

March 31, 1964

J. BOUREL

3,127,035

PROCESS FOR THE CHARGING AND DISCHARGING OF ROTATING HEARTH
FURNACES, AND MEANS FOR CARRYING OUT THIS PROCESS

Filed Feb. 19, 1960

3 Sheets-Sheet 1

Fig. 1

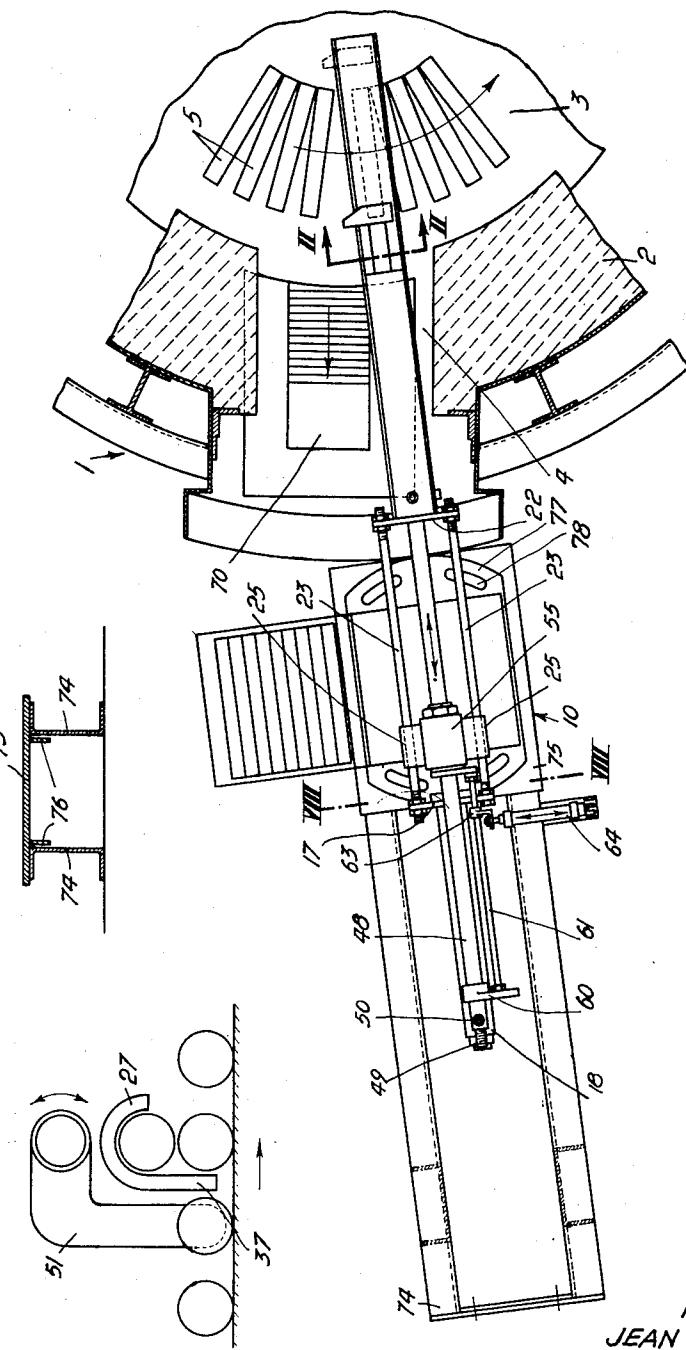


Fig. 8

Fig. 2

Inventor
JEAN BOUREL

By Toulmin & Toulmin

Attorneys

March 31, 1964

J. BOUREL

3,127,035

PROCESS FOR THE CHARGING AND DISCHARGING OF ROTATING HEARTH
FURNACES, AND MEANS FOR CARRYING OUT THIS PROCESS

FURNACE
Filed Feb. 19, 1960

3 Sheets-Sheet 2

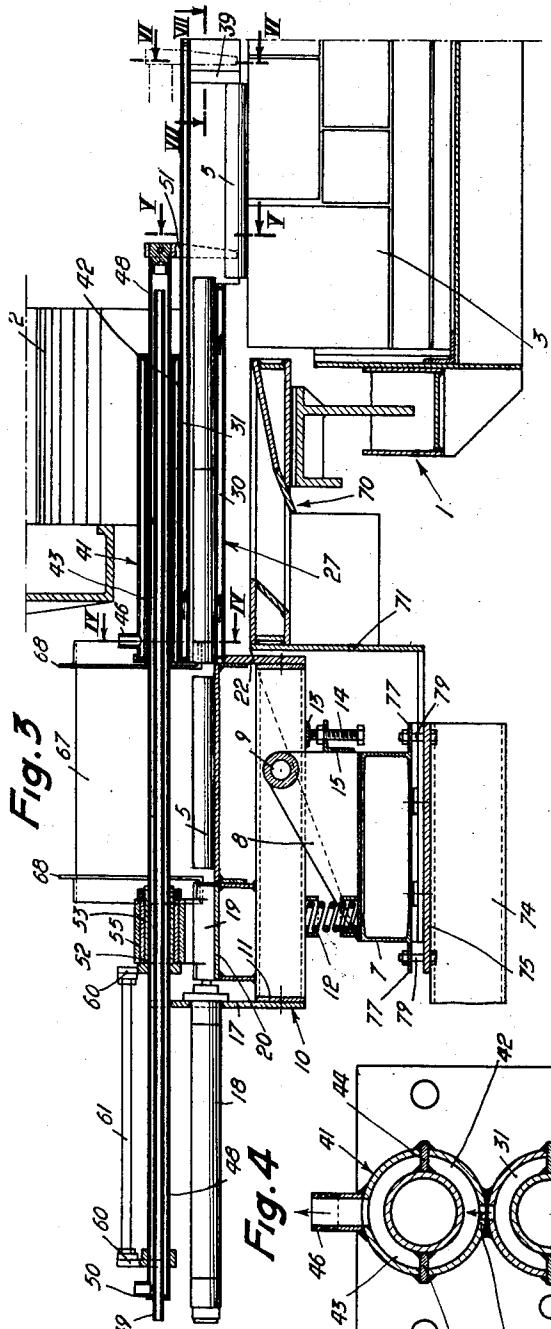


Fig. 4

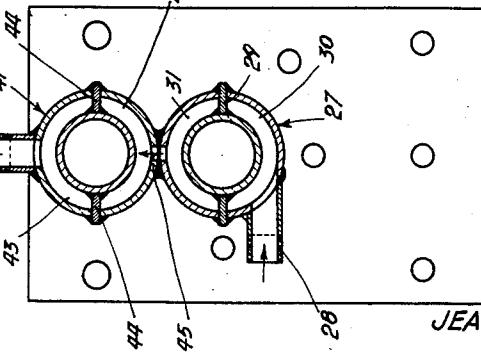


Fig. 6

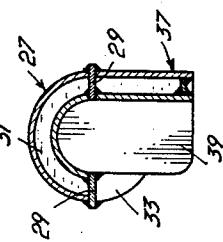


Fig. 5

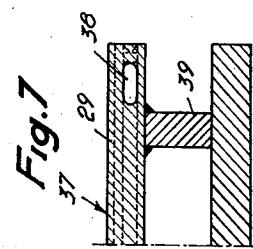
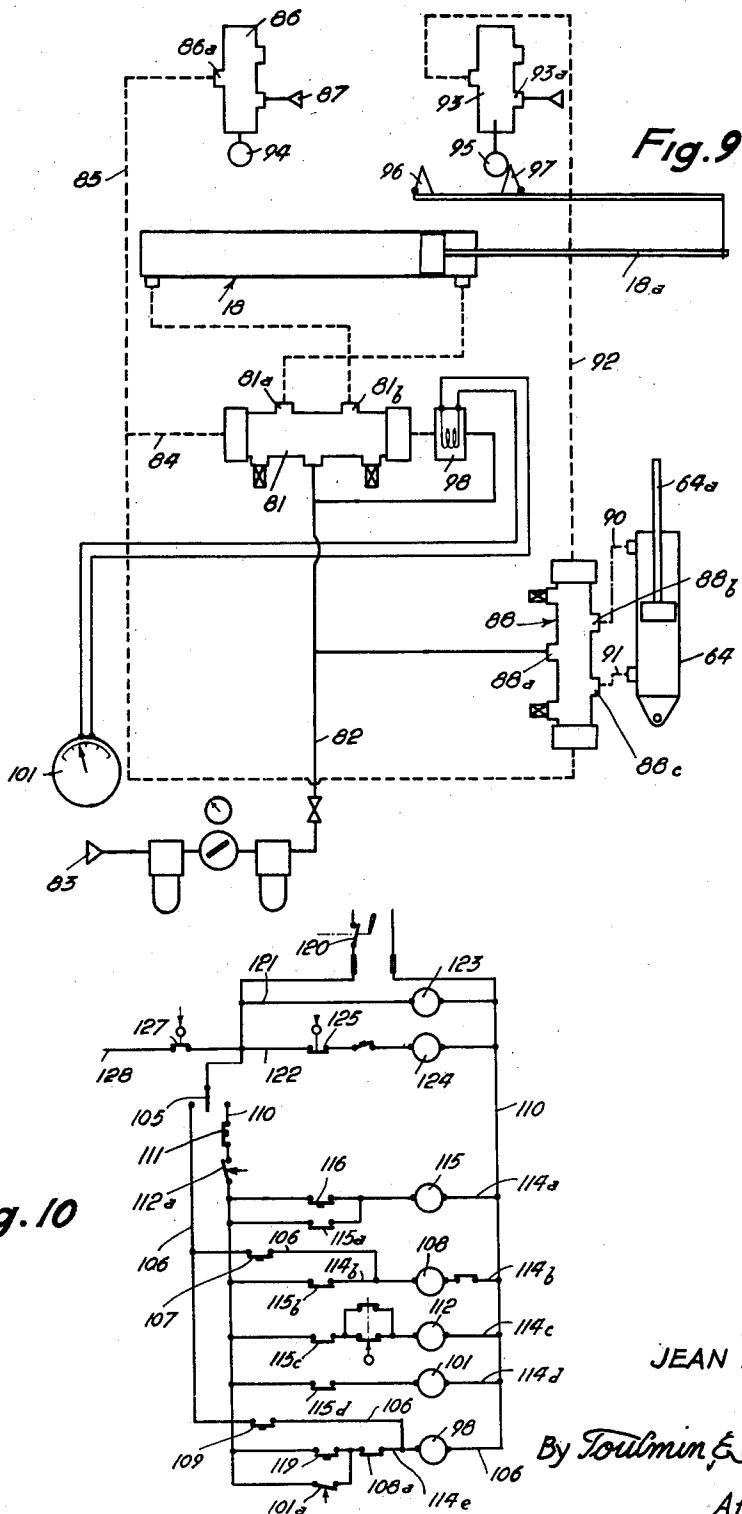


Fig. 3

ventor
BOUREL

By Toulmin & Toulmin


Attorneys

March 31, 1964

J. BOUREL

3,127,035

3,127,033
J. BOUREL
PROCESS FOR THE CHARGING AND DISCHARGING OF ROTATING HEARTH
