特許協力条約に基づいて公開された国際出願

世界知的所有権機関
国際事務局

国際公開番号：WO 2015/166840

公開日：2015年11月5日

(51) 国際特許分類：
H04W 16/28 (2009.01)
H04W 16/36 (2009.01)

(21) 国際出願番号：PCT/JP2015/056200

(22) 国際出願日：2015年4月21日

(25) 国際出願の言語：日本語

(26) 国際公開の言語：日本語

(30) 特許公報：2015年4月30日（30.04.2014）
JP

(71) 出願人：株式会社NTTドコモ（NTT DOCOMO, INC.）
(72) 発明者：岸山 祥久（KISHIYAMA, Yoshihisa）

(74) 代理人：伊東 忠重，外（ITOH, Tadashige et al.）

(57) Abstract: A user device that communicates with a base station in a wireless communication system equipped with said base station and said user device, said user device being equipped with: a reception means that measures the received power of reference signals which are transmitted from the base station and are associated with a plurality of different identification information, and selects a specific reference signal on the basis of the measurement result; and a transmission means that transmits a random access signal containing a preamble sequence corresponding to the identification information of the reference signal selected by the reception means.

(54) 発明の名称：ユーザ装置、基地局、通信アクセス方法、及び通信方法

(55) 添付公開書類：

- 国際調査報告（条約第21条（3））
明細書
発明の名称:
ユーザ装置、基地局、通信アクセス方法、及び通信方法
技術分野
[0001] 本発明は、無線通信システムの基地局とユーザ装置に関するものである。
背景技術
[0002] L T E / L T E _ A d v a n c e d では、システム容量、セル端ユーザスルーブット等を増大させるM I M O技術が採用されている。また、異なるタイプの基地局（マクロセル、スモールセル等）を混在させつつセル間干渉を低減して高品質な通信を実現するヘテロジニアスネットワーク技術が採用されている。
[0003] 特に、ヘテロジニアスネットワークにおけるスモールセルでは、高周波数帯を使用することが想定されている。ここで、高周波数帯では伝搬ロスが増大することから、それを補うために、ビーム幅の狭いビームフォーミングを行うmassive M I M Oを適用することが検討されている。
[0004] massive M I M Oは、多数（例：100素子）のアンテナを使用する大規模M I M Oであり、狭い領域に電界の強さを集中させることができるため、ユーザ間の干渉を小さくすることができる。
[0005] また、ヘテロジニアスネットワークでは、高周波数帯での伝搬ロスを補うために、下りリンクのみでなく、上りリンクでも複数アンテナを用いたビームフォーミングを行うことが検討されている。
先行技術文献
特許文献
[0006] 特許文献1：特開2013_219507号公報
発明の概要
発明が解決しようとする課題
[0007] しかしながら、既存のL T E / L T E _ A d v a n c e d では、上記のよ
うなヘテロジニアスネットワークにおける使用に適したランダムアクセス信号（PRACH: Physical Random Access Channel）は規定されていない。そのため、既存技術では、例えば、複数の下りビームを形成する基地局へのアクセスを行うためにPRACHを送信したユーザ装置に対し、基地局が当該ユーザ装置に対して、どのビームが良好な受信品質をもたらすビームであるのかといった判断を効率的に行うことはできない。

発明の効果

008 本発明は上記の点に鑑みてなされたものであり、ビームフォーミングを行う基地局と、ユーザ装置とを有する無線通信システムにおいて、基地局が良好なビームを効率的に決定することを可能とする技術を提供することを目的とする。

課題を解決するための手段

009 本発明の実施の形態によれば、基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置であって、前記基地局から送信される複数の異なる識別情報に対応付された参照信号の受信電力を測定し、測定結果に基づいて特定の参照信号を選択する受信手段と、前記受信手段により選択された参照信号の識別情報に対応するブリアンプル系列を含むランダムアクセス信号を送信する送信手段とを備えるユーザ装置が提供される。

010 また、本発明の実施の形態によれば、基地局とユーザ装置とを備える無線通信システムにおいて前記ユーザ装置と通信を行う前記基地局であって、複数の異なる識別情報に対応付された参照信号を送信する送信手段と、前記ユーザ装置から、当該ユーザ装置により受信された特定の参照信号の識別情報に対応するブリアンプル系列を含むランダムアクセス信号を受信する受信手段と、を備え、前記受信手段は、前記受信信号により受信されたランダムアクセス信号から取得される前記識別情報に基づいて、前記ユーザ装置に制御信号を送信する基地局が提供される。

発明の効果
本発明の実施の形態によれば、ビームフォーミングを行う基地局と、ユーザ装置とを有する無線通信システムにおいて、基地局が良好なビームを効率的に決定することを可能とする技術が提供される。図面の簡単な説明

