
US 20220058032A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0058032 A1

Suzumura et al . (43) Pub . Date : Feb. 24 , 2022

Publication Classification (54) GENERATION APPARATUS , PROGRAM ,
AND GENERATION METHOD

(71) Applicant : INTERNATIONAL BUSINESS
MACHINES CORPORATION ,
Armonk , NY (US)

(72) Inventors : Toyotaro Suzumura , Tokyo (JP) ;
Michiaki Tatsubori , Kanagawa (JP) ;
Akihiko Tozawa , Tokyo (JP)

(21) Appl . No .: 17 / 521,209

(51) Int . Ci .
G06F 9/448 (2006.01)
GO6F 40/12 (2006.01)
G06F 40/137 (2006.01)
GOOF 40/154 (2006.01)
GO6F 40/143 (2006.01)

(52) U.S. CI .
CPC G06F 9/4493 (2018.02) ; G06F 40/12

(2020.01) ; G06F 40/143 (2020.01) ; G06F
40/154 (2020.01) ; GO6F 40/137 (2020.01)

(57) ABSTRACT
A generation apparatus that generates a mapping between
individual properties included in an object in a program and
individual elements of a structured document . The genera
tion apparatus includes : an object tree generation unit that
generates a tree structure representing hierarchical structure
of the object by assigning the individual properties included
in the object to nodes of the tree structure ; and a selection
unit that selects a mapping minimizing conversion cost of
converting the tree structure of the object to a tree structure
that includes the individual elements of the structured docu
ment as its nodes . The selection is from mappings that
associate the individual properties included in the object
with the individual elements of the structured document .

(22) Filed : Nov. 8 , 2021

Related U.S. Application Data
(63) Continuation of application No. 15 / 423,274 , filed on

Feb. 2 , 2017 , now Pat . No. 11,194,595 , which is a
continuation of application No. 12 / 565,897 , filed on
Sep. 24 , 2009 , now Pat . No. 9,582,291 .

a

(30) Foreign Application Priority Data

Sep. 25 , 2008 (JP) 2008-245866

ADD Employee 2017 TL W ??? . 40 190 Employee
Kanonymous

RENAME
EDIT person person
DOO 1

name
(" Tatsubori) firstname

(" Michiaki ") ADD
(" 33 ") name (xsd : int)

RENAME first - name RENAME
(Michiaki ")

last - name
(" Tatsubor 1 ")

first - hame
(xsd : string) (xsd : string)

last - name
(xsd : string)

Patent Application Publication Feb. 24 , 2022 Sheet 1 of 12 US 2022/0058032 A1

FIG . 1

10
SCHEMA

STORAGE UNIT

SCHEMA
12 16

FUNCTION CALL
(OBJECT)

SOAP MESSAGE
(XML DOCUMENT)

Endodo

PROGRAM
PROCESSING

LIBRARY
PROCESSING

UNIT
SERVICE SOAP MESSAGE

(XML DOCUMENT
RETURN VALUE

FIG . 2

Patent Application Publication

20

32

44

OBJECT
12

RECEIVING UNIT

46 XML DOCUMENT (STRUCTURED TRANS DOCUMENT)

MISSION UNIT

SERVICE

wwwwwwwwwwwww
AchAllahabits

CONVERSION UNIT
With

34 OBJECT TREE GENERATION UNIT

SELECTION UNIT
54

MAPPING

Feb. 24 , 2022 Sheet 2 of 12

CALCULATION
36

SCHEMA

56 MAPPING SELECTION UNIT

DOCUMENT TREE GENERATION

14
WWW

52

wwwwwwwww

MAPPING GENERATION UNIT

~ 42

Odd

US 2022/0058032 A1

Patent Application Publication Feb. 24 , 2022 Sheet 3 of 12 US 2022/0058032 A1

FIG . 3

START

RECEIVE OBJECT T - S101
-S102 GENERATE TREE

STRUCTURE OF OBJECT

GENERATE TREE STRUCTURE
DEFINING STRUCTURE OF XML DOCUMENT

-S103

SELECT MAPPING
V

CONVERSION

T | --S104
1-8105 ?

TRANSMISSION S106

END

Patent Application Publication Feb. 24 , 2022 Sheet 4 of 12 US 2022/0058032 A1

FIG . 4

-S104

GENERATE MAPPING S111

CALCULATE
MINIMUM EDIT COST S112

SELECT MAPPING WITH
MINIMUM CONVERSION COST

S113

FIG . 5
$ client = new AgileSoapclient (" employee , wsdl ") ;
Sperson (' name '] - Tatsubori ;
$ person [' firstname '] = ' Michiaki ' ;
$ personl'age ' 33 ;
$ client- > publishEmployee ($ person) ;

FIG . 6
(anonymous)

< name > Tatsubori < / name >
(first - name > Michiaki (/ first - name >
(age 33 < / age)

/ anonymous)

Patent Application Publication

FIG . 7

??????? . < anonymous

Feb. 24 , 2022 Sheet 5 of 12

treninkoput nonnant

firstname

name (" Tatsubori ")

firstname (" Michiaki ")

(" 33 ")

(

US 2022/0058032 A1

Patent Application Publication Feb. 24 , 2022 Sheet 6 of 12 US 2022/0058032 A1

FIG . 8

< wsdl message name = " publishEmployeeServiceRequest " >
< wsdl part name = " employee " element = " Employee " >
< wsdl documentation Publish employee data < / wsdl documentation)

< / wsdlipart)
< / wsdl : message)
< wsdl binding- >

< soap : binding ... / >
Kwsdt : operation name = " publishEmployee " >

< soap operation style = " document " / >
(wsdl : input name = " employee " >

(soap body use = " literal " / >
wsdl : input >
X ?

< / wsdl : operation >
< / wsdl : binding >

Patent Application Publication Feb. 24 , 2022 Sheet 7 of 12 US 2022/0058032 A1

FIG . 9

2
< ? xml version = " 1.0 " encoding = " UTF - 8 " ? >
< schema elementFormDefault = " qualified "

xmlns = " http://www.w3.org/2001/XMLSchema " > nossd = " http://www.w3.org/2001/XMLSchema "
< element name = " Employee " >
complexType)

< sequence)
W < elememt name = " person " minOccurs = " 0 " >

(complexType >
(sequence)

< elememt name = " name " minOccurs = " 1 " max0ccurs = " 1 " >
(complexType)

sequence

EY

Kelememt minoccurs = " 1 " maxOccurs = " | " name " first - name
type = " xsd : string " / >

Kelememt minoccurs " 0 " maxOccurs = " 1 " name " middle - name
type = " xsd : string " / >

< element minOccurs = " 1 " maxOccurs = " 1 " name " last - ame
type = " xsd : string " / >

< / sequence)
< / complexType >

Velememt >
< element name = " age " minoccurs = " 1 " maxOccurs = " 1 " type = xsd : int " / >

< / sequence)
< / complexType >

< / elememt)
< / sequence)

< / complexType)
Velement >

< schema)

Patent Application Publication Feb. 24 , 2022 Sheet 8 of 12 US 2022/0058032 A1

FIG . 10

Employee

person

www

nane (xsd : int)

1

first - hame
(xsd : string)

middle - name
(xsd : string)

last - name
(xsd : string)

FIG . 11

Patent Application Publication

ADD

Employee
.

