1342778 A3 |0 Y 0RO 0O 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau '

(43) International Publication Date
22 November 2007 (22.11.2007)

e
)
Ak

A l.-

o)

A\

00 0 00O

(10) International Publication Number

WO 2007/134278 A3

(51) International Patent Classification:

GOGF 7/00 (2006.01) GOGF 17/30 (2006.01)
(21) International Application Number:
PCT/US2007/068856

(22) International Filing Date: 14 May 2007 (14.05.2007)

(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

11/383,480 15 May 2006 (15.05.2006) US
11/383,477 15 May 2006 (15.05.2006) US
11/383,479 15 May 2006 (15.05.2006) US
11/383,478 15 May 2006 (15.05.2006) US
11/383,476 15 May 2006 (15.05.2006) US
11/383,482 15 May 2006 (15.05.2006) US
(71) Applicant (for all designated States except US):
XSPRADA CORPORATION [US/US]; 12885 Re-

search Boulevard, Suite 202, Austin, TX 78750-3224
(US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): PIEDMONTE,
Christopher, M. [US/US]; 50 South Bear Creek Road,
Liberty Hill, TX 78642 (US).

(74) Agents: MURPHY, Michael, J. et al.; Wilson Sonsini
Goodrich & Rosati, 650 Page Mill Road, Palo Alto, CA
94304-1050 (US).

(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,

CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,

FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN,

IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,

LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MY,

MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,

RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,

TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, 7ZM, ZW.

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

7ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,

PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

(88) Date of publication of the international search report:
28 August 2008

(54) Title: SYSTEMS AND METHODS FOR DATA STORAGE AND RETRIEVAL

R (57) Abstract: Systems and methods for storing and accessing data. A query language statement may reference a plurality of data
& sets and a plurality of algebraic relations between the data sets may be composed from the query language statement. The algebraic
& relations may be used to define new data sets and to optimize access to data sets. A store of algebraic relations may be accumulated
over time. Alternative collections of algebraic relations may be generated and evaluated to determine an optimized collection of
algebraic relations to use in calculating and providing a requested data set. The optimization may be performed using the algebraic
relations rather than retrieving underlying data sets from storage. As a result, optimization may be performed at processor speeds to
minimize the amount of time required for data to be retrieved from slower storage.

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
SYSTEMS AND METHODS FOR DATA STORAGE AND RETRIEVAL

CROSS-REFERENCE
[0001] This application is related to the following copending patent applications: U.S. Patent
Application No. 11/383,476 filed on May 15, 2006; U.S. Patent Application No. 11/383,477 filed on May
15, 2006; U.S. Patent Application No. 11/383,478 filed on May 15, 2006; U.S. Patent Application No.
11/383,479 filed on May 15, 2006; U.S. Patent Application No. 11/383,480 filed on May 15, 2006; and
U.S. Patent Application No. 11/383,482 filed on May 15, 2006, each of which are incorporated herein by

reference in their entirety.

BACKGROUND OF THE INVENTION

I Field
[0002] The field of the present invention relates to systems and methods for storing and accessing data,
and more particularly to data storage, database queries and data retrieval.

1L Background
[0003] Many database and data storage systems have predetermined schema that impose a structure on
data when it is received. The schema may not capture information regarding the structure of data as it is
originally provided. In addition, the schema may be designed around predefined relationships that are not
optimized for the way that data is actually provided or queried. The logical relationships inherent in the
schema may also result in a database structure that is not optimized for the manner in which the data is
actually stored. Moreover, the logical relationships inherent in the schema and/or their associated
database structures may constrain the kinds of logical relationships that can be specified in data queries.
A single query may require multiple accesses to storage resulting in significant inefficiencies, particularly
given the increasing disparity between processing speeds and storage access speeds. While substantial
efforts have been made to improve access methods for relational and other conventional databases, they
are inherently limited by the predefined relationships and resulting structures imposed on the data. The
tight coupling between these relationships and the structure of many databases also makes it difficult to
efficiently capture, translate and process data provided in various different formats, such as flat files,

comma separated value (CSV) files, and data defined using Extensible Markup Language (XML).

SUMMARY OF THE INVENTION
[0004] Aspects of the present invention provide systems and methods for storing and accessing data.
Example embodiments may include a data store for storing data sets, a data set information store for
storing information regarding the data sets, an algebraic relation store for storing algebraic relations
between data sets, an optimizer for using the algebraic relations to optimize storage and access of data
sets from the data store and a set processor for calculating algebraic relations to provide data sets. In
example embodiments, modules may be provided by a combination of hardware, firmware and/or

software and may use parallel processing and distributed storage in some example embodiments.

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
[0005} One aspect of the present invention provides a method for composing algebraic relations between

data sets from query language statements. Another aspect provides a method for providing a requested
data set. A query language statement may be presented to the system. For example, the query language
statement may be in an structured query language (SQL) format using a relational data model or an
XQuery format using a markup language format. A plurality of algebraic relations may then be
composed from the query language statement and stored in an algebraic relation store. In this way,
algebraic relations between data sets may be accumulated in the relation store over time as statements are
presented to the system. In some example embodiments, the query language statements may not request
the requested data set, but may still be used to compose algebraic relations that will be useful in providing
the requested data set. At least some of these algebraic relations may be retrieved from the relation store
and used to provide the requested data set.

[0006] In a further aspect, algebraic relations between data sets may be accumulated in the relation store
over time as statements are presented to the system. Alternative collections of algebraic relations may be
generated and evaluated to determine an optimized collection of algebraic relations to use in calculating
and providing a requested data set. The optimization may be performed using the algebraic relations
rather than retrieving underlying data sets from storage. As a result, optimization may be performed at
processor speeds to minimize the amount of time required for data to be retrieved from slower storage.
[0007] In another aspect, the query language statement requests a data set to be provided and the relation
store includes other algebraic relations for data sets that are not composed from the query language
statement. In some examples, both algebraic relations composed from the query language statement and
other algebraic relations in the relation store may be used to provide the requested data set. In a further
aspect, an optimizer may be used to generate a plurality of collections of algebraic relations defining a
result equal to the requested data set, and optimization criteria may be applied to select one of the
collections of algebraic relations to use in providing the requested data set. In example embodiments, the
optimization criteria may be based on an estimate of the amount of data required to be transferred from
storage and/or the amount of time required to transfer data sets from storage in order to calculate the
collection of algebraic relations. In another example, the optimization criteria may distinguish among
equivalent data sets containing the same logical data in different physical formats or in different locations
in the data store.

