PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION

TREATY (PCT)

(51) International Patent Classification 7 :

GOG6F 11/34, 11/36 Al

(11) International Publication Number:

(43) International Publication Date:

WO 00/46678

10 August 2000 (10.08.00)

(21) International Application Number: PCT/US99/29231

(22) International Filing Date: 9 December 1999 (09.12.99)

(30) Priority Data:

09/246,619 8 February 1999 (08.02.99) uUs

(71) Applicant: INCERT SOFTWARE CORPORATION [US/US}J;
One Kendall Square, Building 1400W, Cambridge, MA
02139 (US).

(72) Inventors: AYERS, Andrew, E.; 15 Lord Jeffrey Drive,
Ambherst, NH 03031 (US). AGARWAHL, Anant; 105
Hickory Road, Weston, MA 02193 (US). SCHOOLER,
Richard; 21 Ellsworth Avenue, Cambridge, MA 02139 (US).

(74) Agents: SMITH, James, M. et al.; Hamilton, Brook, Smith &
Reynolds, P.C., Two Militia Drive, Lexington, MA 02421
(US).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,
KE, KG, KP, KR, KZ, L.C, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG,
UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS,
MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ,
BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GW, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(54) Title: A METHOD FOR BACK TRACING PROGRAM EXECUTION

(57) Abstract
50\ {

A method of back-tracing
execution of a computer
program, where the computer
program comnprises a

1a 2, 16{l1)
Irg,2
bet, 1200, 11)

51

\ w——Added instructions store block address

plurality of blocks, comprises
instrumenting an original

version of the program by
adding instrumentation code
to some or all of the blocks

st 4, 106(5)
arh,2
be 8, 90(0, 13}

52—

Memory record stores block sequence

mﬂl» BN ZJ;IHH

to form an instrumented
program. Instrumentation

/

\

o .o //:
!

can be added at the binary

or source level, or at link
time. The instrumentation code
records execution sequence

12,156(9)

53~ balr 14, 15

4 | o1 4, 64012)
bc 6, 34(1) /

|
I
!
)
|

information upon execution of
the corresponding instrumented
block to create a trace record

N\

. ’
_—’//
///—__

of the executed program. The
execution sequence information 15,8012)

55
for each block comprises Y st8i4813)

//

a block identifier which
identifies the corresponding ‘
block. A detailed back-trace

is generated, after the program has executed, by replacing each recorded block identifier with program counters associated with each
instruction in the corresponding block. The application may comprise several programs or subprograms, in which case separate regions
of memory can be maintained. Each region is associated with a program or subprogram or set of programs or subprograms and stores
therein part of the trace record corresponding to the associated set of programs or subprograms. The trace records themselves may be of
different types. After execution, the trace record is presented to a user, in the form of assembly code, or more preferably, in the form of
source level code. In an alternative embodiment, a summary of the trace record recorded during execution of an instrumented program is
presented to a user. Various types of traces can be produced, including a last instruction trace and a first instruction trace.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
cM
CN
Cu
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Céte d’'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
D
TG
TJ
™
TR
TT
UA
UG
us
vz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 00/46678 PCT/US99/29231

A METHOD FOR BACK TRACING PROGRAM EXECUTION

BACKGROUND OF THE INVENTION

Computers are known to terminate abnormally, or crash, during program
execution for many reasons, including accessing invalid memory locations, going
into an infinite loop, running out of memory, accessing an invalid device, and so on.
Although modern software engineering methodologies attempt to minimize the
possibility of crashes, they have not been able to eliminate them.

When a computer runs an important aspect of a business, it is critical that the
system be able to recover from a crash as quickly as possible, and that the cause of
the crash be identified and fixed to prevent further crash occurrences, and even more
importantly, to prevent the problem that caused the crash from causing other damage
such as data corruption. ,

The first step in fixing the problem that causes a crash is to first find the
problem. Finding the problem when computer crashes in production is particularly
difficult because of the lack of information provided by the computer on the events
leading to the crash. In modern mainframe computer environments, for example,
tools exist that provide information about (1) the last instruction which executed
when the computer crashed, and (2) data stored in registers and memory at the
instant the crash occurred. Some of these tools also provide limited information on
the sequence of subprogram calls that eventually led to the crash.

Systems such as Abend-Aid (tm) from Compuware Corp. provide only the
last instruction before a crash. Abend-Aid also provides information on the state of
the system when it crashed. The state includes the final values of registers and
memory locations.

Where multiple programs run on a computer system and call each other,
some crash-analysis systems also provide information on the call sequence. In other
words, the user can obtain the sequence of inter-program calls preceding the crash.

Several packages have existed for nearly two decades that provide address
traces of programs. For example, Henry, "Tracer- Address and Instruction Tracing

for the VAX Architecture, "Unpublished Memo, University of California, Berkeley,

WO 00/46678 PCT/US99/29231

2-

November, 1984, or Agarwal, Sites, and Horowitz, "ATUM: A New Technique for
Capturing Address Traces Using Microcode," In Proceedings of the 13th Annual
Symposium on Computer Architecture, Pages 119-127, June 1986, or Ball and
Larus, "Optimally Profiling and Tracing Programs," TR #1031, September 1991,
Computer Sciences Department, University of Wisconsin-Madison. These address
tracing packages focus on creating address traces of complete program runs or of
sampled intervals of program runs.

These tracing packages are not concerned with computer crashes to trigger a
backtrace sequence. Since their major focus is to collect complete address traces,
these techniques are not concerned with the amount of storage space required to
store the trace information, for example, in memory or on disk, or in being active in
production
execution of application programs. Tracing packages also do not provide an
integrated mechanism to correlate and display traced addresses with source-level
statements to facilitate debugging of computer crashes.

Isolating the reason for a crash is somewhat easier when the crash happens
during program development because the program can be compiled in debug mode
and executed within a debugger. Within a debugger, the program is run slowly and
more information is collected than during a normal production run, so that when the
program crashes the user has more information with which to diagnose the problem.

Unfortunately, it is often difficult to reproduce a crash in debug mode,
because of the difficulty of faithfully reproducing within a debug environment the
set of events that led to a production run crash.

Within a debugger such as “gdb,” a user can stop the program at any point
during its execution. Debuggers provide information on system state, such as
program variable values at the halt point. By asking for a stack dump, the user can
also obtain the sequence of function calls (if any) that led to the specific function

within which the program is halted.

