire en des données de mantisse et d’exposant dans le domaine
fréquentiel décondensées et décodées pour la trame, et des métadonnées accompagnant la trame, les opérations
de décodage arrière comportant la détermination des coefficients de transformée, la transformée inverse et l’appli-
cation d’un traitement ultérieur, l’application de tout décodage de traitement de pré-bruit transitoire requis et un
mixage réducteur dans le cas M<N.

5. Procédé selon la revendication 4, dans lequel les opérations de décodage frontal sont effectuées dans un premier
passage, suivi d’un deuxième passage, le premier passage comprenant le fait de décondenser des métadonnées
bloc par bloc et de sauvegarder des pointeurs vers l’endroit où les données de mantisse et d’exposant condensées
sont stockées, et le deuxième passage comprenant le fait d’utiliser les pointeurs sauvegardés vers les exposants
et les mantisses condensés, et de décondenser et de décoder les données de mantisse et d’exposant canal par canal.

6. Procédé selon l’une quelconque des revendications 1 à 5, dans lequel les données audio codées sont codées selon
une norme de l’ensemble de normes consistant en la norme AC-3, la norme E-AC-3, une norme rétrocompatible
avec la norme E-AC-3, et la norme standard HE-AAC, et une norme rétrocompatible avec la HE-AAC.

7. Procédé selon l’une des revendications précédentes, dans lequel le décodeur (200) utilise au moins un processeur
X86 dont l’ensemble d’instructions comporte des extensions SIMD (instruction unique, données multiples) pour flux
(SSE) comprenant des instructions vectorielles, et dans lequel le mixage réducteur dans le domaine temporel
comporte l’exécution des instructions vectorielles sur au moins l’un des un ou plusieurs processeurs X86.

8. Support de stockage lisible par ordinateur stockant des instructions de décodage qui, lorsqu’elles sont exécutées
par un ou plusieurs processeurs d’un système de traitement, amènent le système de traitement à mettre en oeuvre
le procédé tel que décrit dans l’une des revendications précédentes du procédé.

9. Appareil (1200) de traitement de données audio pour décoder les données audio qui comportent des blocs codés
de N.n canaux de données audio pour former des données audio décodées qui comportent M.m canaux de l’audio
décodé, M ≥ 1, n étant le nombre de canaux à effets basses fréquences dans les données audio codées, et m étant
le nombre de canaux à effets basses fréquences dans les données audio décodées, l’appareil comprenant des
moyens pour :

accepter les données audio qui comportent des blocs de N.n canaux de données audio codées, codées par
un procédé de codage, le procédé de codage comportant la transformation de N.n canaux de données audio
numériques, et la formation et la condensation de données de mantisse et d’exposant dans le domaine
fréquentiel ; et
décoder lés données audio acceptées, le décodage comportant le fait :

de décondenser et de décoder les données de mantisse et d’exposant dans le domaine fréquentiel ;
de déterminer des coefficients de transformée à partir des données de mantisse et d’exposant dans le
domaine fréquentiel décondensées et décodées ;
de soumettre les données dans le domaine fréquentiel à une transformée inverse et d’appliquer un traitement
ultérieur pour déterminer des données audio échantillonnées ; et
de soumettre au moins certains blocs des données audio échantillonnées déterminées à un mixage réduc-
teur dans le domaine temporel selon les données de mixage réducteur pour le cas M < N,

où les données audio acceptées comprennent des métadonnées ;
où l’appareil est configuré pour identifier (835) un ou plusieurs canaux non contribuants des N.n canaux d’entrée
sur la base des métadonnées, un canal non contribuant étant un canal qui ne contribue pas aux M.m canaux, et
où l’appareil est en outre configuré pour effectuer une décondensation et un décodage des données de mantisse
et d’exposant dans le domaine fréquentiel pour les un ou plusieurs canaux non contribuants identifiés mais pour
ne pas effectuer la transformée inverse des données dans le domaine fréquentiel et ne pas effectuer une application
d’un traitement ultérieur sur les un ou plusieurs canaux non contribuants identifiés.

10. Appareil de la revendication 9, dans lequel le moyen de décodage (200) utilise au moins un processeur x86 dont
l’ensemble d’instructions comporte des extensions SIMD (instruction unique, données multiples) pour flux (SSE)
comprenant des instructions vectorielles, et dans lequel le mixage réducteur dans le domaine temporel comporte
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l’exécution des instructions vectorielles sur au moins l’un des un ou plusieurs processeurs x86.

11. Système (1200) configuré pour décoder des données audio qui comportent N.n canaux de données audio codées
pour former des données audio décodées qui comportent M.m canaux de l’audio décodé, M ≥ 1, n étant le nombre
de canaux à effets basses fréquences dans les données audio codées, et m étant le nombre de canaux à effets
basses fréquences dans les données audio décodées, le système comprenant :

un ou plusieurs processeurs ; et
un sous-système de stockage couplé aux un ou plusieurs processeurs,

où le système est configuré pour accepter les données audio qui comportent des blocs de N.n canaux de données
audio codées, codées par un procédé de codage, le procédé de codage comportant la transformation de N.n canaux
de données audio numériques, et la formation et la condensation de données de mantisse et d’exposant dans le
domaine fréquentiel,
où le sous-système de stockage comporte des instructions qui, lorsqu’elles sont exécutées, provoquent la mise en
oeuvre du procédé selon l’une des revendications 1 à 7.
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