[図1]本発明の実施の形態に係る無線通信システムの全体構成図である。

[図2]ビームフォーミングを行うユーザ装置の適用例を示す図である。

[図3]本実施の形態におけるPRACHのマッピング例を示す図である。

[図4]本実施の形態における無線通信システムの動作例を示すシーケンス図である。

[図5]ステップ101におけるユーザ装置20によるビームサーチを示す図である。

[図6]ステップ102における基地局12によるPRACH受信を示す図である。

[図7]ステップ103における基地局12によるEPDCC送信を示す図である。

[図8]キャリアアグリゲーションにおける信号のマッピング例を示す図である。

[図9]ユーザ装置20の機能構成図である。

[図10]基地局12の機能構成図である。

発明を実施するための形態

以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。例えば、本実施の形態に係る無線通信システムはLTEに準拠した方式のシステムを想定しており、下りにOFDMA、上りにSC-FDMAを使用することを想定しているが、本発明はこれに限られるわけではない。例えば、上り下りとともにOFDMAであってもよい。また、本発明はLTE以外の方式にも適用できる。なお、本明細書及び特許請求の範囲において、「LTE」は、3GPPのリリース8、又は9
に対応する通信方式のみならず、3GPPのリリース10、11、又は12もしくはそれ以降に対応する通信方式も含む広い意味で使用する。

（システム構成）

図1に、本発明の実施の形態に係る無線通信システムの全体構成図を示す。本実施の形態に係る無線通信システムは、マクロセルを形成するマクロ基地局10、マクロセルのカバレッジエリア内にある基地局11、12を含む。また、図1には、マクロ基地局10、基地局11、12等と通信を行うユーザ装置20が示されている。

当該無線通信システムでは、低周波数帯でマクロ基地局10によりマクロカバレッジを確保し、高周波数帯で基地局11、12によりスマートアリア（例：ホットスポット）のトラフィックを吸収する構成としているが、このような周波数帯の割り当ては一例に過ぎず、これに限られるわけではない。

本実施の形態における基地局11、12は、massive MIMOの機能を備えており、広いビームから狭いビームまで種々の複数のビームを形成することができる。図1に示すように、本実施の形態では、基地局11、12から、複数のプリコードされた参照信号（これを本実施の形態では発見信号：discovery signalと呼ぶ）がそれぞれビーム（複数のアンテナポート）で送信されている。参照信号がプリコードされているとは、送信の例でいえば、参照信号がある個のビームで（つまり指向性を持っている）送信されるように、アンテナポート毎に送信信号にウェイトが乗算されていることである。例えば、図1に示す例では、基地局12から、ビーム2→1、ビーム2→2、ビーム2→3のそれぞれで発見信号が送信されている。なお、図1にはマクロ基地局10が存在する構成が示されているが、マクロ基地局10が存在しない構成をとることもできる。

また、基地局11、12が形成するビームは、階層的であってもよい。例えば、基地局11、12は、図1に示す各ビームの中に、複数の狭いビームを形成することができる。一例として、ユーザ装置20が、図1に示す複数のビームのうち、“ビーム#2→2を最も高い受信電力で受信した場合に、ビ
ゲーム#2-2の中（ビーム#2-2に属する）より狭い複数のビームで送信される参照信号を受信することで、複数の狭いビームの中で、最も良好なビームを検出すといった動作を行うことが可能である。

また、基地局11、12は、受信側においても、図1に示すようなビーム、及び上記のような階層的なビームを形成することができる。受信側でビームを形成するとは、信号がある幅のビームで（つまり指向性を持って）受信されるように、アンテナポート毎に受信信号にウェイトが乗算されることである。

なお、ユーザ装置（UE）については、将来においても用途によって異なり、発見信号には、発見信号を識別する識別情報が含まれている。当該識別情報は、発見信号を識別するとともに、ビームを識別するので、これを以降、ビーム1Dと呼ぶことにする。ユーザ装置20は、基地局11、12から送信される各発見信号の受信電力を測定し（ビームサーチ）、最も高い受信電力を受信できた発見信号のビーム1Dに対応するプレアンプル系列（preamble sequence）を含むPRACHを送信する動作を行う。

この動作を含む動作詳細については後述する。なお、ビームサーチの際に測定する量は、受信電力に限られず、他の量（受信品質等）でもよい。また、受信電力及び他の量を総称して受信品質と呼んでもよい。

（ユーザ装置20について）

本実施の範囲に係るユーザ装置20は、キャリアアグリゲーションを適用して、マクロセル（PCell等）を形成するマクロ基地局10と、スモールセル（SCell等）を形成する基地局11、12等と同時に通信することも可能であるし、1つの基地局のみと通信することも可能である。