Employee

Canonymous

11

0 ..

RENAME

W

w

EDIT

person
1

name
(" Tatsubori

age

firstname " Michiaki ")

33 ")

ADD

Feb. 24 , 2022 Sheet 9 of 12

Dam

age (" 33 ")

name

(xsd : int)
**

0..1

RENAME

RENAME

*

first - name
(" Michiaki

*

last - name (" Tatsubori ")

first - name (xsd : string

middle - name (xsd : string)

last - name (xsd : string)

US 2022/0058032 A1

Patent Application Publication Feb. 24 , 2022 Sheet 10 of 12 US 2022/0058032 A1

FIG . 12

1. *

REQUIRED
NODE

OPTIONAL
NODE

REPETITIVE
NODE

FIG . 13

< Employee)
(person)

< name >
< first - name > Michiaki < / first - name)
< last - name > Tatsubor i < / last - name >

< / name)
Cage > 33 < / age)

< / person)
< / Employees

FIG . 14 dept Name
" S7200 " memberlist f

name
" Alice

address
XXX - XXXX

28

c
1 FIG . 15

department
X $: string member

address Xs : string xs string

Patent Application Publication Feb. 24 , 2022 Sheet 11 of 12 US 2022/0058032 A1

FIG . 16A

deptName
S7200 " memberlist

FIG . 16B

1 0 ..
department
XS : string member

FIG . 17A

" Alice

FIG . 17B
member

nane
xs : string

address
xs : string

WWW

FIG . 18

1900

CPU

2000

Patent Application Publication

2080

2075

2082

2020

2040

DISPLAY UNIT

GRAPHIC CONTROLLER
HOST CONTROLLER
RAM

2030

2084

HARD DISK DRIVE

NETWORK

COMMUNICATION
1/0 CONTROLLER

2060

2095

Feb. 24 , 2022 Sheet 12 of 12

2010

CD - ROM DRIVE

ROM

2070

2090

2050
FD DRIVE

CHIP

US 2022/0058032 A1

US 2022/0058032 A1 Feb. 24 , 2022
1

GENERATION APPARATUS , PROGRAM ,
AND GENERATION METHOD

elements of a structured document in advance . Moreover ,
such description needs to be provided for the classes of all
objects and the elements of all XML documents .

BACKGROUND
SUMMARY

Field of the Invention

[0001] The present invention relates to an apparatus , a
program , and a method for generating a mapping between
individual properties included in an object in a program and
the individual elements of a structured document .

Description of Related Art

[0007] A first aspect of the present invention provides a
generation apparatus that generates a mapping between
individual properties included in an object in a program and
individual elements of a structured document . The genera
tion apparatus includes an object tree generation unit con
figured to generate a tree structure representing hierarchical
structure of the object by assigning the individual properties
included in the object to nodes of the tree structure ; and a
selection unit configured to select , from mappings that
associate the individual properties included in the object
with the individual elements of the structured document , a
mapping minimizing conversion cost of converting the tree
structure of the object to a tree structure that includes the
individual elements of the structured document as its nodes .
[0008] According to another aspect of the invention , a
method for generating a mapping between individual prop
erties included in an object in a program and individual
elements of a structured document includes the steps of :
generating a tree structure representing hierarchical struc
ture of the object by assigning the individual properties
included in the object to nodes of the tree structure ; and
selecting , a mapping minimizing conversion cost of con
verting the tree structure of the object to a tree structure that
includes the individual elements of the structured document
as its nodes , said selecting being from mappings that asso
ciate the individual properties included in the object with the
individual elements of the structured document .
[0009] A still further aspect of the invention provides
computer programs which , when executed , cause a com
puter to act as the generation apparatus or to perform the
steps of the above method .

a

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] Methods for converting Extensible Markup Lan
guage (XML) documents to objects handled by programs are
known . “ Document Object Model (DOM) Level 3 Core
Specification , ” Apr. 7 , 2004 , W3C discloses the specifica
tions of the Document Object Model (DOM) that is an
application program interface for programs to access XML
documents . “ ISR 222 : Java Architecture for XML Binding
(JAXB) 2.0 , ” Java Community Process discloses the speci
fications of the Java Architecture for XML Binding (JAXB)
that provides the facility of a schema compiler and a schema
generator for converting XML documents to Java (registered
trademark) objects and converting Java objects to XML
documents .
[0003] Also , methods for converting an object in a pro
gram to an XML document have been known . For example ,
in the DOM reference described above , an XML document
can be generated from an object in which the individual
elements of a converted XML document are reflected in
advance . In the JAXB reference described above , an XML
schema can be automatically generated from the class of a
Java object , and an XML document can generated from the
Java object on the basis of the automatically generated XML
schema .
[0004] “ Castor XML Mapping , ” ExoLab Group , Intalio
Inc. , and “ JiBX : Binding XML to Java Code , ” Sosnoski
Software Solutions Inc. , disclose data binding tools for
performing mapping between XML documents and objects .
Any object can be converted to an XML document using
such tools or libraries or PHP (a programming language for
hypertext processing) SOAP functions .
[0005] Japanese Unexamined Patent Application Publica
tion No. 2003-256455 discloses a method for converting
XML documents to data models other than objects . Philip
Bille , “ A survey on tree edit distance and related problems , "
June 2005 discloses solutions to the tree editing problem ,
i.e. , a problem of calculating the edit cost and procedure for
obtaining the same tree structure as a second tree structure
by editing a first tree structure .
[0006] The aforementioned processes for converting an
object in a program to an XML document are complicated
and often inconvenient for programmers . For example , in
the DOM reference , unless an object in which the elements
of an XML document are accurately reflected is generated in
advance using a program , conversion cannot be performed
appropriately . In the JAXB reference , an object not being a
class that was used to generate an XML schema cannot be
converted to an XML document . Even with the tools or
libraries described in the ExoLab Group and Sosnoski
Software references or PHP SOAP functions , programmers
need to describe correspondences between the individual
properties of an object of a program and the individual

[0010] FIG . 1 shows the functional configuration of an
information processing apparatus 10 according to an
embodiment of the present invention .
[0011] FIG . 2 shows the functional configuration of a
generation apparatus 20 according to the embodiment of the
present invention .
[0012] FIG . 3 shows the process flow of the generation
apparatus 20 .
[0013] FIG . 4 shows an exemplary process performed in
step S104 in FIG . 3 .
[0014] FIG . 5 shows an exemplary program written in
PHP .
[0015] FIG . 6 exemplifies the properties of the object ,
which has been converted to a tree structure , in the program
shown in FIG . 5 and the respective values of the properties ,
described in XML .
[0016] FIG . 7 exemplifies the properties of the object ,
which has been converted to a tree structure , in the program
shown in FIG . 5 and the respective values of the properties ,
described schematically .
[0017] FIG . 8 shows exemplary WSDL that defines a Web
service .
[0018] FIG . 9 shows an exemplary schema described in
XML (an XML schema) .