[0008] Another aspect provides a method for providing a requested data set in which at least two
alternative algebraic relations may be composed that each define a result equal to the requested data set.
The data sets may contain the same logical data stored in different physical formats and/or in different
locations in the data store. For example, data sets may be stored in stored on storage media in comma
separated value (CSV) format, binary-string encoding (BSTR) format, fixed-offset (FIXED) format, type-
encoded data (TED) format and/or XML or other markup language format. Type-encoded data (TED) is
a file format that contains data and an associated value that indicates the format of such data. These are

examples only and other physical formats may be used in other embodiments. The data sets may also be

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
stored in different locations in the data store, such as different disk drives in a distributed storage system,

and may be accessible over different data channels having different data transfer speeds and/or different
available bandwidth. One of the algebraic relations may be selected for use in providing the requested
data set based, at least in part, on the physical format and/or locations of the data sets referenced in the
algebraic relations. In other examples, the algebraic relations may be selected based, at least in part, on
the speed and available bandwidth of the channel(s) used to retrieve data sets referenced in the algebraic
relation.

[0009] Another aspect provides a method for providing a requested data set using functions that operate
on operands in different physical formats. Data sets may be stored in a plurality of physical formats, such
as comma separated value (CSV) format, binary-string encoding (BSTR) format, fixed-offset (FIXED)
format, type-encoded data (TED) format and/or XML or other markup language format. Functions are
defined that use data sets as operands. Logically equivalent functions may be defined for different
combinations of physical formats that may be used for the operands. In order to provide a requested data
set, an algebraic relation may be composed that defines a result equal to the requested data set. The
algebraic relation may reference data sets in storage. In order to calculate the requested data set from the
algebraic relation, the referenced data sets are retrieved from storage and functions are applied to the data
sets to perform the operations specified in the algebraic relation. The functions used to calculate the
algebraic relation may be selected to correspond to the physical formats in which the data sets are
retrieved. In this way, functions can be used that are optimal for the physical formats in which the data
sets are retrieved without requiring separate format conversion.

[0010] In a further aspect, multiple algebraic relations are composed that define a result equal to a
requested data set. Some of the algebraic relations may reference the same logical data in different
physical formats. Optimization criteria may be applied to the algebraic relations that take into account the
physical format of the data sets, the functions available to operate on the data sets in those formats, and/or
any format conversion that may be required for calculation. An algebraic relation may be selected based
on the optimization criteria and used to provide the requested data set. Format specific functions are then
used to calculate the selected algebraic relation. At least some of the functions are selected based on the
physical formats of the data sets referenced in the algebraic relation.

[0011] In another aspect, algebraic relations may be used to define new data sets. In an example
embodiment, a data set information store may be provided for storing information regarding data sets. A
new data set may be created by associating a data set identifier with the data set and storing the data set
identifier in the data information store. In some examples, the new data set may be an explicit data set
presented to the system as part of a query language statement.

[0012] In another aspect, a query language statement may specify one or more of the data sets that have
not been stored in the data store at the time the query language statement is received. In some

embodiments, data sets may be defined by algebraic relations without realizing the data set in storage.

_3-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
[0013] In another aspect, temporal information is stored in the data set information store indicating the

time at which the data set was created. In a further aspect, the data set information store may be
temporally redefined by removing data sets from the data set information store that are associated with
temporal information prior to a specified time. If an unrealized data set references a data set having
temporal information prior to the specified time, the data set may be realized and stored in the data store
before removal of the referenced data set.

[0014] Another aspect provides a method for providing a requested data set using mappings between
schema. A mapping may be provided between multiple schemas based on different data models.
Statements may be presented to the system based on the different schema and data models. For example,
statements may be presented to the system as query statements in a structured query language (SQL)
format based on a relational data model and/or in an XQuery format based on an extensible markup
language (XML) data model. These statements and data models are examples only and other statements
and data models may be supported in other examples. Algebraic relations between data sets may be
composed from statements presented to the system based on the different schema and data models. When
a data set is requested based on a particular schema and data model, the mapping allows algebraic
relations based on the other schema and data model to be used in providing the requested data.

[0015] In a further aspect, multiple algebraic relations may be composed that define a result equal to a
requested data set. Optimization criteria may be used to select one of the algebraic relations to calculate
the requested data set. The algebraic relations may be composed from statements based on different
schema and data models. A mapping may be provided between schema based on different data models.
As a result, optimization may be performed across a broader set of possible algebraic relations to provide
the requested data set. Algebraic relations may be considered even if they were composed from
statements based on a different schema using a different data model. For example, algebraic relations
may be composed from query statements presented to the system in both a structured query language
(SQL) format based on a relational data model and an XQuery format based on an extensible markup
language (XML) model. These algebraic relations may then be used for optimization in responding to a
subsequent query statement presented to the system. For example, algebraic relations composed from
SQL statements may be used in responding to an XQuery statement. Similarly, algebraic relations
composed from XQuery statements may be used in responding to an SQL statement. These are examples
only and other types of statements and data models may be used in other examples.

[0016] Another aspect provides a method for storing data sets using virtualization. Data sets may be
removed from the data store and defined by algebraic relations in the relation store. The data set
information may include information specifying whether each respective data set is realized in the data
store. Criteria may be established for determining when a data set should be virtualized. For example,
the criteria may be based on the size of the data set, the number of times it has been referenced and/or the
frequency with which the data set has been accessed in the data store. Data sets that have been realized in

the data store and meet the criteria may be considered from removal from the data store. In example

-4-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
embodiments, these data sets may be removed if there is an algebraic relation in the relation store that

defines the data set based on other data sets that are realized in the data store (whether directly or
indirectly by referencing other algebraic relations that, in turn, are directly or indirectly based on realized
data sets). After the data set is removed, the information regarding the data set in the data set information
store may be changed to indicate that the identified data set is not realized in the data store.

[0017] In a further aspect, a data set may be selected for optimization by dividing it into subsets and then
virtualized by removing the data set from the data store. For example, data sets may be added to the data
store that are subsets of a selected data set. In some examples, the subsets may be partitions of the
selected data set having equal cardinality or may be defined based on a range of scalar values for a data
item in the selected data set. These are examples only and other subsets may be defined in other
examples. An algebraic relation may be composed that defines the selected data set based on the union of
the subsets added to the data store. The selected data set may then be removed from the data store and
information in the data set information store may be changed to indicate that the selected data set is not
realized in the data store.

[0018] In a further aspect, a requested data set may be retrieved from the system using algebraic relations
that reference virtual data sets. For example, a selected data set may be removed from the data store and
replaced with an algebraic relation defining the selected data set. The algebraic relation may be made
available in the relation store for use in providing other data sets that are requested, even though the
selected data set is no longer realized in the data store. For example, a plurality of collections of algebraic
relations defining the requested data set may be composed. Some of these algebraic relations may be
composed by using the algebraic relation defining the selected data set to perform substitutions for
references to the selected data set (which is virtual). For example, an expression referencing the selected
data set may be replaced with an expression referencing one or more subsets that are realized in the data
store. Optimization criteria may then be applied to select one of the collections of algebraic relations to
calculate the requested data set.