SUMMARY OF THE INVENTION
Unfortunately, existing technologies do not provide information on the

specific sequence of instructions that were executed prior to the instruction that

WO 00/46678 PCT/US99/29231

3.

crashed or faulted. Discovering the exact sequence of instructions that executed
prior to a crash 1s a difficult problem, made even harder when a program crashes in a
production environment, because execution speed cannot be reduced significantly.

The present invention is a method for producing such a sequence of
instructions, or a crash instruction trace. A crash instruction trace includes the
instruction that crashed and some or all of instructions that preceded it. If the crash
instruction trace contains all of the instructions executed from the start of the
program to the crash point, then this sequence of instructions is called the complete
crash instruction trace.

The crash instruction trace can also contain information on the specific times
at which each instruction was last executed, in which case the trace is called a time-
stamped crash instruction trace. The availability of a crash instruction trace can
facilitate isolating the problem that caused a crash, thereby speeding up the process
of crash recovery or system stabilization.

A complete crash instruction trace can become very large. For example, a
computer running 100 million instructions per second will produce a 100 million
instructions per second that must be recorded in a complete trace. Therefore, it is
sometimes prcferable to store a last instruction trace.

A last instruction trace is a sequence of instructions sorted by the last time at
which an instruction was executed. A last instruction trace contains each instruction
at most once. Accordingly, the maximum size of the last instruction trace is
bounded by the size of the program itself.

As an example, suppose a program contains the following eight instructions,
each represented as a letter: A,B,C,D,E,F,G,H. Further suppose that during a
successful execution of the program the execution sequence is A, B, C, F, G, F, G,
F,GF,G,B,CFGFGF,G,F,G, H. Forthe purpose of the example, assume
that the program starts at precisely 1AM and that each instruction executes in 1
microsecond (jLsec).

Now, suppose the program crashes at the last execution of the statement G.
Then, the trace A,B,C,F,G,F,G,F,G,F,G,B,C,F,G,F,G,F, G, F, Gis the
complete crash instruction trace. B, C,F, G, F, G, F, G, F, G is a partial crash

instruction trace. The corresponding last crash instruction trace is A, B, C, F, G.

WO 00/46678 PCT/US99/29231

-4-

The time-stamped crash instruction trace is:

Inst: Timestamp:

A 1AM

B 1AM +1 psec
C 1AM +2 psecs
F 1AM +3 Hsecs
G 1AM +4 psecs
F 1AM +5 psecs
G 1AM +6 Hsecs
F 1AM +7 psecs
G 1AM +8 Hsecs
F 1AM +9 psecs
G 1AM +10 psecs
B 1AM +11 psecs
C 1AM +12 psecs
F 1AM +13 psecs
G 1AM +14 psecs
F 1AM +15 psecs
G 1AM +16 psecs
F 1AM +17 psecs
G 1AM +18 psecs
F 1AM +19 psecs
G 1AM +20 psecs

The last time-stamped crash instruction trace is:

Inst: Timestamp:

A 1AM

B 1AM +11 psecs
C 1AM +12 psecs
F 1AM +19 psecs
G 1AM +20 psecs

Other types of traces, such as a first instruction trace, can also be stored. Like
the last instruction trace, the first instruction trace contains only one reference to
each instruction. However, unlike the last instruction trace, it stores the sequence of
instructions in the order in which they were first referenced.

Instruction traces can be important for purposes other than crash recovery,
such as performance tuning and debugging, in which case some system event or
program event or termination condition can trigger the writing out of an instruction
trace. The present invention applies to all of these event types. In this more general

case, the instruction trace preceding the trace triggering event is called the pre-

WO 00/46678 PCT/US99/29231

-5-

trigger instruction trace. If the trigger is a crash then the pre-trigger instruction trace
is simply the crash instruction trace.

In accordance with the present invention, a method of back-tracing execution
of a computer program, where the computer program comprises a plurality of
blocks, comprises identifying the blocks of the computer program, and
instrumenting an original version of the program by adding instrumentation code to
some or all of the blocks to form an instrumented program. The instrumentation
code records execution sequence information upon execution of the corresponding
instrumented block to create a trace record of the executed program. The sequence
information can be recorded, for example, in memory, or to a disk file.

Preferably, the execution sequence information for each block comprises a
block identifier which identifies the corresponding block. The identifier may be, for
example, a starting or ending program counter of the corresponding block, or some
other assigned identifier, possibly using Huffman coding to allocate the block
identifiers .

In a preferred embodiment, a detailed back-trace is generated, after the
program has executed, by replacing each recorded block identifier with program
counters associated with each instruction in the corresponding block.

In an optimized embodiment using path encoding, a block identifier is
recorded in a condensed representation. Alternatively, a few bits can be used to
encode the direction taken by the program at each branch, e.g., one bit for each two-
way branch. The condensed representation can hold a plurality of block identifiers.
The condensed representation can be stored, for example, in a register which reduces
the number of instructions added for each block. The register value is stored into
memory when no more values can be written to it. The condensed representation is
then expanded by a post-processing step by storing the individual block identifiers
contained therein into the trace record.

Preferably, the trace record is stored in a circular buffer, in a region of
memory separate from where the program is stored, and the buffer size is
dynamically set.

If the program comprises several programs or subprograms, separate regions

of memory can be maintained. Each region is associated with a program or

WO 00/46678 PCT/US99/29231

-6-

subprogram or a set of programs or subprograms and stores therein part of the trace
record corresponding to the associated set of programs or subprograms, and the trace
records themselves may be of different types.

Instrumentation preferably occurs at the binary level, but alternatively takes
place at, for example, the source code level or at link time.

" The trace record recorded is preferably presented to a user. This can be in
the form of assembly code, or more preferably, is in the form of source level code.
In a preferred embodiment, this is accomplished by maintaining, for each binary-
level instruction, a pointer to a line of source code from which the binary-level
instruction was generated. The pointer is preferably determined from a compiler
listing file. In a preferred embodiment, repeat source level instructions, due for
example to one line of source code leading to several lines of binary-level
instructions, are filtered out. Where an application comprises many programs, the
program name corresponding to an instruction trace entry is preferably displayed.

In an alternative embodiment, a summary of the trace record recorded during
execution of an instrumented program is presented to a user. This can include the
basic block lines identified in the trace record, as well as procedure calls identified
in the trace record. The summary can also include, for example, inter-module or
inter-program calls identified in the trace record.

