## COMMONWEALTH of AUSTRALIA

#### PATENTS ACT 1952

#### APPLICATION FOR A STANDARD PATENT

х<del>І</del>х Wc

L'OREAL of 14 rue Royale 75008 PARIS - France.

602333

hereby apply for the grant of a Standard Patent for an invention entitled:

"NEW POLYMERS CAPABLE OF ABSORBING ULTRAVIOLET RADIATION, PREPARATION THEREOF AND APPLICATION THEREOF, ESPECIALLY IN COSMETICOLOGY"

which is described in the accompanying recomplete specification.

Details of basic application(s):-

Number

Convention Country

Date

86 04544

FRANCE

28th March 198 LODGED AT SUB-OFFICE

27 MAR 1987 Melbourne

APPLICATION ACCEPTED AND AMENDMENTS

The address for service is care of DAVIES & COLLISON, Patent Attorneys, of 1 Little Collins Street, Melbourne, in the State of Victoria, Commonwealth of Australia.

Dated this

26th

day of

March

<sup>19</sup>87

To: THE COMMISSIONER OF PATENTS

Fl. d. Aimington

(a member of the firm of DAVIES & COLLISON for and on behalf of the Applicant).

#### COMMONWEÄLTH OF AUSTRALIA

**PATENTS ACT 1952-1973** 

## DECLARATION IN SUPPORT OF CONVENTION OR NON-CONVENTION APPLICATION FOR A PATENT OR PATENT OF ADDITION

Insert title of invention.

Insert full name(s) and address(es) of declarant(s) being the applicant(s) or person(s) authorized to sign on behalf of an applicant

Cross out whichever of paragraphs 1(a) or 1(b) does not apply 1(a) relates to application made by individual(s) 1(b) relates to application made by company; insert name of applicant company.

Cross out whichever of paragraphs 2(a) or 2(b) does not apply 2(a) relates to application made by inventor(s) 2(6), relates to application made by company(s) or person(s) who are not inventor(s); insert full name(s) and address(es) of inventors. • •

State manner in which applicant(s) dereve title from inventor(s)

Cross out paragraphs 3 and 4 for non-convention applications. For convention applications, insert basic country(s) followed by date(s) and basic applicant(s).

Insert place and date of signature.

Signature of declarant(s) (no attestation required)

Note: Initial all alterations.

In support of the Application made for a patent for an invention water than the polymers capable of absorbing ultraviolet RADIATION, PREPARATION THEREOF AND APPLICATION THEREOF, ESPECIALLY IN COSMETICOLOGY" for an invention entitled:

ANDRE VIOUT W.X of L'OREAL,

> of 14 rue Royale, 75008 PARIS - France.

do solemnly and sincerely declare as follows:-

- or (b) I am authorized by

L'OREAL

patent to make this declaration on its behalf, patent suixadisting to make this declaration on their the applicant..... for the patent

I am We are the actual inventor..... of the invention 2. (a)

or (b) Serge FORESTIER, of 16 allee Ferdinand Buisson 77410 CLAYE-SOUILLY - France.

> Claude MAHIEU, of 90 avenue de Villiers, 75017 PARIS - France.

the actual inventor.s...... of the invention and the facts upon which the applicant...... are entitled to make the application are as follows:-

> The applicant would, if a patent were granted on an application made by the said actual inventors, be entitled to have the patent assigned to it.

| 3. | The   | basic | application | on     | as    | defined                                 | bу    | Section | 141                                     | of | the | Act   | was<br>XXXXX ma | de |
|----|-------|-------|-------------|--------|-------|-----------------------------------------|-------|---------|-----------------------------------------|----|-----|-------|-----------------|----|
|    |       |       |             |        |       |                                         |       |         |                                         |    |     |       | •••••           |    |
|    |       |       |             |        |       |                                         |       |         |                                         |    |     |       |                 |    |
|    |       |       |             |        |       |                                         |       |         |                                         |    |     |       |                 |    |
| in | ••••• |       |             | •••••  | ••••• | on the                                  |       |         | •••••                                   |    |     | ••••• |                 |    |
| by | ,,    |       |             | •••••• |       | • • • • • • • • • • • • • • • • • • • • | ••••• | •••••   | • • • • • • • • • • • • • • • • • • • • |    |     |       |                 |    |

The basic application...... referred to in paragraph 3 of this Declaration was the first application........... made in a Convention country in respect of the invention the subject of the application RE

Declared/at\* :25

this 13th day of March 1987 André VIOUT

Département Brevets Directeur du

DAVIES & COLLISON, MELBOURNE and CANBERRA.