US 2022/0058032 A1 Feb. 24 , 2022
2

2

[0019] FIG . 10 shows the tree structure of an XML
document defined by the schema shown in FIG . 9 .
[0020] FIG . 11 shows an exemplary edit to convert the tree
structure of the object shown in FIG . 7 to the tree structure
of the XML document shown in FIG . 10 .
[0021] FIG . 12 shows exemplary description of a manda
tory node , an optional node , and a repetitive node .
[0022] FIG . 13 shows an exemplary XML document that
is converted from the object shown in FIG . 5 on the basis of
a mapping selected by the selection unit 42 .
[0023] FIG . 14 shows an exemplary tree structure of an
object that includes an array .
[0024] FIG . 15 shows an exemplary tree structure of an
XML document that includes repetitive elements .
[0025] FIG . 16A shows an exemplary tree structure
obtained by removing the child nodes of the array node from
the tree structure of the object shown in FIG . 14 .
[0026] FIG . 16B shows an exemplary tree structure
obtained by removing the child nodes of the repetitive nodes
from the tree structure of the XML document shown in FIG .
15 .
[0027] FIG . 17A shows an exemplary tree structure of a
part on the low end side of the tree structure of the object
shown in FIG . 14 , the top of the part being one of the child
nodes of the array node .
[0028] FIG . 17B shows an exemplary tree structure of a
part on the low end side of the tree structure of the XML
document shown in FIG . 15 , the top of the part being one of
the repetitive nodes .
[0029] FIG . 18 shows an exemplary hardware configura
tion of a computer 1900 according to the embodiment of the
present invention .

2

by execution , by a computer , of programs in a library called
in response to function calls by the program processing unit
12 .
[0034] In particular , the library processing unit 16
receives , from the program processing unit 12 , a function
call that includes an object as an argument . The library
processing unit 16 converts the object to an XML document
based on an XML schema stored in the schema storage unit
14. The library processing unit 16 sends a SOAP message
that includes the generated XML document to a Web service .
The library processing unit 16 receives , from the Web
service , a SOAP message that includes the result of pro
cessing expressed as an XML document . The library pro
cessing unit 16 converts the result of processing expressed
as an XML document to an object in the data format handled
by the program processing unit 12 and sends the object as a
return value to the program processing unit 12 .
[0035] FIG . 2 shows the functional configuration of a
generation apparatus 20 according to the embodiment . The
generation apparatus 20 is implemented as one of the
functions of the library processing unit 16 and converts an
object in a program to a structured document based on a
schema . In detail , the generation apparatus 20 generates
mappings that represent correspondences between indi
vidual properties included in an object in a program and the
individual elements of a structured document generated
according to a schema . The generation apparatus 20 gener
ates and outputs , on the basis of the generated mappings , the
structured document based on the schema , the structured
document including the values of the individual properties
included in the object as the values of the elements corre
sponding to the properties .
[0036] An object represents , for example , an object and
array data handled in an object - oriented program and serial
array data used in , for example , a program written in PHP .
A schema represents information that defines the hierarchi
cal structure of a structured document . In the embodiment ,
a schema defines the hierarchical structure of an XML
document that is an exemplary structured document . The
generation apparatus 20 may convert single object to a
single structured document or a plurality of objects to a
single structured document . The generation apparatus 20
may convert an object to a structured document other than
an XML document (for example , a Hypertext Markup
Language (HTML) document) .
[0037] The generation apparatus 20 includes a receiving
unit 32 , an object tree generation unit 34 , a document tree
generation unit 36 , a selection unit 42 , a conversion unit 44 ,
and a transmission unit 46. In execution of a program , the
receiving unit 32 receives , from the program processing unit
12 , a function call , with an object as an argument , indicating
to convert the object to an XML document and transmit the
XML document .
[0038] The object tree generation unit 34 generates a tree
structure that represents the hierarchical structure of the
object in the function call received by the receiving unit 32
by assigning individual properties included in the object to
the nodes of the tree structure . The document tree generation
unit 36 generates , from a schema that describes the hierar
chical structure of an XML document stored in the schema
storage unit 14 , a tree structure that includes the individual
elements of the XML document as the nodes of the tree
structure . For example , the document tree generation unit 36
generates a tree structure in which the definitions of the

DETAILED DESCRIPTION

[0030] FIG . 1 shows the functional configuration of an
information processing apparatus 10 according to a pre
ferred embodiment of the present invention . The informa
tion processing apparatus 10 is implemented via a computer
that executes a program . The information processing appa
ratus 10 performs information processing provided by the
program .
[0031] The information processing apparatus 10 can use a
Web service provided by , for example , another computer in
a network . In particular , the information processing appa
ratus 10 sends a SOAP message that includes an XML
document to a Web service . The information processing
apparatus 10 receives a SOAP message that includes an
XML document representing the result of processing from
the Web service to perform information processing using the
result of processing .
[0032] The information processing apparatus 10 includes
a program processing unit 12 , a schema storage unit 14 , and
a library processing unit 16. The program processing unit 12
is implemented by execution of a program by a computer .
The schema storage unit 14 stores schemata that define
respective XML documents included in SOAP messages
exchanged between the information processing apparatus 10
and Web services used by the information processing appa
ratus 10. The schema storage unit 14 is implemented via a
storage unit in a computer or a storage unit connected to the
computer through a network .
[0033] The library processing unit 16 exchanges SOAP
messages that include XML documents with predetermined
Web services . The library processing unit 16 is implemented

US 2022/0058032 A1 Feb. 24 , 2022
3

2

individual elements of an XML document described in a
schema are set as nodes , and the definitions of the number
of child elements of the XML document described in the
schema are set as edges .
[0039] The selection unit 42 selects , from mappings that
associate the individual properties included in the object
with the individual elements of the XML document , a
mapping that minimizes the conversion cost of converting
the tree structure of the object to the tree structure of the
XML document generated by the document tree generation
unit 36. For example , the selection unit 42 includes a
mapping generation unit 52 , a calculation unit 54 , and a
mapping selection unit 56 .
[0040] The mapping generation unit 52 generates a plu
rality of mappings that associate the individual properties
included in the object received by the receiving unit 32 with
the individual elements of the XML document . For each of
the plurality of mappings generated by the mapping genera
tion unit 52 , the calculation unit 54 calculates , according to
the mapping , the conversion cost of converting the tree
structure of the object received by the receiving unit 32 to
the tree structure of the XML document generated by the
document tree generation unit 36. The mapping selection
unit 56 selects , from the plurality of mappings generated by
the mapping generation unit 52 , a mapping that minimizes
the conversion cost calculated by the calculation unit 54 .
[0041] The conversion unit 44 converts , on the basis of the
mapping selected by the selection unit 42 , the object to the
XML document , which includes the values of the individual
properties of the object as the values of the corresponding
elements . The transmission unit 46 transmits the XML
document output from the conversion unit 44 .
[0042] FIG . 3 shows the process flow of the generation
apparatus 20. The receiving unit 32 first receives , from the
program processing unit 12 , a function call that indicates to
convert an object in a program of interest to an XML
document and transmit the XML document (step S101) .
[0043] The object tree generation unit 34 retrieves an
object included in the received function call as an argument .
The object tree generation unit 34 generates a tree structure
that represents the hierarchical structure of the object by
assigning individual properties included in the retrieved
object to the nodes of the tree structure (step S102) .
[0044] The document tree generation unit 36 retrieves a
schema from the schema storage unit 14 that describes the
hierarchical structure of an XML document to be output in
response to the received function call . According to the
retrieved schema , the document tree generation unit 36
generates , from the schema , a tree structure that defines the
structure of the XML document to be transmitted (step
S103) .
[0045] The selection unit 42 selects , from mappings that
associate the individual properties included in the object
with the individual elements of the XML document , a
mapping that minimizes the conversion cost of converting ,
according to the mapping , the tree structure of the object to
the tree structure of the XML document defined by the
schema (step S104) . In this case , the conversion cost of
converting , according to a mapping , the tree structure of an
object to the tree structure of an XML document represents
the cost of converting , according to the mapping , the tree
structure of the object to the tree structure of the XML
document so that nodes corresponding to the individual

