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Exemplified method and system facilitates monitoring and/or evaluation of disease or physiological state using mathematical
analysis and machine learning analysis of a biopotential signal collected from a single electrode. The exemplified method and
system creates, from data of a singularly measured biopotential signal, via a mathematical operation (i.e., via numeric fractional
derivative calculation of the signal in the frequency domain), one or more mathematically-derived biopotential signals (e.g., virtual
biopotential signals) that is used In combination with the measured biopotential signals to generate a multi-dimensional phase-
space representation of the body (e.g., the heart). By mathematically modulating (e.g., by expanding or contracting) portions of a
given biopotential signal, in the frequency domain, the numeric- based operation gives emphasis or de-emphasis to certain
measured frequencies of the biopotential signals, which, when coupled with machine learning, facilitates improved diagnostics of
certain pathologies.
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(57) Abstract: Exemplified method and system facilitates
monitoring and/or evaluation of disease or physiological state
using mathematical analysis and machine learning analysis of
a biopotential signal collected from a single electrode. The
exemplified method and system creates, from data of a singu-
larly measured biopotential signal, via a mathematical opera-
tion (1.e., via numeric fractional derivative calculation of the
signal in the frequency domain), one or more mathematically-
derived biopotential signals (e.g., virtual biopotential signals)
that 1s used mn combination with the measured biopotential
signals to generate a multi-dimensional phase-space repres-
entation of the body (e.g., the heart). By mathematically mod-
ulating (e.g., by expanding or contracting) portions of a given
biopotential signal, in the frequency domain, the numeric-
based operation gives emphasis or de-emphasis to certain
measured frequencies of the biopotential signals, which,
when coupled with machine learning, facilitates improved
diagnostics of certain pathologies.
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METHODS AND SYSTEMS USING MATHEMATICAL ANALYSIS AND
MACHINE LEARNING TO DIAGNOSE DISEASE

CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to, and the benefit of, U.S. Provisional
Application No. 62/184,796, filed June 25, 2013, titled “Latent Teratogen-Induced Heart
Deficits Are Unmasked Postnatally with Mathematical Analysis and Machine Learning on ECG

Signals,” the content of which 1s incorporated by reference herein 1n 1ts entirety .

TECHNICAL FIELD

[0002] The present disclosure relates to methods and systems to diagnose cardiac

pathologies via mathematical and machine learning analysis on biopotential signals.

BACKGROUND
[0003] Congenital heart defects (CHDs) are the most common birth anomaly, with
ventricular septal defects (VSDs) being the most prevalent category of congenital heart defects
(CHDs). Clinically, about 80% of ventricular septal defects (VSDs) resolve spontancously
within the first year, but little 1s known about the long-term consequences of these resolved
VSDs on postnatal heart function.
[0004] What are needed are devices, systems and methods that overcome challenges 1n

the present art, some of which are described above.

SUMMARY
[0005] Exemplified method and system facilitates monitoring and/or evaluation of
disease or physiological state using mathematical analysis and machine learning analysis of a
biopotential signal collected from a single electrode. The exemplified method and system
creates, from data of a singularly measured biopotential signal, via a mathematical operation
(1.c., via fractional denivative calculation), one or more mathematically-derived biopotential

signals (¢.g., virtual biopotential signals) that 1s used in combination with the measured
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biopotential signals to generate a multi-dimensional phase-space representation of the body (¢.g.,
the heart). In some embodiments, the fractional dertvative of a fraction of a real number or a
fraction of an integer number 1s applied numerically to the measured biopotential signals, or a
portion thereof, 1n the frequency domain, to increase the dimensionality of the measured signal
data. In some embodiments, the fractional derivative of an integer 1s applied numerically to the
measured biopotential signals, or a portion thereof, in the frequency domain, to increase the
dimensionality of the measured signal data. By mathematically modulating (¢.g., by expanding
or contracting) portions of a given biopotential signal, 1n the frequency domain, the numeric-
based operation gives emphasis or de-emphasis to certain measured frequencies of the
biopotential signals, which, when coupled with machine learning, facilitates improved
diagnostics of certain pathologies and facilitates diagnostics i real-time (or near real time).
[0006] To this end, the exemplified method and system facilitates the measurements of
biopotential signals using a single electrode lead to obtain diagnostics results. In addition, the
exemplified method and system may be used to enhance measurements collected by multiple
physical leads by, in effect, multiplying the physical effects with virtual lead that provide a
different vantage point or perspective from the original physical measurement that improves the
subsequent analysis.

[0007] A clinical animal model study was performed, the study illustrates that the
exemplified method and system facilitates clinically-relevant diagnosis of physiologic
conditions. In particular, the clinical animal model study 1llustrates that resolved congenital
heart defects harboring hidden cardiovascular dysfunction can be detected using the exemplified
method and system.

[0008] In an aspect, a method 1s disclosed of pre-processing data to extract variables for
use 1n machine learning to diagnose a pathology. The method includes recerving a biopotential
signal data associated with a subject, said biopotential signal data being associated with a

biopotential signal collected from one or more electrical leads; generating, via a processor, a first



CA 02990367 2017-12-20

WO 2016/207862 PCT/IB2016/053797

and a second fractional derivative signal data by numerically performing one or more fractional
derivative operations (€.g., a numeric fractional denvative operation) of the biopotential signal
data 1in a frequency domain and converting a result of the one or more fractional denivative
operations to a time domain signal data, wherein each of the first and second generated fractional
dertvative signal data comprises a same length and a same sampling frequency as the
biopotential signal data; and generating, via the processor, a three-dimensional space wherem
cach corresponding value of the biopotential signal data, the first fractional denivative signal
data, and the second fractional derivative signal data forms a three-dimensional point 1n said
space, wherein gecometric features and dynamical properties of the three-dimensional space are
used as variables representative of the subject in machine learning to detect one or more
diagnosable pathology of the subject.

[0009] In some embodiments, the first fractional denivative signal data 1s generated by
performing a first numeric fractional derivative of a first order value on the biopotential signal
data 1n the frequency domain and by performing an inversed transformation (e.g., inversed FFT)
on the fractional derived signal data to convert the fractional dernived signal data to a time
domain signal data. In some embodiments, the inversed transformation comprises an inversed
Fast Fourier Transform (inversed FFT) operation.

[0010] In some embodiments, the second fractional denivative signal data 1s gencrated by
performing a second numeric fractional derivative of a second order value on the biopotential
signal data in the frequency domain and by performing an inversed transformation (e.g., inversed
FFT) on the fractional derived signal data to convert the fractional derived signal data to a time
domain signal data.

[0011] In some embodiments, each of the first fractional denvative signal data and the
second fractional derivative signal data comprises a time domain signal data.

[0012] In some embodiments, the first fractional denivative signal data 1s generated by a

fractional denivative of an order of p1/2.
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[0013] In some embodiments, the second fractional denivative signal data 1s gencrated by
a fractional dernivative of an order of 0.5.

[0014] In some embodiments, the gecometric features and dynamical properties of the
three-dimensional space are generated by performing a MMP (modified matching pursuit)
algorithm of the three-dimensional point 1n said space.