In another preferred embodiment, a table is maintained. Each entry in the
table corresponds to a program block, and is preferably addressed by a hash of its
corresponding block’s program counter. This table can be used to produce a last
instruction trace by recording a sequence indicator when recording the block
identifier, or a first instruction trace by recording a sequence indicator for a
corresponding block only the first time the block is executed.

The sequence indicator can be a time-stamp, and can be recorded, for
example, upon either entry or exit into the corresponding block. Alternatively, the
sequence indicator can be a counter value, which, for example, increments its value
after its value is recorded. In a further embodiment, when the counter value reaches
a preset limit, a time-stamp is recorded in place of the counter value. A separate

counter can optionally be maintained for each module, subprogram or procedure.

WO 00/46678 PCT/US99/29231

-7-

In another embodiment, sequence indicators are store only when a specified
event, which is preferably selected by a user, is detected by the instrumentation

code.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advantages of the invention
will be apparent from the following more particular description of preferred
embodiments of the invention, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout the different views. The
drawings are not necessarily to scale, emphasis instead being placed upon
illustrating the principles of the invention.

Fig. 1 is a block diagram providing an example a sequence of program basic
blocks.

Fig. 2 is a control flow diagram corresponding to the example of Fig. 1.

Fig. 3 is a schematic drawing showing how, in the present invention,
instrumented code writes to a sequence record.

Fig. 4 is a flowchart of an embodiment of the present invention in which
binary code is instrumented.

Fig. 5 is a flowchart of an embodiment of the present invention in which
source code is instrumented.

Figs. 6A and 6B are block diagrams providing an example using of an
optimization of the present invention used to eliminate instrumentation in many
blocks.

Fig. 7 is a schematic drawing showing an optimized embodiment of the
present invention in which identifiers are temporarily stored, in a condensed format,
in a register or memory location.

Fig. 8 is a sample trace listing presenting source code.

Fig. 9 is a sample trace listing presenting source code from multiple sub-
programs.

Figs. 10A - 10C are schematic diagrams illustrating embodiments of the
present invention create a last instruction trace (Fig. 10B) and a first instruction trace

(Fig. 10C) for the control flow shown in Fig. 10A.

WO 00/46678 PCT/US99/29231

-8-

Fig. 11 is a schematic drawing showing how a preferred embodiment of the

present invention operates with multiple programs, each having its own buffer.

DETAILED DESCRIPTION OF THE INVENTION

Fig. 1 shows an example instruction sequence as the instructions reside in
meinory. The instructions are grouped into identified blocks 31-35, where a block is
a sequence of consecutive program instructions in which flow of control enters only
at the beginning and leaves only at the end without halt or possibility of branching
except at the end. (Aho, Sethi, and Ullman, "Compilers, Principals, Techniques and
Tools," p. 528).

Fig. 2 shows a control flow graph representation of the instruction sequence
of Fig. 1. For example, during execution, block 32 can be followed either by block
33 or by block 34. Thus, the static locations of blocks within the stored program as
shown if Fig. 1, often do not reflect the sequence in which the blocks are executed.
The goal of traceback is to provide the exact sequence in which the blocks were
actually executed during an execution of the program.

Fig. 3 demonstrates a simple embodiment of the present invention, which
inserts instrumentation code, shown as thick lines, e.g., reference 50, into each
block. The instrumentation code comprises one or more instructions into each
block. Blocks 51-55 are the instrumented versions of blocks 31-35, respectively, of
Fig. 2.

If the actual execution sequence of blocks is 51, 52, 54, 55, then as each
block executes, the instrumentation code 50 in each executing block writes out an
identifier of the corresponding block into a memory region explicitly created by this
or other instrumentation code. The identifier may, for example, be the address of the
first instruction of its block, or it may comprise some other form of identification.
For example, Huffman coding may be used to allocate compact identifiers for each
block with a program or within a subprogram.

In the current example, the identifiers are 1, 2, 4 and 5, corresponding to
blocks 51, 52, 54 and 55 respectively. This sequence of block identifiers comprises

the sequence record 57.

WO 00/46678 PCT/US99/29231

9.

In a preferred embodiment, the memory region is organized as a circular
buffer, which is visible to the entire program. Upon entering a basic block, the basic
block’s instrumentation code obtains the address of the first instruction of the basic
block. Alternatively, a unique identifier may be assigned to each block via a table or
some other means, and the instrumentation code obtains the identifier. The address
or identifier is then written into the circular buffer.

The buffer size limits the amount of traceback history that the program can
achieve. Preferably, this limit can be set dynamically by the user.

Fig. 4 illustrates a preferred embodiment of the present invention. Generally,
if original source code 301 is available, it is compiled at step 311. The compiler
typically provides an executable binary or object program 303, and a compiler
listing 321, which provides a map from source code lines to the binary code.
Obviously, if the source program is not available, step 311 is skipped and no
compiler listing 321 is available.

Whether the source program is available or not, the binary image 303 is
instrumented at step 313, which produces an instrumented binary 305. The
instrumented binary 305 includes the added instrumentation code in each block, two
of which 304 are shown. Adding instrumentation to an original program at the
binary level, is described in U.S. Application Serial No. 08/985.052, “Test,
Protection, and Repair Through Binary-Code Augmentation,” filed December 4,
1997, which is incorporated by reference herein.

When the instrumented binary program 305 is executed at step 315, the same
results 323 are produced as would be with an uninstrumented program. In addition,
as the program executes, the instrumentation code 304 records, or writes out, into a
separate region of memory a sequence record 307 comprising sequence information,
e.g., corresponding block identifiers, as indicated by arrows 306.

In a preferred embodiment, the sequence record 307 is post-processed at step
317 such that each entry representing a basic block is replaced with the set of
program counters (PCs) in the block, thereby producing the desired trace record 309.

A presenter 319 then presents the trace record 309 to a user, for example, by

presentation on a monitor 103, or sending the record to a printer 101 or to a disk file

WO 00/46678 PCT/US99/29231

-10-

105 for later analysis. If the compiler listing 321 is available, source code
corresponding to the PCs can be displayed.

As Fig. 5 shows, if source code 201 is available, then alternatively, the
instrumentation can be made at the source-level, at step 211. In this case, source
level recording statements are added to the program, for example, in C or Cobol.
The resulting instrumented source program 203 is then compiled at step 213,
producing both a compiler listing 221 and an instrumented binary 205. As in Fig. 4,
the instrumented binary 205 is executed 215, producing both normal program results
223 and a sequence record 207 written, as indicated by arrows 206, by the
instrumentation code 205. The post process step 217, trace record 209, presenter
219, monitor 103, printer 101 and disk storage 105 correspond to the same features
of Fig. 4.