properties of the object correspond to respective elements
associated with the properties .
[0046] The selection unit 42 finds a mapping that mini
mizes the conversion cost among a plurality of mappings .
For example , the selection unit 42 finds a mapping that
minimizes the conversion cost of converting the tree struc
ture of the object to the tree structure of the XML document
by solving the tree editing problem shown in , for example ,
the Bille article referred to above .
[0047] The conversion unit 44 converts , according to the
mapping selected by the selection unit 42 , the object
included in the received function call as an argument to the
XML document defined by the schema , the XML document
including the values of the individual properties of the object
as the values of the corresponding elements (step S105) . The
transmission unit 46 transmits , to a Web service , a SOAP
message that includes the XML document output from the
conversion unit 44 (step S106) .
[0048] In the aforementioned manner , the generation
apparatus 20 can automatically generate a mapping between
individual properties included in an object in a program and
a structured document defined by a schema (for example , an
XML document) . In this case , the generation apparatus 20
may output a mapping selected by the selection unit 42 to the
outside . Such a generation apparatus 20 can provide a
generated mapping so that the mapping is used by a known
tool that converts an object to an XML document or the
mapping is referred to in analysis of correspondences
between the properties of an object and the elements of an
XML document .
[0049] FIG . 4 shows an exemplary process performed in
step S104 in FIG . 3. For example , in step S104 in FIG . 3 , the
selection unit 42 may perform steps S111 to S113 .
[0050] The mapping generation unit 52 first generates a
plurality of mappings that associates individual properties
included in an object with the individual elements of an
XML document (step S111) . For each of the plurality of
generated mappings , the calculation unit 54 calculates the
minimum edit cost of converting , according to the mapping ,
the tree structure of the object to the tree structure of the
XML document (step S112) . Then , the calculation unit 54
determines the calculated minimum edit cost as being the
conversion cost of the mapping .
[0051] Edit operations for changing one tree structure (a
first tree structure) so that the one tree structure has the same
hierarchical structure as another tree structure (a second tree
structure) include , for example , renaming nodes , changing
the sequence of nodes , and adding nodes . The first tree
structure can be converted to the same structure as the
second tree structure by combining such edit operations .
Edit operation cost is allocated to each of the edit operations .
Many procedures for the edit operations of converting the
first tree structure to the same structure as the second tree
structure exist , and the total edit operation cost of the edit
operations used in each of the procedures varies with the
procedure .
[0052] Thus , for example , when the tree structure of an
object is converted to the tree structure of an XML document
by performing , on the tree structure of the object , an edit
process in which edit operations are performed at least once ,
the edit operations including renaming nodes (properties) ,
changing the sequence of a plurality of child nodes that
belong to a common parent node , and adding a parent node
for at least one node , the calculation unit 54 may calculate

US 2022/0058032 A1 Feb. 24 , 2022
4

the total of edit operation costs associated with the respec
tive edit operations as the edit cost of the edit process . The
calculation unit 54 may determine , as being the minimum
edit cost , the edit cost of an edit process that is determined
as minimizing edit cost among at least one edit process for
converting the tree structure of the object to the tree structure
of the XML document .
[0053] In this case , since an XML document that includes
all the properties in an object needs to be generated , the
calculation unit 54 need not calculate edit cost regarding an
edit process that includes deletion of nodes . The calculation
unit 54 need not calculate edit cost regarding an edit process
that is expected not to minimize edit cost , i.e. , an edit
process the edit cost of which is expected in advance to be
more than a predetermined value . This can reduce the
amount of calculation in the calculation unit 54 .
[0054] The mapping selection unit 56 selects , from the
plurality of mappings generated by the mapping generation
unit 52 , a mapping that minimizes the conversion cost
calculated by the calculation unit 54 (step S113) . In this
manner , the selection unit 42 can find a mapping that
minimizes the conversion cost of converting the tree struc
ture of an object to the tree structure of an XML document .
In this case , the mapping generation unit 52 may omit
processing for some mappings to rapidly complete selection
of a mapping
[0055] FIG . 5 shows an exemplary program written in
PHP . In the program shown in FIG . 5 , “ new AgileSoapClient
(" employee.wsdl “) ” is a function call that calls a program in
a library , the program preparing for transmission of a SOAP
message
[0056] In the program shown in FIG . 5 , " publishEmployee
(Sperson) ” is an exemplary function call and an exemplary
object included as an argument prepared by the aforemen
tioned program . The object is referred to by a variable
$ person and includes ' name ' , ' firstname ' , and ' age ' as its
properties . Moreover , ' name ' = “ Tatsubori ' ,
' firstname ’ = ‘ Michiaki ’ , and ‘ age ’ = “ 33 ' are stored as the
respective values of the properties .
[0057] The program processing unit 12 can transfer the
function call (" new AgileSoapClient (" employee.wsdl ") ") ,
which calls the program preparing for transmission of the
SOAP message , to the library processing unit 16 by execu
tion of the PHP program shown in FIG . 5 by a computer .
Then , the library processing unit 16 , to which such function
call has been transferred , can convert , to an XML document ,
a function call that is separately called and an object
included in the function call as an argument (“ publishEm
ployee ($ person) ”) to add the XML document to the SOAP
message .
[0058] FIGS . 6 and 7 exemplify the properties of the
object , which has been converted to a tree structure , in the
program shown in FIG . 5 and the respective values of the
properties . FIG . 6 shows an example that is described in
XML . FIG . 7 shows an example that is described schemati
cally . When the object in the program shown in FIG . 5 is
given to the object tree generation unit 34 , the object tree
generation unit 34 generates a tree structure that includes
three child nodes (' name ' = Tatsubori ' ,
‘ firstname ’ = ‘ Michiaki ' , and “ age ’ = “ 33 ') directly below a
parent node (anonymous) , as shown in FIGS . 6 and 7 .
[0059] FIG . 8 shows exemplary WSDL that defines a Web
service . The WSDL shown in FIG . 8 defines a Web service
called “ PublishEmployeeServiceRequest ” . When the library