# (12) PATENT ABRIDGMENT (11) Document No. AU-B-70721/87 (19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 602333

(54) Title BENZYLIDENEBORNANONE POLYMERS

International Patent Classification(s)

(51)4 C08F 020/58

A61K 007/42

(21) Application No.: 70721/87

(22) Application Date: 27.03.87

(30) Priority Data

(31) Number 86 04544

(32) Date 28.03.86

(33) Country

FR FRANCE

(43) Publication Date: 01.10.87

(44) Publication Date of Accepted Application: 11.10.90

(71) Applicant(s) L'OREAL

(72) Inventor(s)
SERGE FORESTIER; CLAUDE MAHIEU

(74) Attorney or Agent
DAVIES & COLLISON, 1 Little Collins Street, MELBOURNE VIC 3000

(57) Claim

1. Ultraviolet radiation-absorbing polymers, characterized in that they contain units of formula I:

in which X is a group derived from benzylidenebornanone of formula II:

in which  $\mathbb{R}^1$  represents a hydrogen atom or a  $\mathbb{C}_1-\mathbb{C}_{12}$  alkoxy group and  $\mathbb{R}^2$  represents a  $\mathbb{C}_4-\mathbb{C}_{12}$  alkoxy group.

#### COMMONWEALTH OF AUSTRALIA

#### PATENT ACT 1952

#### COMPLETE SPECIFICATION

(Original)

60233 FOR OFFICE USE

Class

Int. Class

Application Number: Lodged:

Complete Specification Lodged: Accepted: Published:

Priority:

Related Art:

annuillating end a out for

Name of Applicant:

L'OREAL

Address of Applicant:

14 rue Royale

75008 PARIS - France.

Actual Inventor(s):

Serge FORESTIER

Claude MAHIEU

Address for Service:

DAVIES & COLLISON, Patent Attorneys,

1 Little Collins Street, Melbourne, 3000.

Complete Specification for the invention entitled:

"NEW POLYMERS CAPABLE OF ABSORBING ULTRAVIOLET RADIATION, PREPARATION THEREOF AND APPLICATION THEREOF, ESPECIALLY IN COSMETICOLOGY"

The following statement is a full description of this invention, including the best method of performing it known to us

New polymers capable of absorbing ultraviolet radiation, preparation thereof and application thereof, especially in cosmeticology.

The present invention relates to new polymers which are capable of absorbing ultraviolet radiation, to their preparation and to their application, especially in cosmeticology.

It is known that exposure of the human body to ultraviolet radiation, and in particular to solar radiation, causes an erythema of the skin which may, in some cases, go as far as burns of relatively high intensity. It is also known that the ultraviolet rays responsible for these effects are those with wavelengths within the range between approximately 280 and 315 nm.

15

25

Therefore, substances capable of absorbing ultraviolet radiation within the wavelength range 280-315 nm while allowing the tanning of the skin, since these compounds do not absorb ultraviolet rays responsible for tanning, i.e. those with wavelengths within the range of 315 to 400 nm, are generally used in cosmetic compositions intended for protecting the skin against solar erythema.

However, it has been observed, in some subjects with sensitive skin, that ultraviolet radiations with wavelengths between approximately 315 and 340 nm will promote the triggering of the reaction causing erythema or amplify this reaction.

Moreover, it is known that, in order to avoid

especially the penetration of ultraviolet radiation-absorbing substances into the organism through the skin, the production of polymers capable of absorbing ultraviolet radiation by binding these substances to macromolecular 5 chains has been proposed.

New polymers which absorb ultraviolet radiation, the absorption maximum of which is located within the wavelength range 315-340 nm, and which are compatible with the formulation of cosmetic compositions which can 10 be applied to the skin, have now been discovered. These new polymers may thus be included in the formulation of highly protective cosmetic compositions which can be used by sensitive subjects, and also by normal subjects, in the case of an intense exposure to solar radiation.

15

Sunscreen cosmetic compositions containing methylated acrylamide polymers with side chains containing unsubstituted benzylidene-camphor groups have been described in French Patent Application No. 2,430,938. These polymers must be at a relatively high concentration in order 20 to achieve a high protection factor. However, in this case, the compositions had disadvantages, in particular an unpleasant sticky touch at the time of application and an uncomfortable feeling after application. In order to avoid these disadvantages, the polymer had to be prepared under special conditions so as to avoid the formation of, or to remove, high molecular weight polymer fractions.

It has been discovered surprisingly that polymers

derived from substituted benzylidene-camphor of the present invention do not have these disadvantages. It is possible to retain high molecular mass fractions without any very serious effects on the ease of formulating the composition or on the comfort of application to the skin. Additionally, the polymers of the present invention have not revealed any toxicity on application to the skin, and even when taken orally, whereas the corresponding alkoxybenzylidene-camphor precursors have a certain toxicity when taken orally.