The post processor 217 (Fig. 5), 317 (Fig. 4) is preferably triggered by some
event such as a crash, or some other user-defined event. Alternatively,
instrumentation inserted into the program detects some designated condition
defining an event, e.g., a negative value in a register when a positive value is
expected.

Other instrumentation methods such as link-time instrumentation may
alternatively be used.

Binary code instrumentation can be viewed as an enabler of crash instruction
trace technology because it adds little overhead to the code and does not require the
availability of the program sources. Not surprisingly, it is the preferred method for
the current invention, because the low overhead enables trace instrumentation to be
introduced in a production environment.

Therefore, in the following discussion of the traceback technology, binary
code instrumentation is the assumed means of inserting the recording instructions.
However, it is understood that source-level instrumentation or link-level
instrumentation can be used to achieve the same goal if desired.

In a preferred embodiment, the instrumentation code creates or allocates a
memory region in which to store the trace or sequence information. Where an
application comprises more than one program or subprogram, the instrumentation

preferably creates a memory region for each program or subprogram in which each

WO 00/46678 PCT/US99/29231

-11-

program or subprogram respectively stores its corresponding trace information. In
this manner, the traces of each program or subprogram remain untangled.

In optimizations of the present invention, it is not necessary to insert
instrumentation into each block. Optimization methods followed by post processing
can be used to eliminate instrumentation in many blocks.

Figs. 6A and 6B provide such an example using blocks 52-55. Here,
execution of a block 52 may be followed by execution of either block 53 or block
54. Both blocks 53 and 54 are always followed by block 55. Only one of blocks 53
or 54 need be instrumented. Here, for example, blocks 52, 53 and 55 are
instrumented, while block 54 is not instrumented. If, in Fig. 6A, block 53 executes
as indicated by the heavy lines, the sequence record 57 written by the instrumented
blocks will contain the identifiers 2, 3, 5 corresponding to blocks 52, 53 and 55.

On the other hand, if block 54 executes as in Fig. 6B, because block 54 is not
instrumented, the sequence record 57 will contain only the identifiers 2, 3. Because
block 53 is not seen to follow block 52 in the sequence record 57, block 54 must
have executed, implying a sequence record as shown at 57A which includes the
identifier 4 corresponding to block 54, although the sequence 57A is never actually
stored. If the instrumentation program knows that the sequence 52, 54, 55 is more
common, then it will choose to instrument block 53 and not 54.

Fig. 7 demonstrates another optimization, which uses path encoding, in
which a condensed representation of a sub-sequence is maintained in a register or
memory location 413.

The program control flow graph is first split up into a preferably minimal set
of unique single-entry multiple-exit DAGs (directed acyclic graphs), using standard
techniques, for example, by using depth first search and marking to identify
backedges, and then using each backedge in addition to the graph entry points as
DAG headers. Each DAG is assigned a unique code word or identifier.

The instrumented code of each block within a DAG can perform a quick
operation on a register or memory location such as appending or adding its
identifier. If a register is used, then after several such operations, the accumulated
encoding can be

written out to the trace record in memory.

WO 00/46678 PCT/US99/29231

-12-

For example, assume that the sequence record during some execution is
currently as shown at 411A. Suppose also that register 413, which in this example
comprises four bytes, is clear. Referring to the control flow diagram of Fig. 3,
assume the sequence of executed blocks is: 51, 52, 53, 55. As each block is
executed, the instrumentation code shifts or ORs the corresponding identifier into
the fegistcr 413, resulting in the sequential configurations, or path codes, shown at
413A-413D for blocks 51, 52, 53 and 55 respectively. When the instrumentation
code sees that the register 413 is full, it stores all the contents of the register 413,
i.e., the four identifiers, into the sequence record, so that the sequence record is as
shown at 411B.

An alternate encoding scheme assigns an integer weight to each block or
control-flow edge between blocks, so that each possible path within the DAG
produces a unique sum, as described by Ball and Larus, in "Efficient Path Profiling,"
Proceedings of Micro-29, 1996. The instrumentation for each block or edge adds in
its weight. A preferred implementation of this scheme chooses power-of-two
weights, so that adding in a weight is accomplished by setting a single bit, for
example with a single
logical-OR instruction.

Alternatively, a few bits can be used to encode the direction taken by the
program at each branch, for example, one bit for a two-way branch, or two bits for a
three- or four-way branch

Of course, depending on the size of the register or memory location, the size
of the identifiers, and the method used, e.g., shifting, adding, etc., the number of
identifiers temporarily stored in the register or memory may be different.

The register and the unique DAG code is stored to memory at each exit point
of the DAG. Together, the DAG code and the path code within the DAG uniquely
identify the dynamic program flow. If the path code word is maintained in memory,
an OR immediate instruction, if available, can be used to maintain the path code
directly in memory, thereby avoiding having to store the register in memory when
the DAG is exited.

As discussed with reference to Figs. 3 and 4, the trace record can be

presented to a user as a sequence of binary instructions or their assembly language

WO 00/46678 PCT/US99/29231

-13-

representations, or mnemonics. However, since each source program line of code is
converted by a compiler to one or more lines of binary code, an instruction trace can
also be presented to the user in source form to facilitate debugging by a user.

Fig. 8 shows a sample source code trace listing 401A, comprising three
columns. The first column 403 shows the name of the program, sub-program or
subroutine. The second column 405 shows the line number of the corresponding
code, and the third column shows the actual source code from which the binary code
was produced.

Fig. 9 illustrates a similar sample source code trace listing 402, produced by
a preferred embodiment which is useful when multiple programs are running, i.e.
where an application comprises several programs. If buffers are allocated to each
subprogram and to each program, using either time-stamps or sequence numbers or
both, then the postprocessor displays a crash or event instruction trace which
includes three pieces of information per line of code: the program name, the line
number, and the specific source.

In the example of Fig. 9, the traces of two programs (subprograms),
AGYTCOR and CASHBAL are shown. The first part 401A, corresponds to the
trace 401A of Fig. 8 and corresponds to the program AGYTCOR. The second part
401B shows the trace for the program CASHBAL.