[0019] In another aspect, a computer system is provided with one or more processors programmed to
perform one or more of the above aspects of the invention. The computer system may include volatile
and/or non-volatile storage to provide a data set store. In another aspect, one or more hardware
accelerators or other circuitry is configured to perform one or more of the above aspects of the invention.
In another aspect, a computer readable medium is provided with executable instructions for performing
one or more of the above aspects of the invention.

[0020] It is understood that each of the above aspects of the invention may be used alone or in

combination with other aspects of the invention described above or in the following description.

INCORPORATION BY REFERENCE
[0021] All publications and patent applications mentioned in this specification are herein incorporated by
reference to the same extent as if each individual publication or patent application was specifically and

individually indicated to be incorporated by reference.

-5-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
BRIEF DESCRIPTION OF THE DRAWINGS

[0022] The novel features of the invention are set forth with particularity in the appended claims. A
better understanding of the features and advantages of the present invention will be obtained by reference
to the following detailed description that sets forth illustrative embodiments, in which the principles of
the invention are utilized, and the accompanying drawings of which:

[0023] FIG. 1 is a block diagram showing a first example architecture of a computer system that may be
used in connection with example embodiments of the present invention.

[0024] FIG. 2 is a block diagram showing a computer network that may be used in connection with
example embodiments of the present invention.

[0025] FIG. 3 is a block diagram showing a second example architecture of a computer system that may
be used in connection with example embodiments of the present invention.

[0026] FIG. 4A is a block diagram illustrating the logical architecture of an example embodiment of the
present invention.

[0027] FIG. 4B is a block diagram illustrating the information stored in a set manager module of an
example embodiment of the present invention.

[0028] FIG. 5 is a flow chart of a method for submitting data sets in accordance with an example
embodiment of the present invention.

[0029] FIG. 6 is a flow chart of a method for submitting statements in accordance with an example
embodiment of the present invention.

[0030] FIG. 7 illustrates an example statement and XSN tree for the method of Figure 6.

[0031] FIG. 8 is a flow chart of a method for realizing data sets according to an example embodiment of
the present invention.

[0032] FIG. 9A is a flow chart of a method for algebraic and operational optimization according to an
example embodiment of the present invention.

[0033] FIG. 9B is a flow chart of a method for algebraic and operational optimization according to an
alternate example embodiment of the present invention.

[0034] FIGS. 9C, 9D, 9E, 9F, 9G and 9H illustrate methods for comprehensive optimization according to
example embodiments of the present invention.

[0035] FIG. 10A illustrates the fields of an example OptoNode structure.

[0036] FIG. 10B is a block diagram of an example OptoNode structure according to an example
embodiment of the present invention.

[0037] FIG. 11 is a flow chart of a method for calculating data sets from algebraic relations according to
an example embodiment of the present invention.

[0038] FIGS. 12A and 12B are block diagrams of example XSN trees according to an example
embodiment of the present invention.

[0039] FIGS. 13A, 13B, 13C and 13D are block diagrams illustrating an example implementation of

buffer chaining that may be used in example embodiments of the storage manager.

-6-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
[0040] FIG. 14A is a block diagram of a relational data to XML transformation in accordance with an

example embodiment.
[0041] FIG. 14B is a block diagram of a relational data to directed graph transform in accordance with
an example embodiment.

DETAILED DESCRIPTION
[0042] While the present invention is open to various modifications and alternative constructions, the
embodiments shown in the drawings will be described herein in detail. It is to be understood, however,
there is no intention to limit the invention to the particular forms disclosed. On the contrary, it is intended
that the invention cover all modifications, equivalences and alternative constructions falling within the
spirit and scope of the invention as expressed in the appended claims.
[0043] Example embodiments of the present invention provide systems and methods for data storage and
processing using extended set processing and algebraic optimization. In one example, a universal data
model based on extended set theory may be used to capture scalar, structural and temporal information
from data provided in a wide variety of disparate formats. For example, data in fixed format, comma
separated value (CSV) format, Extensible Markup Language (XML) and other formats may be captured
and efficiently processed without loss of information. These encodings are referred to as physical
formats. The same logical data may be stored in any number of different physical formats. Example
embodiments may seamlessly translate between these formats while preserving the same logical data.
[0044] By using a rigorous mathematical data model, example embodiments can maintain algebraic
integrity of data and their interrelationships, provide temporal invariance and enable adaptive data
restructuring.
[0045] Algebraic integrity enables manipulation of algebraic relations to be substituted for manipulation
of the information it models. For example, a query may be processed by evaluating algebraic expressions
at processor speeds rather than requiring various data sets to be retrieved and inspected from storage at
much slower speeds.
[0046] Temporal invariance may be provided by maintaining a constant value, structure and location of

2% <.

information until it is discarded from the system. Standard database operations such as “insert,” “update”
and “delete” functions create new data defined as algebraic expressions which may, in part, contain
references to data already identified in the system. Since such operations do not alter the original data,
example embodiments provide the ability to examine the information contained in the system as it existed
at any time 1in its recorded history.

[0047] Adaptive data restructuring in combination with algebraic integrity allows the logical and
physical structures of information to be altered while maintaining rigorous mathematical mappings
between the logical and physical structures. Adaptive data restructuring may be used in example

embodiments to accelerate query processing and to minimize data transfers between persistent storage

and volatile storage.

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
[0048] Example embodiments may use these features to provide dramatic efficiencies in accessing,

integrating and proccssing dynamically-changing data, whether provided in XML, relational or other data
formats. Among other things, example embodiments may provide:

® An independence from information structures that enables all types of enterprise
information to be mathematically modeled and processed with equal facility and without
extensive programming.

e Elimination of data prestructuring and database extract, transform and load operations, as
well as most database index structures and their associated storage.

e Faster query processing via adaptive optimizations that eliminate redundant operations
and reduce data transfers across the persistent/volatile storage-boundary performance
barrier by adaptively restructuring working data sets.

e Highly asynchronous and parallel internal operations that are scalable and fully leverage
massively-parallel computing and storage systems.

® Improved performance and increased fault tolerance resulting from stateless entity
recording and consequent minimization of serially-reusable resources.

® The ability to query databases as they existed at previous times in their recorded histories.

[0049] The mathematical data model allows example embodiments to be used in a wide variety of
computer architectures and systems and naturally lends itself to massively-parallel computing and storage
systems. Some example computer architectures and systems that may be used in connection with
example embodiments will now be described.