FURNACES, AND MEANS FOR CARRYING OUT THIS PROCESS
Filed Feb. 19, 1960 3 Sheets-Sheet 3

United States Patent Office

3,127,035

Patented Mar. 31, 1964

1

3,127,035

PROCESS FOR THE CHARGING AND DISCHARGING OF ROTATING HEARTH FURNACES, AND MEANS FOR CARRYING OUT THIS PROCESS

Jean Bouré, Montreuil-sous-Bois, France, assignor to Chauderie et Fumisterie Industrielles, Montreuil-sous-Bois (Seine), France, a French company

Filed Feb. 19, 1960, Ser. No. 9,745

Claims priority, application France Feb. 23, 1959

2 Claims. (Cl. 214—23)

The present invention relates to the charging and discharging of rotating hearth furnaces, such as those employed in mass-production for heating billets of small size whose weight varies from a few hundred grams up to a few kilograms. Heretofore, the charging of billets of this size into rotating hearth furnaces and their discharge have been carried out manually and this work is extremely arduous owing to the high temperature prevailing at the charging and discharging stations. The operation is furthermore very costly especially as the hourly rate of salary due to this very arduous work is of course particularly high. The main object of the invention is to remedy this state of affairs by rendering this work considerably less difficult by the use of charging and discharging means actuated by a driving or motive force other than human force or energy, thereby decreasing the amount and cost of the labor required and even eliminating it entirely by rendering the charging and discharging fully automatic. Another object of the invention is to arrange that these charging and discharging operations are carried out at a very high operational rate.

To this end, the invention provides a charging and discharging process, which is advantageously automatic, for medium size billets in said rotating hearth furnaces and means for carrying out this process.