[0015] In some embodiments, the biopotential signal data 1s associated with a
biopotential signal collected from a single electrical lead.

[0016] In some embodiments, the single electrical lead collected measurements of the
biopotential signal at a location selected from the group consisting of a chest line of the subject,
a waistline of the subject, a wrist of the subject, a pelvic line of the subject, a neck of the subject,
an ankle of the subject, a forehead of the subject, and an arm line of the subject.

[0017] In some embodiments, the method includes generating, via a processor, an alpha
shape of the three-dimensional point 1n said space, whereimn the geometric features and
dynamical properties of the three-dimensional space includes the geometric features of the alpha
shape.

[0018] In some embodiments, the method includes generating a Delaunay triangle mesh
of the three-dimensional point 1n said space, wherein the gecometric features and dynamaical
properties of the three-dimensional space includes the geometric features of the Delaunay

triangle mesh.

[0019] In some embodiments, the biopotential signal data comprises electrocardiogram
(ECQG) data.
[0020] In some embodiments, the machine learning analysis comprises using an artificial

ncural network algorithm or a regression random forest algorithm.
[0021] In another aspect, a method 1s disclosed of pre-processing data to extract variables
for use 1n machine learning to diagnose a pathology. The method includes receiving biopotential

signal data associated with a subject, said biopotential signal data being associated with



CA 02990367 2017-12-20

WO 2016/207862 PCT/IB2016/053797

biopotential signals collected from two or more electrical leads; generating, via a processor, a
fractional derivative signal data by numerically performing one or more fractional derivative
operations of at least one of the biopotential signal data 1in a frequency domain and converting a
result of the one or more fractional derivative operations to a time domain signal data, wherein
the generated fractional derivative signal data comprises a same length and a same sampling
frequency as the at least one of the biopotential signal data; and generating, via the processor, a
three-dimensional space wherein each corresponding value of cach of the biopotential signal
data and the fractional derivative signal data forms a three-dimensional point 1 said space,
wherein geometric features and dynamaical properties of the three-dimensional space are used as
variables representative of the subject in machine learning to detect one or more diagnosable
pathology of the subject.

[0022] In some embodiments, each of the two or more electrical leads collected
measurements of the biopotential signal at a location selected from the group consisting of a
chest line of the subject, a waistline of the subject, a wrist of the subject, a pelvic line of the
subject, a neck of the subject, an ankle of the subject, a forchead of the subject, and an arm line
of the subject.

[0023] In another aspect, a method 1s disclosed of determining congenital heart defects
(CHD) in a mammal. The method includes receiving biopotential recordings associated with the
mammal, the biopotential recordings being recorded at predetermined intervals; developing
variables associated with the biopotential recordings to create a dataset; and analyzing the
dataset to determine 1f the mammal has a CHD.

[0024] In some embodiments, the biopotential recordings associated with the mammal
arc recorded using a measuring equipment comprising a single surface lead.

[0025] In some embodiments, a measuring equipment comprises an intracardiac

electrogram mstrument.
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[0026] In some embodiments, the measuring equipment comprises a smart watch or
fitness heart band.

[0027] In another aspect, a system 1s disclosed that includes that includes remote storage
(c.g., storage arca nctwork) configured to receive biopotential data from a network-connected
biopotential measuring apparatus; one or more processors; and a memory having mstructions
stored thercon, wherein the instructions, when executed by the processor, cause the processor to:
ogenerate phase space variables associated with the biopotential data; analyzing the phase space

variables to determine 1f the mammal has a CHD.

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] FIG. 1 1s a diagram of a system for pre-processing data to extract variables for use
in machine learning to diagnose a pathology, in accordance with an illustrative embodiment.
[0029] FIG. 2 1s a diagram of a method for processing data to diagnose a pathology, 1n
accordance with an 1llustrative embodiment.

[0030] FIG. 3 1s a detailed diagram of a method of pre-processing the data as shown 1n
FIG. 2, 1n accordance with an illustrative embodiment.

[0031] Fig. 4 1s a detailed diagram of a method of signal data normalization as shown 1n
FIG. 3, 1n accordance with an illustrative embodiment.

[0032] FIG. 5 1s a detailed diagram of a method of virtual signal generation as shown 1n
FIG. 3, 1n accordance with an illustrative embodiment.

[0033] FIG. 6 1s a detailed diagram of a method of performing phase space analysis as
shown 1n FIG. 2, in accordance with an 1llustrative embodiment.

[0034] FIG. 7 1s a diagram 1llustrating postnatal VSD resolution, in accordance with an
illustrative embodiment, 1n accordance with an embodiment, 1n accordance with an embodiment.
[0035] FIG. 8 1s a diagram 1llustrating hypothesis of a clinical study, in accordance with

an embodiment.
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[0036] FIG. 9 1s a diagram 1llustrating a design of experiment for the clinical study
described 1n relation to FIG. 8, 1n accordance with an embodiment.

[0037] FIG. 10 1s a diagram 1llustrating a method for conducting the experiment for the
clinical study described 1n relation to FIG. 9 using machine learning process, 1n accordance with
an embodiment.

[0038] FIG. 11 1s a diagram 1llustrating a vectorcardiogram including virtual biopotential
signals generated from an exemplified fractional derivative operation, 1n accordance with an
embodiment.

[0039] FIG. 12 1s a diagram 1llustrating exemplary mputs to the machine learning
processes described 1n relation to FIG. 10, in accordance with an embodiment.

[0040] FIG. 13 1s a diagram 1llustrating a phase space model of a vectorcardiogram of a
specimen with a diagnosable disease.

[0041] FIG. 14 1s a diagram 1illustrating an alpha-shape phase space model of a
vectorcardiogram of a control specimen.

[0042] FIGS. 15 and 16 are diagrams 1llustrating results of the clinical study as described
in relation to FIGS. 7-10, 1n accordance with an 1llustrative embodiment.

[0043] FIGS. 17A and 17B show the performance of heart rate variability as assessed
using a receiver-operator characteristic curve in the prediction of DMO-exposed or chemical
naive status, using either the standard deviation method, or Poincare Pearson correlation method.
[0044] FIG. 18 show the performance of the artificial neural network on distinguishing
the DMO-exposed data from the chemical naive data as assessed using a receiver-operator
characteristic curve.

[0045] FI1G. 19 shows the performance of the random forest on distinguishing the DMO-
exposed data from the chemical naive data within the “leave-one-out” validation paradigm, as

assessed by a recerver operator characteristic curve.

DETAILED DESCRIPTION
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[0046] The components 1n the drawings are not necessarily to scale relative to each other
and like reference numerals designate corresponding parts throughout the several views:

[0047] FIG. 1 1s a diagram of a system 100 for pre-processing data to extract variables
for use in machine learning to diagnose a pathology, 1n accordance with an illustrative
embodiment. As shown i FIG. 1, the system 100 includes a biopotential measuring equipment
102 and an analysis subsystem 104. The biopotential measuring equipment 102 collects a
biopotential signal via a single lead electrode 106 (and corresponding GND lead 124) that 1s
attached to the surface of a subject 108 (e.g., the skin of a test animal or a person). The
biopotential measuring equipment may be any device configured to capture electrophysiological
signal. In some embodiments, a Holter ECG monitor 1s used as the biopotential measuring
equipment 102 for measuring and recording the biopotential signal.