Presentation of source code to the user is accomplished, for example, by
maintaining for each binary/assembly instruction, a pointer to the source line that
produced the instruction. There are many ways in which this information can be
obtained. Most commonly, compilers produce such information. Compiler listing
files also commonly contain the source code lines and the corresponding binary code
lines. Prior to displaying the trace to a user, a post-processing step can convert each
line of binary code or assembly code to the corresponding source statement.

Typically, multiple assembly instructions map to a single source statement.
Thus, the source level trace may show the same source instruction repeated. A
further optimized embodiment of the present invention therefore filters out repeat
source level instructions, for example, by replacing multiple identical source lines in

the trace display with a single line.

WO 00/46678 PCT/US99/29231

-14-

In addition to assembly or source code line traces, a preferred embodiment
optionally presents summary trace information to the user. Such summary
information may comprise, for example, basic block lines, procedure calls or inter
module/program calls.

With small modifications, the present invention can produce other types of
traCes, as now discussed.

Figs. 10A - 10C demonstrate how alternative embodiments of the present
invention can create a variety of traces such as a “last instruction trace” and a “first
instruction trace.” The control flow graph of Fig. 10A corresponds to that of Fig. 3.
For the examples of Fig. 10B and 10C, assume the control flow indicated by the
heavy line 59. Thus, the order of execution of the blocks is: 51, 52, 53, 55, 51, 52,
54, 55.

Fig. 10B illustrates a preferred manner of creating a last instruction trace.
For example, a table 71 is maintained wherein each entry 51A-55A is associated
with a specific corresponding block 51-55, respectively. When a block is executed,
a time-stamp is recorded in the memory buffer at the corresponding location.

At the start of the program, each entry is marked with an X to indicate the
corresponding block has not yet executed. After block 51 executes, the timestamp,
here a 1, is stored into the corresponding location 51A, as indicated at 71A.
Similarly, after blocks 52 and 53 execute, timestamps indicating the respective times
of execution, here 2 and 3, are stored in the corresponding locations 52A and 53A,
as indicated at 71B and 71C respectively.

71A - 71H show the changes to the table 71 as each block is executed. Note
that, for example, at 71E, when block 51 executes a second time, the new timestamp,
here a 5, overwrites the old timestamp.

After execution of the program, or upon some triggering event such as a
system crash, the post-processor writes out the sequence record 73. By ordering the
timestamps in reverse order, the blocks are ordered by last execution, and only the
last execution of each block is shown. Thus, this is a last instruction trace. Of
course, the blocks could also be ordered from first to last, however this is still a last

instruction trace.

WO 00/46678 PCT/US99/29231

-15-

In an improved embodiment, hashing techniques can be used in combination
with the block addresses to identify corresponding locations within the table.

There are many ways in which a time-stamp can be obtained, one being the
use of a system call to retrieve the value in the system clock. In a preferred
embodiment, each writing of the time-stamp writes over the previous value stored in
the 'entry corresponding to the block, although in other types of traces may not be
desired.

Fig. 10C demonstrates an alternative embodiment which produces a “first
instruction trace,” in which the first execution of a block is recorded. A buffer 75 is
allocated, having an entry 51B-55B corresponding to each block 51-55 in the
program . Each entry is initialized to some known value such as -1. When a block
is executed, a time-stamp is recorded only if the current value in the record is -1.
Otherwise no value is recorded.

As with Fig. 10B, 75A-75H depict the state of the table 75 as each block is
executed. After the program runs, the blocks are ordered into a sequence record 77
by time-stamps. Because only first execution times are recorded, the resulting trace
is a first instruction trace.

In a preferred embodiment, any or all of a crash instruction trace, a first
instruction trace and a last instruction trace can be stored

The circular buffer approach can be combined with other trace methods, such
as the first or last instruction trace. This combination is valuable when, for example,
the user wants a very long instruction trace. A small loop in one of the program
modules, subprograms, or procedures can completely fill up the buffer. Instead, it is
preferable to store sequences related to each program module in a separate buffer
such that memory is allocated as and when each module executed.

Preferably, as Fig. 11 illustrates, a circular buffer 64, 66 is allocated to each
module, ProgA and ProgB respectively. Instrumentation at the beginning of a
module creates the module-specific buffer. At the start of the module execution, the
instrumentation code records the current time. For example, the instrumentation
code of block 51 records time-stamp T1. Then, as before, the block instructions or

identifiers 1 and 2, corresponding to blocks 51 and 52, are recorded.

WO 00/46678 PCT/US99/29231

-16-

Now blocks 61 and 62 from module ProgB are called and executed before
block 54. The instrumentation code from block 61 writes a time-stamp T2 into
ProgB’s buffer 66, and then blocks 61 and 62 write their identifiers 1 and 2 into the
buffer 66. After block 62, control returns to block 54 in ProgA, which writes a new
time-stamp T3 into ProgA’s buffer 64. Alternatively, time-stamps can be stored
upon each exit, or on both entry and exit. Time-stamps can also be written by the
runtime system.

Note that the sequence records 64, 66 need not be the same type. For
example, record 64 may record every execution of every block of ProgA, while
record 66 may be a last instruction trace.

In an another alternative embodiment, a circular buffer represents only
module entries and/or exits. Thus, when a module is entered and/or exited,
corresponding, for example, to a call and/or return, the instrumentation writes the
module identifier into this module-level circular buffer. A record of the executed
module sequence is thus recorded. The complete history is then obtained by
combining the module-level trace with the intra-module traces obtained within the
circular buffer.

Alternatively, rather than using clock functions which may be expensive in
terms of time or other resources, a global sequence number or counter is maintained
in a register or in memory. Each time the value of the counter is written into the
sequence record, the counter is incremented. Alternative embodiments can also
have counters allocated for program modules, subprograms, and procedures.

If such a counter is incremented frequently, it may overflow. Of course,
overflows can be handled in many ways. A preferred method is to resort to using a
time-stamp when a counter reaches a preset high limit.

Preferably, a buffer is written out or displayed when the instrumentation
detects some event. The event is chosen by the user and special instrumentation
instructions are inserted to check for the user specified condition. When the
condition is met, the buffer is written out. Different events can be assigned to
trigger different buffers.

While this invention has been particularly shown and described with

references to preferred embodiments thereof, it will be understood by those skilled

WO 00/46678 PCT/US99/29231

-17-

in the art that various changes in form and details may be made therein without
departing from the spirit and scope of the invention as defined by the appended

claims.