There is shown diagrammatically in the accompanying drawings by way of a non-limitative example an embodiment of the means for carrying out the process of the invention, these means being, in this embodiment, so grouped as to form a self-contained unit constituting a machine for charging billets of moderate size into, and discharging them from, a rotating hearth furnace.

In the drawings:

FIG. 1 is a diagrammatic plan view of a machine, in position for charging and discharging a rotating hearth furnace, a part of which is shown in horizontal section;

FIG. 2 is a diagrammatic sectional view, taken along line II—II in FIG. 1, the thrust element for ejecting the billets being shown in its ejecting position;

FIG. 3 is a vertical sectional view, along the line or axis along which the billets to be charged are propelled, of the assembly of the apparatus shown in FIG. 1;

FIGS. 4, 5, 6 and 7 are cross-sectional views taken along lines IV—IV, V—V, VI—VI and VII—VII respectively in FIG. 3;

FIG. 8 is a vertical sectional view of the cradle on which the machine slidably rests;

FIG. 9 is a diagram of a pneumatic system for the automatic cyclic operation of the apparatus, and

FIG. 10 is a diagram of the electric connections for the operation of the whole unit.

In the drawings, the assembly of the rotating hearth furnace is designated by the reference character 1. The wall 2 of this furnace has at the level of the upper face of the hearth 3 an aperture 4 for charging and discharging billets 5.

To charge and discharge this furnace, the illustrated machine comprises a lower chassis 7 constituted by a box structure whose upper face supports two vertical parallel side members 8 which are bored out to act as bearings for a cross-shaft 9 fixed to two opposing sides of an upper

2

chassis 10, comprising a frame 11. The chassis 10 has its lower face resting on powerful springs 12 which are located on one side of the pivot cross-shaft 9 and rest on the upper face of the lower chassis 7. On the other side of the shaft 9, the upper chassis 10 rests, through the medium of a cross-member 13 fixed to its lower face, on an adjustable abutment 14 constituted by a vertical bolt extending through a horizontal flange of an L-sectioned member 15 fixed to the side members 8. Thus it is possible to adjust as desired the position of the upper chassis 10 by pivoting the shaft 9 in the bearings of the side members 8, relative to the horizontal plane intersecting the axis of this shaft. The position of the latter is so chosen that the center of gravity of the upper chassis 10 and everything supported thereby (described hereinafter) is located between the shaft 9 and the springs 12, and the assembly is so arranged and calculated that the moment of rotation due to the action of the springs 12 is always greater than the opposing moment of the weight of the whole of the upper chassis 10 and everything carried thereby, so that the upper chassis 10 is always applied with moderate force against the abutment 14.

Fixed on one of the sides of the frame 11, parallel with the shaft 9, is a vertical side member 17 which extends above the frame and through which extends a pneumatic or air quick-return ram or jack 18 of known type fixed thereon. At the end of the rod of this ram above the upper chassis 10 there is fixed a thrust head 19 whose lower part rests on a table 20 fixed on top of the frame 11. Fixed to the other of the sides of the frame 11 is another unapertured side member 22 parallel with the member 17, and these members 17 and 22 are rigidly inter-connected at their upper parts by tie-rods 23 which are parallel with the axis of the ram 18 but disposed some distance to each side of the latter and extend through large lateral bosses 25 projecting from the head 19 for which they thus act as longitudinal guides. Fixed to the other side member 22 in cantilever fashion is a long double-walled tube 27 whose axis is located in the extension of the axis of the ram 18. The inner face of this tube is substantially flush with the upper face of the table 20. The outer wall carries in the vicinity of the side member 22 a supply pipe 28 through which there is supplied a cooling fluid for the inside of the hollow wall which is divided by a longitudinal diametral wall 29 into two superimposed compartments 30 and 31. Some distance from the member 22, the bottom half of this tube 27 is cut away transversely and longitudinally in a horizontal plane, so that only the top half of the tube remains (FIG. 6). The cut-away end which is part-annular, of the tube 27 is closed by a part-annular end plate 33 (FIGS. 5 and 6). Under the lower face of one of the sides of this upper half of the tube 27, this face being constituted by the extension of one of the longitudinal partition walls 29, there is secured a vertical hollow wall 37 which extends along this upper half of the tube 27 up to the end plate 33 to which it is fixed in a fluid-tight manner, a part of the end of the lower half of the tube 27 not closed by the end plate 33 putting the compartment 30 of this lower half in communication with the interior of the hollow wall 37. At the end of the latter remote from the plate 33, an aperture 38 in the extension of the partition wall 29 (FIG. 7) puts the interior of the vertical wall 37 in communication with the upper compartment 31 of the tube 27. A vertical transverse partition wall 39 is furthermore fixed at its upper end to the circular inner wall of the upper half of the tube 27 and against the side of the hollow wall 37 throughout the height of the latter (FIGS. 5 and 7).