processing unit 16 has been called by the function call in the
program shown in FIG . 5 , the library processing unit 16
sends a SOAP message based on the definition by the WSDL
shown in FIG . 8 .
[0060] FIG . 9 shows an exemplary schema described in
XML (an XML schema) . FIG . 10 shows the tree structure of
an XML document defined by the schema shown in FIG . 9 .
[0061] The schema shown in FIG . 9 defines the hierarchi
cal structure of the XML document to be added to the SOAP
message to be sent to the Web service defined by the WSDL
shown in FIG . 8. The XML document based on the schema
shown in FIG . 9 includes elements the respective names of
which are defined as “ Employee ” , “ person ” , “ name ” , “ age ” ,
“ first - name ” , " middle - name ” , and “ last - name ” . When the
schema shown in FIG . 9 is given to the document tree
generation unit 36 , the document tree generation unit 36
generates the tree structure shown in FIG . 10 .
[0062] The element “ Employee ” in the XML document
defined by the schema shown in FIG.9 is located at the root
node of the tree structure , as shown in FIG . 10. The elements
“ person ” are located as the child nodes of the element
“ Employee ” . In this case , the elements person " are repeti
tive nodes . In an XML document , 0 to n (n is any integer
equal to or more than one) repetitive nodes may be provided .
[0063] The “ name ” element and the “ age ” element in the
XML document defined by the schema shown in FIG . 9 are
located as the child nodes of each of the “ person ” elements ,
as shown in FIG . 10. In this case , each of the " name "
element and the “ age ” element is a mandatory node that
needs to occur once in an XML document . An integer value
is stored as the value of the “ age ” element .
[0064] The “ first - name ” element , the “ middle - name ” ele
ment , and the “ last - name ” element in the XML document
defined by the schema shown in FIG . 9 are located as the
child nodes of the “ name ” element , and a character string is
stored as the value of each of the “ first - name ” element , the
" middle - name ” element , and the “ last - name " element , as
shown in FIG . 10. In this case , each of the " first - name "
element and the “ last - name ” is a mandatory node that needs
to occur once in an XML document . The “ middle - name "
element is an optional node that may be optionally provided
in an XML document .
[0065] FIG . 11 shows an exemplary edit to convert the tree
structure of the object shown in FIG . 7 to the tree structure
of the XML document shown in FIG . 10. FIG . 11 shows an
example in which the ‘ name ' property , ‘ firstname ' property ,
and ‘ age ' property of the object are associated respectively
with the “ last - name ” element , “ first - name ” element , and
“ age ” element of the XML document by a mapping .
[0066] In this example , the calculation unit 54 may per
form an edit operation of adding the “ Employee ” node as the
parent node of the “ anonymous ” node in the tree structure of
the object . The calculation unit 54 may also perform an edit
operation of renaming the “ anonymous ” node in the tree
structure of the object the " person ” node .
[0067] The calculation unit 54 may perform an edit opera
tion of adding the " name " node as the parent node of each
of the " name " node and the “ firstname ” node in the tree
structure of the object . The calculation unit 54 may perform
an edit operation of renaming the “ name ” node in the tree
structure of the object the “ last - name ” node . The calculation
unit 54 may perform an edit operation of renaming the
" firstname ” node in the tree structure of the object the
“ first - name ” node .

a

2

a

US 2022/0058032 A1 Feb. 24 , 2022
5

[0068] When the calculation unit 54 converts the tree
structure of the object to the tree structure of the XML
document by performing , on the tree structure of the object ,
an edit process that includes such edit operations , for
example , renaming nodes and adding parent nodes , the
calculation unit 54 calculates the total of edit operation costs
associated with the respective edit operations as the edit cost
of the edit process . Then the calculation unit 54 calculates ,
as the minimum edit cost , the edit cost of an edit process that
is determined as minimizing edit cost among at least one edit
process for converting the tree structure of the object to the
tree structure of the XML document .
[0069] FIG . 12 shows exemplary description of a manda
tory node , an optional node , and a repetitive node . The
calculation unit 54 may perform an edit operation of adding ,
to each of the nodes of the tree structure of the object , type
information (for example , “ 1 ” , “ 0 ... 1 " , and " 0 ... ” in FIG .
12) specifying a node type , for example , a mandatory node ,
an optional node , or a repetitive node . For example , the
calculation unit 54 may determine the edit operation cost of
such an edit operation as being lower than the edit operation
cost of an edit operation of adding a node . For example ,
assuming that the edit operation cost of an edit operation of
adding a node is one , the edit operation cost of an edit
operation of adding type information may be set to zero .
[0070] When the calculation unit 54 renames a node , the
calculation unit 54 may determine the distance (for example ,
the Levenshtein distance) between the character string of a
node name that has not been changed (i.e. , the name of a
property of an object) and the character string of the node
name (i.e. , an element defined by a schema) , which has been
changed , as being edit operation cost associated with this
edit operation . In this case , regarding an edit operation of a
predetermined part , for example , a prefix that is provided at
the beginning of a name , the calculation unit 54 may set the
edit operation cost lower than the edit operation cost of an
edit operation of another part .
[0071] Regarding an edit operation of interchanging child
nodes that have the same parent node , the calculation unit 54
may set the edit operation cost lower than the edit operation
cost of an edit operation of interchanging nodes other than
such child nodes . For example , regarding an edit operation
of interchanging child nodes that have the same parent node ,
the calculation unit 54 may set the edit operation cost to
zero . Regarding an edit operation of generating a new node
by combining a plurality of nodes at the same level , the
calculation unit 54 may set the edit cost lower than the edit
cost of an edit operation of adding a new node .
[0072] When a mapping for each of the plurality of objects
is generated , the mapping selection unit 56 may store the
mapping selected for the object in a storage unit . Then , when
a plurality of mappings with the same edit cost exist for a
certain object , the mapping selection unit 56 may select ,
from the plurality of mappings with the same edit cost , a
mapping that is the same as or similar to a corresponding
mapping stored in the storage unit (i.e. , a mapping selected
in the past) .
[0073] FIG . 13 shows an exemplary XML document that
is converted from the object shown in FIG . 5 on the basis of
a mapping selected by the selection unit 42. In the afore
mentioned manner , the selection unit 42 selects , from map
pings that associate individual properties included in an
object with the individual elements of an XML document , a
mapping that minimizes the conversion cost of converting