WO 00/46678 PCT/US99/29231

-18-
CLAIMS
What is claimed is:
1. | A method of back-tracing execution of a computer program, said computer

program comprising a plurality of blocks, said method comprising:
identifying the blocks of the computer program;
instrumenting an original version of the program by adding
instrumentation code to each of the identified blocks to form an instrumented
program, the instrumentation code, recording execution sequence
information upon execution of the corresponding instrumented block, such
that the cumulative stored sequence information recorded during execution

of the program forms a trace record.

2. The method of Claim 1 further comprising:
creating a trace record of the program by executing the instrumented
program such that the instrumentation code in each block as it executes

records its sequence information into the trace record.

3. The method of Claim 2 wherein the execution sequence information for each

block comprises a block identifier which identifies the corresponding block.

4. The method of Claim 3 wherein a block identifier is a starting program

counter of the corresponding block.

5. The method of Claim 3 wherein every block is instrumented.

6. The method of Claim 3 further comprising:
rgenerating, after the program has executed, a detailed back-trace by
replacing each recorded block identifier with program counters associated

with each instruction in the corresponding block.

WO 00/46678 PCT/US99/29231

10.

11.

12.

13.

14.

15.

16.

-19-

The method of Claim 3 further comprising:

using Huffman coding to allocate block identifiers.

The method of Claim 2, further comprising:
recording a block identifier in a condensed representation, wherein

the condensed representation holds a plurality of block identifiers.

The method of Claim 8, wherein the condensed representation is stored in a

register.

The method of Claim 8, wherein the condensed representation is stored in a

memory location.

The method of Claim 8, wherein the condensed representation uses log, 2 bits

to encode a path for each n-way branch in the program.

The method of Claim 8, wherein the size of the condensed representation for

any path makes use of an expected frequency with which that path is taken.

The method of Claim 8, wherein the condensed representation uses path

encoding.

The method of Claim 8, further comprising:
expanding the condensed representation by storing the individual

block identifiers contained therein into the trace record.

The method of Claim 2, wherein recording the sequence information into the

trace record comprises storing the sequence information in memory.

The method of Claim 15, wherein the trace record is stored in a region of

memory separate from where the program is stored.

WO 00/46678 PCT/US99/29231

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

-20-

The method of Claim 15, wherein the trace record is stored in a circular

buffer.

The method of Claim 17, wherein the buffer size is dynamically set.

The method of Claim 15, wherein the program may comprise several
programs or subprograms, and wherein separate regions of memory are
maintained, each region being associated with a program or subprogram for
storing therein part of the trace record corresponding to the associated

program or subprogram.

The method of Claim 2, wherein recording the sequence information into the

trace record comprises storing the sequence information to a file.

The method of Claim 2 wherein the program’s source code is instrumented.

The method of Claim 2 wherein instrumenting the program occurs at a link

level.
The method of Claim 2 wherein the program’s binary code is instrumented.
The method of Claim 2, further comprising:

presenting a trace record recorded during execution of an

instrumented program to a user.

The method of Claim 24, wherein the trace record is presented in the form of

assembly code.

The method of Claim 24, wherein the trace record is presented in the form of

source level code.

The method of Claim 26 further comprising:

WO 00/46678 PCT/US99/29231

28.

29.

30.

31.

32.

33.

34.

35.

21-

maintaining, for each binary-level instruction, a pointer to a line of

source code from which the binary-level instruction was generated.

The method of Claim 27, wherein the pointer is determined from a compiler

listing file.

The method of Claim 27, further comprising:

filtering out repeat source level instructions.

The method of Claim 2, further comprising:
presenting a summary of the trace record recorded during execution

of an instrumented program to a user.

The method of Claim 30, wherein presenting a summary further comprises:

presenting basic block lines identified in the trace record.

The method of Claim 30, wherein presenting a summary further comprises:

presenting procedure calls identified in the trace record.

The method of Claim 30, wherein presenting a summary further comprises:
presenting inter-module or inter-program calls identified in the trace

record.

The method of Claim 2, further comprising:
maintaining a table, the table comprising a plurality of entries, each

entry corresponding to a program block.

The method of Claim 34, wherein each entry is addressed by a hash of its

corresponding block’s program counter.

WO 00/46678 PCT/US99/29231

36.

37.
38.

39.

40.

41.

42.

43.

44.

45.

222.

The method of Claim 34, wherein the instrumentation code produces a last
instruction trace by recording a sequence indicator when recording the block

identifier.

The method of Claim 36, wherein the sequence indicator is a time-stamp.

The method of Claim 37, wherein the time-stamp is recorded upon entry into

the corresponding block.

The method of Claim 37, wherein the time-stamp is recorded upon exit from

the corresponding block.

The method of Claim 36, wherein the sequence indicator is a counter value,
further comprising:

incrementing the counter value after recording its value.

The method of Claim 40, further comprising:
maintaining a separate counter for each module, subprogram or

procedure.

The method of Claim 40, wherein when the counter value reaches a preset

limit, a time-stamp is recorded in place of the counter value.
The method of Claim 36, wherein the instrumentation code produces a first
instruction trace by recording a sequence indicator for a corresponding block

only the first time the block is executed.

The method of Claim 2, wherein sequence indicators are stored only when a

specified event is detected by the instrumentation code.

The method of Claim 44, wherein the specified event is selected by a user.

WO 00/46678 PCT/US99/29231

-23-

46. The method of Claim 2, wherein the application comprises multiple
programs, wherein presenting the instruction trace to a user further
comprises:

displaying a program name corresponding to an instruction trace

entry.

47. The method of Claim 2, further comprising:
storing any or all of a crash instruction trace, a first instruction trace,

and a last instruction trace.

48. A computer memory configured for back-tracing execution of a computer
program, said computer program comprising a plurality of blocks,
comprising:

a trace record instrumenter for instrumenting an original version of
the program by adding instrumentation code to each of the plurality of blocks
to form an instrumented program, the instrumentation code recording
execution sequence information upon execution of the corresponding
instrumented block;

a post-processor for transforming the cumulative stored sequence
information recorded during execution of the program into a trace record;
and

a trace record presenter for presenting the trace record.

49. The computer memory of Claim 48, wherein the execution sequence
information for each block comprises a block identifier which identifies the

corresponding block.

50. The computer memory of Claim 49, wherein a block identifier is a starting

program counter of the corresponding block.

51. The computer memory of Claim 49, wherein the post-processor generates a

detailed trace record by replacing each recorded block identifier with

WO 00/46678 PCT/US99/29231

52.