Secured to the side member 22 is a tube 41 which also has a hollow wall like the tube 27 and rests on the latter to which it is welded (FIG. 4). It is also divided into two superimposed compartments 42 and 43 by horizontal lon-

itudinal partition walls 44. The lower compartment 42 communicates, on the one hand, in the vicinity of the member 22, with the upper compartment 31 of the tube 27 through an aperture 45 extending through the adjoining and welded walls of the tubes 41 and 27 and, on the other hand, at its opposite end, with the upper compartment 43 through apertures formed in the partition walls 44. Formed at the upper part of the tube 41 in the vicinity of the member 22 is an outlet pipe 46 for the cooling fluid. There is thus provided a complete circuit for this fluid, for example water, which is supplied by a source of fluid under pressure, not shown in the drawings, and enters by way of the pipe 28, circulates in the lower compartment 30 of the tube 27 up to the end of this compartment, thereafter flows in the hollow wall 37 up to the end of the latter, whence it flows by way of the aperture 38 into the upper compartment 31 of the upper half of the tube 27, wherein it circulates up to the vicinity of the side member 22 and thereafter flows through the aperture 45 in the lower compartment 42 of the tube 41 up to the end of the latter, whence it returns by way of the upper compartment 43 to the outlet pipe 46 through which it is discharged. In the part of this tube situated above the ram there axially penetrates a supply pipe 49 supplying cooling fluid and extending within the tube 48 almost up to its opposite end, there being an annular space left between the pipe 49 and the tube 48 to permit the cooling fluid to return to the end of the tube 48 above the ram 18 and flow out by way of a discharge pipe 50 carried by this tube in the vicinity of its end. At the opposite end of the tube 48, there is fixed an ejecting element 51 bent as shown in FIG. 2 so that its end is capable of being placed in the vicinity of the lower end of the guide wall 37. This tube 48 extends through the thrust head 19, to which it is rigidly fixed in the axial direction while it is free to rotate therein about its axis, which rotation is produced, in the presently-described embodiment, by means of a shouldered collar 52 fixed to the outside of the tube by foot screws extending through another collar 53 which forms a bearing in the central enlarged upper part 55 of the head 19 (FIGS. 1 and 3). The collar 52 axially projected from this central part 55 and, on this projecting and screw-threaded part, there is screwed a nut constituting an axial shoulder on the side of the bearing 55 opposed to the other shoulder of this collar 52. Two cranks 60 are disposed parallel to the one another, one being keyed on the tube 48 in the vicinity of its end above the ram 18 and the other on the collar 52. These two cranks are interconnected by a bar 61 which is parallel with the tube 48 and on which is keyed a crank 63 pivoted at its end to a pressurized fluid ram 64 which is perpendicular to the tube 48 and whose other end is pivoted to the support structure so as to be pivotable about an axis parallel with this tube 48. It can be seen that when this ram operates, it turns the tube 48 in the bearing 55 of the thrust head and, with the latter, the ejecting element 51 which can thus be brought to a position in which it is wholly higher than the horizontal plane tangent to the upper part of the tube 27.

For the purpose of bringing the billets 5 to be charged between the thrust head 19 and the end of the charging tube 27, the machine further comprises a charging trough consisting of an inclined face 67 transversely disposed relative to the common axis of the tube 27 and the thrust head 19, and two lateral walls 68 which are slidable along this inclined plane so as to vary the width of the trough in accordance with the length of the billets to be charged. At its lower part, the inclined face 67 extends to the upper face of the table 20. An abutment, not shown in the drawings, disposed in opposed relation to the inclined face 67, constrains the billet bearing thereagainst to place itself in correct alignment between the thrust head 19 and the charging tube 27 under the effect of the pressure exerted by the other billets deposited on the inclined face.

The machine further comprises a discharging trough 75

generally designated at 70 which is slightly offset relative to the charging tube 27. This trough is fixed by the structure 71 to the lower chassis 7, is inclined in the direction for ejecting the billets and upwardly flared to facilitate their reception.