[0048] In some embodiments, the simgle lead electrode 106 comprise a surface electrode
that 1s placed directly, or indirectly, on the surface of the skin or body tissue to record electrical
activity. In some embodiments, the single lead electrode 106 comprises electrodes that are
integrated into wearable devices to contact the skin when the wearable device 1s wore or attached
to a patient or subject.

[0049] It should be appreciate that other wiring topology may be used without departing
from the spirit of the disclosure. In some embodiments, the GND lead 1s a common-mode
return. In other embodiments, the GND lead may serve as a differential mode signal with lead
106. In other embodiments, the GND lead 1s referenced to (or returned through) the earth, the
chassis, or a shield.

[0050] Biopotential signals, in some embodiments, are electric potential that 1s measured
between points on a tissue. Examples of biopotential signal includes an ECG
(electrocardiogram) signal that 1s used to assess electrical and muscular functions of the heart.
[0051] In some embodiments, the biopotential measuring equipment 1s a wearable device

that 1s configured to measure and to record the biopotential signal. In some embodiments, the
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wearable device 1s configured to be placed at a chest line of a subject, a waistline of the subject,
a wrist of the subject, a pelvic line of the subject, a neck of the subject, an ankle of the subject, a
forchead of the subject, and an arm line of the subject and has electrodes positioned to be 1n
proximal contact with the skin or surface of the wearer. The wearable device may have a
housing 1n the form of watch, an arm band, a neck band, a leg band, a chest band, a head band
and such. In other embodiments, the biopotential measuring equipment 1s a part of an exercise
equipment (¢.g., a handle bar), a weight scale, a mat, or any like device that contacts the skin or
surface of a person.

[0052] Reterrning still to FIG. 1, the biopotential signals 110 are stored as biopotential
signal data 112. The analysis system 104 receives the biopotential signal data 112, in some
embodiments, over a network, from the biopotential measuring equipment 102. In some
embodiments, the analysis system 104 receives the biopotential signal data 112 from a storage
arca nctwork (SAN). In other embodiments, the analysis system 104 and biopotential measuring
equipment 102 are located a single device, ¢.g., a wearable device. Other configurations may be
used.

[0053] Referring still to FIG. 1, the analysis system 104 1s configured to generate, from
the source biopotential signal data 112 of a single signal, one or more additional biopotential
signal data (shown as a first fractional derivative signal data 114a and a second fractional
dertvative signal data), via a fractional calculus operation 116, of the source biopotential signal
data 112, where cach of the first and second generated fractional derivative signal data 114a.,
114b comprises a same length and a same sampling frequency as the biopotential signal data. In
some¢ embodiments, the numerical fractional derivative operation 1s performed to emphasize or
deemphasize certain frequency components and such that there 1s an absence of orthogonality 1n
the resulting vectors. The additional biopotential signal data are used 1n conjunction with the
source biopotential signal data to generate a phase space map to be used 1 subsequent phase

space analysis 118 later described heremn. The output of the phase space analysis are then
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evaluated using artificial neural networks 120 to assess parameters 122 associated with a
presence of a disease or physiological characteristic. The output of the processor 1s then
transmitted to a graphical user intertace for visualization. The graphical user interface, in some
embodiments, 1s included 1n a display unit configured to display parameters 122. In some
embodiments, the graphical user interface displays intermediate parameters such as a 3D phase
space plot representation of the biopotential signal data and virtual biopotential signal data.
[0054] FIG. 2 1s a diagram of a method 200 of FIG. 1 for processing data to diagnose a
pathology, in accordance with an illustrative embodiment. As shown in FIG. 2, the method 200
includes collecting 200 signal data and pre-processing 204 the signal data to generate a phase
space dataset to be used 1n phase analysis 206, whereby features of the phase space dataset are
extracted and evaluated via an artificial neural network analysis 208.

[0055] FIG. 3 1s a detailed diagram of the pre-processing 204 of the data as shown 1n
FIG. 2, 1n accordance with an illustrative embodiment. The pre-processing 204 includes,
some embodiments, signal data normalization 302 and virtual signal generation 304,

[0056] FIG. 4 1s a detailed diagram of a method of signal data normalization as shown 1n
FI1G. 3, in accordance with an illustrative embodiment. As shown 1n FIG. 4, the signal
normalization 302 includes an mitial step of data channel removal 402 and Hurst exponent
filtering 404 of the source biopotential signal data 112. Further detail of the data channel
removal and Hurst exponent filtering 1s described 1n Matteo ¢t al., “Scaling behaviors 1n
differently developed markets,” Physica A, 324, pg. 183-188 (2003). In some embodiments, the
signal normalization 302 further includes selecting 406 a cleanest segment of the filtered signal,
the segment having a minimized residue between a wavelet model, of the signal, that 1s designed
to detect the presence of a non-biological noise and the signal itself. For example, a segment
comprising a cleanest S-second window of a 10 second recording interval may be selected. In
some embodiments, the wavelet model 1s configured to decompose the signal into temporal

levels in wheremn one or more of the highest levels of decomposition of the temporal levels are
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used 1n the subtraction of the wavelet model from the signal to determine the residue. In some
embodiments, the signal normalization 302 further includes filtering 408 using a second wavelet
model to remove undesired noise (¢.g., any remaining noise) 1n the selected cleaned segment.
The second wavelet model 1s configured decompose the signal into a number of temporal levels
and on¢ or more of the highest level of decomposition are maintained. It should be appreciated
by one skilled 1n that art that other signal data normalization may be used.

[0057] FIG. 5 1s a detailed diagram of a method of virtual signal generation as shown 1n
FIG. 3, 1in accordance with an illustrative embodiment. As shown 1n FIG. 5, the virtual signal
oeneration 304 includes creating one or more virtual signal data such that the data interact with
the original signal data to create a valid phase space portrait in which the limit cycles of the mput
biopotential signal (¢.g., cardiac cycle) are overlaid in 3-dimensional space and there was an
absence of orthogonality 1n the resulting vector. For example, where a single source biopotential
signal data 1s available, the virtual signal generation 304 may be used to generate two virtual
biopotential signals where a valid phase space portrait 1s 1n 3 dimensional space. In another
example, where two source biopotential signal data are available, the virtual signal generation
304 may be used to generate a virtual biopotential signal where a valid phase space portrait 1s 1
3 dimensional space. In some embodiments, the valid phase space portrait may be 1n
dimensional space greater than 3, such as 4, 5, 6,7, 8, 9, 10, or greater.

[0058] In some embodiments, cach of the one or more virtual signal data 1s generated by
performing a Fast Fourier Transform 502 on the normalized signal data. A numerical fractional
dertvative 1s then performed 504 on each of the FFT signal data and an inversed Fast Fourier
Transform (inversed FFT) 1s performed 506 on that output. Examples of the order of the
fractional dertvative mnclude p1/2 or 0.5. In some embodiments, the order of the fractional
denivative 1s a fraction of a real number or complex number. In some embodiments, the order of
the fractional derivative 1s a fraction of an mteger. In some embodiments, the output of the

inversed FFT 1s further processed to remove 508 bascline wander.