また、本実施の範囲におけるユーザ装置20は、複数のアンテナを備え、上りリンクのMIMO送信を行う機能を備えてもよい。すなわち、ユーザ装置20は、上りのビームフォーミングや、上りの複数ランク送信を行うことが可能である。ただし、本実施の範囲では、上りリンクで複数アンテナを用いた送信を行うことは必須ではない。

なお、一般にユーザ装置（UE）については、将来においても用途によって
て1つのアンテナを備えるユーザ装置も多く使用されることが考えられる。例えばlow-costMTC端末等である。それとともに、4アンテナ程度のMIMOS送信機能を備えたユーザ装置が主流になっていくことが考えられる。

[0023] 更に、用途によっては、16アンテナ、あるいはそれ以上のアンテナによるMassiveMIMOの機能を備えたユーザ装置も使用されることが考えられる。このようなユーザ装置としては、例えば、図2に示すように、電車といった公共的乗用車に搭載される通信装置、基地局間通信のバックホールの中継装置の役割を持つユーザ装置等が考えられる。

[0024] (PRACHについて）

次に、本実施の形態におけるユーザ装置20が上りリンクで送信するPRACHについて説明する。なお、PRACHは、基地局に対する初期アクセス時ににおいてブリアンプル系列を送信するためのチャネルであるが、PRACHを、ブリアンプル系列を含む信号という意味で、「PRACHを送信する」という表現を用いる場合もある。また、PRACHを「ランダムアクセス信号」と呼んでもよい。

[0025] 本実施の形態におけるPRACHは、ユーザ装置20が、基地局11、12から送信されるビームのサーチを行い、最も受信電力の高いビームを検知した後に、最初に基地局11、12にアクセスする際に送信するチャネルである。

[0026] 本実施の形態では、一例として、PRACHはスケジューリングリクエストの機能を含み、PRACHを受信した基地局は、上りデータ送信のための無線リソースをユーザ装置20に割り当て、割り当て情報（ULgrant）をEPDCCH（又はPDCCH、以下ではEPDCCHとする）でユーザ装置20に送信する動作を行う。なお、例えば、FDDを適用する場合は、割り当てるリソースは、リソースブロック等の時間一帯波数リソースであり、TDDを適用する場合は、ULサブフレーム等のリソースである。また、PRACHにより測定報告（measurementreport、
受信電力、受信品質等を含む）を送信することとしてもよい。

前述したように、本実施の形態において、図1に示した基地局1、12から各ビームで送信される発見信号には、当該ビームに対応付されたビームIDが含まれる。

本実施の形態では、ビームIDとブリアンプル系列が予め対応付けてあり、ユーザ装置20は、ビームIDとブリアンプル系列との対応情報（どのビームIDがどのブリアンプル系列に対応するかを示す情報）を保持している。当該対応情報は、マクロ基地局10からユーザ装置20に事前に通知する情報であってもよいし、他の方法でユーザ装置20が保持する情報であってもよい。また、基地局11、12のそれぞれは、少なくとも、自身が使用するビームIDとブリアンプル系列との対応情報を持持している。

ユーザ装置UEは、ビームサーチを行った結果、最も受信電力の大きな発見信号のビームIDに対応するブリアンプル系列を含むPRACHを送信する。

また、本実施の形態では、PRACHを送信するために使用するリソース（例：周波数位置）が、ユーザ装置に対応付けられており、各ユーザ装置は、自身に対応する、PRACHを送信するためのリソースの情報を予め保持している。また、基地局11、12は、PRACHを受信するリソース（ユーザ装置から見て送信するリソース）と、ユーザ装置識別情報との対応情報を予め保持しており、基地局11、12は、受信できたPRACH（ブリアンプル系列を取得できたPRACH）の受信リソースから、当該PRACHの送信元のユーザ装置のユーザ装置識別情報を把握でき、その後、当該ユーザ装置宛てにEPDCCH等の制御信号を送信することができる。上記ユーザ装置識別情報は、例えばUE_ID（C_RNTI等）、UE_specific VIDであるが、これらに限られるわけではない。

図3に、PRACHの送信に用いるリソースの例を示す。図3の例では、特定のサプライフレームにおけるある帯域に、ユーザ1用のPRACHリソースが割り当てられ、別の帯域にユーザ2用のPRACHリソースが割り当てら
れている。

[0032]（無線通信システムの動作例）
次に、主に図4を参照して、本発明の実施の形態に係る無線通信システム（図1に示した無線通信システム）の動作例を説明する。図4に示す例では、ユーザ装置20は基地局12から送信される発見信号を最も高い受信電力で受信することから、図4には基地局11と基地局12のうち基地局12が示されている。