53.

54.

55.

56.

57.

58.

59.

24-

program counters associated with each instruction in the corresponding

block.

The computer memory of Claim 49, further comprising:
recording a block identifier in a condensed representation, wherein

the condensed representation holds a plurality of block identifiers.

The computer memory of Claim 49, wherein the program may comprise
several programs or subprograms, and wherein separate regions of memory
are maintained, each region being associated with a program or subprogram
for storing therein sequence information corresponding to the associated

program or subprogram.

The computer memory of Claim 48, wherein the trace record instrumenter

instruments the program’s source code.

The computer memory of Claim 48, wherein the trace record instrumenter

instruments the program’s binafy code.

The computer memory of Claim 48, wherein the trace record presenter

presents the trace record in the form of assembly code.

The computer memory of Claim 48, wherein the trace record presenter

presents the trace record in the form of source level code.

The computer memory of Claim 57, further comprising:
for each binary-level instruction, a pointer to a line of source code

from which the binary-level instruction was generated.

The computer memory of Claim 58, wherein each pointer is determined from

a compiler listing file.

WO 00/46678 PCT/US99/29231

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

-25.

The computer memory of Claim 48, wherein the trace record presenter

presents a summary of the sequence information.

The computer memory of Claim 60, wherein the summary comprises

procedure calls identified in the sequence information.

The computer memory of Claim 60, wherein the summary comprises inter-

module or inter-program calls identified in the sequence information.

The computer memory of Claim 48, further comprising: -
a table comprising a plurality of entries, each entry corresponding to

a program block.

The computer memory of Claim 63, wherein the instrumented code produces

a last instruction trace by recording a sequence indicator when recording the

block identifier.

The computer memory of Claim 64, wherein the sequence indicator is a

time-stamp.

The computer memory of Claim 65, wherein the time-stamp is recorded

upon entry into the corresponding block.

The computer memory of Claim 64, further comprising:
a counter whose current value is taken as the sequence indicator,

wherein the counter is incremented after its value is recorded.

The computer memory of Claim 67, further comprising:

a separate counter for each module, subprogram or procedure.

The computer memory of Claim 67, wherein when the counter value reaches

a preset limit, a time-stamp is recorded in place of the counter’s value.

WO 00/46678 PCT/US99/29231

70.

71.

72.

73.

74.

-26-

The computer memory of Claim 63, wherein the instrumented code produces
a first instruction trace by recording a sequence indicator for a corresponding

block only the first time the block is executed.

The computer memory of Claim 48, wherein sequence indicators are stored

only when a specified event is detected by the instrumented code.

The computer memory of Claim 48, wherein an application comprises
multiple programs, such that, for each line displayed, the trace record
presenter presents a program name corresponding to an instruction trace

entry.

The computer memory of Claim 48, wherein the post-processor is triggered

by a specified event.

The computer memory of Claim 73, wherein the specified event occurs when

the instrumented code detects a designated condition.

PCT/US99/29231

WO 00/46678

1/9

be

¢ 9l

(€1)8t ‘G is
(21)8 ‘g |

aels

AN

(I veg ‘909
Nv9 'y 1o

Sl ‘bl 410g |
(6)ogl ‘2 || ¢

N/

(€1'0)06 ‘8 2qg
2 'GJp
(G)90I ‘bis

a

(11'0)02I ‘129
2 ‘v
(11191 ‘2 o|

~~2¢

¢

| Old

(€1)8b ‘G is

™~
(2ng‘si| S
(1&g ‘929
(2149 ‘b 10
o pe
Gl ‘b1 110q
6)9gl‘z | *
(£1‘0)06 ‘'8 2q
2 ‘GIp >—2¢
(G)90I ‘b is
(11'0)02I ‘129
¢ v P~i¢
(11)9l ‘2 o|

PCT/US99/29231

WO 00/46678

2/9

S~ ¢g

¢ 9l
\\\\\\I.l.ll.
/
/
\ \\\'.I.I///
/ / o
[/ L ——
| / — AN
I /] 7T~ ~
_ | / ~ ~
/G _ Iy ///
2\ { @ ' ¥ N\
St |-

8JUaNbas ¥20|q $8404S P102as K1oWa

SS84PPD %0|q 8J04S SUOI}INIYSUI PAPPY

(€1)8Y ‘G is K_
p (2hg‘s | SS9
(1) bg ‘92q
@Y ‘b 1o [Gl ‘v 410g
~— (6)9GI ‘2 |
. / \
N
~ (€1'0)06 ‘8 29
N 2‘Gio P~2g
N (G)90I ‘b s
\
[
(11'0)02I ‘129
h L T
(11)91 ‘2 o}
|
] Nog

WO 00/46678
3/9
30| Original - Compiler
Source |] Compile B Listing
— | I\
| 3l 321
Binary
i
303 — fnstrument
, Binary
N33
Instrumented
Binary 3
ron | 5 3/23
7 Program
——— Execute —— g
ro 04 Results
VA, Event
Trigger
Sequence
Record 307 3|7
W b
v, : P T
7///////////// Prc?csess
0
Trace
Record
N
——— Presenter
/ / ;
319]
05—

PCT/US99/29231

103

FIG. 4

101

WO 00/46678 PCT/US99/29231

4/9
20|— Original Instrument
| Source Source
—_—
Lo
Instrumented
Source ,)22]
v/ .
203—-\/////////’ > Compile “’Cfirs??r:gr
7777 213
Instrumented
Binary 215 223
205 Y/ 4

A

Execute —— Program

.
Results
277
Event
Trigger
Sequence
Record 207

206

722 /2 ’
V//Z//A = Pfc?cs;ss

)

Trace

Record
209 L D/l%
N ———— Presenter
2154 Z. 101

105 7]

FIG. 5

WO 00/46678

5/9

PCT/US99/29231

53

Ve N
<
& 0
\ £
/ \ E |v 2t
0 {0)
SNE
) < (;')
\. 7 : bE —
0 (=
A
Ve N
P
7 0 %
- .
\ o
< ot
/ : "
o 8 B

PCT/US99/29231

WO 00/46678

6/9

vOl 914

A =TI

—Aag¢lb

—OJ¢ib

——4d¢ib

—V¢ly

— ¢lb

Gl

" —vily

PCT/US99/29231

WO 00/46678
7/9
40IA
\
AGYTCOR 1751 write print-record from i-f~header-line-2|.