11
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[0059] In some embodiments, each of the one or more virtual signal data 1s generated by
performing a numerical fractional differencing on the normalized signal data, implemented
through the use of a convolution. A rational transfer function 1s defined to correspond to the
specified order of the fractional derivative, which 1s then applied to the mput data through the
use of a digital filter configured to accept such input. Examples of the order of the fractional
denivative include p1/2 or 0.5. In some embodiments, the order of the fractional derivative 1s a
fraction of a real number or complex number. In some embodiments, the order of fractional
derivative 1s a fraction of an integer. In some embodiments, the output of the convolution 1s
further processed to remove 508 baseline wander.

[0060] FIG. 6 1s a detailed diagram of the method of performing phase space analysis as
shown 1n FIG. 2, 1n accordance with an illustrative embodiment. In some embodiments, the
input to the phase space analysis 1s a point-cloud phase space map 601 of the biopotential signal
data and corresponding virtual signal data as a vectorcardiogram. In some embodiments, the
phase space analysis includes performing modified matching pursuit (MMP) algorithm 602. The
MPP algorithm 602 may be used to generate a sparse mathematical model 604. Detail of the
MMP algorithm 1s provided 1in Mallat ef a/., “Matching Pursuits with Time-Frequency
Dictionaries,” IEEE Transactions on Signal Processing, Vol. 41 (12), Pages 3397-2415 (1993).
[0061] Characteristics of this model may be extracted, 1n a feature extraction operation
606, to determine gecometric and dynamic properties of the model.

[0062] In some embodiments, the point-cloud phase space map 601 1s encapsulated by
alpha shape or a Delaunay triangulation. Features of the alpha shape and/or triangulation may be
extracted, via feature extraction 610, to determine additional geometric and dynamic properties
of the model.

[0063] In some embodiments, the extracted geometric and dynamic properties of the
alpha shape and modified matching pursuit operations are use as variables to an artificial neural

nctwork analysis, a regression random forest analysis, or other machine learning analyses.
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[0064] Experiment - Latent Teratogen-Induced Heart Deficits
[0065] Using an animal model described below, the exemplified system and method of

using mathematical analysis and machine learning to diagnose disease 1s shown. Specifically,
the exemplified system and method employs fractional calculus to increase the dimensionality of
a single lead ECG via, a numerical method with the mnverse FFT to be used 1in subsequent phase
space analysis.

[0066] The exemplified system and method was shown to successtully extract
meaningful vanables from biopotential signals, 1n an animal model, specifically those from
clectrocardiogram data collected from an implanted radiotelemeter, at a time when teratogen-
exposed test animals are clinically indistinguishable from controls. Machine learning was then
leveraged to predict, within a robust validation framework, the presence of latent cardiovascular
dysfunction. The test 1llustrates that the exemplified system and method can be used to analyze
data (¢.g., single time series data) from single lead measurements and to generate higher level of
dimensional phase space data in a subsequent phase space analysis.

[0067] In the animal model, test rats were treated 1n such a way as to mnduce a high
incidence of CHD (congenital heart defects) in offspring. Dams delivered naturally, and the
heart structure and function were assessed 1n female pups using echocardiography on postnatal
day (PND) 4, PND 21 and PND 56. At postnatal day (PND) 56, radiotelemetry units were
implanted into 9 treated rats and 8 control rats. Two weeks post-surgery, telemeters were
activated and ECG recordings were continuously collected every 10 seconds and every 12
seconds over a period of two weeks. 50,000 collected data points per rat were each transformed,
from the single ECG recording, into a unique three-dimensional phase space dataset, and
machine learning used to create predictive algorithms capable of 1dentifying differences in heart
function between control and treated rats and other mammals.

[0068] The results, as described 1n more detail below, demonstrate that a teratogen-

induced CHD that resolves postnatally and results 1n hearts that appears normal by conventional
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measures are, 1n fact, different from teratogen-naive hearts. As equally important, the results
reveal that fractional calculus may be used to increase the dimensionality of a single lead

biopotential signal for use 1n phase space analysis.

[0069] Experiment Setup
[0070] FIG. 7 1s a diagram 1llustrating postnatal ventricular septal defect (VSD)

resolution, i accordance with an illustrative embodiment. As shown 1n FIG. 7, two cohorts of
animals are selected with significant cardiovascular differences that decline to an absolute
minimum at 8-10 weeks postnatal when these differences 1n the animals are clinically
indistinguishable. The animals are used to verify that the exemplified system and method may
be used to 1dentify which animals were affected by drug administration (1.¢., during this 8-10
week postnatal period when the cardiovascular differences m the animals are clinically
indistinguishable).

[0071] FIG. 8 1s a diagram 1llustrating hypothesis of a clinical study, in accordance with
an embodiment. As shown 1n FIG. 8, the hypothesis 1s that exemplified mathematical analysis
and machine learning will reveal functional deficits between the cohort of offspring with treated
dams and the cohort of offspring with non-treated dams at a time when 1t 1s otherwise
undetectable by conventional analysis (during the 8-10 week period) without the need for a
conventional stressor.

[0072] FIG. 9 1s a diagram 1illustrating a design of experiment for the clinical study
described 1n relation to FIG. 8, 1n accordance with an embodiment. As shown 1in FIG. 9, the test
rats were divided into two cohorts: exposed and unexposed to dimethadione (DMQO). The test
rates were allowed to come to natural parturition; the pups were evaluated over the first 8 weeks
of lifc using echocardiography. Then, at 8 weeks, radiotelemeters were surgically implanted into
the test rats to measure several physiological signals including ECG signals. The ECG signals

were then used 1n machine learning to create a predictor to discriminate between the two cohorts.
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[0073] FIG. 10 1s a diagram 1llustrating a method for conducting the experiment for the
clinical study described 1n relation to FIG. 9 using machine learning process, 1n accordance with
an embodiment. As shown 1n FIG. 10, the exemplified experiment begins with test rats with
known exposure paired to ECG data. Variables were then developed from the ECG data, and
input to a machine learning process. The exemplified method and system 1s used to predict if the
rat that generated that ECG was exposed or unexposed to dimethadione (DMO).

[0074] FIG. 11 1s a diagram 1illustrating a vectorcardiogram including virtual biopotential
signals generated from an exemplified fractional derivative operation, 1n accordance with an
embodiment. As shown i FIG. 11, the exemplary mputs include the original measured ECG
signal data 112 and the virtual ECG signal data 114a, 114b.