[0033]基地局12は、前述したように、ビームを形成するプリコードされた複数の発見信号（=複数の異なる識別情報に対応付された参照信号）を送信している（ステップ101）。ユーザ装置20は、例えば、受信する可能性のある発見信号毎の受信電力測定を行い（この動作を監視と呼んでもよい）、特定の発見信号（1つ又は複数）を検出（受信）する。なお、ビームは、1つ又は複数のアンテナポートにより形成されるから、個々のビームはそれぞれ1つ又は複数のアンテナポートに対応付けることができる。図5に、ステップ101のイメージを示す。図5に示すように、基地局12は複数のビームにより、それぞれ異なるビームIDを含む複数の発見信号を送信する。前述した階層を形成する場合において、ここで形成するビームは、広いビーム（これに属する狭いビームよりも広いビーム）とすることができる。

[0034]ステップ101において、ユーザ装置20は、受信する可能性のある発見信号の全てを監視するがわりに、マクロ基地局10から補助情報（マクロ補助情報と呼ぶ）を受信することで候補を絞り、基地局12から送信される発見信号の検出を行ってもよい。マクロ補助情報には、当該マクロセルのカバレッジ内における発見信号の送信タイミング、系列情報、ビームID等が含まれる。

[0035]この場合、ユーザ装置20は、マクロ基地局10から受信したマクロ補助情報に基づき、各発見信号の送信タイミング、及びビームIDを把握しているので、これらを用いることで、絞られた候補を監視することで、基地局12から送信された各発見信号を受信する。
本実施の形態において、基地局12は、発見信号とは別に同期信号（PS/SSS等）を送信してもよいし、発見信号が同期信号の機能を持ってもよい。発見信号が同期信号の機能を持つ場合、ユーザ装置20は、発見信号を受信することで、基地局12との間で周波数同期をとるとともに、タイミング同期（シンボル同期、フレーム同期等）をとることができる。また、発見信号により、基地局12のカバレッジでの通信に必要な情報（最小限のシステム情報等）を受信してもよい。発見信号とは別に同期信号を送信する場合、同期信号で周波数同期やタイミング同期等をとった後に、発見信号を受信する。

また、ユーザ装置20は、受信電力の測定結果に基づき、最も受信電力が大きい発見信号のビーム1Dを特定する。なお、最も受信電力が高いビーム1Dを1つ特定するのでなく、高いもの上位から所定個数のビーム1Dを特定することとしてもよい。

続いて、ユーザ装置20は、PRACHを送信する（図4のステップ102）。本例において、基地局12がPRACHを受信する。前述したように、PRACHには、上記のようにして特定された受信電力の高いビームのビーム1Dに対応付けられたブリアンプル系列が含まれる。また、PRACHは、ユーザ装置20に対応付けられたリソースで送信される。

これで、PRACHには、ビーム1Dに対応するブリアンプル系列が含まれているため、基地局12は、受信したPRACHからビーム1Dを検出し、当該ビーム1Dに対応するビーム(広いビーム)に属する複数の狭いビームの中で、最も強い受信電力でPRACHを受信したビームを特定する。例えば、ビーム1Dが「1」である場合に、当該「1」の送信ビームに対応する受信ビーム（送信と逆方向）に属する複数の狭いビームのそれぞれで受信電力を測定し、最も強い受信電力でPRACHを受信したビームを特定する。
なお、本動作例では、TDDが適用されていることを想定している。つまり、対称関係（reciprocity）により、ユーザ装置向けのある方向のビームが良いビームである場合、その方向を逆にした（基地局向けにした）ビームも良いビームであると推定できる。ただし、FDDであっても、本動作例で説明する方法を適用できる。FDDにおいて、上りと下りで周波数が異なる場合であっても、下りの方向で良いビームは、それを逆にした上りの方向のビームでも良いビームと推定することができるからである。

このように、PRACHにビーム1Dに対応するブリアンプル系列を含めることで、基地局12は、ユーザ装置20にとって良好なビームを迅速に把握することができ、より狭いビームの候補を的確に絞ることができる。

また、基地局12は、ステップ102において受信したPRACHの受信リソースから、当該PRACHを送信した送信元のユーザ装置20のユーザ装置識別情報を取り扱う。すなわち、基地局12は、記憶手段の中に、PRACHリソースとユーザ装置識別情報との対応情報を持ており、PRACHの受信リソースに対応するユーザ装置識別情報を取得する。

