PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 99/49431
GO7F 19/00, GO6F 17/60 A2 , o
(43) International Publication Date: 30 September 1999 (30.09.99)
(21) International Application Number: PCT/GB99/00927 | (81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, |
(22) International Filing Date: 24 March 1999 (24.03.99) GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG,

KP, KR,KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,
(30) Priority Data: SK, SL, TJ, T™M, TR, TT, UA, UG, US, UZ, VN, YU, ZA,
9806843.0 24 March 1998 (24.03.98) GB ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ,
UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD,
RU, TI, TM), European patent (AT, BE, CH, CY, DE, DK,

(71) Applicant (for all designated States except US): KORALA ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI
ASSOCIATES LIMITED [GB/GB]; John Cotton Building, patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR,
Sunnyside, Edinburgh EH7 SRA (GB). NE, SN, TD, TG).

(72) Inventor; and
(75) Inventor/Applicant (for US only): KORALA, Aravinda | Published

[FR/GB]; KAL, John Cotton Building, Sunnyside, Edin- Without international search report and to be republished
burgh EH7 SRA (GB). upon receipt of that report.

(74) Agent: KENNEDY & CO.; Station House, 34 St. Enoch
Square, Glasgow G1 4DF (GB).

(54) Title: APPARATUS AND METHOD FOR PROVIDING TRANSACTION SERVICES

Server

(57) Abstract

Apparatus and method for providing transaction services, in particular a computer-based transaction machine, such as an ATM, and
a method for providing transaction services using said transaction machine. One or more software applications interact with middleware
software through functional interfaces that are hardware independent but provide functionality which is implemented in a manner adapted
to the capabilities of the particular hardware implementation. Objects provided for standard transaction functions are independent of the
interface between the user and the transaction machine, said interface being customisable. The resulting transaction machines are typically
combined into networks and these networks may readily be combined to form an Extranet.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CcM
CN
Cu

DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Tceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
UZ
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

12

13

14

15

16

17

18

19

20

21

22

WO 99/49431 1 PCT/GB99/00927

APPARATUS AND METHOD FOR PROVIDING TRANSACTION SERVICES.

The present invention relates to apparatus and a method
for providing transaction services. In particular it
relates to networked computer-based transaction machines
and a method for providing transaction services using

said transaction machines.

Transaction machines are herein defined as any computer-

based machine able to interact with a user.

The term ATM is used herein to refer to any transaction
machine able to dispense cash. Typically, such machines
can also undertake physical transactions such as
inputting information through a keypad or touch screen,
making sounds, producing video and printing. They might
also be able to read bank cards and such like. Kiosks
are transaction machines unable to dispense cash, but
otherwise able to provide a range of interactive
features, often relating to financial services. For test
purposes, a conventional PC may be used as a transaction

machine.

10

M

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 2 PCT/GB99/00927

Electronic cash machines are a large and rapidly growing
market. Many different hardware providers produce
equipment for this market such as the machines
themselves, the servers to which they connect and the
networking means through which they typically
communicate. Furthermore, many different operating
systems and applications are used both for operating and

developing these systems.

As a result of the complexity and diversity of hardware
and software currently being used in this field, it is
difficult and expensive to alter these systems to extend
their functionality, upgrade to newer and better
hardware, software or networking means or to interface
with other systems. As it is difficult to make even
small changes to complex systems without running the risk
of their malfunctioning, the evolution of such systems is

slow.

It would therefore be advantageous to find a way of
making it easier to alter the hardware, software and
network components of ATMs/kiosks, their servers and

their networking means.

Furthermore, it would be advantageous to provide a means
for enabling such changes to be implemented in small

stages.

Yet further, it would be advantageous to find a way to

reduce the risk of such systems malfunctioning.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431

In current practice, it is difficult and therefore
expensive to operate ATM/kiosk networks containing
diverse hardware, software and networking means. Often
large amounts of hardware and software must be upgraded
concomitantly to reduce interface problems. Furthermore,
it is difficult to interface networks of dissimilar
devices, perhaps belonging to different organisations.
If dissimilar ATM/kiosk systems could be readily
interfaced, forming a so-called Extranet, new and useful
co-operative applications could be developed which,
although currently possible, are prohibitively complex

and expensive at the present time.

It would therefore be advantageous to provide a better
means of networking ATMs/kiosks which use diverse
hardware, software and networking implementations. In
particular, it would be advantageous to provide a means
of allowing co-operation between dissimilar networks.
Furthermore, it would be advantageous to reduce the
amount of work required to enable ATM/kiosk applications

to run on dissimilar hardware implementations.

At the present time, there is a rapid growth in
electronic commerce (e-commerce), usually conducted over
the internet. E-commerce is being limited by
difficulties gaining access to the internet for many
consumers and due to the limitations of the machines
currently used by consumers for internet transactions. A
typical e-commerce consumer will access a web site using
a home PC. However, home PCs lack facilities such as the
ability to dispense cash or read a smartcard which are

important in many types of common financial transaction.

PCT/GB99/00927

10

1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 PCT/GB99/00927

It would therefore be desirable to provide a means of
allowing internet-based e-commerce to be accessed from
ATMs and kiosks which already have hardware facilities
suitable for financial transactions. This would allow e-
commerce services to be provided which required expensive
or high-security hardware facilities which cannot be
securely provided at a reasonable cost on privately owned
web browsers; Furthermore, it would be possible for e-
commerce to be made readily available to a much larger

base of consumers than is currently available.

The design of ATM networks typically involves input from
numerous professionals such as software and hardware
engineers specialising in the various systems,
applications and communications means, graphics and GUI
specialists, language specialists and so forth. 1In
current working practice these specialists are highly
dependent on each other and much time and money is spent
communicating different requirements amongst people

working on diverse areas of a project.