AGYTCOR 1534
AGYTCOR 1536

perform l240-compute-summary.
close print-file.

AGYTCOR 917 perform [200-print-i-f-data.
AGYTCOR 918 display * .
AGYTCOR 92| stop run.
L | \
/ \ \
403 405 407
FIG. 8
402
AN
AGYTCOR 1751 write print-record from i~f-header-line-2I.
401A AGYTCOR 1534 perform l240-compute—summary.
N] AGYTCOR 1536 close print-file.
AGYTCOR 917 perform 1200-print-i-f-data.
AGYTCOR 918 display « .
AGYTCOR 921 stop run.
CASHBAL 1| perform...
Vi CASHBAL 2 print ...
40|18/ CASHBAL 9 add...

FIG. 9

WO 00/46678

8/9
BLOCK EXECUTED:

PCT/US99/29231

Start 51 52 53 55 5 22 24 25
s5iA | X | | | {15 [s 5 5
524 X X[(2]l2] 2|21 |6 6 6
s3A| x | x| Ix| 3] [3][3] [3 3 3
54| X | x| x{dx]| Ix]Ix] [7 7
558 x 1] x X Ix|1allal]a 4 8
71 7A 7B 7IC 7ID 7IE 7IF 75 TR

Block: |55[54525) |53

73] Time-stamp: | 8 [7 |6 |5 | 3

FIG.10B
BLOCK EXECUTED:

Start 51 52 53 55 20 82 24 25
51B| - | | | | | | l |
528/ -1 | (-1 | [2] 2] [2][>2 2 2
538 -1 | |-1| [-1] 3] 3] (3] [3 3 3
sas| -1 | (=1 [-r] [=] [=1 IS 7 7
558 =11 =11 < 1< 4|14’ a 4 4
73 7SA 758 75C 75D 75E 75F 75G 78R

52

53

S5

54

FIG. 10C

PCT/US99/29231

WO 00/46678

9/9

~—

g 904d

N e ——

2l

99

9

1l Old

<O%ma
(€18b'GIs |
(2hg‘s1| S
(I b€ ‘999 | _
(2149 ‘v 10 | bS Sl ‘&l 410g
(6)9G! ‘2 |

IR

N\

\ \eg

(€£1°0)06 ‘8 29

2 ‘G0 P—2g

4 (S)90I1 ‘pis

A

(11'0)021 ‘129

2 vl ~ig

(19l 2 i

!

INTERNATIONAL SEARCH REPORT

Inter snal Application No

PCT/US 99/29231

A. CLASSIFICATION OF SPBJECT MATTER
IPC 7 GO6F11/34 GO6F11/36

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Cltation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 5 790 858 A (VOGEL KEITH RANDEL) 1-6,8,

4 August 1998 (1998-08-04) 48-50,52
Y 7,9,10,
12-16
figures 2,7

column 3, line 1 - line 6

column 3, Tine 65 —column 4, line 31
column 6, Tine 1 - line 13

February 1978."
vol. 20, no. 9,
3503-3506, XP002135187

New York, US
the whole document

column 10, 1ine 50 ~ line 64

IBM TECHNICAL DISCLOSURE BULLETIN,
1 February 1978 (1978-02-01), pages

Y ANONYMOUS: "Instruction Trace Apparatus. 7,9,10,

12-16

Y

m Further documents are listed in the continuation of box C.

E Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

*E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or

T" later document published after the intemational filing date
or priority date and not in conflict with the application but
;>ited ::, understand the principie or theory underlying the
nvention

X document of particular relevancs; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y* document of particular relevance; the claimed invention

cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—

other means ments, such combination being obvious to a person skilled
P document published prior to the intermnational filing date but in the art.
later than the priority date claimed *&"* document member of the same patent family
Dats of the actual completion of the intemational search Date of maliing of the international search report
10 April 2000 25/04/2000
Naime and mailing address of the ISA Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
Tol. (43170 840-2040, T .
el. (+31-7 , TX. 31 651 eponi,
Fax: (+31-70) 340-3016 Renault, §

Form PCT/NSA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

inte.

onal Application No

PCT/US 99/29231

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

abstract

Category ° | Citation of document, with indication,where appropriats, of the relevant passages Relevant to claim No.
X US 5 732 273 A (AMITABH SRIVASTA ET AL.) 1-3,
24 March 1998 (1998-03-24) 21-26,
30,33,
44-57,
60-62,
71-74
Y 34,
36-41,
43,63-70
column 4, line 10 - line 25
column 12, Tine 34 -column 13, line 42
column 13, Tine 66 -column 14, line 3
figure 2
X EP 0 286 361 A (WESTINGHOUSE ELECTRIC 1-3,5,8
CORP) 12 October 1988 (1988-10-12)
Y page 2, line 47 -page 3, line 7 34,
36-41,
43,63-70
page 3, line 19 -page 3, line 28
page 4, line 47 -page 4, line 53
page 9, line 22 -page 9, line 27
X US 5 265 254 A (BLASCIAK ANDREW ET AL) 1-3,6,8,
23 November 1993 (1993-11-23) 10,
14-16,
19-21,
24,
30-33,
44-51,
54,
60-62,
71,73,74
figures 2,6
column 2, Tine 57 —column 3, Tine 43
column 4, line 18 - Tine 31
column 5, line 14 -column 5, line 15
column 7, Tine 27 —column 8, line 53
column 13, line 9 -column 13, line 42
A US 5 146 586 A (NAKANO HIROTAKA) 1,2,
8 September 1992 (1992-09-08) 8-10,
15-18,
24,44,
47,48,
71,73,74

Fom PCTASA/210 (continuation of second sheet) (July 1892)

page 2 of 2

INTERNATIONAL SEARCH REPORT

information on patent family members

Inte:

snal Application No

PCT/US 99/29231

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 5790858 A 04-08-1998 NONE

US 5732273 A 24-03-1998 us 5963740 A 05-10-1999

EP 0286361 A 12-10-1988 us 4819233 A 04-04-1989
CA 1297191 A 10-03-1992
DE 3884034 D 21-10-1993
DE 3884034 T 05-05-1994
ES 2045108 T 16-01-1994
IN 171541 A 14-11-1992
JP 63271643 A 09-11-1988

US 5265254 A 23-11-1993 us 5450586 A 12-09-1995

US 5146586 A 08-09-1992 JP 2216545 A 29-08-1990
FR 2643474 A 24-08-1990

Fomm PCT/NSA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