The new polymers of the invention are characterized in that they contain units of formula I:

in which X is a group derived from benzylidenebornanone
15 of formula II:

$$\mathbb{R}^2$$
  $\mathbb{R}^1$   $\mathbb{C}^{H_3}$ 

in which  $R^1$  represents a hydrogen atom or a  $C_1-C_{12}$  alkoxy group and  $R^2$  represents a  $C_4-C_{12}$  alkoxy group.

Among the polymers of the invention, there will 20 be mentioned, in particular:

those which contain units of formula I in which  ${\sf R}^1$  represents a hydrogen atom or a methoxy or butoxy group; and

those in which R<sup>2</sup> represents a butoxy, hexyloxy, octyloxy or dodecyloxy group.

The group X is attached to the side chain of unit I in position 2' or 3'.

The polymers of the invention have an average molecular weight generally between one thousand and one 10 million, and preferably between 1,500 and 100,000.

The polymers of the invention may be either homopolymers or copolymers, the said copolymers being, on the one hand, those which contain exclusively units of formula I, but which contain at least two different types of units of formula I (i.e. having different values for X) and, on the other hand, copolymers which contain both units of formula I and other similar units such as those of formula I' as defined below, which are capable of absorbing ultraviolet radiations.

The polymers of the invent an contain at least 5 mol%, and preferably at least 10%, of units of formula I.

Among the copolymers of the invention which contain units other than those of formula I, which are capable of absorbing ultraviolet radiation, there will be mentioned, in particular, those which contain units of formula I':

$$\begin{array}{c|c} CH_2 - CH & \hline \\ CO-NH-CH_2-X^1 \end{array}$$

in which  $x^1$  represents a group derived from bornanone of formula II':

in which  $R^3$  represents a hydrogen atom or a  $C_1$ - $C_4$  5 alkyl group.

The respective proportions of units of formulae I and I' may vary, for example, from 5:95 to 95:5 (in moles).

The introduction of units of formula I' especially

10 enables the wavelength range of UV radiations absorbed by
the polymer to be extended towards UVB.

The invention also relates to a process for the preparation of the polymers defined above.

This process is mainly characterized in that a 15 "sunscreen-monomer" is prepared, of formula IV:

$$CH_2 = CH - CO - NH - CH_2 - X \qquad (IV)$$

in which X is defined as above, and in that the said

sunscreen-monomer is subjected to a homopolymerization or a copolymerization with at least one other ethylenically unsaturated comonomer which is capable of absorbing ultraviolet radiation.

The polymerization reaction may be carried out according to conventional polymerization methods, i.e. in bulk, in solution, in suspension or in emulsion, using a polymerization initiator. It is preferably carried out in solution or in suspension.

The polymerization initiators are in general conventional radical polymerization initiators. Their choice depends mainly on the different monomers used and on the reaction medium.

10

15

20

Among the different initiators which can be used, there may be mentioned, in particular, peroxides such as benzoyl peroxide, lauroyl peroxide, acetyl peroxide, tert-butylhydroperoxide, benzoylhydroperoxide, hydrogen peroxide, initiators such as azobisisobutyronitrile, redox initiation systems such as sodium persulphate coupled with sodium bisulphite, or the redox system consisting of the hydrogen peroxide-ascorbic acid pair. The concentration of the initiator is generally between 0.2 and 35% and preferably between 0.5 and 20% by weight relative to the total weight of monomers.

The molar mass of the polymers may be adjusted by all known methods, for example by polymerization in dilute solution, by polymerization in the presence of large amounts

of initiator, by the introduction of so-called chainregulating agents and the like.

In order to prepare the sunscreen monomers of formula IV, N-hydroxymethylacrylamide is reacted with a 5 benzylidenebornanone derivative of formula V:

$$\mathbb{R}^{2} \mathbb{R}^{1}$$

in which  $R^1$  and  $R^2$  are as defined above.

This reaction is carried out under the usual conditions of the Friedel-Crafts alkylation reaction, in the presence of an acid catalyst such as sulphuric acid.

The position of the substituent introduced depends on the nature of the substituent  $R^1$ . When  $R^1$  represents a hydrogen atom, the acrylamidomethyl substituent is introduced in position 3'. When  $R^1$  represents a  $C_1$ - $C_{12}$  alkoxy group, the acrylamidomethyl substituent is introduced in position 2'.