Tt would therefore be advantageous to provide a means by
which the different specialists working on a project may
work more independently. In particular, it would be
highly advantageous to provide a means by which the
different specialists may customise elements of the
application pertaining to their own specialisation
without affecting other elements of the application. It
would be particularly advantageous if the different
specialists were able to use well known prior art

authoring tools to prepare aspects of the application.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 5 PCT/GB99/00927

According to the present invention there is provided a

method for providing transaction services wherein

(a) the user of the transaction services interacts
with a computer-based transaction machine which is

controlled by one or more software applications;

(b) the software applications interact with the
functional interfaces of middleware software, which
extends the functionality of an underlying operating

system; and

(c¢) said functiconal interfaces provide functionality
which is implemented in a manner adapted to the
particular hardware capabilities of the transaction

machine.

The computer-based transaction machine may be selected
from a group which comprises automatic teller machines,

kiosks, electronic point of sale machines and the like.

Preferably, the middleware software comprises a series of
transaction objects and controls for standard device

functions.

More preferably, transaction objects are independent of
the interface between the user and the transaction
machine; the interface between the user and the

transaction machine being customisable.

Preferably, the controls implement a capabilities

interface.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 PCT/GB99/00927

More preferably, the capabilities interface is able to

communicate the capabilities of the control software.

The applications, objects and controls may be fully

concurrent and asynchronous.

The controls may have a mode in which events are queued

up and delivered to the application on demand.

Preferably, controls can run on the transaction machine

even when supported hardware devices are not present.

More preferably, the middleware software uses one or more
open standards for interacting with different hardware

systems.
Preferably, the middleware software only provides
cancellation commands for functions which can be

successfully cancelled.

The middleware software may only requires a timeout

command to be supplied when it is meaningful to do so.

Preferably, all controls are persistent.

More preferably, there is provided a control containing a

persistent object.

Preferably, all errors and transgressions are asserted by

the middleware software.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 7 PCT/GB99/00927

Preferably, the middleware software provides a trace

facility that is always enabled and which logs trace

events.

The middleware software may use a ring buffer to store a

log of trace events.

Preferably, the middleware software writes trace data to
memory and then copies it to disk only when the

transaction machine is idle.

Preferably, one or more software applications are hosted

in a web browser.

More preferably, the use of a web browser provides
support for software distribution and network

connections.

An additional browser frame may be provided which
contains the device controls required to detect events

which must be dealt with immediately they occur.

The middleware software may comprise a series of COM

components with a scriptable ActiveX® interface.

The middleware software may comprise a series of

Javabeans™ components with a scriptable interface.

The use of a web browser may allow conventional web sites
to be displayed by the computer-based transaction

machine.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

WO 99/49431 PCT/GB99/00927

Preferably, the middleware software allows or disallows
access to particular web sites according to a rule

database.

The middleware software may be adapted to customise time-

out of the display of individual internet web sites.

Preferably, said computer-based transaction machine is
adapted to allow the software applications and middleware

to be altered across a network by an authority.

More preferably, the transaction machine communicates
information about its status to a remote monitoring

station across a network.

According to a second aspect of the present invention,
there is provided a computer-based transaction machine;
wherein said computer-based transaction machine is
provided with hardware devices for interaction with users
and the exchange of transaction-related information with
other machines; wherein said computer-based transaction
machine is controlled by one or more software
applications; wherein said software applications control
hardware devices through functional interfaces with
middleware software; wherein said middleware software
extends the functionality of an underlying operating
system and wherein said functional interfaces are
hardware independent but provide functionality which is
implemented in a manner adapted to the capabilities of

the particular hardware devices which are provided.

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 9 PCT/GB99/00927

The computer-based transaction machine may be selected
from a group which comprises automatic teller machines,

kiosks, electronic point of sale machines and the like.

Preferably, the middleware software comprises a series of
transaction objects and controls for standard device

functions.

More preferably, transaction objects are independent of
the interface between the user and the transaction
machine; the interface between the user and the

transaction machine being customisable.

Preferably, the controls implement a capabilities

interface.

More preferably, the capabilities interface is able to

communicate the capabilities of the control software.

The applications, objects and controls may be fully

concurrent and asynchronous.

The controls may have a mode in which events are queued

up and delivered to the application on demand.

Preferably, controls can run on a transaction machine

even when supported hardware devices are not present.

More preferably, the middleware software uses one or more
open standards for interacting with different hardware

systems.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 10

Preferably, the middleware software only provides
cancellation commands for functions which can be

successfully cancelled.

The middleware software may only requires a timeout

command to be supplied when it is meaningful to do so.
Preferably, all controls are persistent.

More preferably, there is provided a control containing a

persistent object.

Preferably, all errors and transgressions are asserted by

the middleware software.

Preferably, the middleware software provides a trace
facility that is always enabled and which logs trace

events.

The middleware software may use a ring buffer to store a

log of trace events.

Preferably, the middleware software writes trace data to
memory and then copies it to disk only when the

transaction machine is idle.

Preferably, one or more software applications are hosted

in a web browser.

More preferably, the use of a web browser provides
support for software distribution and network

connections.

PCT/GB99/00927

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 PCT/GB99/00927

11

An additional browser frame may be provided which
contains the device controls required.to detect events

which must be dealt with immediately they occur.

The middleware software may comprise a series of COM

components with a scriptable ActiveX® interface.

The middleware software may comprise a series of

Javabeans™ components with a scriptable interface.

The use of a web browser may allow conventional web sites
to be displayed by the computer-based transaction

machine.

Preferably, the middleware software allows or disallows
access to particular web sites according to a rule

database.

The middleware software may be adapted to customise time-

out of the display of individual internet web sites.

Preferably, the computer-based transaction machine is
adapted to allow the software applications and middleware

to be altered across a network by an authority.