the tree structure of the object to the tree structure of an
XML document generated by the document tree generation
unit 36 .
[0074] In this example , the selection unit 42 selects a
mapping that associates the ‘ name ' property , ‘ firstname '
property , and ‘ age property of the object respectively with
the “ last - name ” element , “ first - name ” element , and " age ”
element of the XML document . As a result , when the object
shown in FIG . 5 has been given to the conversion unit 44 ,
the conversion unit 44 can output the XML document shown
in FIG . 13. Accordingly , the conversion unit 44 can convert
a given object to an XML document based on a schema .
[0075] FIG . 14 shows an exemplary tree structure of an
object that includes an array . FIG . 15 shows an exemplary
tree structure of an XML document that includes repetitive
elements .
[0076] In FIG . 14 , a “ memberList ” node is an array node
that has the individual elements of an array as its child
nodes . In FIG . 15 , “ member ” nodes are repetitive nodes
corresponding to repetitive elements repetition of which is
specified .
[0077] When the object given from the program includes
the array , the object tree generation unit 34 may generate the
tree structure of the object that includes the array node
having the individual elements of the array included in the
object as its child nodes , as shown in FIG . 14. When the
XML document defined by a schema includes the repetitive
elements , the document tree generation unit 36 may generate
the tree structure of the XML document that includes the
repetitive elements , repetition of which is specified in the
XML document , as the repetitive nodes , as shown in FIG .
15 .
[0078] When the object given from the program includes
the array and the XML document defined by the schema
includes the repetitive elements , the mapping generation
unit 52 may generate a mapping that associates the proper
ties of the array included in the object with the repetitive
elements , repetition of which is specified in the XML
document . That is , the mapping generation unit 52 may
generate a mapping that associates the array node in the tree
structure of the object with the repetitive nodes in the tree
structure of the XML document . This allows the mapping
generation unit 52 to generate a mapping that associates the
properties of the array included in the object with the
repetitive elements , repetition of which is specified in the
XML document .
[0079] FIG . 16A shows an exemplary tree structure
obtained by removing the child nodes of the array node from
the tree structure of the object shown in FIG . 14. FIG . 16B
shows an exemplary tree structure obtained by removing the
child nodes of the repetitive nodes from the tree structure of
the XML document shown in FIG . 15. FIG . 17A shows an
exemplary tree structure of a part on the low end side of the
tree structure of the object shown in FIG . 14 , the top of the
part being one of the child nodes of the array node . FIG . 17B
shows an exemplary tree structure of a part on the low end
side of the tree structure of the XML document shown in
FIG . 15 , the top of the part being one of the repetitive nodes .
[0080) When the object given from the program includes
the array and the XML document defined by the schema
includes the repetitive elements , the mapping generation
unit 52 may generate a mapping that associates the nodes of
the tree structure , shown in FIG . 16A , obtained by removing
the child nodes of the array node from the tree structure of

US 2022/0058032 A1 Feb. 24 , 2022
6

9

a

the object with the nodes of the tree structure , shown in FIG .
16B , obtained by removing the child nodes of the repetitive
nodes from the tree structure of the XML document .
[0081] In this case , when the array node in the tree
structure of the object has been associated with the repetitive
nodes in the tree structure of the XML document , the
mapping generation unit 52 may generate correspondences
between the child nodes of the array node and the child
nodes of the repetitive nodes . That is , the mapping genera
tion unit 52 may generate correspondences between the tree
structure of the part on the low end side , shown in FIG . 17A ,
the top of the part being one of the child nodes of the array
node , and the tree structure of the part on the low end side ,
shown in FIG . 17B , the top of the part being one of the
repetitive nodes . This allows the mapping generation unit 52
to generate a mapping that associates the properties of each
of the elements of the array included in the object with the
individual elements on the low end side of each of the
repetitive elements , repetition of which is specified in the
XML document .
[0082] The document tree generation unit 36 may generate
the tree structure of an XML document that includes an
optional element designated optional as an optional node
and a mandatory element designated required as a manda
tory node . When a parent node , on the side of an object , that
includes child nodes in the tree structure of the object is
associated with a parent node , on the side of an XML
document , that includes optional nodes and mandatory
nodes in the tree structure of the XML document , the
mapping generation unit 52 may preferentially associate the
child nodes in the tree structure of the object with the
mandatory nodes . Thus , the mapping generation unit 52 can
prevent a situation in which an XML document based on a
schema cannot be generated because no value is stored in a
mandatory node in the XML document .
[0083] In a case where a mapping for each of the plurality
of objects is generated , when the mapping generation unit 52
has generated , according to the description of one part of a
program , a correspondence between one child node and a
mandatory node , the mapping generation unit 52 may store
the correspondence in a history storage unit . Then , when the
correspondence between the one child node and the man
datory node is stored in the history storage unit , according
to the description of another part of the program , the
mapping generation unit 52 may associate the one child
node with the mandatory node , and associate another child
node with an optional node . Thus , the mapping generation
unit 52 can perform consistent mapping for each of the
plurality of objects in the program .
[0084] FIG . 18 shows an exemplary hardware configura
tion of a computer 1900 according to the embodiment . The
computer 1900 according to the embodiment includes a
CPU peripheral section that includes a CPU 2000 , a RAM
2020 , a graphic controller 2075 , and a display unit 2080 that
are connected to each other via a host controller 2082 , an
input - output section that includes a communication interface
2030 , a hard disk drive 2040 , and a CD - ROM drive 2060
that are connected to the host controller 2082 via an input
output controller 2084 , and a legacy input - output section
that includes a ROM 2010 , a flexible disk drive 2050 , and an
input - output chip 2070 that are connected to the I / O con
troller 2084 .
[0085] The host controller 2082 connects the RAM 2020
to the CPU 2000 and the graphic controller 2075 , which

access the RAM 2020 at a high transfer rate . The CPU 2000
operates on the basis of programs stored in the ROM 2010
and the RAM 2020 and controls individual components . The
graphic controller 2075 obtains image data generated in a
frame buffer provided in the RAM 2020 by , for example , the
CPU 2000 and displays the image data on the display unit
2080. Alternatively , the graphic controller 2075 may include
a frame buffer for storing image data generated by , for
example , the CPU 2000 .
[0086] The input - output controller 2084 connects the host
controller 2082 to the communication interface 2030 , the
hard disk drive 2040 , and the CD - ROM drive 2060 , which
are relatively high - speed input - output units . The communi
cation interface 2030 communicates with another apparatus
via a network . The hard disk drive 2040 stores programs and
data used by the CPU 2000 in the computer 1900. The
CD - ROM drive 2060 reads programs or data from a CD
ROM 2095 and supplies the programs or data to the hard
disk drive 2040 via the RAM 2020 .
[0087] The ROM 2010 , the flexible disk drive 2050 , and
the input - output chip 2070 , which are relatively low - speed
input - output units , are connected to the input - output con
troller 2084. The ROM 2010 stores a boot program that is
executed when the computer 1900 is activated and / or , for
example , programs that depend on the hardware of the
computer 1900. The flexible disk drive 2050 reads programs
or data from a flexible disk 2090 and supplies the programs
or data to the hard disk drive 2040 via the RAM 2020. The
input - output chip 2070 connects the flexible disk drive 2050
to the input - output controller 2084 and connects various
types of input - output units to the input - output controller
2084 via , for example , a parallel port , a serial port , a
keyboard port , and a mouse port .
[0088] Programs to be supplied to the hard disk drive 2040
via the RAM 2020 are stored in a recording medium , for
example , the flexible disk 2090 , the CD - ROM 2095 , or an
IC card , and supplied to users . The programs are read from
the recording medium , installed in the hard disk drive 2040
in the computer 1900 via the RAM 2020 , and executed in the
CPU 2000 .
[0089] Programs installed in the computer 1900 to cause
the computer 1900 to function as the generation apparatus
20 include a receiving module , an object tree generation
module , a document tree generation module , a selection
module , a conversion module , and a transmission module .
The programs or modules work , for example , the CPU 2000
so as to cause the computer 1900 to function as the receiving
unit 32 , the object tree generation unit 34 , the document tree
generation unit 36 , the selection unit 42 , the conversion unit
44 , and the transmission unit 46 .
[0090] The information processing described in the pro
grams is read by the computer 1900 to function as the
receiving unit 32 , the object tree generation unit 34 , the
document tree generation unit 36 , the selection unit 42 , the
conversion unit 44 , and the transmission unit 46 , which are
concrete means in which software and the aforementioned
various types of hardware resources cooperate with each
other . Then , calculation or processing of information spe
cific to an intended use by the computer 1900 according to
the embodiment is implemented by the concrete means to
construct the generation apparatus 20 specific to the
intended use .
[0091] For example , when the computer 1900 communi
cates with , for example , an external apparatus , the CPU