The whole of the machine described hereinbefore rests on a cradle or slideway consisting of two U-section members 74 which have their webs vertically disposed, are parallel with the charging axis and are situated on both sides of the latter. Resting on the upper faces of the flanges of these U-section members is a plate 75 whose lower face carries depending partition walls 76 which are engaged between the members 74 and act as guide means along the latter. Resting on the plate 75 are the pads or feet of the support structure 71 for the discharging trough 70, and, resting on these feet, is the lower chassis 7 of the machine. This chassis carries projecting ears 77 provided with part-circular slots 78 through which extend bolts 79 which also extend through the plate 75. Thus it is possible to turn the lower chassis 7 and everything supported thereby relative to the lower cradle 74 and thereby complete the orientation of the charging machine with respect to the furnace to be charged.

All the above-mentioned means are associated with the furnace to be charged and discharged, as shown in FIGS. 1 and 3. The machine is disposed adjacent the furnace in such manner that the axis of the charging tube 27 is directed substantially toward the center of the rotating hearth, that this tube extends into the interior of the furnace through the charging aperture 4 and that the end of its lower half is located above the hearth 3. Further, the discharging trough 70 is also placed under this aperture 4 near the periphery of the hearth 3 and substantially at the level of the upper face of the latter or slightly below. To this end, the whole of the machine carried by the plate 75 is slid along the guide means 74 toward the furnace. Once the machine is approximately in position the orientation adjustment is completed by pivoting the chassis 7 relative to the plate 75 as described hereinbefore, it being held fast in position by means of bolts 79. Then the height adjustment is completed by pivoting the upper chassis 10 about the shaft 9 by acting on the adjustable abutment 14. The whole of the machine is held in position on the guide means 74 by clamps (not shown) which clamp round the flanges of the members 74 and the plate 75. If necessary, the ejecting position of the ejecting element 51 is once more adjusted by rotating the tube 48 carrying this element and axially sliding this tube relative to the cranks 60 whose fixing screws are temporarily loosened for this purpose.

Actuation of the ram 18 causes the billet 5 deposited on the table 20 to be pushed to its correct charging position in the charging tube 27, and, through the medium of this billet, the other billets already in the tube 27 are also pushed toward the furnace, so that the billet situated in the most forward position, relative to the direction of movement of the billets, issues from the tube and assumes a substantially radial position on the hearth 3 which undergoes rotary motion. The transverse wall 39 constitutes a stop abutment in the event that the billet has a tendency to travel too far. Repeated actuation of the ram 18 at a rate which is a function of the rotational speed of the hearth, which speed is in turn a function of the dimensions of the billets for a given heating temperature, deposits on the hearth a ring of billets each of which is substantially radially disposed (FIG. 1).

When the hearth is completely supplied with billets, the charging can only continue if the billets on the hearth are successively ejected, which is possible when the rotational speed of the hearth is so determined that the heating of a billet is complete in slightly less than one rotation of the hearth. This ejection is effected by the return movement outwardly of the furnace of the tube 48 driven by the upper part of the propelling head 19 in its return

movement. The ejecting element 51 carried by this tube 48 encounters in its path that one of the pillars on the hearth which has reached the vicinity of the abutment 37, since in its raised position in the course of the entire centripetal travel of the tube 48 (which position permits the element to pass over the billets 5 resting on the hearth 3) the element 51 passes, at the end of travel of the tube 48, to the vertical position shown in FIG. 2 and, in dot-dash line, in FIG. 3, due to the action of the transverse ram 64 supplied at this moment with fluid under pressure by the action of an end-of-travel abutment (not shown) actuating a fluid distributor or valve controlling the fluid supply to the ram 64. Upon the rapid return of the ram 18 which drives the tube 48 out of the furnace through the medium of the thrust head 19, the ejecting element 51 quickly drives the billet 5 located in its path outwardly without allowing the billet time enough to assume an oblique position under the simultaneous effect of the rotary motion of the hearth 3, and projects it into the discharging trough 70. An end-of-travel abutment (not shown) then acts on a distributor or valve which reverses the fluid supply of the ram 64 and the latter turns the tube 48 in the direction corresponding to a raised ejecting element 51.