More preferably, the transaction machine can communicate
information about their status to a remote monitoring

station across a network.

According to a third aspect of the present invention

there is provided a network comprising a plurality of

10

11

WO 99/49431 12 PCT/GB99/00927

computer-based transaction machines, one or more

networking means and one or more application servers.

According to a fourth aspect of the present invention,
there is provided an Extranet formed by combining a
plurality of networks of computer-based transaction

machines.

Preferably, the Extranet is provided with a security
mechanism which limits the hardware functionality

available to individual software applications.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 13 PCT/GB99/00927

An example embodiment of the present invention, referred
to as the system, will now be described with reference to

the following Figures wherein:

Figure 1 shows a simple ATM network;

Figure 2 shows an ATM network with diverse hardware;
Figure 3 shows two distinct networks being combined
to form an Extranet; and

Figure 4 shows the software architecture of the

preferred implementation of the system.

Figure 1 shows a simple ATM network comprising a server
1, a networking means 2 and an ATM 3. The system is

designed to operate such networks and also more complex
networks such as shown in Figure 2 wherein there may be

ATMs of different functionality, here labelled 4.

A particular benefit of the system is its ability to
allow distinct networks to operate together as shown in
Figure 3. Here, two distinct networks 5 and 6 operated
by distinct servers 7 and 8 are connected 9. The

resulting joined network is referred to as an Extranet.

By joining multiple networks together, it becomes
possible for different organisations to co-operate in the
provision of ATM/kiosk network services. For example,
suppose that a bank which owned a series of conventional
ATMs and an airline which owned a series of ticketing
kiosks chose to co-operate. There exists the potential
for the bank's ATMs to both allow customers to pay for an
airline ticket and to print out that ticket. Similarly,

the airline might offer a limited selection of banking

11

12

13

14

15

16

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 14

services, such as balance display, which are compatible

with the functionality of their kiosks.

Using prior art, the development of such a system would
be complex, particularly due to the different hardware
and capabilities of the bank's ATMs and the airline's
kiosks. Such co-operation between organisations is by no
means impossible at the present time, but is currently
rare due to the complexity and expense required for

implementation.

In general, the system provides a means for a plurality
of servers to operate a plurality of ATMs and kiosks
using a plurality of networking means. An example
application would be to allow consumers to purchase eg
cinema, theatre and airline tickets from different
organisations through ATMs positioned at convenient

locations.

Typically, the networking means will be the internet, a
corporate intranet or LAN but may be any networking means

or a mixture of networking means.

The system comprises a middleware software layer which
extends the function of an underlying operating system
and which in turn provides a single programming interface

for an ATM/kiosk control application to be written to.

Figure 4 shows the software architecture of the preferred
implementation of the system. An ATM/kiosk control
application 10 is hosted in a web browser 11 such as

Microsoft®'s Internet Explorer. The application runs on a

PCT/GB99/00927

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 PCT/GB99/00927

15

computer with a particular operating system, 12, such ‘as
Windows NT®, the functionality of which has been extendéd

by middleware software 13.

The middleware comprises a series of components and
objects, for use by the application, which extend the
functionality of the operating system and provide tools

to simplify development of the ATM application.

In the preferred implementation all of the system's sub-
systems are implemented as a series of COM components
with an ActiveX® interface or as Javabeans™ with a
scriptable interface. This architecture enables
applications running within Internet Explorer to access
functionality provided by the operating system and the

middleware, including access to hardware.

A useful benefit of this implementation is that
applications may be prepared using common authoring tools
and such as Microsoft®'s FrontPage®, VisualStudio®, Visual
Interdev’e and common development environments such as
Visual Basic®, Visual C++°, Powerbuilder®, Delphi® etc.
This means that applications can be prepared with tools
with which developers will be familiar and which, due to
their popularity, provide facilities and support that
would be prohibitively expensive to prepare for a custom

development environment.

A further benefit of using browser technology is that
they provide an environment in which software download
can be readily controlled. The application may be held

entirely locally to an ATM/kiosk, entirely on a server or

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 16 PCT/GB99/00927

any compromise between these two extremes. The

application can be downloaded daily if required.

The system uses the Windows® Open System Architecture
Extensions for Financial Services (WOSA XFS) to support

ATM hardware in a vendor independent manner.

The system also uses the Object Linking and Embedding for
Point Of Sale (OPOS) standard for interacting with

different hardware systems. This means that applications
can access hardware independent of whether the underlying

hardware supports WOSA XFS or OPOS.

The system also supports the PC/SC standard for
smartcards, thereby providing a uniform way of accessing

smartcards.

Furthermore, the system also provides support for a
variety of other open standards such as OFX and SNMP and

transaction monitors such as NCR's TOPEND®.

Clearly, support for additional standards may readily be
added.

The primary subsystems of the middleware software
comprise a series of wizards, device controls, self-
service controls, communications controls and status

monitoring components.

The top level components are the wizards, which are a
series of transaction objects that implement common

ATM/kiosk transactions such as dispensing cash, printing

10

1"

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 17 PCT/GB99/00927

a statement etc. In the preferred embodiment, each is

implemented as an ActiveX' object or a Javabean™. Whilst
wizards are running, they take control of the function of
the ATM/kiosk. Wizards interface with other controls and

encode all of the top-level control logic.

Applications can be built with the system by customising
and combining wizards. Wizards encapsulate all of the
features and functionality required by a particular
transaction or chunk of application. When using ActiveX™
Wizards receive input via ActiveX® properties and methods
and output their state as a set of ActiveX® events.
Alternatively the wizard can be implemented in the same
way as a Javabean™. 'As a result of this design feature,
the wizard is completely independent of the ATM/kiosk-

user interface.