The monomers of formula IV'

$$CH_2 = CH - CO - NH - CH_2 - X^1$$
 (IV').

in which  $x^1$  is defined as above with the proviso that  $\mathbb{R}^3$  in  $x^1$  does not represent hydrogen, are prepared in a way similar to that described for monomers of formula IV.

The invention also relates to the derivatives of formula IV and IV', as means for implementing the process of the invention.

The benzylidenebornanone derivatives of formula V



20

used as starting products in the process of the present application may be obtained, for example, according to the process described in French Patent Application No. 78/20,801 (publication no. 2,430,938).

The bornanone derivatives of formula V':

5

$$\mathbb{R}^3$$
  $\mathbb{C}^{H_3}$   $(V_1)$ 

may be prepared, for example, in a way similar to that described in French Patent 2,111,757.

As mentioned above, polymers containing units of

formula I may be used as protective agents against ultraviolet radiations, and, in particular, in the preparation
of cosmetic compositions intended for protecting the skin
against sunburns. In addition to a valuable protective
effect, these polymers are well suited for the preparation

of cosmetic formulations which are suitable for protecting the skin against the effects of exposure to sunlight.
They have, in particular, good solubility in oily excipients
such as, for example, higher fatty alcohol benzoates

(especially C12-C15 fatty alcohol benzoates).

These polymers absorb ultraviolet radiation within wavelength ranges which may be between 280 and 370 nm. This absorption depends especially on the nature of the substituent  $\mathbb{R}^1$ .

Thus, when R<sup>1</sup> represents a hydrogen atom, the

polymer based on the unit of formula I absorbs ultraviolet radiation within a wavelength range between 280 and 350 nm, with an absorption maximum of approximately 315 nm.

When R<sup>1</sup> represents an alkoxy group, the polymer absorbs ultraviolet radiation within the wavelength range of approximately 280 to 370 nm, with an absorption maximum of approximately 335 nm.

The invention also relates to cosmetic compositions for protection against ultraviolet radiations, charac
10 terized in that they contain as active ingredient at least one polymer, as defined above, containing units of formula I.

These compositions may be present in the form of aqueous or aqueous-alcohol solutions, oily solutions or emulsions, or in the form of sticks. Additionally, they may be incorporated, in combination with a propellant, in suitable containers in the form of pressurized compositions for aerosols.

15

The cosmetic compositions of the invention may

contain, in addition to the ultraviolet radiation-absorbing polymers, various adjuvants usually present in cosmetic compositions of this type, for example moisturizers, emollients or thickeners, surfactants, preservatives, perfumes, pigments and the like.

In the compositions of the invention, the polymers containing units of formula I are generally present in a proportion which may range from 0.2 to 20% by weight

relative to the total weight of the composition.

The absorbing power of the sunscreen was previously expressed using the Ksp (specific K) value, which is a function of the amount of sunscreen substances contained in the sample, the optical density measured and a constant which depends on the apparatus.

The definition of Ksp is given in the book "Introduction to Electronic Absorption Spectroscopy in Organic Chemistry" by Gillian and Stern., Publ. Arnold,

10 London 1954, page 10.

$$Ksp = \frac{k}{c}$$

with 
$$K = \frac{d}{l}$$

d = optical density measured

c = solution concentration (g/ml)

l = cell thickness in cm

The absorbing power is now defined by the term "specific absorbance,  $a_s$ ", defined by French Standard T.01,030 (January 1972) which is linked to Ksp by the relationship:

15

20

a<sub>s</sub>

In the present application, the absorbing power is expressed in terms of specific absorbence.

The following examples illustrate the invention 25, without, however, limiting it.

## EXAMPLE 1

Preparation of 2'-acrylamidomethyl-4'-butoxy-5'methoxy-3-benzylidenecamphor:

a) Preparation of 4'-butoxy-3-methoxy-3-benzylidenecamphor

182.68 g of camphor and 71.29 g of sodium methy-Late in one litre of toluene are heated for one hour at 80°C. 249.9 g of 4-butoxy-3-methoxybenzaldehyde are added and the reaction mixture is heated under reflux for 2.5 hours.

After cooling, the reaction mixture is poured into 1.5 litres of water. The organic phase is decanted off, washed with water, and then dried over sodium sulphate.

After evaporating off the toluene under reduced pressure, the oily residue is recrystallized in a 25:75 mixture of water:isopropanol. 164 g of the product expected are obtained in the form of fine crystals with the following characteristics:

Melting point: 62°C

Elemental analysis:

20

10

15

C H

Calculated: 77.19

8.17

Found:

77.22

8.75

UV spectrum (methanol)

λ Max.: 330 nm

25

ε: 20,900

b) Preparation of 2'-acrylamidomethyl-4'-butoxy-5'-methoxy-3-benzylidenecamphor:

of acetic acid are mixed at 0°C. 335 g of 4'-butoxy-3'-methoxy-3-benzylidenecamphor are slowly introduced, with stirring, maintaining the temperature at approximately 0°C. When the product is dissolved, 0.1 g of sodium nitrite and 102 g of N-hydroxymethylacrylamide is added.