[0050] Figure 1 is a block diagram showing a first example architecture of a computer system 100 that
may be used in connection with example embodiments of the present invention. As shown in Figure 1,
the example computer system may include a processor 102 for processing instructions, such as an Intel
Xeon™ processor, AMD Opteron™ processor or other processor. Multiple threads of execution may be
used for parallel processing. In some embodiments, multiple processors or processors with multiple cores
may also be used, whether in a single computer system, in a cluster or distributed across systems over a
network.

[0051] As shown in Figure 1, a high speed cache 104 may be connected to, or incorporated in, the
processor 102 to provide a high speed memory for instructions or data that have been recently, or are
frequently, used by processor 102. The processor 102 is connected to a north bridge 106 by a processor
bus 108. The north bridge 106 is connected to random access memory (RAM) 110 by a memory bus 112
and manages access to the RAM 110 by the processor 102. The north bridge 106 is also connected to a
south bridge 114 by a chipset bus 116. The south bridge 114 is, in turn, connected to a peripheral bus
118. The peripheral bus may be, for example, PCI, PCI-X, PCI Express or other peripheral bus. The
north bridge and south bridge are often referred to as a processor chipset and manage data transfer

between the processor, RAM and peripheral components on the peripheral bus 118. In some alternative

-8-

10

15

20

25

30

35

WO 2007/134278) PCT/US2007/068856
architectures, the functionality of the north bridge may be incorporated into the processor instead of using

a separate north bridge chip.

[0052] In some embodiments, system 100 may include an accelerator card 122 attached to the peripheral
bus 118. The accelerator may include field programmable gate arrays (FPGAs) or other hardware for
accelerating certain processing. For example, an accelerator may be used for adaptive data restructuring
or to evaluate algebraic expressions used in extended set processing.

[0053] Software and data are stored in external storage 124 and may be loaded into RAM 110 and/or
cache 104 for use by the processor. The system 100 includes an operating system for managing system
resources, such as Linux or other operating system, as well as application software running on top of the
operating system for managing data storage and optimization in accordance with example embodiments
of the present invention.

[0054] In this example, system 100 also includes network interface cards (NICs) 120 and 121 connected
to the peripheral bus for providing network interfaces to external storage such as Network Attached
Storage (NAS) and other computer systems that can be used for distributed parallel processing.

[0055] Figure 2 is a block diagram showing a network 200 with a plurality of computer systems 202 a, b
and c and Network Attached Storage (NAS) 204 a, b and ¢. In example embodiments, computer systems
202 a, b and ¢ may manage data storage and optimize data access for data stored in Network Attached
Storage (NAS) 204 a, b and c. A mathematical model may be used for the data and be evaluated using
distributed parallel processing across computer systems 202 a, b and c. Computer systems 202 a, b and ¢
may also provide parallel processing for adaptive data restructuring of the data stored in Network
Attached Storage (NAS) 204 a, b and c. This is an example only and a wide variety of other computer
architectures and systems may be used. For example, a blade server may be used to provide parallel
processing. Processor blades may be connected through a back plane to provide parallel processing.
Storage may also be connected to the back plane or as Network Attached Storage (NAS) through a
separate network interface.

[0056] In example embodiments, processors may maintain separate memory spaces and transmit data
through network interfaces, back plane or other connectors for parallel processing by other processors. In
other embodiments, some or all of the processors may use a shared virtual address memory space.

[0057] Figure 3 is a block diagram of a multiprocessor computer system 300 using a shared virtual
address memory space in accordance with an example embodiment. The system includes a plurality of
processors 302a-f that may access a shared memory subsystem 304. The system incorporates a plurality
of programmable hardware memory algorithm processors (MAPs) 306 a-f in the memory subsystem 304.
Each MAP 306 a-f may comprise a memory 308a-f and one or more field programmable gate arrays
(FPGAs) 310 a-f. The MAP provides a configurable functional unit and particular algorithms or portions
of algorithms may be provided to the FPGAs 310 a-f for processing in close coordination with a
respective processor. For example, the MAPs may be used to evaluate algebraic expressions regarding

the data model and to perform adaptive data restructuring in example embodiments. In this example,

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
each MAP is globally accessible by all of the processors for these purposes. In one configuration, each

MAP can use Direct Memory Access (DMA) to access an associated memory 308a-f, allowing it to
execute tasks independently of, and asynchronously from, the respective microprocessor 302a-f. In this
configuration, a MAP may feed results directly to another MAP for pipelining and parallel execution of
algorithms.

[0058] The above computer architectures and systems are examples only and a wide variety of other
computer architectures and systems can be used in connection with example embodiments, including
systems using any combination of general processors, co-processors, FPGAs and other programmable
logic devices, system on chips (SOCs), application specific integrated circuits (ASICs) and other
processing and logic elements. It is understood that all or part of the data management and optimization
system may be implemented in software or hardware and that any variety of data storage media may be
used in connection with example embodiments, including random access memory, hard drives, flash
memory, tape drives, disk arrays, Network Attached Storage (NAS) and other local or distributed data
storage devices and systems.

[0059] In example embodiments, the data management and optimization system may be implemented
using software modules executing on any of the above or other computer architectures and systems. In
other embodiments, the functions of the system may be implemented partially or completely in firmware,
programmable logic devices such as field programmable gate arrays (FPGAs) as referenced in Figure 3,
system on chips (SOCs), application specific integrated circuits (ASICs), or other processing and logic
elements. For example, the Set Processor and Optimizer may be implemented with hardware acceleration
through the use of a hardware accelerator card, such as accelerator card 122 illustrated in Figure 1.
[0060] Figure 4A is a block diagram illustrating the logical architecture of example software modules
400. The software is component-based and organized into modules that encapsulate specific functionality
as shown in Figure 4A. This is an example only and other software architectures may be used as well.
[0061] In this example embodiment, data natively stored in one or more various physical formats may be
presented to the system. The system creates a mathematical representation of the data based on extended
set theory and may assign the mathematical representation a Global Unique Identifier (GUID) for unique
identification within the system. In this example embodiment, data is internally represented in the form
of algebraic expressions applied to one or more data sets, where the data may or may not be defined at the
time the algebraic expression is created. The data sets include sets of data elements, referred to as
members of the data set. In an example embodiment, the elements may be data values or algebraic
expressions formed from combinations of operators, values and/or other data sets. In this example, the
data sets are the operands of the algebraic expressions. The algebraic relations defining the relationships
between various data sets are stored and managed by a Set Manager 402 software module. Algebraic
integrity is maintained in this embodiment, because all of the data sets are related through specific
algebraic relations. A particular data set may or may not be stored in the system. Some data sets may be

defined solely by algebraic relations with other data sets and may need to be calculated in order to

-10-

10

15

20

25

30

35

) WO 2007/134278 PCT/US2007/068856
retrieve the data set from the system. Some data sets may even be defined by algebraic relations

referencing data sets that have not yet been provided to the system and cannot be calculated until those
data sets are provided at some future time.