The charging and ejecting travels described hereinbefore, which can be produced separately by a manual action on the distributor feeding the ram 18, are rendered automatically consecutive by the pressurized fluid distributing device shown diagrammatically in FIG. 9. In this diagram, there are shown the main charging and ejecting ram 18 and the transverse ram 64 which turns the tube 48 and its ejecting element 51. The moving part of the ram 18 is designated by the reference character 18a and that of the ram 64 by the reference character 64a. A main distributor or valve 81 is connected by piping 82 to a pressurized fluid supply inlet 83, and two outlets 81a and 81b of the distributor 81 are respectively connected to the opposite ends of the ram 18. Another inlet aperture 81d of the distributor 81 is connected by a pipe 84 to a pipe 85 which connects an outlet aperture 86a of an end-of-travel distributor or valve 86, provided with a pressurized fluid supply inlet 87, to an inlet 88a of a distributor which supplies the ram 64 at the opposite ends of which these outlet apertures 88d and 88c are respectively interconnected by pipes 90 and 91. The end of the distributor 88 opposed to that to which the pipe 85 is connected by piping 92 to another end-of-travel distributor or valve 93 provided with a pressurized fluid inlet 93a. The two end-of-travel distributors 86 and 93 comprise rollers 94 and 95 which respectively cooperate with cams 96 and 97 which move in accordance with the travel of the ram 18 and are tiltable in one direction in opposition to the action of a spring or counterweight, the direction of tilt of one being opposite to that of the other.

This device acts in the following manner:

In the diagram, the automatic stop position of the machine is shown to be that in which the ram 18 is at the end of its charging travel and the ejecting element 51 has been brought to, and is held in, its ejecting position by the ram 64. In this position, the pressurized fluid supplied through the piping 83 acts in the left part of the ram 18 through the medium of the distributor 81 and the pipe on the downstream side of the aperture 81b and maintains the moving part 18a in the illustrated position; it also acts, through the medium of the distributor 88 and the pipe 91, in the ram 64 so as to maintain the moving part thereof 64a in the illustrated position and thereby, and through the medium of the links 69, the tube 48 in the angular position in which the ejecting element 51 is in the ejecting position. The two other compartments of the rams 18 and 64 are connected to the exhaust through the medium of, in respect of the first-mentioned rams, the aperture 81a of the distributor 81, the pipes 84 and 85 and the distributor 86, and, for the other ram, 75

the pipe 90, the aperture 88b, the distributor 88, the piping 92 and the distributor 93. If the electrovalve 98 is then actuated by momentarily sending pressurized fluid to the end of the distributor slide, the latter moves so that the pressurized fluid supplied through the pipe 82 issues from the aperture 81a and flows into the ram 18; simultaneously the distributor puts the aperture 81a in communication with the pipe 84, that is, with the exhaust. The ram 18 thereupon effects its rapid ejecting travel; the cam 97 tilts upon passage of the roller 95 without actuating the distributor 93; at the end of travel, the cam 96 encounters the roller 94 of the distributor 86 and actuates the latter so that the pressurized fluid supplied through the aperture 87 is temporarily directed by the piping 85 and the branch connection 84 to the end of the slide of the distributor 81 and simultaneously to the end of the slide of the distributor 88; the latter slide then puts in communication the two apertures 88a and 88b and, moreover, the aperture 88c with the pipe 92, that is, with the discharge. The piston of the ram 64 moves back toward the pivoted end of the ram, that is, effects the travel causing retraction of the ejecting element 51. Simultaneously, the fluid under pressure flowing through the pipe 84 to the main distributor 81 actuates the slide of the latter so that the pipe 82 communicates with the aperture 81b; the ram 18 then effects its charging travel, the ejecting element 51 remaining retracted; the cam 96, which is a tiltable cam having a spring or counterweight, is pushed aside upon contact with the roller 94 without actuating the distributor 86; at the end of the charging travel, the cam 97, which is a cam tiltable in the opposite direction to the cam 96, encounters the roller 95 and, through the medium thereof, actuates the distributor 93 which temporarily sends pressurized fluid through the piping 92 to the distributor 88 so as to actuate the slide of the latter in such manner as to put the apertures 88a and 88c once more in communication with one another and the aperture 88b in communication with the pipe 92. The ram 64 then operates and brings the ejecting element 51 back to its ejecting position. The starting position is thus resumed and the assembly ceases to function until a further injection of pressurized fluid in the distributor 81 by the electrovalve 98 initiates a further operational sequence.