The mixture is stirred for 2 hours at 0°C and the reaction mixture is slowly poured into iced water.

The gummy precipitate formed hardens gradually.

The suspension is filtered, washed several times with water and dried under vacuum. 410 g of the product expected are obtained in the form of a whitish powder with the following characteristics:

Melting point: 55°C

15 Elemental analysis:

C H N O

Calculated (2H<sub>2</sub>O): 67.68 8.46 3.04 20.82

Found (2H<sub>2</sub>O): 67.48 8.48 3.00 20.6

UV spectrum (chloroform)

λ Max.: 331 nm

 $a_s = 30$ 

<sup>1</sup>H NMR spectrum (CDCL3/TMS): in agreement with the structure.

#### EXAMPLE 2

10

20

- 25 <u>Preparation of poly(2'-acrylamidomethyl-4'-butoxy-5'-methoxy-</u>
  <u>3-benzylidenecamphor)</u>
  - a) Polymerization initiated by hydrogen peroxide-ascorbic

#### acid system

3-benzylidenecamphor obtained in Example 1 b) is dissolved in 200 g of isopropanol and 15 g of 30% hydrogen peroxide at 80°C. A solution of 10 g of ascorbic acid in 200 g of water is added in the course of 2 h 40 min, at 80°C, and the mixture is heated under reflux for a further period of 30 min. The mixture is cooled to ambient temperature and the isopropanol is decanted off. The polymer is washed with methanol, dried under vacuum and ground.

67 g of a product are obtained in the form of a yellowish powder with the following characteristics:

Elemental analysis:

15

20

No free monomer is detected by silica gel chromatography using CHClz as the solvent and 30:70 hexane: ether as the eluent.

b) Polymerization initiated by azobisisobutyronitrile:

The solvent is distilled off under reduced pressure and

100 g. of 2'-acrylamidomethyl-4'-butoxy-5'-methoxy-3-benzylidenecamphor and 10 g of azobisisobutyronitrile in 750 cm $^3$  of toluene are heated under reflux for 4 hours.

the residue is redissolved in a minimum of anhydrous acetone. The polymer expected is obtained by precipitating in hexane. 90 g of a yellow powder are obtained, with the following characteristics:

5 UV spectrum (chloroform)

λ Max.: 332 nm

 $a_s = 28$ 

#### EXAMPLES 3 TO 6

a) The different 3'-acrylamidomethyl-4'-alkoxy-3
10 benzylidenecamphor of formula CH<sub>2</sub>=CO-NH-CH<sub>2</sub>-X in which X represents a group of formula II attached in position 3' to the acrylamidomethyl group, with R<sup>2</sup> representing -O-C4H9, -O-C6H<sub>13</sub>, -O-C8H<sub>17</sub> or -O-C<sub>12</sub>H<sub>25</sub> and R<sup>1</sup> representing -H, were prepared according to a procedure similar to that of Example 1b).

The characteristics of these compounds are given in Table 1 below.

TABLE 1

|    | :                                |                                                |                        | ELEMENTAL ANALYSIS |         |      |                                  |                     |       |      |       |
|----|----------------------------------|------------------------------------------------|------------------------|--------------------|---------|------|----------------------------------|---------------------|-------|------|-------|
| Ex | R <sub>2</sub>                   | UV Spectrum (CH <sub>2</sub> Cl <sub>2</sub> ) |                        | Cal                | Found % |      |                                  |                     |       |      |       |
|    | <b>2</b>                         | max<br>(nm)                                    | specific<br>absorbance | C                  | н       | ĸ    | 0                                | С                   | H     | N    | 0     |
|    |                                  | ·                                              |                        |                    |         | ,    | C <sub>25</sub> H <sub>3</sub> : | 3 <sup>NO</sup> 3   |       | ·    |       |
| 3a | -ос <sub>4</sub> н <sub>9</sub>  | 312                                            | 47                     | 75.95              | 8.35    | 3.54 | 12.15                            | 76.01               | 8.32  | 3.50 | 12.16 |
|    |                                  |                                                |                        |                    |         |      | с <sub>27</sub> н <sub>3</sub> . | 7 <sup>NO</sup> 3   |       |      |       |
| 48 | -oc <sub>6</sub> H <sub>13</sub> | 313                                            | 46                     | 76.55              | 8.80    | 3.30 | 11.73                            | 76-66               | 8.97  | 3.36 | 11-01 |
|    |                                  |                                                |                        |                    |         |      | С <sub>29</sub> Н <sub>4</sub>   | 1 <sup>NO</sup> 3 · | 0.5 1 | 120  |       |
| 5a | -oc <sub>8</sub> H <sub>17</sub> | 315                                            | 51                     | 75 - 59            | 9.22    | 3.06 | 12.14                            | 75.65               | 9.13  | 3.04 | 12.17 |
|    |                                  |                                                |                        | C33H49NO3          |         |      |                                  |                     |       |      |       |
| 6a | -oc <sub>12</sub> H <sub>2</sub> | 314                                            | 42                     | 78.11              | 9.66    | 2.76 | 9.47                             | 78.21               | 9.55  | 2-81 | 9.41  |