.

a

US 2022/0058032 A1 Feb. 24 , 2022
7

a

2

2000 executes a communication program loaded into the
RAM 2020 to indicate to the communication interface 2030
to perform communication processing according to the
content of processing described in the communication pro
gram . The communication interface 2030 reads , under the
control of the CPU 2000 , transmit data stored in , for
example , a transmit buffer area provided in a storage unit ,
such as the RAM 2020 , the hard disk drive 2040 , the flexible
disk 2090 , or the CD - ROM 2095 , and transmits the transmit
data to the network .
[0092] The communication interface 2030 further writes
receive data received from the network to , for example , a
receive buffer area provided in the storage unit . The com
munication interface 2030 may perform transfer of transmit
and receive data from and to the storage unit by the direct
memory access (DMA) method in this manner . Alterna
tively , the CPU 2000 may read data from the storage unit or
the communication interface 2030 , which is a source , and
then write the data to the communication interface 2030 or
the storage unit , which is a destination , so as to perform
transfer of transmit and receive data .
[0093] The CPU 2000 causes all or a necessary part of , for
example , a file or a database stored in an external storage
unit , such as the hard disk drive 2040 , the CD - ROM drive
2060 (the CD - ROM 2095) , or the flexible disk drive 2050
(the flexible disk 2090) , to be read into the RAM 2020 by ,
for example , DMA transfer . The CPU 2000 performs various
types of processing on the data in the RAM 2020 .
[0094] The CPU 2000 writes the data having been pro
cessed back to the external storage unit by , for example ,
DMA transfer . In such processing , since the RAM 2020 can
be considered to temporarily store the content in the external
storage unit , in the embodiment , the RAM 2020 , the external
storage unit , and the like are collectively called , for example ,
a memory , a storage , or a storage unit .
[0095] Various types of programs and various types of
information such as data , tables , and a database in the
embodiment are stored in such a storage unit and subjected
to information processing . In this case , the CPU 2000 may
store a part of data in the RAM 2020 in a cache memory and
perform read and write operations on the cache memory .
Even in such a case , since the cache memory undertakes
some of the functions of the RAM 2020 , in the embodiment ,
it is assumed that the cache memory is included in the RAM
2020 , a memory , and / or a storage unit , except where distin
guished .
[0096] The CPU 2000 performs various types of process
ing on data read from the RAM 2020. The particular
processing is specified by a string of instructions in a
program , the various types of processing including , for
example , various types of calculation , processing of infor
mation , condition determination , and retrieval and replace
ment of information described in the embodiment . Then , the
CPU 2000 writes the processed data back to the RAM 2020 .
[0097] For example , when the CPU 2000 performs con
dition determination , the CPU 2000 compares each of the
various types of variables shown in the embodiment with
another variable or a constant and determines whether a
condition is satisfied . The condition includes , for example ,
the variable is more than the other variable or the constant ,
the variable is less than the other variable or the constant , the
variable is equal to or more than the other variable or the
constant , the variable is equal to or less than the other
variable or the constant , and the variable is equal to the other

variable or the constant . The process branches to a different
string of instructions , or a subroutine is called , after the
condition is satisfied (or is not satisfied) .
[0098] The CPU 2000 can search for information stored
in , for example , a file or a database in a storage unit . For
example , when a plurality of entries in each of which the
attribute value of a first attribute is associated with the
attribute value of a second attribute are stored in a storage
unit , the CPU 2000 can obtain the attribute value of the
second attribute associated with the attribute value of the
first attribute that satisfies a predetermined condition by
searching for an entry in which the attribute value of the first
attribute satisfies the predetermined condition in the plural
ity of entries stored in the storage unit and reading the
attribute value of the second attribute stored in the entry .
[0099] The programs or modules , which have been
described , may be stored in an external recording medium .
Other than the flexible disk 2090 and the CD - ROM 2095 , for
example , an optical recording medium such as a DVD or a
CD , a magneto - optical recording medium such as an MO , a
tape medium , or a semiconductor memory such as an IC
card may be used as a recording medium . A storage unit ,
such as a hard disk or a RAM , provided in a server system
connected to a private communication network or the Inter
net may be used as a recording medium , and the programs
may be supplied to the computer 1900 via the network .
[0100] It should be noted that , regarding the execution
sequence of process steps in the apparatuses , the systems ,
the programs , and the methods described in the claims , the
specification , and the drawings , the programs , and the meth
ods can typically be implemented with any sequence of
processes unless the output of a preceding process is used by
a following process .
[0101] While the present invention has been described
with reference to the preferred embodiment , the technical
scope of the present invention is not limited to the descrip
tion of the aforementioned embodiment . It is obvious to
persons skilled in the art that various changes or improve
ments can be made in the aforementioned embodiment . It is
obvious from the description of the claims that the embodi
ment , in which such changes or improvements are made , is
also covered by the scope of the present invention .

1. A generation apparatus that generates a mapping
between individual properties included in an object in a
program and individual elements of a structured document ,
the generation apparatus comprising :

a selection unit configured to select a mapping minimiz
ing conversion cost of converting a tree structure of the
object to a tree structure that includes the individual
elements of the structured document as its nodes ;

a document tree generation unit configured to generate a
tree structure of the structured document and for deter
mining that there is a parent node on a side of the object
that includes child nodes in the tree structure of the
object that is associated with a parent node on a side of
the structured document that includes optional nodes
and mandatory nodes in the tree structure of the struc
tured document ; and

a mapping generation unit that is configured for prefer
entially associating the child nodes in the tree structure
of the object with a mandatory node when the parent
node on the side of the object that includes the child
nodes in the tree structure of the object is associated
with the parent node on the side of the structured

a

US 2022/0058032 A1 Feb. 24 , 2022
8

document that includes the optional nodes and the
mandatory nodes in the tree structure of the structured
document .