[0075] FIG. 12 1s a diagram 1llustrating exemplary mputs to the machine learning
processes described 1n relation to FIG. 11, in accordance with an embodiment. As shown 1n the
FIG. 12, a phase space dataset 1202 1s shown of the vectorcardiogram (VCG) that includes the
measured biopotential signals 112 and the virtual biopotential signals 114a, 114b generated from
the exemplified fractional denvative operation. The vectorcardiogram (VCG) 1s shown 1 a
point-cloud phase space map 1202 in which the measured biopotential signals 112 and the
virtual biopotential signals 114a, 114b are shown without time 1 a three axis coordinate system.
The phase space dataset 1202 1s quantified by being wrapped 1n a geometric shape, for example,
an alpha shape or a Delaunay triangle. Detail of an alpha shape operation 1s described 1in
Edelsbrunner ef al., “"Three-dimensional alpha shapes,” ACM Transactions on Graphics, Vol. 13
(1): 43-72 (1994).

[0076] FIG. 13 1s a diagram 1llustrating an alpha-shape phase space model of a
vectorcardiogram of a specimen with a diagnosable disease. FIG. 14 1s a diagram 1llustrating an
alpha-shape phase space model of a vectorcardiogram of a control specimen. As shown in FIGS.

13 and 14, there are visual differences between datasets of the exposed and unexposed test rats,
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but these differences are subtle and are more conducive to be analyzed via machine learning to
expose such differences.

[0077] In some embodiments, the machine learning analysis uses families of variables
including data shape variables, fractional derivatives, signal modeling using MMP, phase space
modeling, and dynamical system vanables. In the exemplified experiment, with data for 17 test
rats, each with 50,000 ECG signals, where each ECG signal has 250 variables, there are about

two billion data points used m the analysis including an artificial neural network.

[0078] Discussion

[0079] Congenital heart defects (CHD) are the most common class of congenital
anomalies with an mncidence of approximately 1.9-7.5% of live births. The most prevalent birth
defect 1s the ventricular septal defect (VSD) at 25-409% of all CHD, i which the septum fails to
close between the left and the right ventricles. Postnatal persistence or surgical repair of VSD or
other CHD significantly imncreases the lifetime risk of heart disease in these patients relative to
unaffected cohorts, and thercfore necessitates a vigilant lifetime of observation and potential
intervention by a cardiologist specializing in the care of CHD. Interestingly, approximately 80%
of VSDs that present clinically resolve spontaneously within the first year of life. While a
clinical resolution of the structural damage 1s a favorable outcome, there 1s a dearth of
information about the long-term functional consequences of resolved VSD.

[0080] To explore the potential deleterious long-term consequences of resolved CHDs,
the exemplified rat model was developed that recapitulates many of the clinical presentations of
CHD. To generate such a model, pregnant rats were treated with a chemical teratogen. It has
been estimated that 80% of 1n utero trimethadione exposures resulted i embryo/fetal loss, or
malformations including a high incidence of CHD. Without wishing to be bound to particular
theory, 1t 1s thought that DMO teratogenicity 1s mediated by oxidative stress which might be the
result of the result of hypoxia reperfusion mjury caused by bradycardias induced by disruption of

calcium and potassium 10on channels 1n embryonic myocytes. It has been demonstrated
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outbred pregnant Sprague-Dawley rats that the incidence and severity of CHD 1n progeny are
highly dependent upon the gestational window and total exposure to DMO. The administration
of four 300 mg/kg doses every twelve hours beginning on the moming of gestation day (GD) 9
produces approximately a 50% incidence of CHD 1f fetuses are examined on GD 21, one day
prior to natural parturition (see, e.g., Weston et al., “Co-varation 1n frequency and severity of
cardiovascular and skeletal defects in Sprague-Dawley rats after maternal administration of
dimethadione, the N-demethylated metabolite of trimethadione. Birth defects research Part B,”
Developmental and reproductive toxicology, Vol. 92, Pages 206-15 (2011)). When stmilarly
treated dams are allowed to deliver their progeny naturally and the cardiac structure and function
of the pups 1s evaluated longitudinally by high-resolution echocardiography, a scenario
reminiscent of the clinical presentation of CHD 1s revealed. For example, 1n infants,
approximately 80% of VSD resolves by one year of age, and 1n test rats atter DMO exposure,
about 80% of the VSD resolve spontancously by weaning. Other structural elements such as left
ventricular (LV) mass, LV anterior wall thickness 1n systole (LVAW :s) and LVAW 1 diastole
(LVAW:d) are all significantly different between control and DMO-exposed pups close to the
time of parturition, but resolve over time such that by 10 weeks of age control and DMO animals
arc indistinguishable. In the rat pups exposed to DMO, cardiac dysfunction 1s pronounced close
to parturition, but gradually resolves, such that by 10 weeks of age under basal, during
unstressed conditions, cardiac output (CO), stroke volume (SV), ejection fraction (EF), fractional
shortening (FS) and pulmonary artery regurgitation PA regurg. (mm/s) have all normalized. At
this point, radiotelemeters capable of measuring continuous single channel electrocardiogram
(ECG) were surgically implanted into the rats. After two weeks of surgical recovery, baseline
heart function was obtained and the animals were mated. Pregnancy 1s a physiological challenge
for the maternal cardiovascular system and clinically has been referred to as a cardiovascular
“stress test”. Pregnancy-induced changes to the mammalian maternal CV system mclude a 30-

40% 1ncrease 1 blood volume, 30-60% increase in cardiac output (CO), transient cardiac
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hypertrophy and uterine spiral arterial (SA) remodeling ref. Cardiac hypertrophy occurring in
normal pregnancy 1s physiological and reversible, similar to exercise-induced hypertrophy .
[0081] Disconcertingly, the cardiovascular systems of test rats exposed to DMO in-utero
adapted poorly to the burden of pregnancy. Manifestations included altered CO, SV, radial and
longitudinal strain, and elevated mean arterial pressure at the time of spiral artery remodeling.
Thus, the function of hearts with resolved CHD were indistinguishable from control hearts under
basal unstressed conditions; however, under the stress of pregnancy profound cardiac and
hemodynamic deficiencies emerged.

[0082] In the exemplified experiment, in-utero exposure to the heart teratogen DMO was
used to generate a population of rats with resolved CHD that only presented with cardiac
dysfunction during the burden of pregnancy. The exemplified method and system was used to
predict the presence of latent teratogen-induced cardiac functional deficits prior to the onset of
pregnancy, without the use of a cardiovascular stress test, and using the ECG data collected via
the telemeter within the ten to twelve week period of the study previously described. There are
no discernable differences between the cohorts during this ten to twelve week period.

[0083] Experiment Results

[0084] FIGS. 15 and 16 are diagrams 1llustrating results of the clinical study as described
in relation to FIGS. 7-10, 1n accordance with an 1llustrative embodiment. Specifically, FIG. 15
1s a plot of a predictive output of the neural network analysis for the two cohorts of test animals,
which were by conventional measures, indistinguishable. The plot shows all the predictions on
the treated and control cohorts test data (recall the 85%), where there 1s a clear visual separation
between the baselines. For comparison, a heart-rate variability (HRV) analysis was run that uses
landmarks 1n the ECG signal data to automatically detect high content data. As shown, HRV
was not successtul 1in identifying the cohorts, while the exemplified method and system (using
the machine learning predictor) was found to be significantly better, showing that 1t 1s possible to

discriminate between these two groups, and therefore they are different.
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[0085] Specifically, the exemplified experiment was conducted with two cohorts 1n
which five test rats were exposed to DMO in utero (Cohort #1), and eight control rats were
chemical naive (Cohort #2). Raw ECG signals were recorded from a single channel with a
sampling frequency of 1000 Hz. Data acquisition was blocked mto ten-second intervals from the
test rats for a two week period between the ages of eleven to fourteen weeks, when the two
cohorts were otherwise clinically indistinguishable using echocardiography or heart rate
variability (HRV). The statistical evaluation of the predictors used to discriminate between the
cohorts, such as HRV, primarily utilized area under the receiver operator characteristic curve
(AUC). AUC examines the performance of a predictor against a binary target variable, which 1n
this case, 1s the DMO-exposed or chemical naive status of the rat. An AUC value of 0.5
represents a random prediction, an AUC of 1 1s a perfect prediction, and an AUC of O 1s a
perfect, but inverted, prediction (where all data points of one class are predicted to be the other
class, and vice versa).