b) The different poly(3'-acrylamidomethyl-4'-alkoxy-3-benzylidenecamphor) homopolymers consisting of units of general formula I in which  $R^2$  represents -0-c4H9, -0-c6H13, -0-c8H17 or -0-c12H25, and  $R^1$  represents -H were prepared according to a procedure similar to that described in

Example 2a.

The characteristics of these polymers are given in Table 2 below:

TABLE 2

| - |    | ·                                 |                  |                        |                                                                         |          |        |                                 |                     |                                       |                  |       |  |
|---|----|-----------------------------------|------------------|------------------------|-------------------------------------------------------------------------|----------|--------|---------------------------------|---------------------|---------------------------------------|------------------|-------|--|
|   |    | a e                               |                  | . '                    |                                                                         | E        | LEMEN  | ITAL A                          | NALYS               | IS                                    |                  |       |  |
| 1 |    | ·                                 |                  |                        |                                                                         |          |        |                                 |                     |                                       |                  |       |  |
|   |    |                                   |                  |                        |                                                                         |          |        |                                 |                     | · · · · · · · · · · · · · · · · · · · |                  |       |  |
| į |    |                                   |                  | pectrum                | Calc                                                                    | ulate    | d %    |                                 | F                   | ound                                  | %                |       |  |
| j | _  | _                                 | (CH <sub>2</sub> | 2 <sup>C1</sup> 2)     |                                                                         |          |        |                                 | }                   |                                       |                  |       |  |
| į | Ex | R <sub>2</sub>                    | · .              |                        | ····                                                                    |          |        |                                 | -                   |                                       | ···              |       |  |
|   |    |                                   | max              | specific<br>absorbance |                                                                         |          |        |                                 |                     |                                       |                  |       |  |
|   |    |                                   | (mm)             |                        | С                                                                       | Н        | N      | 0                               | С                   | Ħ                                     | N                | 0     |  |
|   |    |                                   | -                |                        |                                                                         |          |        | <u> </u>                        | <u> </u>            |                                       |                  |       |  |
|   |    |                                   | !<br>!           |                        | с <sub>25</sub> н <sub>33</sub> но <sub>3</sub> . 0.5 н <sub>2</sub> 0  |          |        |                                 |                     |                                       |                  |       |  |
| Ì |    |                                   |                  |                        |                                                                         |          |        | 7                               | <u> </u>            |                                       |                  |       |  |
| 1 | 3  | -00 <sub>4</sub> H <sub>9</sub>   | 315              | 43                     | 74.26                                                                   | 8.42     | 3,47   | 13.86                           | 74.24               | 8.37                                  | 3.43             | 13.96 |  |
| Ì |    |                                   | :                |                        |                                                                         |          |        |                                 |                     |                                       |                  |       |  |
|   |    |                                   |                  |                        |                                                                         |          |        | C <sub>27</sub> H <sub>37</sub> | , <sup>NO</sup> 3 . | 0.25                                  | H <sub>2</sub> O | •     |  |
|   |    |                                   |                  |                        |                                                                         |          | ·      |                                 |                     |                                       |                  |       |  |
|   | 4  | -OC <sub>6</sub> H <sub>13</sub>  | 316              | 47                     | 75.79                                                                   | 8.71     | 3.27   | 12.16                           | 75.92               | 8.86                                  | 3.20             | 12.31 |  |
|   |    |                                   | <del>!</del>     |                        |                                                                         |          | لــــا | لــــا                          | }                   |                                       |                  |       |  |
|   |    |                                   |                  |                        |                                                                         |          |        | C <sub>29</sub> H <sub>41</sub> | МО3.                | 0.25                                  | H <sub>2</sub> O |       |  |
|   | _  | 20 "                              | 1 216            |                        | 76 (0                                                                   | <u> </u> | 2 27   |                                 | 76.10               |                                       |                  |       |  |
|   | 5  | -OC <sub>8</sub> H <sub>17</sub>  | 315              | 47                     | 76.40                                                                   | 9.11     | 3.07   | 11.42                           | 76.18               | 9.10                                  | 3.12             | 11.66 |  |
|   |    |                                   | <u> </u>         |                        |                                                                         |          | L      | لـــا                           |                     | لــــا<br>م م                         | •                |       |  |
|   |    |                                   |                  |                        | C <sub>33</sub> H <sub>49</sub> NO <sub>3</sub> . 0.25 H <sub>2</sub> O |          |        |                                 |                     |                                       |                  |       |  |
|   | 6  | -ос <sub>12</sub> н <sub>2:</sub> | 315              | 35                     | 77.42                                                                   | 9.68     | 2.74   | 10.17                           | 77.43               | 9.75                                  | 2.49             | 10.54 |  |
|   |    | 12 2.                             | 1                |                        |                                                                         |          |        | :                               |                     |                                       |                  |       |  |