For example, an ATM might have a single button which
dispenses $10 on demand. A second ATM might implement
more complex controls and display a detailed animation
whilst money is issued. However, the same wizard may be
used to implement both these ATMs. The wizard
encapsulates the essential software logic of the
transaction while allowing the user interface to be

freely defined by script on the browser page.

This has several important benefits which will lead to
time and cost savings: firstly, the encapsulated features
within the wizard can be reused between different
applications whilst allowing the different applications
to have totally different look and feel. Secondly, this

allows the user interface to be designed with common web

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

WO 99/49431 PCT/GB99/00927

18

tools. Thirdly, the user interface may be designed
without any risk of compromising the function of the
wizard. Finally, the user interface may be designed by a
specialist who may not be an expert in the other aspects

of ATM/kiosk software and hardware.

An additional important feature of the wizards is that
they are able to interpret the capabilities of the
hardware on which they are run. For example, they may be
able to establish whether a cash dispensing means is
available. One application may then run on a plurality
of different hardware implementations, adapting its

functionality to the capabilities of that hardware.

This not only allows different hardware implementations
to be incorporated into the same network but allows

distinct networks to be joined into an Extranet.

The device controls provide hardware independent access
to the special devices on an ATM or kiosk. Each device
control acts as a persistent server that can be
controlled and interrogated by one or more applications
or wizards. A device control abstracts the details of
the hardware underneath it and acts as a complete server
for that device. Applications and wizards interact with
controls through a scriptable ActiveX® interface or a

Javabeans™ interface.

Some example device controls supported by the system are:
s Camera

s Card Reader (motorized, swipe, DIP, smart cards etc.)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

WO 99/49431 PCT/GB99/00927

19

¢ (Cash Acceptor

* Cash Dispenser

e Coin Dispenser

e Depository

e Doors

* Encryptor

e Guide Lights

¢ TIndicators

e Journal Printer

¢ Keyboards

e Laser Printers

* Modems

¢ QOperator Panel

¢ Passbook (including page turn)
e Pin Pad

¢ Receipt Printer

* Scanner

e Sensors

e Signature Capture
e Statement Printer
e Touchscreen

¢ UPS

* VendorMode

¢ Weighing Scales

Multiple applications may be run simultaneously and
device controls are fully concurrent. This is important
as the cycle time of ATMs and kiosk transactions can be
critical. Their design is such that they can be used in

an event-driven manner, with controls reporting their

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

WO 99/49431 20 PCT/GB99/00927

result (success or failure) via ActiveX’ or Javabeans™
events, or in a procedural manner from within a language
such as C++. In the event-driven mode, applications can
be readily created using browser technology; for example,
readily available web tools which provide appropriate
easy-to-use graphical interfaces can be used to create

event-driven applications.

In order to be able to operate asynchronously, all
controls create their own thread, called the event
thread, when first constructed. When an asynchronous
method is called, a command message is sent to the event
thread. The event thread carries out the command and
sends a message back to the main thread on completion:
the completion method causes the appropriate event to be
fired. By implementing commands using the event thread,
the main application thread is free to process other
tasks in parallel. The event thread also ensures that
the device states persist from one application page to
another: although controls on browser pages are being
continually created and destroyed, the event thread
remains running and ensures that the connection to the

device is never lost.

When controls are run in a procedural manner, from a
language such as C++, the controls may be set to a mode
in which events are gqueued up and delivered to the
application on demand, -allowing the application to carry
out other tasks, and return to the event gqueue at an

appropriate time.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 21 PCT/GB99/00927

The self-service controls provide the functionality
necessary for creating self-service applications.
Important self-service controls are described further
below. The communications controls provide access to the
remote host computers. Both the self-service and
communications controls have the same server architecture
as the device controls and all may be executed

asynchronously.

The status monitoring system monitors the health of the
ATM or Kiosk and sends status and alert signals to an

external monitoring station using SNMP alerts.

All controls implement a capabilities interface, allowing
an application or wizard to interrogate the capabilities
of the control as well as the device which the control

represents.

Therefore, not only can different hardware
implementations be integrated into the same network or
Extranet, the applications can dynamically configure the
services they provide depending on the capabilities of

the hardware available on the kiosk.

As a result of this design, individual software
components can be upgraded without having to change other
aspects of the application. New features can be added
without making the application dependent on those

features.

Furthermore, hardware and networking components may be

upgraded or altered step by step. Due to the modular

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

WO 99/49431 22 PCT/GB99/00927

nature of the system and its customisability, a plurality
of communications and hardware implementations may be
used at once. This means that an organisation which runs
an ATM/kiosk network might use its legacy communications
and hardware implementations, perhaps concurrently with
Internet/Intranet support. This means that ATM networks

may be implemented and altered step-wise.

Such upgrades are particularly easy when using the Open
Financial Exchange (OFX) architecture. The middleware
software iﬁplements a single OFX Control which may
interface with an OFX server by any networking means.

The OFX server may also interface with a host by any
networking means. Once this architecture is implemented,
the resulting network topology may be readily altered,
making this an easy migration path for existing networks

to use this system.

A further implication of the design of the controls is
that they can run on an ATM/kiosk even when actual
hardware devices are not present. This allows the
applications to be started up and run, for example for
development and test purposes, without requiring
particular hardware. When the application requests the
capabilities of a particular control, the control will
reply that the device is not present and that the
capabilities are null. Therefore it is possible to
create and test application on, for example, a PC. 1In
this situation, the PC will behave like an ATM/kiosk in

its interactions with the application.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 23

An ignore mode is also provided wherein particular
controls will return "success" for every command. This
allows the application to use generic code which does not
need to test whether the device is present at each step,
simplifying the code that needs to be written when
creating an application to cope with various hardware

capabilities.