2. The generation apparatus according to claim 1 , wherein
the selection unit includes :

a calculation unit that , for each of the mappings , is
configured to calculate minimum edit cost of convert
ing the tree structure of the object to the tree structure
of the structured document , and sets the minimum edit
cost as conversion cost of the mapping , and

a mapping selection unit that is configured to select a
mapping with minimum conversion cost calculated by
the calculation unit .

3. The generation apparatus according to claim 1 , wherein
the document tree generation unit is further configured to
generate a tree structure of the structured document from a
schema describing hierarchical structure of the structured
document ,

wherein the selection unit selects a mapping minimizing
conversion cost of converting the tree structure of the
object to the tree structure of the structured document
generated by the document tree generation unit ; and

wherein the mapping is selected from the mappings which
associate the individual properties included in the
object with the individual elements of the structured
document .

4. The generation apparatus according to claim 1 , further
comprising :

a conversion unit configured to convert the object to the
structured document , which includes values of the
individual properties of the object as values of the
corresponding elements , such conversion being on the
basis of the mapping selected by the selection unit .

5. The generation apparatus according to claim 4 , further
comprising :

a receiving unit configured to receive a function call with
the object as an argument , indicating to convert the
object to the structured document and transmit the
structured document ; and

a transmission unit configured to transmit the structured
document output by the conversion unit .

6. The generation apparatus according to claim 5 , wherein
the mapping generation unit is further configured to generate
a mapping that associates properties of an array included in
the object with repetitive elements repetition of which is
specified in the structured document .

7. The generation apparatus according to claim 3 , wherein
the object tree generation unit is further configured to
generate :

a tree structure of the object that includes an array node
having individual elements of an array included in the
object as its child nodes ;

a tree structure of the structured document that includes ,
as repetitive nodes , repetitive elements repetition of
which is specified in the structured document ; and

a mapping that associates the array node in the tree
structure of the object with the repetitive nodes in the
tree structure of the structured document .

8. The generation apparatus according to claim 7 , wherein
the mapping generation unit is further configured to :

generate correspondences between (i) nodes of a tree
structure obtained by removing the child nodes of the
array node from the tree structure of the object and (ii)
nodes of a tree structure obtained by removing child

nodes of the repetitive nodes from the tree structure of
the structured document , and

generate correspondences between the child nodes of the
array node and the child nodes of the repetitive nodes
when the array node in the tree structure of the object
has been associated with the repetitive nodes in the tree
structure of the structured document .

9. The generation apparatus according to claim 3 , wherein
the document tree generation unit is further configured to

generate a tree structure of the structured document that
includes an optional element designated optional as an
optional node and a mandatory element designated
required as a mandatory node .

10. The generation apparatus according to claim 9 ,
wherein the mapping generation unit is configured to :

store the correspondence in a history storage unit when
having generated a correspondence between one child
node and the mandatory node according to description
of one part of the program ; and

associate the one child node with the mandatory node , and
associate another child node with the optional node
when the correspondence between the one child node
and the mandatory node is stored in the history storage
unit according to description of another part of the
program .

11. The generation apparatus according to claim 2 ,
wherein :

the calculation unit is configured to :
select , as the minimum edit cost , the edit cost of an edit

process that is determined as minimizing the edit cost
among at least one edit process for converting the tree
structure of the object to the tree structure of the
structured document when the tree structure of the
object is converted to the tree structure of the structured
document by performing , on the tree structure of the
object , an edit process in which edit operations are
performed at least once ; and

calculate total of edit operation costs associated with the
respective edit operations as edit cost of the edit
process , wherein the edit operations include : renaming
the properties , changing sequence of a plurality of child
nodes that belong to a common parent node ; and adding
a parent node for at least one node .

12. A generation apparatus , comprising :
a processor device operatively coupled to a computer

readable storage medium , the processor device config
ured to :

generate a mapping between individual properties
included in an object in a program and individual
elements of a structured document by :
receiving a function call with the object as an argument

indicating that the object is to be converted to the
structured document and the structured document
transmitted ;

generating a tree structure of the structured document
that includes , as repetitive nodes , repetitive elements
whose repetition is specified in the structured docu
ment from a schema describing hierarchical structure
of the structured document ;

preferentially associating the child nodes in the tree
structure of the object with a mandatory node when
a parent node on a side of the object , that includes
child nodes in the tree structure of the object is
associated with a parent node on a side of the

US 2022/0058032 A1 Feb. 24 , 2022
9

a

structured document that includes the optional nodes
and the mandatory nodes in the tree structure of the
structured document ; and

selecting a mapping minimizing conversion cost of
converting the tree structure of the object to the tree
structure of the structured document generated by the
document tree generation unit .

13. A computer readable article of manufacture tangibly
embodying computer readable instructions which , when
executed , cause the computer to function as a generation
apparatus according to claim 1 .

14. A generation method for generating a mapping
between individual properties included in an object in a
program and individual elements of a structured document ,
the generation method comprising :

selecting a mapping which minimizes cost of conversion
of a first tree structure to a second tree structure which
includes the individual elements of the structured docu
ment as its nodes ;

generating a tree structure of the structured document for
determining that there is a parent node on a side of the
object that includes child nodes in the tree structure of
the object that is associated with a parent node on a side
of the structured document that includes optional nodes
and mandatory nodes in the tree structure of the struc
tured document ; and

preferentially associating the child nodes in the tree
structure of the object with a mandatory node when a
parent node on a side of the object that includes child
nodes in the tree structure of the object is associated
with a parent node on a side of the structured document
that includes the optional nodes and the mandatory
nodes in the tree structure of the structured document .

15. A computer readable article of manufacture tangibly
embodying computer readable instructions which , when
executed , cause the computer to carry out the steps of a
method according to claim 14 .

16. The generation method according to claim 14 ,
wherein the selecting includes :

calculating , for each of the mappings , a minimum edit
cost of converting the tree structure of the object to the
tree structure of the structured document ;

setting the minimum edit cost as conversion cost of the
mapping , and

selecting a mapping with a minimum calculated conver
sion cost .

17. The generation method according to claim 14 , further
comprising :

generating a tree structure of the structured document
from a schema describing hierarchical structure of the
structured document ; and

selecting a mapping minimizing a conversion cost of
converting the tree structure of the object to the tree
structure of the structured document generated by the
document tree generation unit ,

wherein the mapping is selected from mappings which
associate the individual properties included in the
object with the individual elements of the structured
document .

18. The generation method according to claim 14 , further comprising :
converting the object to the structured document , which

includes values of the individual properties of the
object as values of the corresponding elements , such
conversion being on the basis of the mapping selected
by the selection unit .

19. The generation method according to claim 18 , further
comprising :

receiving a function call with the object as an argument ,
indicating to convert the object to the structured docu
ment and transmit the structured document ; and

transmitting the structured document output by the con
version unit .

20. The generation apparatus according to claim 12 ,
wherein the selection unit includes :

a calculation unit that , for each of the mappings , is
configured to calculate minimum edit cost of convert
ing the tree structure of the object to the tree structure
of the structured document , and sets the minimum edit
cost as conversion cost of the mapping , and

a mapping selection unit that is configured to select a
mapping with minimum conversion cost calculated by
the calculation unit .