45 The cyclic repetition of the operational sequences is advantageously obtained by a timing device 101 which controls the electrovalve 98. It will be understood that this timing device is so set that the total duration of the cycle exceeds that of one automatic operational sequence. 50 In this way, there is provided a period of rest in the cycle, the duration of this period varying with the setting of the timing device, which setting depends on the rotational speed of the hearth, itself depending on the weight of the billets to be charged.

55 FIG. 10 shows an installation combining the drive and operational control united with a rotating hearth furnace and charging and discharging means according to the invention. This installation comprises two electric circuits selectively connectible through the medium of a selector 105. One of these circuits, designated by the reference character 106, is provided for controlling a discontinuous operation of the furnace and the charging and discharging means. It comprises two branches one of which includes a manually operated push-button 107 and the motor-variator-speed reducer unit 108 driving the rotating hearth of the furnace, whereas the other branch includes a manually-operated push-button 109 and the electrovalve 98. The other circuit 110 comprises, starting from the selector 105, a safety contact 111 controlled by a shearable safety pin inserted in the drive of the hearth, so that this contact automatically opens, in the event of rupture of this pin, and stops rotation of the hearth. The circuit 110 further comprises: a contact 112a of a time relay 112 whose timed or delayed cut-out is so set that the delay exceeds the duration of the operational cycle of the charging ma-

chine; thereafter, five branch conductors 114a, 114b, 114c, 114d, 114e in parallel in which are inserted respectively an automatic relay 115 with a manually-operated control push-button 116 and connected in parallel with the latter, the contact 115a maintaining the relay 115 closed, the motor-variator-speed reducer unit 103 driving the hearth, which is also part of the circuit 106, and a contact 115b actuated by the relay 115, the safety time or delay relay 112 and a contact 115c actuated by the relay 115, the time device 101 controlling the cyclic operation of the machine and contact 115d actuated by the relay 115, the electrovalve 93, which is also part of the circuit 106, a contact 108a actuated by the motor-variator unit so as to be closed when the latter rotates and a contact 101a (which operates the time device 101) and push-button 119 connected in parallel with one another.

With the circuit 110 closed by the selector 105, when the push-button 116 is depressed, the automatic relay 115 is switched into circuit and all the contacts 115a, b, c, d, e are closed, the hearth driven by the motor-variator unit 103 starts to rotate and the contact 108a closes. The time devices 101 and 112 are in circuit and the device 101 temporarily closes the contact 101a and transmits an electric pulse to the electrovalve 93 and thereby initiates the first automatic operational cycle which is followed by the periodic temporary closure of the contact 101a by the time device 101.

If the hearth ceases to rotate owing to stoppage of the motor-variator unit 103, the contact 108a opens and the circuit 114e of the magnetic valve is opened and causes stoppage of the automatic operation.

In the event of the charging machine not operating, the time relay 112 opens the contact 112a a given period of time exceeding that of one cycle after the start of this non-operational period, which opens the entire automatic operation circuit 110 and the automatic relay 115 is rendered inoperative and all its contacts are opened.

Further, there are, in the general circuit between the main switch 120 and the selector 105 two other branch conductors 121 and 122, one of which includes a magnetic valve 123 controlling the machine cooling fluid circuit whereas the other includes an alarm hooter 124 and a contact 125 which is normally maintained open by a pressostat or pressure control device under the effect of the pressure of said cooling fluid. If this pressure drops, the contact 125 closes and the hooter 124 operates. A contact 127, which closes a pressostat under the effect of the pressure of the cooling fluid, is furthermore inserted in a branch conductor 128 leading to the means controlling the furnace burners; this branch conductor is therefore automatically opened should the cooling fluid pressure drop.

It must be understood that the invention is in no way limited to the features of the embodiment illustrated and described which have been given merely by way of example. Thus, the retraction of the ejecting element can be dispensed with on condition that the charging is effected at such rate that there is between two successive billets deposited on the furnace hearth space enough to allow the ejecting element to pass therebetween during the charging travel, it being of course understood that the automatic operational sequence commences with the ejecting travel and terminates with the charging travel so that the charging arm is in its position corresponding to maximum insertion in the furnace during the dwell or inoperative part of the cycle, or that the ejection is effected by an ejecting arm which is not driven by the movement of the charging head and has its own means of propulsion. The assembly could also be arranged, if an ejecting

70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
888