[0062] In an example embodiment, the algebraic relations and GUIDs for the data sets referenced in
those algebraic relations are not altered once they have been created and stored in the Set Manager 402.
This provides temporal invariance which enables data to be managed without concerns for locking or
other concurrency-management devices and related overheads. Algebraic relations and the GUIDs for the
corresponding data sets are only appended in the Set Manager 402 and not removed or modified as a
result of new operations. This results in an ever-expanding universe of operands and algebraic relations,
and the state of information at any time in its recorded history may be reproduced. In this embodiment, a
separate external identifier may be used to refer to the same logical data as it changes over time, but a
unique GUID is used to reference each instance of the data set as it exists at a particular time. The Set
Manager 402 may associate the GUID with the external identifier and a time stamp to indicate the time at
which the GUID was added to the system. The Set Manager 402 may also associate the GUID with other
information regarding the particular data set. This information may be stored in a list, table or other data
structure in the Set Manager 402 (referred to as the Set Universe in this example embodiment). The
algebraic relations between data sets may also be stored in a list, table or other data structure in the Set
Manager 402 (referred to as the Algebraic Cache in this example embodiment).

[0063] In some embodiments, Set Manager 402 can be purged of unnecessary or redundant information,
and can be temporally redefined to limit the time range of its recorded history. For example, unnecessary
or redundant information may be automatically purged and temporal information may be periodically
collapsed based on user settings or commands. This may be accomplished by removing all GUIDs from
the Set Manager 402 that have a time stamp before a specified time. All algebraic relations referencing
those GUIDs are also removed from the Set Manager 402. If other data sets are defined by algebraic
relations referencing those GUIDs, those data sets may need to be calculated and stored before the
algebraic relation is removed from the Set Manager 402.

[0064] In one example embodiment, data sets may be purged from storage and the system can rely on
algebraic relations to recreate the data set at a later time if necessary. This process is called virtualization.
Once the actual data set is purged, the storage related to such data set can be freed but the system
maintains the ability to identify the data set based on the algebraic relations that are stored in the system.
In one example embodiment, data sets that are either large or are referenced less than a certain threshold
number of times may be automatically virtualized. Other embodiments may use other criteria for
virtualization, including virtualizing data sets that have had little or no recent use, virtualizing data sets to
free up faster memory or storage or virtualizing data sets to enhance security (since it is more difficult to
access the data set after it has been virtualized without also having access to the algebraic relations).
These settings could be user-configurable or system-configurable. For example, if the Set Manager 402
contained a data set A as well as the algebraic relation that A equals the intersection of data sets B and C,

then the system could be configured to purge data set A from the Set Manager 402 and rely on data sets B

-11-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
and C and the algebraic relation to identify data set A when necessary. In another example embodiment,

if two or more data sets are equal to one another, all but one of the data sets could be deleted from the Set
Manager 402. This may happen if multiple sets are logically equal but are in different physical formats.
In such a case, all but one of the data sets could be removed to conserve physical storage space.

[0065] When the value of a data set needs to be calculated or provided by the system, an Optimizer 418
may retrieve algebraic relations from the Set Manager 402 that define the data set. The Optimizer 418
can also generate additional equivalent algebraic relations defining the data set using algebraic relations
from the Set Manager 402. Then the most efficient algebraic relation can then be selected for calculating
the data set.

[0066] A Set Processor 404 software module provides an engine for performing the arithmetic and
logical operations and functions required to calculate the values of the data sets represented by algebraic
expressions and to evaluate the algebraic relations. The Set Processor 404 also enables adaptive data
restructuring. As data sets are manipulated by the operations and functions of the Set Processor 404, they
are physically and logically processed to expedite subsequent operations and functions. The operations
and functions of the Set Processor 404 are implemented as software routines in one example embodiment.
However, such operations and functions could also be implemented partially or completely in firmware,
programmable logic devices such as field programmable gate arrays (FPGAs) as referenced in Figure 3,
system on chips (SOCs), application specific integrated circuits (ASICs), or other hardware or a
combination thereof.

[0067] The software modules shown in Figure 4A will now be described in further detail. As shown in
Figure 4A, the software includes Set Manager 402 and Set Processor 404 as well as SQL Connector 406,
SQL Translator 408, XSN Connector 410, XML Connector 412, XML Translator 414, XSN Interface
416, Optimizer 418, Storage Manager 420, Executive 422 and Administrator Interface 424.

[0068] In the example embodiment of Figure 4A, queries and other statements about data sets are
provided through one of three connectors, SQL Connector 406, XSN Connector 410 or XML Connector
412. Each connector receives and provides statements in a particular format. In one example, SQL
Connector 406 provides a standard SQL92-compliant ODBC connector to user applications and ODBC-
compliant third-party relational database systems, and XML Connector 412 provides a standard Web
Services W3C XQuery-compliant connector to user applications, compliant third-party XML systems,
and other instances of the software 400 on the same or other systems. SQL and XQuery are example
formats for providing query language statements to the system, but other formats may also be used.
Query language statements provided in these formats are translated by SQL Translator 408 and XML
Translator 414 into an extended set notation (XSN) format that is used by the system. XSN Connector
410 provides a connector for receiving statements directly in an XSN format. An Example Extended Set
Notation is described at the end of this specification below. The Example Extended Set Notation includes
a syntax in which statements regarding extended data sets may be presented to the system. The Example

Extended Set Notation is an example only and other notations may be used in other embodiments. Other

-12-

10

15

20

25

30

35

_WO 2007/134278) PCT/US2007/068856
embodiments may also use different types and formats of data sets and algebraic relations to capture

information from statements provided to the system.

[0069] XSN Interface 416 provides a single point of entry for all statements from the connectors. The
statements are provided from SQL Translator 408, XML Translator 414 or XSN Connector 410 in an
XSN format. The statements are provided using a text based description of extended set notation. The
XSN Interface 416 provides a parser that converts the text description into an internal representation that
is used by the system. In one example, the internal representation uses an XSN tree data structure, as
described further below. As the XSN statements are parsed, the XSN Interface 416 may call the Set
Manager 402 to assign GUIDs to the data sets referenced in the statements. The overall algebraic relation
representing the XSN statement may also be parsed into components that are themselves algebraic
relations. In an example embodiment, these components may be algebraic relations with an expression
composed of a single operation that reference from one to three data sets. Each algebraic relation may be
stored in the Algebraic Cache in the Set Manager 402. A GUID may be added to the Set Universe for
each new algebraic expression, representing a data set defined by the algebraic expression. The XSN
Interface 416 thereby composes a plurality of algebraic relations referencing the data sets specified in
statements presented to the system as well as new data sets that may be created as the statements are
parsed. In this manner, the XSN Interface 416 and Set Manager 402 capture information from the
statements presented to the system. These data sets and algebraic relations can then be used for algebraic
optimization when data sets need to be calculated by the system.