[0086] HRYV reflects beat-to-beat changes in heart rate reflecting dynamic changes in
autonomic tonc. HRYV 1s a clinically useful electrophysiological endpoint and 1s the foundation
for risk stratification strategies such as REFINE, which seeks to determine whether non-invasive
physiological parameters collected after the occurrence of a myocardial infarction (MI) predict
the subsequent incidence of cardiac death or resuscitated cardiac arrest. In the REFINE study,
HRYV had an AUC of 0.62 and hazard ratio of 2.15 1n the 10-14 week period post-MI, proving to
be a somewhat useful technique for risk stratification, which led us to believe 1t might provide
utility 1n the identification of DMO-exposed rats.

[0087] FIGS. 17A and 17B show the performance of heart rate variability as assessed
using the receiver-operator characteristic curve in the prediction of DMO-exposed or chemical
naive status, using either the standard deviation method (FIG. 17A), or Poincare Pearson

correlation method (FIG. 17B). FIGS. 17A and 17B were generated as follows. A five-second

window that minimized non-biological noise was 1dentified 1n a ten-second recording interval of
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a given test rat. Heartbeats were 1dentified during this five-second window, and a confidence
score (CS) determined; five-second windows possessing 1dentified heartbeats with a CS greater
than 0.7 were included 1n statistical evaluation. After heartbeat identification, HRV was
calculated using the most widely accepted approach 1in which the standard deviation of the R-R
interval (referencing the standard PQRST notation to represent the five waveforms in the cardiac
cycle) was calculated for each five-second window. Additionally, a Poincar¢ plot was created
which the length of the R-R interval and the length of the next R-R interval create a point in two-
dimensional scatter plot and the Pearson correlation of this data 1s calculated. The performance
statistics of these two HRYV techniques are reported in Table 1, with a threshold applied for
statistics and the corresponding receirver operator characteristic curves are plotted in FIGS. 17A
and 17B.

[0088] Table 1 shows statistical performance of heart rate variability in the prediction of
DMO-exposed or chemical naive status. The AUCs of these two predictors demonstrate that
quantifying HRV using either method has low or no predictive power. The poor performance 1s
additionally reflected 1n the diagnostic odds ratio (DOR), which 1s only slightly above 1 (where
1 indicates there 1s no change 1n the relative odds of the rat being DMO-exposed, given a

positive test result).

Table 1
Statistic HRYV: Standard HRYV: Poincare
Dewviation Pearson
Correlation
AUC 051 0.59
Sensitivity 78% 2%
Specificity 23% 99%
Positive Predictive 39% 48%
Value
Negative Predictive 62% 62%
Value
Diagnostic Odds Ratio 1.05 1.47
(95% CI 1.03-1.07) | (95% CI 1.37-1.58)
Number of rats 4/13 8/13
correctly classified
Percent of intervals 44% 61%
correctly classified
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[0089] FIG. 18 show the performance of the exemplified method suing artificial neural
network on distinguishing the DMO-exposed data from the chemical naive data, on the
validation data when 15% of the data 1s allocated to the training set and the remaining 85% 1s
allocated to validation set, as visualized by the receiver operator characteristic curve. In
addition, Table 2 shows the statistical performance of the artificial neural network on
distinguishing the DMO-exposed data from the chemical naive data, on the validation data when

15% of the data 1s allocated to the training set and the remaining 85% 1s allocated to validation

Set.
Table 2
Statistic Value
AUC 0.79
Sensitivity 70%
Specificity 73%
Positive Predictive 58%
Value
Negative Predictive 82%
Value
Diagnostic Odds Ratio | 6.26 (95% CI 6.16-6.35)
Number of rats correctly | 12/13
classified
Number of intervals 72%
correctly classified
[0090] ANNs are widely used 1n machine learning as they enable hitherto unachievable

artificial mtelligence benchmarks. A supervised ANN learns to predict a target using a vector of
inputs 1n a way that mimics human neural processing. The ANN contains neurons arranged 1n a
series of connected layers; firstly, the input layer that accepts the features, then one or more
hidden layers to capture the non-linearity of the function being modeled, followed by the output
layer that predicts the value of the target which corresponds to the input vector. The neurons 1n

the ANN are stimulated by the input vector, and transmit those stimuli downstream to following
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layers depending on the value of the features, the strength of the connection between the
ncurons, and the activation function found within the neuron. ANNs may be used as a universal
functional approximator.

[0091] To explore the possibility of creating a more robust prediction model, an
ensemble machine-learning algorithm based on random forest was used which relies on the
principle that a series of weak leamers, or sitmple algorithms that describe a limited amount of
complexity 1in the data, when used 1n combination have powerful generalization properties.
Random forest 1s composed of decision trees as weak leamers. Decision trees are tree structures
where the nodes are decisions (or specific to this application, a threshold on a feature), and upon
taking a decision the connection to that child node 1s followed, which reveals a sub-decision tree
with the oniginal child as the root. The process continues until arrival at a leaf node, which 1s the
final prediction on the data. Each decision tree 1s exposed to a different partition of the both the
recording intervals and the feature vector, and therefore tends to learn a distinct facet of the
problem. A regression random forest algorithm with 100 decision trees was trained using the
validation strategy just described, the results of which are shown 1n Table 3, and visualized n
FIG. 19.

[0092] FI1G. 19 shows the performance of the random forest on distinguishing the DMO-
exposed data from the chemical naive data within the “leave-one-out” validation paradigm, as
assessed by the recerver operator characteristic curve. As shown m FIG. 19, the performance 1s
diminished slightly as compared to that of the first validation strategy as described 1n relation to
FI1G. 18, but 1in the context of this robust validation strategy 1t 1s still highly predictive. The
performance 1s the result of analyzing the predictions produced in amalgamation by thirteen
random forests (one for each of the thirteen test animals), each predicting on only the intervals of
the sigle rat 1t did not receive 1n the training phase. The threshold, for those statistics requiring

it, was set using the boundary that provided the maximal classification accuracy. When
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reserving a DMO-exposed rat for testing, the training set 1s composed of the 8 chemical naive

rats and the remaining 4 DMO-exposed rats, resulting 1n a ratio of 2:1.