続いて、図4のステップ103において、基地局12は、ユーザ装置20にULリソースを割り当て、割り当て情報（RB等）を含むULグランントをユーザ装置20に対してEPCDCCHにより、特定された狭いビームの逆方向の狭いビームを用いて送信する。ユーザ装置20に対してEPCDCCHを送信するとは、ユーザ装置識別情報を含むEPCDCCH（制御信号）を送信するということである。このときの状況を図7に示す。

ステップ103の後、ユーザ装置20は、割り当てられたリソースを用いてULデータを送信する。

なお、上記の例では、基地局12は、発見信号を広いビームで送信し、PRACHの受信時に、狭いビームを特定し、当該狭いビームの逆のビームでEPCDCCHを送信することとしているが、基地局12は、PRACHから特定されるビーム1Dのビームに対応するビームを用いてEPCDCCHを送
信してもよい。つまり、発見信号と同じ広さのビームでEPDCCCHを送信してもよい。

[0047]PRACHをスケジューリングリクエストとして使用する際に、PRACHのプリアンプル系列にULデータのサイズの情報を含めてもよい。このサイズに応じて、基地局12は、ユーザ装置20に割り当てられるリソースの量を調整できる。また、PRACHに、受信品質情報（CQI等）を含めてもよい。このCQIは、通常のCQI報告で使用するCQIよりもラフなものであってもよい。このようにCQIを送信することで、基地局12は、適切なMCSを使用してEPDCCCHを送信することが可能である。これまでの例では、ユーザ装置20は、PRACHをビームを使用しないで送信したが、複数のビームを用いてPRACH送信を行ってもよい。

[0048](キャリアアグリゲーションにおけるCCへの信号マッピングについて)
ユーザ装置20は、基地局12（基地局11も同様）との間で複数のコンポーネントキャリア（CC）を使用して、キャリアアグリゲーション（CA）による通信を行うことが可能である。

[0049]本実施の形態では、例えば、下りリンクについて、PDSCH、EPDCCH、CSI-RS等については、各CC（全CC）で基地局から送信し、また、上りリンクについては、PUSCH、PUCCH、SRS（サウンディング参照信号）を各CC（全CC）で送信する。

[0050]また、同期信号（PSS／SSS等）、下り参照信号（本実施の形態での発見信号）、PRACHについては、全CCで送信してもよいし、1つのCCで送信してもよい。

[0051]図8に、キャリアアグリゲーションにおけるCCへの信号マッピングの一例を示す。なお、図8は、上りと下りが時間分割されたTDDの例であるが、FDDであっても同様のマッピングが可能である。FDDの場合、図8において、下りと上りでCCの周波数が異なるものと見ればよいのである。

[0052]図8の例では、1つのCCであるC1でPRACHを送信し、キャリアアグリゲーションを構成する他のCCであるC2、3、4ではPRACH
を送信しない。また、同期信号（PSS／SSS）については、1つのCC
であるCC1で送信し、キャリアアグリゲーションを構成する他のCCであ
るCC2、3、4では送信しない。また、下り参照信号（本実施の形態での
発見信号）については、全CCで送信する。

[0053] このように、基地局12の通信を行うための初期に使用する信号（同期信
号、PRACH等）のみを1つのCCのみで送信することで、その後の処理
を迅速に行うことが可能となる。

[0054] （装置構成）
次に、これまでに説明したユーザ装置20、及び基地局12の構成例を説
明する。基地局11、12は同様の構成であるため、代表として基地局12
の構成を説明する。以下で説明する各装置の構成は、本実施の形態に特に関
連する構成を示すものであり、各装置においては、例えばLTEに準拠した
動作を実行可能なユーザ装置/基地局の機能を含む。

[0055] 図9に、ユーザ装置20の機能構成図を示す。ユーザ装置20は、信号送
信部201、信号受信部202、受信品質測定部203、制御情報格納部2
04、PRACH信号生成部205を備える。

[0056] 信号送信部201は、上位レイヤの情報から下位レイヤの信号を生成し、
無線で送信する。信号受信部202は、無線で受信する下位レイヤの信号か
ら上位レイヤの情報を取得する。

[0057] また、信号受信部202は、基地局12やマクロ基地局10から制御情報
を受信し、制御情報格納部204に格納するとともに、当該制御情報に基づ
いて、受信動作を行う。例えば、下りの割り当てリソースを制御情報として
受信し、当該制御情報に従って受信動作を行うことができる。

[0058] 制御情報格納部204は、基地局12やマクロ基地局10から受信する各
種の制御情報を格納する。制御情報として、例えば、ビーム1Dとブリアン
ブル系列の対応情報、PRACH送信のためのリソース情報等がある。

[0059] 受信品質測定部203は、信号受信部202により受信する発見信号の受
信品質（受信電力、CQI、ランク等）を測定し、測定結果をPRACH信
号生成部 205 に渡す。