An HTML-based application is also provided with the
system for testing device controls. This application
allows the operator to select a subset of the devices for
testing. For each device, two test sequences are
defined: one requires operator interaction (e.g.
entering/removing a card) and one requires no operator
interaction. When the latter is selected, the
interaction-free test sequences will be repetitively run
for the selected devices, allowing applications provided
using this system to be easily stress tested. Complete
tests including operator interaction may also be
selected. Testing is automated and therefore as

reproducible as possible.

All controls include a security mechanism. This
mechanism allows the methods of the various controls to
be enabled and disabled. This is particularly important
in an Extranet environment when applications of differing
abilities run on a given kiosk or ATM. For example, if a
bank operating a network of ATMs allowed an airline to
dispense tickets through its ATMs by way of an Extranet,
it would wish to disallow the airline's application from

dispensing cash.

PCT/GB99/00927

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 24 PCT/GB99/00927

This security mechanism is implemented by a key passing

technique as follows:

The middleware software contains a security control which
allows the current security configuration of an ATM or
kiosk to be set. Using the security control, the owner
of the ATM or kiosk can specify details of the security
configuration (i.e. which methods of a control are
allowed and disallowed). Applications identify
themselves to the security control via a digital
certificate which sets the security configuration as
specified by the ATM/kiosk owner. If the application
attempts to call a disallowed method of control, a trap
is generated, transferring control to the ATM/kiosk

owner's application.

An important benefit of the system is that it may readily
be used to provide internet based e-commerce facilities
through ATMs and kiosks, not only allowing e-commerce
facilities to be used by a larger consumer base but also
enabling e-commerce which requires expensive or high-
security hardware facilities such as cash dispensers or
identity verification means that cannot readily be

provided on privately owned PCs and web-browsers.

To help enable this, the system provides a Site-Minder
control which allows existing web sites to be safely
delivered via ATMs and kiosks. This control provides
several important features. For example, it monitors the
URL of each page of the web-site being delivered and
allows or disallows the page according to a rules

database. This stops the user from straying into other

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 25 PCT/GB99/00927

web-sites or web-pages that are not normally part of the
purpose of the ATM/kiosk. The control allows each page
to be given a customised time-out which is important as
web sites are normally designed for use at home and have
different (longer) time-outs than would be appropriate
for public ATMs/kiosks. Web pages may be navigated using
a touch sensitive screen, making them intuitive and easy
to use. The control can also magnify small features on a
web page (such as hypertext links and images with links)
This magnification can be toggled on and off by the user,
thereby animating the hypertext link. This is beneficial
firstly because it makes it easier for the user to see
where the link is and secondly because it becomes easier
for the user to select the link when it is in its

magnified state.

An additional feature provided by the system for use with
ATMs/kiosks with touchscreens is a '"softkeyboard" wherein
a keyboard is displayed on the touch screen and contact
with the displayed keyboard is interpreted by the system
like keystrokes on a real keyboard, thereby removing the

need for a physical keyboard to be provided.

One problem commonly faced by web designers is that
objects placed on a web page are destroyed when the page
is changed. A useful benefit of the middleware is that
the ActiveX® hook idea solves this problem - underlying
objects remain persistent while lightweight hooks on each

page access the object.

Lack of persistence also leads to problems for the

application developer in storing application-wide data.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 26 PCT/GB99/00927

A solution to this problem is provided by a scratchpad
control which has a persistent object at its core and
allows the application to store and retrieve data at any
time. This control supports the Vbscript variant type,
allowing all types of data to be stored and retrieved.
Furthermore, this control allows data to be shared

between multiple applications, marking it as shared.

A related problem when implementing web-based ATM
applications relates to events which must be dealt with
immediately, no matter when the event occurs. For
instance, if a safe door is opened, an application may
need to shut down immediately. This would not be easy to
implement in a web-based environment as every page would
have to contain some code to handle the event. This
problem can be solved in the system by operating a
second, invisible frame alongside the main application
frame. The invisible frame contains all the device
controls needed to detect the events that must be reacted
to. This frame may then take control, perhaps closing

down the main frame.

Error handling in traditional ATM applications is
difficult. Components may return a large number of error

cases, resulting in complex code.

The middleware software separates the responses it sends
to the application into "good responses" and error
responses. Most commands have a single good response and
all errors are mapped to a single error response,
although some may have a plurality of good responses.

Good responses allow the application to continue. When

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431

an error response is returned, the current transaction
flow is normally aborted and control flow jumps out of
the normal flow process to handle the error situation.
The application can then interrogate the control to

determine the exact cause of the error.

A benefit of this approach is that normal flow is not
cluttered by handlers for each of the error cases which
can occur. Control may be transferred to generic error
handlers which can either recover from the error or abort
the transaction completely, perhaps even rebooting the
ATM/kiosk. Application code can therefore remain as
clear and concise as possible whilst encouraging the
application developer to handle all error cases by
calling an error handler. 1In the development
environment, fatal errors result in a message box being
displayed. A single type of event, DeviceError, is
generated when there is some kind of hardware failure,
allowing error handling for hardware failure to be
encapsulated rather than scattered over many error

handlers.

The system requires applications to interact with it in a
well defined way. Even small transgressions are detected
and error responses generated; when this happens, the
current environment is abandoned and the application is

terminated.

This is based on the well known software engineering
approach of assertion; however, the system's assertion
differs from common practice by asserting absolutely all

disallowed cases, whether serious or not. As a result of

27 PCT/GB99/00927

10

1"

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 28 PCT/GB99/00927

this strategy of escalating errors to maximum
seriousness, errors are found earlier at development time
or at system test time and never allowed to reach a live
environment. Although there is a risk of the application
reporting a fatal error in the field for a relatively
minor problem, this strategy achieves a particularly high
level of robustness in comparison to prior art software

applications.