[0093] Table 3 shows the statistical performance of the random forest on distinguishing

the DMO-exposed data from the chemical naive data within the “leave-one-out™ validation

paradigm.
Table 3
Statistic Random
Forest
AUC 0.73
Sensitivity 40%
Specificity 99%
Positive Predictive Value 97%
Negative Predictive Value 70%
Diagnostic Odds Ratio 80.4 (95% CI
77.0-84.0)
Number of rats correctly 10
classified
Number of mtervals correctly 74%
classified
[0094] Experiment - Material and Methods
[0095] The analytical methodology described herein used pre-processing 1n the transition

from data collection to feature extraction. Data channel removal and Hurst exponent filtering are

the mnitial operations. The 1deal threshold on which to accept data was observationally

determined to be 0.7 on that exponent, which ranges from 0 to 1, through the visual mspection of

a representative subset of the ECG signals along with the calculated exponents of those signals.

Sccond, the cleanest 5-second window out of the 10-second recording interval was found by

selecting the segment that minimizes the residue between a wavelet model of the signal,

designed to detect the presence of non-biological noise, and the signal 1tself. The wavelet model

1s computed using the functionality of the MATLAB™ (MATHWORKS; Natick, MA) Wavelet

Toolbox. Data outside of this 5-second segment 1s discarded.
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[0096] In some embodiments, the filtering provides a clean signal that lend better to
numerical operators (¢.g., numerical fractional denvative operations). It should be appreciated
by those skilled 1n the art that other filtering and signal cleaning operations may be used.

[0097] Following this, any remaining noise in this 3-second interval 1s removed using a
second wavelet model, which 1s designed for noise removal rather than noise detection, but 1s
otherwise similar to the model used for the selection of the 5-second segment. Both of the
wavelet models decompose the signal into eight temporal levels, but the noise detection model
only preserves the two highest levels of decomposition (resulting 1in efficient capture of noise
when subtracting the wavelet model from the signal), while the noise removal model at least
partially maintains the four highest levels of decomposition. The phase space reconstruction,
and theretore the creation of the vV CG, was then performed through the creation of the two
virtual signals. Transformations to create the two virtual signals were chosen such that the
signals iteract with the original signal to create a valid phase space portrait, where the limat
cycles of the cardiac cycles were overlaid 1n 3-dimensional space and there was an absence of
orthogonality 1n the resulting vectors. These virtual leads were created by taking derivatives of
the acquired lead 1n such a way as to create a valid phase space portrait, or a shape 1n three-
dimensional space where the values of cach of the three leads at a given time form a three-
dimensional point 1n that space. Fractional derivatives of order p1/2 and 0.5 were found to be
suitable, as computed numerically through the conversion of the signal into the frequency
domain using the Fast Fourier Transform (FFT), calculation of the required derivative within the
frequency domain, and conversion of the dertvative back to the time domain using the imverse
FFT. The bascline wander was then extracted from each of the three dimensions through the use
of a median filter with an order of 1500 ms, smoothed with a 1-Hz low-pass 1deal filter, and
subtracted from the signals. The bias was then removed from the resulting signals by subtracting

estimations of the modes of the signals using the maximums of the probability densities
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calculated with a kernel smoothing function. Finally, all signals were divided by their
interquartile ranges to complete the normalization process.

[0098] The three-dimensional space construction 1s subsequently used to study
gcometrical and dynamical propertics of the system. The pre-processed signal 1s subjected to a
feature extraction process. The signal 1s modeled with the modified matching pursuit (MMP)
algorithm to create a sparse mathematical model. Characteristics of the model, including residue
quantification, were included 1n the feature set. The vVCG was further quantified by creating an
encapsulating alpha shape, or a specific Delaunay triangulation. This triangulation has
associated characteristics that composed the feature vector representing the recording interval.
[0099] Delaunay triangulations are triangulations on a set of points such that no point 1s
within the circumcircle of any triangle 1n the trnangulation, and the minimum angle of all the
angles 1n cach triangle 1n the triangulation 1s maximized.

[0100] An alpha shape adds a further constraint; this trnangulation requires the
specification of an alpha radius, and only pairs of points whose distance 1s less than the alpha
radius may be connected by an edge. The alpha radius 1n this feature extraction process was
determined observationally to be 0.6, which allowed for sufficient encapsulation of the vVCG
while still creating appropriate sparsity in the triangulation in arcas of reduced point density.
[0101] This feature extraction was performed using SHARCNET (a consortium of
colleges, universities and research institutes operating a network of high-performance computer
clusters across southwestern, central and northern Ontario, Canada).

[0102] At the conclusion of the feature creation process, there were 250 features to
represent the 10-second recording interval.

[0103] After the feature extraction, the ANN and random forest algorithms were invoked
to create the predictors. An ANN was tramed using the labeled feature vectors from 15% of the
recording intervals, where the relatively small training percentage was chosen to minimize the

potential to overfit and allow for generalizability. Selecting a relatively small segment of the
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available data for traming, and performing well on the larger test set, requires that the ANN
leverage overarching signatures in the data rather than patterns unique to the training set. The
ANN had an mput dimensionality of 250 neurons, a simgle hidden layer that expanded that
dimensionality by a factor of three to a total of 750 neurons, and then a single neuron 1n the
output layer to represent the prediction of DMO-exposed or chemical naive. Each neuron 1n the
ANN contained the hyperbolic tangent activation function. The ANN sought to minimize the
root mean squared error between the prediction and the recording interval class on the training
data using stochastic gradient descent. Low learning rate and momentum parameters were used
to allow the ANN to evolve gradually, and input corruption (the addition of noise on the
incoming features) as well as dropout (noise internal to the ANN) were used to control for
overfitting, which occurs when the ANN 1s highly specific to the training data and 1s unlikely to
ocneralize to novel data. The ANN was a custom implementation in the MATLAB language.
The performance of this ANN when 1t was applied to the withheld 85% of the data (351,520 data
points 1n total) 1s shown below 1n Table 2, and the corresponding ROC curve 1s plotted 1n FIG.
18.

[0104] With respect to the random forest, the MATLAB function TreeBagger was used
1in which the specification of the number of features to sample at each node 1n the tree was
selected tfrom all the features, thereby exploiting the varying levels of mformation present within
the features, and yet gain the generalization benefit from the random sampling of the traming
data for cach member of the random forest.

[0105] Heart rate variability was also calculated on the pre-processed signals. The
detection of the R peaks was performed through the 1dentification of high-confidence R peaks, or
those that exist 1n the top decile of the signal, and the creation of templates based on these high-
confidence peaks. A template matching procedure was then executed on the signal, identifying
the peaks of segments of the signal with a high degree of similarity to the templates, resulting 1n

an expanded set of R peaks. The confidence of these R peaks was then quantified by calculating
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the absolute difference between the maximum R-R mterval and the minimum R-R interval, and
dividing by the maximum R-R interval m order to create a normalized peak confidence score.
The threshold on the score was set to 0.7 (not to be confused with the generalized Hurst
exponent threshold, also set to 0.7), in order to allow for the heart rate variability that 1s to be
expected mm any mammalian cardiovascular system, yet remove any peak detections that are
likely to have missed a peak or identified an additional peak, and thus depressing the confidence
scorec. HRV can then be calculated on R-R intervals derived from the 1dentified peaks, using the
methods already described.