[0060] ＰＲＡＣＨ信号生成部 205 は、各ビームの発見信号から得られた測定結果から受信電力の高い発見信号のビーム ID を特定し、当該ビーム ID に対応するプリアンプル系列を生成し、信号送信部 201 に渡す。信号送信部 201 は、当該プリアンプル系列を含むＰＲＡＣＨを、ユーザ装置 20 に対応付けられたリソースを用いて送信する。また、前述したように、ＰＲＡＣＨには、ULデータ量、CQI等が含まれてもよい。

[0061] また、信号送信部 201 は、信号受信部 202 により受信され、制御情報格納部 204 に格納されている制御情報 (UL割り当て情報等) に従って、上リデータ送信等を行う。

[0062] 図 10 に、基地局 12 の機能構成図を示す。図 10 に示すように、基地局 12 は、信号送信部 121、信号受信部 122、受信品質測定部 123、制御情報生成部 124 を有する。

[0063] 信号送信部 121 は、上位レイヤの情報から下位レイヤの信号を生成し、無線で送信する。信号受信部 122 は、無線で受信する下位レイヤの信号から上位レイヤの情報を取得する。

[0064] 信号受信部 122 は、ユーザ装置 20 から送信されるＰＲＡＣＨを受信するとともに、プリアンプル系列を取得し、当該プリアンプル系列に対応付されたビーム ID を取得する。また、信号受信部 122 は、ＰＲＡＣＨを受信したリソースに対応付られているユーザ装置識別情報を取得する。上記の各処理に必要な対応情報 (プリアンプル−ビーム ID、リソース−ユーザ装置識別情報) は、基地局 12 における記憶部に格納されており、信号受信部 122 は、当該記憶部から必要な情報を読み出す。

[0065] 受信品質測定部 123 は、ＰＲＡＣＨ每 (ユーザ装置毎) に、ビーム ID に対応する広ビームに属する狭ビーム毎にPRACHの受信電力 (受信電力以外の受信品質でもよい) を測定し、最も受信電力の高い狭ビームを特定し、その情報を制御情報生成部 124 に渡す。

[0066] 制御情報生成部 124 は、ユーザ装置に対するリソース割り当てを行って
、割り当て情報を取得し、当該割り当て情報と、上記のユーザ情報識別を含む制御情報を作成する。そして、当該制御情報を信号送信部１２１に渡し、信号送信部１２１に対して、特定された狭ビームで、制御情報を含む制御信号（E P D C C H等）を送信するよう指示し、信号送信部１２１は当該制御信号を当該狭ビームで送信する。

なお、図９、図１０に示す装置の構成（機能区分）は一例に過ぎない。本実施の形態で説明する処理を実現できるのであれば、その実装方法（具体的な機能部の配置等）は、特定の実装方法に限定される。例えば、本実施の形態のユーザ装置と基地局は、下記のような手段からなる装置として構成することもできる。

すなわち、本実施の形態におけるユーザ装置は、基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置であって、前記基地局から送信される複数の異なる識別情報を対応付られた参照信号の受信電力を測定し、測定結果に基づいて特定の参照信号を選択する受信手段と、前記受信手段により選択された参照信号の識別情報に対応するプラインブル系を含むランダムアクセス信号を送信する送信手段とを備えるユーザ装置として構成できる。当該構成により、例えば、ビームフォーミングを行う基地局と、ユーザ装置とを有する無線通信システムにおいて、基地局が良好なビームを効率的に決定することが可能となる。

前記送信手段は、前記ランダムアクセス信号を、前記ユーザ装置に対応付られた無線リソースを用いて送信することができる。このような構成により、基地局は、迅速にランダムアクセス信号の送信元のユーザ装置を把握できる。

また、前記ランダムアクセス信号は、前記ユーザ装置が上りリンクで送信するデータ量を含み、スケジューリングリクエストとして前記基地局に送信されるものであってもよい。スケジューリングリクエストとしてランダムアクセス信号を送信することで、少ないステップで、ユーザ装置は上りデータ送信を開始できる。
前記識別情報は、前記参照信号を送信するビームに対応付けられていることとしてもよい。このような構成により、基地局は、ユーザ装置が良好に受信できたビームを把握でき、当該ビームに基づいて、ユーザ装置への送信に用いるビームを的確に決定できる。