An additional error-handling feature is provided by the
way in which the system deals with tracing. In software
engineering, tracing is typically enabled only when a
problem is suspected; however, this can affect the
dynamics of a program, making it harder to find bugs.
This is a particularly substantial problem when dealing
with time-critical ATM/kiosk applications. However, if
conventional tracing was simply always enabled throughout
both development and operation of the ATM/kiosk, there
would be both performance problems due to, for example,
the time spent writing to a hard drive and large quantity
of disk space required to store the large number of trace

events that will typically be produced.

The middleware software provides a trace control which
records all trace events of the application and
underlying middleware and is always enabled. Performance
problems are dealt with by writing trace data to memory
and writing to disk only when the ATM/kiosk is idle.
Cash-dispensing machines and kiosks go through an idle
cycle between two users which provides sufficient time to
write to disk, even when people are queuing at the

machine. Disk space problems are eliminated by using a

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

WO 99/49431 29 PCT/GB99/00927

ring buffer of fixed file size, allocated at boot-up and
constant in size throughout operation. When the buffer
is full, the oldest data is overwritten, thereby leaving

a continual record of the most recent events.

As a result of this tracing strategy it is much easier to
understand one-off or rare problems, which is not easily
done when tracing is enabled only once a problem has been

reported.

Furthermore, some ATM/kiosk vendors provide a limited
amount of non-volatile RAM. When this is provided, the
trace control writes the most recent trace information to
this RAM in a ring buffer fashion. As this is very
quick, it does not produce any performance problems.
However, if the ATM/kiosk freezes up or crashes, the RAM

contains the trace of what happened immediately before.

In addition to the traditional way that ActiveX® fires
events to the container, the device and self-service
controls are able to queue up events and return them one
by one when requested. This allows C++ applications to
be written in a procedural fashion rather than simply in
an event driven fashion. By queuing up these events and
delivering them to the application only on demand, the
system allows procedural code to be written and makes it
easier to develop and maintain the complex logic required

in self-service applications.

Important self-service controls are described below:

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

WO 99/49431 30 PCT/GB99/00927

Watchdog control: runs in a separate Windows NT®
process and reboots the ATM/kiosk if the application
crashes. This is achieved by regularly polling the
application to check that it is functioning correctly.
This control can also be used to daily reboot the
ATM/kiosk. The watchdog can monitor multiple
applications on a single ATM.

System Escape control: used to reboot the ATM/kiosk.
Exits in a customisable manner. This control ensures
that cached data (eg in the DataCollect control and the
Trace control) is flushed to disk before rebooting.
DataCollect control: allows application to collect raw
data for statistical purposes. It logs and timestamps
the various events. As with the Trace control, it logs
to memory and then stores on hard disk only when the
ATM/kiosk is idle due to the time required to write to
the hard disk. Storage by this control is of a fixed
size allocated at start-up and remaining constant
throughout operation. Storage is in the form of a ring
buffer. Typically, the collected data would be
exported to a remote location for analysis.

Trace control: described above.

Scratchpad control: described above.

Supervisor application: run simultaneously as a
separate application. This means that on an ATM/kiosk
with a rear screen, the operator can interact with the
ATM/kiosk without taking the machine offline. It
allows the operator to access statistics etc. while the
machine is still being used. Alternatively, the
machine may be taken off-line for intrusive

maintenance. In this case, the supervisor application

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

WO 99/49431 31 PCT/GB99/00927

provides an off-line mode with a limited subset of the
on-line features.

Security control: described above.

Registry control: allows Windows NT® registry to be
manipulated by the application.

DirectoryTree control.

Application Launcher control.

INI file control: allows Windows® INI files to be read
from the browser.

Timed FTP. This allows statistics files and trace files
to be sent via the FTP mechanism on a timed basis to an
offsite location. (eg daily or weekly).

Key capture control: allows special Windows® key
combinations such as ctrl-alt-del and alt-tab to be
captured where a full PC keyboard is provided.

Popup suppression control. Monitors and captures popup
windows originating from the operating system. This
makes it easier to allow software components from other
vendors to be used in self-service applications. Most
third-party software is not intended for self-service
applications and expects to be able to interact with
the user through popup windows. This is unacceptable
in a self-service environment where the main
application must have a complete monopoly over the user
dialog. This control alleviates this problem by
monitoring popups and rapidly executing a pre-
determined sequence of tasks, for example hiding the
popup and pressing the OK button.

Global config file control. Allows configuration data
for ATM networks to be centrally held in a single

distributable file. FEach ATM/kiosk can query this

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

WO 99/49431 32 PCT/GB99/00927

control to retrieve the configuration data which is
specific for that ATM/kiosk. This allows variation
between individual ATMs/kiosks to be handled in a
global way.

e Telephony control. Allows modems and telephone handsets
to be integrated.

e SSMS control. Allows software to be downloaded and
installed in a controlled manner. This control checks
for installation failures and allows the system to
recover to a well defined state.

e Screensaver control. This control allows the
application to jump to a defined web page if the user
has been inactive for more than a pre-determined time.

e Multiple language control. This control allows the
language on a web page to be dynamically modified. It
does this by retrieving text strings and graphics from
a database on the kiosk. This means that the user may
change languages from any browser page - and therefore
at any stage of the application.

e Clock synch control. This allows the application to
synchronize its clock with a server clock, taking into
account possible differences in timezone between kiosk
and server and taking into account the possibility of
large timelags for communication between the kiosk and
the server.

Use of the self-service controls plus additional features

of the system and underlying operating system allow

ATMs/kiosks to be managed from a remote location. For

example, the system supports:

e Daily software downloads from a remote web server.

e Daily reboot and system check.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

WO 99/49431 33 PCT/GB99/00927

e Daily FTP of statistics data to a remote monitoring
station.

e Daily FTP of trace data to a remote monitoring system.