#### EXAMPLE 7

Preparation of an acrylamidomethyl-3-benzylidenecamphor/
3'-acrylamidomethyl-4'-hexyloxy-3-benzylidenecamphor
copolymer:

denecamphor, 28.3 g of 3'-acrylamidomethyl-4'-hexyloxy-3-benzylidenecamphor and 7.5 g of 30% hydrogen peroxide in 100 g of isopropanol is heated under reflux. A solution of 5 g of ascorbic acid in 50 g of water is added drop-wise in the course of 3 hours. When the introduction is complete, the mixture is stirred for a further period of 30 minutes under reflux. The reaction mixture is allowed to cool and the polymer formed is decanted off. After washing with methanol, filtering and drying, 43 g of co-

Elemental analysis: (C48H62N2O5 . H2O)n

C H N O
Calculated 75.01 8.49 3.60 12.89
Found 75.39 8.38 3.66 12.57

UV spectrum

λ Max.: 302 nm

Specific absorbance: 45

## EXAMPLES OF FORMULATION

#### EXAMPLE I

20

A milk (oil-in-water emulsion) was prepared, with the following composition (by weight):

Polymer of Example 7 ..... 1.5

|    |         | Polymer of Example 2a 1.5                                    |
|----|---------|--------------------------------------------------------------|
|    |         | Cetyl stearyl alcohol 1.6                                    |
|    |         | Cetyl stearyl alcohol with 33 moles                          |
|    |         | of ethylene oxide 6.4                                        |
| 5  |         | Mixture of glycerol monostearate                             |
|    |         | and distearate sold under the                                |
|    |         | name GELEOL by GATTEFOSSE                                    |
|    |         | C <sub>12</sub> -C <sub>15</sub> alcohol benzoate sold under |
|    |         | the name FINSOLV TN by FINETEX 15                            |
| 10 |         | Vaseline oil 3.5                                             |
|    |         | Propylene glycol 12                                          |
|    |         | 2-ethylhexyl para-aminobenzoate 3                            |
|    |         | Preservative 0.2                                             |
|    |         | Perfume 0.3                                                  |
| 15 |         | Demineralized water q.s 100 g                                |
|    |         | The emulsion is prepared following the procedure             |
|    | below:  |                                                              |
|    |         | Phase A consisting of the polymers of Examples               |
|    | 8 and 2 | a, cetyl stearyl alcohol, cetyl stearyl alcohol              |
| 20 | with 33 | moles of ethylene oxide, glycerol monostearate               |
|    | and dis | tearate, C12-C15 alcohol benzoate, vaseline oil              |
|    | and 2-e | thylhexyl para-aminobenzoate is heated to 85°C on            |
|    | a water | bath.                                                        |
|    |         | Phase B consisting of propylene glycol and water             |
| 25 | is heat | ed to 85°C on a water bath.                                  |
|    |         |                                                              |

Phase A is poured into phase B over a period of

10 minutes, with vigorous stirring. The stirring is then

slowed down, and the preservative followed by the perfume are then added at a temperature of  $40^{\circ}$ C. The mixture is allowed to cool to ambient temperature, with moderate stirring.