[0070] The Set Manager 402 provides a data set information store for storing information regarding the
data sets known to the system, referred to as the Set Universe in this example. The Set Manager 402 also
provides a relation store for storing the relationships between the data sets known to the system, referred
to as the Algebraic Cache in this example. Figure 4B illustrates the information maintained in the Set
Universe 450 and Algebraic Cache 452 according to an example embodiment. Other embodiments may
use a different data set information store to store information regarding the data sets or a different relation
store to store information regarding algebraic relations known to the system.

[0071] As shown in Figure 4B, the Set Universe 450 may maintain a list of GUIDs for the data sets
known to the system. Each GUID is a unique identifier for a data set in the system. The Set Universe
450 may also associate information about the particular data set with each GUID. This information may
include, for example, an external identifier used to refer to the data set (which may or may not be unique
to the particular data set) in statements provided through the connectors, a date/time indicator to indicate
the time that the data set became known to the system, a format field to indicate the format of the data set,
and a set type with flags to indicate the type of the data set. The format field may indicate a logical to
physical translation model for the data set in the system. For example, the same logical data is capable of
being stored in different physical formats on storage media in the system. As used herein, the physical
format refers to the format for encoding the logical data when it is stored on storage media and not to the
particular type of physical storage media (e.g., disk, RAM, flash memory, etc.) that is used. The format

field indicates how the logical data is mapped to the physical format on the storage media. For example,

-13-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
a data set may be stored on storage media in comma separated value (CSV) format, binary-string

encoding (BSTR) format, fixed-offset (FIXED) format, type-encoded data (TED) format and/or markup
language format. Type-encoded data (TED) is a file format that contains data and an associated value
that indicates the format of such data. These are examples only and other physical formats may be used
in other embodiments. While the Set Universe stores information about the data sets, the underlying data
may be stored elsewhere in this example embodiment, such as storage 124 in Figure 1, Network Attached
Storage 204 a, b and ¢ in Figure 2, memory 308 a-f in Figure 3 or other storage. Some data sets may not
exist in physical storage, but may be calculated from algebraic relations known to the system. In some
cases, data sets may even be defined by algebraic relations referencing data sets that have not yet been
provided to the system and cannot be calculated until those data sets are provided at some future time.
The set type may indicate whether the data set is available in storage, referred to as realized, or whether it
is defined by algebraic relations with other data sets, referred to as virtual. Other types may also be
supported in some embodiments, such as a transitional type to indicate a data set that is in the process of
being created or removed from the system. These are examples only and other information about data
sets may also be stored in a data set information store in other embodiments.

[0072] As shown in Figure 4B, the Algebraic Cache 452 may maintain a list of algebraic relations
relating one data set to another. In the example shown in Figure 4B, an algebraic relation may specify
that a data set is equal to an operation or function performed on one to three other data sets (indicated as
“guid OP guid guid guid” in Figure 4B). Example operations and functions include a projection function,
inversion function, cardinality function, join function and restrict function. Additional examples are
described at the end of this specification as part of the Example Extended Set Notation. An algebraic
relation may also specify that a data set has a particular relation to another data set (indicated as “guid
REL guid” in Figure 4B). Example relational operators include equal, subset and disjoint as well as their
negations, as further described at the end of this specification as part of the Example Extended Set
Notation. These are examples only and other operations, functions and relational operators may be used
in other embodiments, including functions that operate on more than three data sets.

[0073] The Set Manager 402 may be accessed by other modules to add new GUIDS for data sets and
retrieve know relationships between data sets for use in optimizing and evaluating other algebraic
relations. For example, the system may receive a query language statement specifying a data set that is
the intersection of a first data set A and a second data set B. The resulting data set C may be determined
and may be returned by the system. In this example, the modules processing this request may call the Set
Manager 402 to obtain known relationships from the Algebraic Cache for data sets A and B that may be
useful in evaluating the intersection of data sets A and B. It may be possible to use known relationships
to determine the result without actually retrieving the underlying data for data sets A and B from the
storage system. The Set Manager 402 may also create a new GUID for data set C and store its
relationship in the Algebraic Cache (i.e., data set C is equal to the intersection of data sets A and B).
Once this relationship is added to the Algebraic Cache, it is available for use in future optimizations and

calculations. All data sets and algebraic relations may be maintained in the Set Manager 402 to provide

-14-

10

15

20

25

30

35

WO 2097/134278 o PCT/US2007/068856
temporal invariance. The existing data sets and algebraic relations are not deleted or altered as new

statements are received by the system. Instead, new data sets and algebraic relations are composed and
added to the Set Manager 402 as new statements are received. For example, if data is requested to be
removed from a data set, a new GUID can be added to the Set Universe and defined in the Algebraic
Cache as the difference of the original data set and the data to be removed.

[0074] The Optimizer 418 receives algebraic expressions from the XSN Interface 416 and optimizes
them for calculation. When a data set needs to be calculated (e.g., for purposes of realizing it in the
storage system or returning it in response to a request from a user), the Optimizer 418 retrieves an
algebraic relation from the Algebraic Cache that defines the data set. The Optimizer 418 can then
generate a plurality of collections of other algebraic relations that define an equivalent data set. Algebraic
substitutions may be made using other algebraic relations from the Algebraic Cache and algebraic
operations may be used to generate relations that are algebraically equivalent. In one example
embodiment, all possible collections of algebraic relations are generated from the information in the
Algebraic Cache that define a data set equal to the specified data set.

[0075] The Optimizer 418 may then determine an estimated cost for calculating the data set from each of
the collections of algebraic relations. The cost may be determined by applying a costing function to each
collection of algebraic relations, and the lowest cost collection of algebraic relations may be used to
calculate the specified data set. In one example embodiment, the costing function determines an estimate
of the time required to retrieve the data sets from storage that are required to calculate each collection of
algebraic relations and to store the results to storage. If the same data set is referenced more than once in
a collection of algebraic relations, the cost for retrieving the data set may be allocated only once since it
will be available in memory after it is retrieved the first time. In this example, the collection of algebraic
relations requiring the lowest data transfer time is selected for calculating the requested data set.