¢ Regular health checks of the kiosk (typically every 5
minutes) .

e Sending a regular "heartbeat" message to a remote
monitoring station. Monitoring of this message allows
the fact that the device is continually functioning to
be monitored.

e Allowing direct secure access to the kiosk over a
network, for example the Internet, from a remote
location.

e Allowing software maintenance over a network, for
example the Internet, from a remote location.

e Allowing manual reboot of the kiosk over a network, for

example the Internet, from a remote location.

Although hardware is accessed via the WOSA XFS standard,
which assigns a different number to each command, the
controls have differently named methods and events
associated with each operation, making application
development easier. WOSA commands may typically generate
30-50 events. This wastes time for the application
developer and increases the possibilities of error. The
middleware reduces the set of possible outcomes to a
small number of clearly named completion events, making
it easier for the application developer to write reliable
code quickly. Outcomes which can only happen if there is
a bug in the application cause fatal errors to be

triggered.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

WO 99/49431 34 PCT/GB99/00927

The system automatically opens a WOSA XFS session when a
device control is first used; there is therefore no need
to manually call an Open method. WOSA sessions are
maintained between pages through the use of event

threads, described above.

All WOSA XFS methods require a timeout to be provided;
however, this is not appropriate or meaningful for the
majority of commands in this application. The middleware
requires a timeout to be supplied only where it is
meaningful to do so. WOSA also allows cancel commands to
be sent after any other command. Not all ATM functions
can really be cancelled and the middleware only provides
cancel commands where cancellation can actually be
achieved. The request IDs returned by WOSA for each
asynchronous operation are abstracted out by the
middleware. WOSA is accessed only by the middleware and

not directly by the application.

Clearly the preferred embodiment described above may
readily be adapted to operate with any operating system

or component system.

Further modifications and improvements may be
incorporated without departing from the scope of the

invention herein intended.

10

1

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 35 PCT/GB99/00927

CLAIMS

A method for providing transaction services wherein

(a) the user of the transaction services interacts
with a computer-based transaction machine which is

controlled by one or more software applications;

(b) the software applications interact with the
functional interfaces of middleware software, which
extends the functionality of an underlying operating

system; and

(c¢) said functional interfaces provide functionality
which is implemented in a manner adapted to the
particular hardware capabilities of the transaction

machine.

A method for providing transaction services
according to Claim 1 wherein the transaction machine
is selected from a group which comprises automatic
teller machines, kiosks and electronic point of sale

machines.

A method for providing transaction services
according to any preceding Claim wherein middleware
software comprises a series of transaction objects

and controls for standard device functions.

A method for providing transaction services
according to Claim 3 wherein transaction objects are

independent of the interface between the user and

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 36 PCT/GB99/00927

10.

the transaction machine; the interface between the

user and the transaction machine being customisable.

A method for providing transaction services
according to Claim 3 or Claim 4 wherein controls

implement a capabilities interface.

A method for providing transaction services
according to Claim 5 wherein the capabilities
interface can communicate the capabilities of the

control software.

A method for providing transaction services
according to any of Claims 3 to 6 wherein
applications, objects and controls are concurrent

and asynchronous.

A method for providing transaction services
according to any of Claims 3 to 7 wherein controls
have a mode in which events are queued up and

delivered to the application on demand.

A method for providing transaction services
according to any of Claims 3 to 8 wherein controls
are adapted to run on the transaction machine even

when supported hardware devices are not present.

A method for providing transaction services
according to any preceding Claim wherein the
middleware software uses one or more open standards

for interacting with different hardware systems.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 37 PCT/GB99/00927

1.

12.

13.

14.

15.

16.

17.

A method for providing transaction services
according to any preceding Claims wherein middleware
software only provides cancellation commands for

functions which can be successfully cancelled.

A method for providing transaction services
according to any preceding Claim wherein middleware
software only requires a timeout command to be

supplied when it is meaningful to do so.

A method for providing transaction services
according to any of Claims 3 to 12 wherein all

controls are persistent.

A method for providing transaction services
according to any of Claims 3 to 13 wherein there is

provided a control containing a persistent object.

A method for providing transaction services
according to any preceding Claim wherein all errors
and transgressions are asserted by the middleware

software.

A method for providing transaction services
according to any preceding Claim in which the
middleware software provides a trace facility that

is always enabled and which logs trace events.

A method for providing transaction services
according to Claim 16 wherein the middleware
software uses a ring buffer to store a log of trace

events.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 38 PCT/GB99/00927

18.

19.

20.

21.

22.

23.

A method for providing transaction services
according to Claim 17 wherein the middleware
software writes trace data to memory and then copies
it to disk only when the transaction machine is

idle.

A method for providing transaction services
according to any preceding Claim wherein one or more

software applications are hosted in a web browser.

A method for providing transaction services
according to Claim 19 wherein the use of a web
browser provides support for software distribution

and network connections.

A method for providing transaction services
according to Claim 19 or Claim 20 wherein an
additional browser frame is provided which contains
the device controls required to detect events which

must be dealt with immediately they occur.

A method for providing transaction services
according to any preceding Claim wherein middleware
software comprises a series of COM components with a

scriptable ActiveX’ interface.

A method for providing transaction services
according to any preceding Claim wherein middleware
software comprises a series of Javabeans™ components

with a scriptable interface.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 39 PCT/GB99/00927

24.

25.

26.

27.

28.

29.

A method for providing transaction services
according to any of Claims 19 to 23 wherein use of a
web browser allows conventional web sites to be

displayed by the computer-based transaction machine.

A method for providing transaction services
according to Claim 24 wherein middleware software
allows or disallows access to particular web sites

according to a rule database.

A method for providing transaction services
according to Claim 24 or Claim 25 wherein middleware
software is adapted to customise time-out of the

display of individual internet web sites.