## 5 EXAMPLE II

A milk is prepared in a similar way, with the following composition:

|    | •       |                                         |       |
|----|---------|-----------------------------------------|-------|
|    |         | Polymer of Example 2b                   | 3     |
|    |         | Polymer of Example 2a                   | 2 .   |
| 10 |         | Oleyl cetyl alcohol with 30 moles       |       |
|    |         | of ethylene oxide                       | 6     |
|    |         | Stearyl alcohol                         | 4     |
|    |         | FINSOLV TN                              | 15    |
|    |         | Oleyl alcohol                           | 4     |
| 15 |         | 70% sorbitol                            | 16    |
|    |         | Preservative                            | 0.2   |
|    |         | Perfume                                 | 0.3   |
|    |         | Demineralized water q.s                 | 100 g |
|    | EXAMPLE | III                                     |       |
| 20 |         | Composition in the form of a thick oil: |       |
|    |         | Polymer of Example 4                    | 3     |
|    |         | 2-ethylhexyl para-methoxycinnamate      | 3     |
|    |         | FINSOLV TN                              | 26    |
|    |         | Silica sold under the name              |       |
| 25 |         | AEROSIL R 972 by DEGUSSA                | 7     |
|    |         | Cyclotetradimethylsiloxane              | 10    |
|    |         | Isopropyl myristate q.s                 | 100 g |

## EXAMPLE IV Cream (water-in-oil): Polymer of Example 4 Magnesium stearate ..... 5 Hydrogenated lanolin sold under the name HYDROLAN H by ONYX ..... 1.5 Clear lanolin ..... Beeswax 10 Sorbitan sesquioleate .......... 4.5 FINSOLV TN ..... 15 Vaseline oil ...... 10 Preservative ..... 0.2 Demineralized water q.s. ...... 100 g 15 EXAMPLE V Composition in the form of an oil: Polymer of Example 7 ..... 3.8 2-ethylhexyl glyceryl ether palmitate ..... 30 20 Cyclotetradimethylsiloxane ..... 20

FINSOLV TN q.s. ..... 100 g

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. Ultraviolet radiation-absorbing polymers, characterized in that they contain units of formula I:

in which X is a group derived from benzylidenebornanone of formula II:

$$\mathbb{R}^2 = \mathbb{R}^1$$

in which R  $^1$  represents a hydrogen atom or a  $c_1-c_{12}$  alkoxy group and R  $^2$  represents a  $c_4-c_{12}$  alkoxy group.

- Polymers according to claim 1, characterized in
   that R<sup>1</sup> represents a hydrogen atom or a methoxy or butoxy group.
  - 3. Polymers according to either one of the preceding claims, characterized in that  $R^2$  represents a butoxy, hexyloxy, octyloxy or dodecyloxy group.
- 15 4. Polymers according to any one of the preceding claims, characterized in that they contain, in addition, units of formula I':

in which X<sup>1</sup> represents a group derived from bornanone of formula II':

in which  $R^3$  represents a hydrogen atom or a  $C_1 - C_4$  5 alkyl group.

- 5. Polymers according to any one of the preceding claims, characterized in that they contain at least 5 mol% of units of formula I.
- 6. Polymers according to claim 4, characterized in 10 that they contain units I and I' in proportions which may range from 5:95 to 95:5 in moles.
  - 7. Polymers according to any one of the preceding claims, characterized in that they have a molar mass from one thousand to one million.
- 15 8. Polymers according to claim 7, characterized in that they have a molar mass from 1500 to 100,000.
  - 9. Process for the preparation of the polymers as defined in any one of the preceding claims, characterized in that a "sunscreen monomer" of formula IV:

20 CH<sub>2</sub> = CH - CO - NH - CH<sub>2</sub> - X (IV) in which X is defined as above, is prepared and in that the said sunscreen monomer is subjected to a homopolymerization or to a copolymerization with at least one other ethylenically unsaturated comonomer which is capable of absorbing

ultraviolet radiation.

10. As means for the preparation of the polymers of any one of claims 1 to 8, monomers of formula IV or IV':

$$CH_2 = CH - CO - NH - CH_2 - X$$
 (IV)

5  $CH_2 = CH - CO - NH - CH_2 - X^1$  (IV') in which X and  $X^1$  are defined as in claims 1 and 4 respectively with the proviso that  $R^3$  in  $X^1$  does not represent hydrogen.

- 11. Cosmetic compositions for protection against ultraviolet radiations, characterized in that they contain, as active ingredient, at least one polymer as defined in any one of claims 1 to 8.
  - 12. Compositions according to claim 11, characterized in that they contain from 0.2 to 20% by weight of the said polymers.
- 15 13. Use of the polymers as defined in any one of claims 1 to 8, in the preparation of cosmetic compositions intended for protecting the skin against sunburn.
  - 14. Polymers according to Claim 1, cosmetic compositions comprising a said polymer, or processes for the preparation or use thereof, substantially as hereinbefore described with reference to the Examples.

DATED this 5th day of July, 1990 L'OREAL By Its Patent Attorneys DAVIES & COLLISON