[0076] The Optimizer 418 may generate different collections of algebraic relations that refer to the same
logical data stored in different physical locations over different data channels and/or in different physical
formats. While the data may be logically the same, different data sets with different GUIDs may be used
to distinguish between the same logical data in different locations or formats. The different collections of
algebraic relations may have different costs, because it may take a different amount of time to retrieve the
data sets from different locations and/or in different formats. For example, the same logical data may be
available over the same data channel but in a different format. Example formats may include comma
separated value (CSV) format, binary-string encoding (BSTR) format, fixed-offset (FIXED) format, type-
encoded data (TED) format and markup language format. Other formats may also be used. If the data
channel is the same, the physical format with the smallest size (and therefore the fewest number of bytes
to transfer from storage) may be selected. For instance, a comma separated value (CSV) format is often
smaller than a fixed-offset (FIXED) format. However, if the larger format is available over a higher
speed data channel, it may be selected over a smaller format. In particular, a larger format available in a
high speed, non-volatile memory such as a DRAM would generally be selected over a smaller format

available on lower speed non-volatile storage such as a disk drive or flash memory.

-15-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
[0077] In this way, the Optimizer 418 takes advantage of high processor speeds to optimize algebraic

relations without accessing the underlying data for the data sets from data storage. Processor speeds for
executing instructions are often higher than data access speeds from storage. By optimizing the algebraic
relations before they are calculated, unnecessary data access from storage can be avoided. The Optimizer
418 can consider a large number of equivalent algebraic relations and optimization techniques at
processor speeds and take into account the efficiency of data accesses that will be required to actually
evaluate the expression. For instance, the system may receive a query requesting data that is the
intersection of data sets A, B and D. The Optimizer 418 can obtain known relationships regarding these
data sets from the Set Manager 402 and optimize the expression before it is evaluated. For example, it
may obtain an existing relation from the Algebraic Cache indicating that data set C is equal to the
intersection of data sets A and B. Instead of calculating the intersection of data sets A, B and D, the
Optimizer 418 may determine that it would be more efficient to calculate the intersection of data sets C
and D to obtain the equivalent result. In making this determination, the Optimizer 418 may consider that
data set C is smaller than data sets A and B and would be faster to obtain from storage or may consider
that data set C had been used in a recent operation and has already been loaded into higher speed memory
or cache.

[0078] The Optimizer 418 may also continually enrich the information in the Set Manager 402 via
submissions of additional relations and sets discovered through analysis of the sets and Algebraic Cache.
This process is called comprehensive optimization. For instance, the Optimizer 418 may take advantage
of unused processor cycles to analyze relations and data sets to add new relations to the Algebraic Cache
and sets to the Set Universe that are expected to be useful in optimizing the evaluation of future requests.
Once the relations have been entered into the Algebraic Cache, even if the calculations being performed
by the Set Processor 404 are not complete, the Optimizer 418 can make use of them while processing
subsequent statements. There are numerous algorithms for comprehensive optimization that may be
useful. These algorithms may be based on the discovery of repeated calculations on a limited number of
sets that indicate a pattern or trend of usage emerging over a recent period of time.

[0079] The Set Processor 404 actually calculates the selected collection of algebraic relations after
optimization. The Set Processor 404 provides the arithmetic and logical processing required to realize
data sets specified in algebraic extended set expressions. In an example embodiment, the Set Processor
404 provides a collection of functions that can be used to calculate the operations and functions
referenced in the algebraic relations. The collection of functions may include functions configured to
receive data sets in a particular physical format. In this example, the Set Processor 404 may provide
multiple different algebraically equivalent functions that operate on data sets and provide results in
different physical formats. The functions that are selected for calculating the algebraic relations
correspond to the format of the data sets referenced in those algebraic relations (as may be selected during
optimization by the Optimizer 418). In example embodiments, the Set Processor 404 is capable of
parallel processing of multiple simultaneous operations, and, via the Storage Manager 420, allows for

pipelining of data input and output to minimize the total amount of data that is required to cross the

-16-

10

15

20

25

30

35

) WO 2007/134278))) PCT/US2007/068856
persistent/volatile storage boundary. In particular, the algebraic relations from the selected collection

may be allocated to various processing resources for parallel processing. These processing resources may
include processor 102 and accelerator 122 shown in Figure 1, distributed computer systems as shown in
Figure 2, multiple processors 302 and MAPs 306 as shown in Figure 3, or multiple threads of execution
on any of the foregoing. These are examples only and other processing resources may be used in other
embodiments.

[0080] The Executive 422 performs overall scheduling of execution, management and allocation of
computing resources, and proper startup and shutdown.

[0081] Administrator Interface 424 provides an interface for managing the system. In example
embodiments, this may include an interface for importing or exporting data sets. While data sets may be
added through the connectors, the Administrator Interface 424 provides an alternative mechanism for
importing a large number of data sets or data sets of very large size. Data sets may be imported by
specifying the location of the data sets through the interface. The Set Manager 402 may then assign a
GUID to the data set. However, the underlying data does not need to be accessed until a request is
received that requires the data to be accessed. This allows for a very quick initialization of the system
without requiring data to be imported and reformatted into a particular structure. Rather, relationships
between data sets are defined and added to the Algebraic Cache in the Set Manager 402 as the data is
actually queried. As a result, optimizations are based on the actual way the data is used (as opposed to
predefined relationships built into a set of tables or other predefined data structures).

[0082] Example embodiments may be used to manage large quantities of data. For instance, the data
store may include more than a terabyte, one hundred terabytes or a petabyte of data or more. The data
store may be provided by a storage array or distributed storage system with a large storage capacity. The
data set information store may, in turn, define a large number of data sets. In some cases, there may be
more than a million, ten million or more data sets defined in the data information store. In one example
embodiment, the software may scale to 264 data sets, although other embodiments may manage a smaller
or larger universe of data sets. Many of these data sets may be virtual and others may be realized in the
data store. The entries in the data set information store may be scanned from time to time to determine
whether additional data sets should be virtualized or whether to remove data sets to temporally redefine
the data sets captured in the data set information store. The relation store may also include a large
number of algebraic relations between data sets. In some cases, there may be more than a million, ten
million or more algebraic relations included in the relation store. In some cases, the number of algebraic
relations may be greater than the number of data sets. The large number of data sets and algebraic
relations represent a vast quantity of information that can be captured about the data sets in the data store
and allow extended set processing and algebraic optimization to be used to efficiently manage extremely
large amounts of data. The above are examples only and other embodiments may manage a different

number of data sets and algebraic relations.

-17-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
[0083] Figure 5 is a block diagram illustrating one example embodiment of a software module

implemented to facilitate importing information into the system. Unlike conventional database systems,
the system does not immediately operate on the data sets presented. Rather, the system records a
reference to the new data set in a data set information store. In an example embodiment, this is
accomplished by adding a new GUID to the Set Universe. Once the data sets are known to the Set
Universe, they can be used by the system.