A method for providing transaction services
according to any preceding Claim wherein the
computer-based transaction machine is adapted to
allow the software applications and middleware to be

altered across a network by an authority.

A method for providing transaction services
according to any preceding Claim wherein the
transaction machine can communicate information
about their status to a remote monitoring station

across a network.

A computer-based transaction machine; wherein said
computer-based transaction machine is provided with
hardware devices for interaction with users and the
exchange of transaction-related information with

other machines; wherein said computer-based

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 40 PCT/GB99/00927

30.

31.

32.

33.

transaction machine is controlled by one or more
software applications; wherein said software
applications control hardware devices through
functional interfaces with middleware software;
wherein said middleware software extends the
functionality of an underlying operating system and
wherein said functional interfaces are hardware
independent but provide functionality which is
implemented in a manner adapted to the capabilities
of the particular hardware devices which are

provided.

A computer-based transaction machine according to
Claim 29 wherein the transaction machine is selected
from a group which comprises automatic teller
machines, kiosks and electronic point of sale

machines.

A computer-based transaction machine according to
Claim 29 or Claim 30 wherein middleware software
comprises a series of transaction objects and

controls for standard device functions.

A computer-based transaction machine according to
Claim 31 wherein transaction objects are independent
of the interface between the user and the
transaction machine; the interface between the user

and the transaction machine being customisable.

A computer-based transaction machine according to
Claim 31 or Claim 32 wherein controls implement a

capabilities interface.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 47 PCT/GB99/00927

34.

35.

36.

37.

38.

39.

40.

A computer-based transaction machine according to
Claim 33 wherein the capabilities interface can
communicate the capabilities of the control

software.

A computer-based transaction machine according to
any of Claims 31 to 34 wherein applications, objects

and controls are concurrent and asynchronous.

A computer-based transaction machine according to
any of Claims 31 to 35 wherein controls have a mode
in which events are queued up and delivered to the

application on demand.

A computer-based transaction machine according to
any of Claims 31 to 36 wherein controls are adapted
to run on the transaction machine even when

supported hardware devices are not present.

A computer-based transaction machine according to
any of Claims 29 to 37 wherein the middleware
software uses one or more open standards for

interacting with different hardware systems.

A computer-based transaction machine according to
any of Claims 29 to 38 wherein middleware software
only provides cancellation commands for functions

which can be successfully cancelled.

A computer-based transaction machine according to

any of Claims 29 to 39 wherein middleware software

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

WO 99/49431 42 PCT/GB99/00927

41.

42.

43.

44.

45.

46.

only requires a timeout command to be supplied when

it is meaningful to do so.

A computer-based transaction machine according to
any of Claims 31 to 40 wherein all controls are

persistent.

A computer-based transaction machine according to
any of Claims 31 to 41 wherein there is provided a

control containing a persistent object.

A computer-based transaction machine according to
any of Claims 29 to 42 wherein all errors and
transgressions are asserted by the middleware

software.

A computer-based transaction machine according to
any of Claims 29 to 43 wherein the middleware
software provides a trace facility that is always

enabled and which logs trace events.

A computer-based transaction machine according to
Claim 44 wherein the middleware software uses a ring

buffer to store a log of trace events.

A computer-based transaction machine according to
Claim 45 wherein them middleware software writes
trace data to memory and then copies it to disk only

when the transaction machine is idle.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

WO 99/49431 43 PCT/GB99/00927

47.

48.

49.

50.

51.

52.

53.

A computer-based transaction machine according to
any of Claims 29 to 46 wherein one or more software

applications are hosted in a web browser.

A computer-based transaction machine according to
Claim 47 wherein the use of a web browser provides
support for software distribution and network

connections.

A computer-based transaction machine according to
Claim 47 or Claim 48 wherein an additional browser
frame is provided which contains the device controls
required to detect events which must be dealt with

immediately they occur.

A computer-based transaction machine according to
any of Claims 29 to 49 wherein middleware software
comprises a series of COM components with a

scriptable ActiveX®’ interface.

A computer-based transaction machine according to
any of Claims 29 to 50 wherein middleware software
comprises a series of Javabeans™ components with a

scriptable interface.

A computer-based transaction machine according to
any of Claims 47 to 51 wherein use of a web browser
allows conventional web sites to be displayed by the

computer-based transaction machine.

A computer-based transaction machine according to

Claim 52 wherein middleware software allows or

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

WO 99/49431 44 PCT/GB99/00927

54.

55.

56.

57.

58.

disallows access to particular web sites according

to a rule database.

A computer-based transaction machine according to
Claim 52 or Claim 53 wherein middleware software is
adapted to customise time-out of the display of

individual internet web sites.

A computer-based transaction machine according to
any of Claims 29 to 54 wherein the computer-based
transaction machine is adapted to allow the software
applications and middleware to be altered across a

network by an authority.

A computer-based transaction machine according to
any of Claims 29 to 55 wherein the transaction
machine can communicate information about their
status to a remote monitoring station across a

network.

A network comprising a plurality of computer-based
transaction machines according to any of Claims 29
to 56, one or more networking means and one Or more

application servers.

An Extranet formed by combining a plurality of
networks of computer-based transaction machines

according to Claim 57.

WO 99/49431 45 PCT/GB99/00927

59. An Extranet according to Claim 58 provided with a
security mechanism which limits the hardware
functionality available to individual software

applications.

WO 99/49431 PCT/GB99/00927

1/2

Server

I

ATM

Figure 1

Server

Figure 2

WO 99/49431

PCT/GB99/00927

7 8
\ | \
Server A ? Server B
6
ATM ATM Kiosk Kiosk
Figure 3
10
1 Application
Browser
13
Middleware
12
Operating
System

Figure 4

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