また、本実施の形態における基局は、基局とユーザ装置とを備える無線通信システムにおいて前記ユーザ装置と通信を行う前記基局であって、複数の異なる識別情報に対応付られた参照信号を送信する送信手段と、前記ユーザ装置から、当該ユーザ装置により受信された特定の参照信号の識別情報に対応するブリアンプル系列を含むランダムアクセス信号を受信する受信手段と、を備え、前記送信手段は、前記受信手段により受信したランダムアクセス信号から取得される前記識別情報に基づいて、前記ユーザ装置に制御信号を送信する基局として構成される。当該構成により、例えば、ビームフォーミングを行う基局と、ユーザ装置とを有する無線通信システムにおいて、基局が良好なビームを効率的に決定することが可能となる。

前記受信手段は、前記ユーザ装置に対応付られた無線リソースにより前記ランダムアクセス信号を受信し、前記送信手段は、前記無線リソースに基づき取得される前記ユーザ装置の識別情報を付加した前記制御信号を前記ユーザ装置に送信することができる。このような構成により、基局は、迅速にランダムアクセス信号の送信元のユーザ装置を識別し、当該ユーザ装置に対して制御信号（上り割り当て情報等）を送信できる。

前記ランダムアクセス信号は、スケジューリングリクエストとして前記ユーザ装置から送信され、前記送信手段は、前記スケジューリングリクエストに基づくリソース割り当て情報を含む前記制御信号を前記ユーザ装置に送信することとしてもよい。このような構成により、少ないステップで、ユーザ装置は上りデータ送信を開始できる。

また、本実施の形態では、基地局とユーザ装置とを備える無線通信システムにおいて前記基局と通信を行う前記ユーザ装置が実行する通信アクセス方法であって、前記基局から送信される複数の異なる識別情報に対応付ら
れた参照信号の受信電力を測定し、測定結果に基づいて特定の参照信号を選択する受信ステップと、前記受信ステップにおいて選択された参照信号の識別情報に対応するプリアンプル系列を含むランダムアクセス信号を送信する送信ステップとを備える通信ア...てよい。機能プロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。
説明の便宜上、ユーザ装置及び基地局は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従ってユーザ装置が有するプロセッサにより動作するソフトウェア、及び、基地局が有するプロセッサにより動作するソフトウェアは、ランダムアクセスメモリ（RAM）、フラッシュメモリ、読み取り専用メモリ（ROM）、EEPROM、レジスタ、ハードディスク（HDD）、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。本発明は上記の実施形態に限定されず、本発明の精神から逸脱することなく、様々な変形例、修正例、代替例、置換例等が本発明に包含される。

符号の説明

[0080] 10 マクロ基地局
 12 基地局
20 ユーザ装置
 121 信号送信部
 122 信号受信部
 123 受信品質測定部
 124 制御情報生成部
201 信号送信部
 202 信号受信部
 203 受信品質測定部
 204 制御情報格納部
205 PRACH信号生成部
請求の範囲

[請求項1] 基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置であって、

前記基地局から送信される複数の異なる識別情報に対応付けられた参照信号の受信電力を測定し、測定結果に基づいて特定の参照信号を選択する受信手段と、

前記受信手段により選択された参照信号の識別情報に対応するブリアンプル系列を含むランダムアクセス信号を送信する送信手段と

を備えることを特徴とするユーザ装置。

[請求項2] 前記送信手段は、前記ランダムアクセス信号を、前記ユーザ装置に対応付けられた無線リソースを用いて送信する

ことを特徴とする請求項1に記載のユーザ装置。

[請求項3] 前記ランダムアクセス信号は、前記ユーザ装置が上りリンクで送信するデータ量を含み、スケジューリングクエストとして前記基地局に送信される

ことを特徴とする請求項1又は2に記載のユーザ装置。

[請求項4] 前記識別情報は、前記参照信号を送信するビームに対応付けられてていることを特徴とする請求項1ないし3のうちいずれか1項に記載のユーザ装置。

[請求項5] 基地局とユーザ装置とを備える無線通信システムにおいて前記ユーザ装置と通信を行う前記基地局であって、

複数の異なる識別情報に対応付けられた参照信号を送信する送信手段と、

前記ユーザ装置から、当該ユーザ装置により受信された特定の参照信号の識別情報に対応するブリアンプル系列を含むランダムアクセス信号を受信する受信手段と、を備え、

前記送信手段は、前記受信手段により受信したランダムアクセス信号から取得される前記識別情報に基づいて、前記ユーザ装置に制御信
号を送信する
ことを特徴とする基地局。

【請求項6】 前記受信手段は、前記ユーザ装置に対応付られた無線リソースにより前記ランダムアクセス信号を受信し、
前記送信手段は、前記無線リソースに基づき取得される前記ユーザ装置の識別情報を付加した前記制御信号を前記ユーザ装置に送信することを特徴とする請求項5に記載の基地局。