[0106] Although the mvention 1s described 1in terms of particular embodiments and
applications, one of ordinary skill in the art, in light of this teaching, can generate additional
embodiments and modifications without departing from the spirit of or exceeding the scope of
the exampled imnvention. Accordingly, it 1s understood that the drawings and descriptions herein
arc prottered by way of example to facilitate comprehension of the invention and should not be
construed to limit the scope thereof.

[0107] For example, mn view of the exemplified method and system, a single electrode
lecad measurements may be used 1 analysis that conventionally use data from multiple lead
measurements, €.g., to assess certain physiologic characteristics or disease.

[0108] In addition, 1f the current observations 1n rat are clinically translatable, there are
important implications with respect to the long-term cardiac health after spontancous post-
partum resolution of CHD. For example, the ability to identity latent markers of future cardiac
dysfunction using only ECG signals would be a significant cost-cttective step forward for the
identification of at-risk individuals who typically do not outwardly display an inherent cardiac
risk.

[0109] In addition, the animal model upon which these exemplified experiments are
based, demonstrate that there are important implications with respect to the long-term cardiac

health after spontancous post-partum resolution of CHD.
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What 1s claimed 1s:

1. A method of pre-processing data to extract varables for use 1n machine leaming to
diagnose a pathology, the method comprising:

recerving a biopotential signal data associated with a subject, said biopotential signal data
being associated with a biopotential signal collected from one or more electrical leads;

generating, via a processor, a first and a second fractional derivative signal data by
numerically performing one or more fractional derivative operations of the biopotential signal
data 1n a frequency domain and converting a result of the one or more fractional denivative
operations to a time domain signal data, wherein each of the first and second generated fractional
dertvative signal data comprises a same length and a same sampling frequency as the
biopotential signal data; and

generating, via the processor, a three-dimensional space wherein each corresponding
value of the biopotential signal data, the first fractional dernivative signal data, and the second
fractional dertvative signal data forms a three-dimensional point 1n said space, wherein
ocometric features and dynamical properties of the three-dimensional space are used as variables
representative of the subject in machine learning to detect one or more diagnosable pathology of

the subject.

2. The method of claim 1, wherein the first fractional derivative signal data 1s generated by
performing a first numeric fractional derivative of a first order value on the biopotential signal
data 1n the frequency domain and by performing an inversed transformation (¢.g., inversed FFT)
on the fractional derived signal data to convert the fractional derived signal data to a time

domain signal data.

3. The method of claim 2, wherein the inversed transformation comprises an mversed Fast

Fourier Transform (1inversed FFT) operation.
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4. The method of any one of claims 1-3, wherein the second fractional derivative signal data
1s generated by performing a second numeric fractional derivative of a second order value on the
biopotential signal data and by performing an inversed transformation (e.g., mmversed FFT) on
the fractional derived signal data to convert the fractional derived signal data to a time domain

signal data.

5. The method of any one of claims 1-4, wherein each of the first fractional derivative

signal data and the second fractional denivative signal data comprises a time domain signal data.

6. The method of any one of claims 1-5, wherein the first fractional derivative signal data 1s

oenerated by a fractional derivative of an order of p1/2.

7. The method of any one of claims 1-6, wherein the second fractional derivative signal data

1s generated by a fractional dernivative of an order of 0.5.

8. The method of any one of claims 1-7, wherein the geometric features and dynamical
properties of the three-dimensional space are generated by performing a MMP (modified

matching pursuit) algorithm of the three-dimensional point 1n said space.

9. The method of any one of claims 1-8, wherein the biopotential signal data 1s associated

with a biopotential signal collected from a single electrical lead.

10.  The method of any one of claims 1-9, wherein the single electrical lead collected

measurements of the biopotential signal at a location selected from the group consisting of a

chest line of the subject, a waistline of the subject, a wrist of the subject, a pelvic line of the

30



CA 02990367 2017-12-20

WO 2016/207862 PCT/IB2016/053797

subject, a neck of the subject, an ankle of the subject, a forehead of the subject, and an arm line

of the subject.

11.  The method of any on¢ of claims 1-10, comprising:
generating, via a processor, an alpha shape of the three-dimensional point 1 said space,
wherein the geometric features and dynamical properties of the three-dimensional space includes

the gecometric features of the alpha shape.

12.  The method of any one of claims 1-11, comprising:
generating a Delaunay triangle mesh of the three-dimensional point 1n said space,
wherein the geometric features and dynamical properties of the three-dimensional space includes

the geometric features of the Delaunay triangle mesh.

13.  The method of any one of claims 1-12, whereimn the biopotential signal data comprises

electrocardiogram (ECGQG) data.

14.  The method of any one of claims 1-13, wherein the machine learning comprises an

artificial neural network algorithm or a regression random forest algorithm.

15. A method of pre-processing data to extract variables for use 1n machine learning to
diagnose a pathology, the method comprising:
recerving biopotential signal data associated with a subject, said biopotential signal data
being associated with biopotential signals collected from two or more electrical leads:
generating, via a processor, a fractional derivative signal data by numerically performing
on¢ or more fractional derivative operations of at least one of the biopotential signal data in a

frequency domain and converting a result of the one or more fractional dernivative operations to a
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time domain signal data, wherein the generated fractional derivative signal data comprises a
same length and a same sampling frequency as the at least one of the biopotential signal data;
and

generating, via the processor, a three-dimensional space wherein each corresponding
value of each of the biopotential signal data and the fractional derivative signal data forms a
three-dimensional point 1n said space, wherein geometric features and dynamical propertics of
the three-dimensional space are used as varnables representative of the subject in machine

lecarning to detect one or more diagnosable pathology of the subject.

16. The method of claim 15, wherem each of the two or more electrical leads collected
measurements of the biopotential signal at a location selected from the group consisting of a
chest line of the subject, a waistline of the subject, a wrist of the subject, a pelvic line of the
subject, a neck of the subject, an ankle of the subject, a forchead of the subject, and an arm line

of the subject.

17. A method of determining congenital heart defects (CHD) in a mammal, comprising:
recerving biopotential recordings associated with the mammal, the biopotential
recordings being recorded at predetermined intervals;
developing variables associated with the biopotential recordings to create a dataset; and

analyzing the dataset to determine 1f the mammal has a CHD.

18.  The method of claim 17, wherein the biopotential recordings associated with the mammal

arc recorded using a measuring equipment comprising a single surface lead.

19.  The method of claim 17 or 18, wherein a measuring equipment comprises an intracardiac

clectrogram instrument.
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20.  The method of any on¢ of claims 17-19, wherein a measuring equipment comprises a

smart watch or fitness heart band.

21. A system comprising:

a storage device configured to recerve biopotential data from a network-connected
biopotential measuring apparatus;

ONne Or More Processors;

a memory having mstructions stored thereon, wherein the instructions, when executed by
the processor, cause the processor to:

generate phase space variables associated with the biopotential data:;

analyzing the phase space variables to determine 1f the mammal has a CHD.
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