【請求項7】 前記ランダムアクセス信号は、スケジューリングリクエストとして前記ユーザ装置から送信され、
前記送信手段は、前記スケジューリングリクエストに基づくリソース割り当て情報を含む前記制御信号を前記ユーザ装置に送信することを特徴とする請求項5又は6に記載の基地局。

【請求項8】 基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行う前記ユーザ装置が実行する通信アクセス方法であって、
前記基地局から送信される複数の異なる識別情報に対応付られた参照信号の受信電力を測定し、測定結果に基づいて特定の参照信号を選択する受信ステップと、
前記受信ステップにおいて選択された参照信号の識別情報に対応するブリアンプル系列を含むランダムアクセス信号を送信する送信ステップと
を備えることを特徴とする通信アクセス方法。

【請求項9】 基地局とユーザ装置とを備える無線通信システムにおいて前記ユーザ装置と通信を行う前記基地局が実行する通信方法であって、
複数の異なる識別子に対応付られた参照信号を送信する送信ステップと、
前記ユーザ装置から、当該ユーザ装置により受信された特定の参照信号の識別情報に対応するブリアンプル系列を含むランダムアクセス
信号を受信する受信ステップと、

前記受信ステップにより受信したランダムアクセス信号から取得される前記識別情報に基づいて、前記ユーザ装置に制御信号を送信する制御信号送信ステップと

を備えることを特徴とする通信方法。
[図4]

ユーザ装置 → 基地局

発見信号(各ビーム)

S101

PRACH

S102

EPDCCH(ULグラント)

S103

データ信号

S104
[図7]
INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2015/062110

A. CLASSIFICATION OF SUBJECT MATTER
H04W1/628 (2009.01) i, H04B7/10 (2006.01) i, H04W7/204 (2009.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H04W1 6/28, H04B7/10, H04W7 2/04, H04W7 4/08

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2013-183299 A (Sharp Corp.) 12 September 2013 (12.09.2013), paragraphs [0056], [0059], [0169] to [0172], [0184], [0185] fig. 10 & WO 2013/129374 A1</td>
<td>1-9</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier application or patent but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search
30 June 2015 (30.06.15)

Date of mailing of the international search report
14 July 2015 (14.07.15)

Name and mailing address of the ISA/
Japan Patent Office
3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Authorized officer
Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2004-72539 A (NTT Docomo Inc.), 04 March 2004 (04.03.2004), abstract (Family: none)</td>
<td>1-9</td>
</tr>
<tr>
<td>A</td>
<td>Yoshiba KISHIYAMA et al., "Hierarchical Mult i-Beam Mas sive MIMO for 5G Future Radio Acce ss", Proceedings of the 2014 I EICE General Conference Kis o-Kyo kai, 04 March 2014 (04.03.2014), pages S-67 to S-68</td>
<td>1-9</td>
</tr>
</tbody>
</table>
国際調査報告

A. 発明の属する分野の分類（国際特許分類（I P C））

| IntCl. | H04W16/28 (2009. 01) i, H04B7/10 (2006. 01) i, H04J 72/04 (2009. 01) i, H04W74/08 (2009. 01) i |

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（I P C））

| IntCl. | H04M6/28, H04B7/10, H04W72/04, H04W74/08 |

最小限資料以外の資料で調査を行った分野に含まれるもの

国際特許	19821
日本国文書	19821
内閣官報	19821

国際調査で使用した電子データベース（データベースの名前、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名</th>
<th>及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2013-183299 A（シャープ株式会社）2013. 09. 12, [0056], [0059], [0169] - [0172], [0184], [0185], 図 10 & WO 2013/129374 Al</td>
<td></td>
<td>1-9</td>
</tr>
</tbody>
</table>

☑ C 棟の続きにも文献が挙げられている。
☐ パテントファミリーに関する別紙を参照。

同国際調査報告を受けた日

国際調査完成了日 30. 06. 2015

国際調査報告の発送日 14. 07. 2015

国際調査機関の名称及びあて先

日本国特許庁（ISA/JP）
郵便番号 100-8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（附帯する職員）

深津 始

電話番号 03-3581-1101 内線 3534
国際調査報告 国際出願番号 PCT/JP2015/062110

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2004-72539 A (株式会社 エヌ・ティ・ティ・ドコモ) 2004.03.04, [要約]（ファミリーなし）</td>
<td>1-9</td>
</tr>
<tr>
<td>A</td>
<td>岸山祥久、ほか、「5G将来無線アクセスにおける階層型マルチビームMassive MIMO」、電子情報通信学会2014年総合大会講演論文集基礎・境界，2014.03.04, 第S-67 - S-68ページ</td>
<td>1-9</td>
</tr>
</tbody>
</table>

様式PCT／ISAZ210（第2ページの続き）（2009年7月）