[0084] As mentioned previously, information may be added to the system through the functions
contained within the Administrative Interface 424 and described in further detail below. One such
method to add information to the system is by issuing a command 501 to the import function 502 to
import an information set 506. In one embodiment, the command includes the physical location of the
data set to be imported, the external identifier, and a value indicating the logical to physical mapping that
the data set employs to encode the data for storage. A variety of physical formats can be supported,
including comma-separate value (CSV) files, extensible markup language (XML) files, fixed length files
(FIXED), XSN formatted files, and others. In addition, the information set may be located on a variety of
persistent or volatile storage media and may be locally attached or remotely accessed via a network or
other communication methods. The information set could also be distributed across a plurality of
different physical storage media or may be provided from a real-time data stream, such as data packets
received over a network or input from a user (e.g., to be input by an end user in real time). After the
command is issued, the import function 502 parses the command and causes the Set Manager 503 to
create a data set with the associated external identifier and physical format value. The Set Manager 503
then creates a GUID for the associated data set and enters various information into the Set Universe,
including the physical format type value, the external identifier, the associated GUID, and the fact that the
GUID is realized. The Import Function 502 then calls the Storage Manager 504 to create an association
between the data set’s physical location identifier and the GUID assigned by the Set Manager 503.
Specifically, the Storage Manager 504 adds an index record to the Storage Map 505 that contains the
physical path of the data and the associated GUID. The data set 506 is now imported into the system and
control is returned to the caller. Information about data sets may also be captured by the system even 1if
the data set has not been realized on storage (i.e., it is virtual). For instance, a data set C may be defined
as the union of data sets A and B. Data sets A and B may be realized in storage, but data set C may only
be defined by the relation “C = A UNION B” in the Algebraic Cache and may not be realized in storage
at the time that a GUID for data set C is added to the Set Universe.

[0085] Statement submission is the process of providing an assignment or relation to the system.
Statements may be submitted to the system through a variety of interfaces. In one example embodiment,
three interfaces are provided: an SQL connector for submitting standard SQL92-compliant statements an
XSN connector for submitting statements using XSN, and an XML connector for submitting Web

Services W3C XQuery-compliant and other XML-based statements.

-18-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
[0086] Figure 6 is a block diagram illustrating one example embodiment of how a software module may

be implemented to facilitate submitting statements to the system. In this example, a standard SQL
command is submitted to the system through the SQL Connector 601. The SQL command may contain
one more standard SQL92-compliant SQL statements. The SQL Connector 601 first captures the time of
the submission in order to establish the temporal value for all sets contained within the statements
submitted. The command is then parsed in order to validate that the syntax of the SQL statements is
correct. If there are any syntax or compliance errors, an error message is returned to the caller and the
submission is discontinued. If there are no errors, the SQL Connector 601 then constructs an internal
navigable representation of the SQL command that is outputted to the SQL Translator 602. The SQL
Translator 602 then converts the internal navigable representation of the SQL command into the
appropriate equivalent XSN statements. After the translation, the resulting XSN statements are passed to
the XSN Interface 603 for further processing. Each statement is then converted from its textual XSN
representation to an internal structure referred to as an XSN tree. The XSN tree provides a means for
programmatically examining the members of the XSN statement as well as a means for navigating the
elements of the statement.

[0087] The XSN tree is then examined to determine if the statement represents an assignment or a
relation. If the statement is an assignment, a GUID is assigned by the Set Manager 402 to the algebraic
expression specified in the statement. Then the XSN tree is examined to assign GUIDs to all data sets
and operations within the expression and to determine if the expression includes any explicit sets or any
redundant assignments. Explicit sets are sets that are inputted into the system as part of the statement,
such as may occur in the context of a standard SQL “insert” statement. Redundant assignments are
assignments that contain operations and arguments that are already in the Algebraic Cache. In the case of
explicit sets, these sets are assigned a new GUID by the Set Manager 402 and immediately realized by the
Set Processor 404. In the case of redundant assignments, which are discovered by searching the
Algebraic Cache for expressions that contain the same operation and right values (rvalues), the GUID of
left value (Ivalue) of the existing assignment entry in the Algebraic Cache is retrieved from the Set
Manager 402 and assigned to the lvalue of the redundant assignment within the expression. If an
assignment is not redundant, a new GUID is provided for the assignment from the Set Manager 402 and
assigned to Ivalue of the assignment within the expression. Complex algebraic relations specified by the
statement may also be decomposed into a collection of primitive (atomic) relations and assignments.
GUIDs may be provided for these relations and assignments and the corresponding algebraic relations
may be added to the Algebraic Cache.

[0088] Once all explicit sets and assignment lvalues have been assigned GUIDs, control is then returned
to the SQL Connector 601. If necessary, a second call is then made to the XSN Interface 603 to realize
any sets that are expected to be returned to the caller. The realized sets are then returned to the caller.
[0089] Figure 7 illustrates an example of a statement that may be submitted to the system for the method

of Figure 6. In this example, a user is querying the database for certain information related to a standard

-19-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
commercial transaction. The request is represented by the standard SQL statement 701. The

ORDERKEY being requested in this case is “12345.” Specifically, the user in this example is requesting
the discount, ship date, and comment for items in a particular customer order numbered “12345.” The
information is obtained from two tables, LINEITEM and ORDERS. The two tables will be joined based
on the L ORDERKEY field being equal to the O_ORDERKEY field. SQL statement 701 is passed to
the SQL Connector 601 by the user. The SQL Translator 602 converts the internal navigable
representation of the SQL statement into the appropriate equivalent XSN statement 702. Note that the
columns or fields of the LINEITEM and ORDERS tables have been converted into representations that
are not specific to relational databases. Specifically, the columns or fields of the LINEITEM table are
now represented by domains “1” through “16” and the columns or fields of the ORDERS table are now
represented by domains “17” and above. Starting from the inner-most function in the equation, the join
operation of SQL statement 701 has been converted into the rdmJoin operation, with LINEITEM,
ORDERS, and NULL being passed as the three parameters. The result of the rdmJoin is then passed to
the rdmRest operation which restricts the data resulting from the join operation to only the data in which
domain “1”, the L ORDERKEY domain of the LINEITEM dataset, is equal to the constant “12345” and
domain “1”, the L_ ORDERKEY field from the LINEITEM dataset, is also equ#l to domain “17”, the

O ORDERKEY domain from the ORDERS dataset. The XSN statement 702 is then passed to the XSN
Interface for further processing.

[0090] The XSN Interface 603 records the time of the submission in order to establish the temporal value
for the sets contained within the statement submitted. The statement is then converted from the XSN
statement 702 into an XSN tree 703. The structure of XSN trees is described further below in connection
with Figures 12A and 12B. As part of the conversion process, GUIDs are created or retrieved from the
Set Manager 402 and inserted into the XSN tree 703 for the corresponding sets. Control is then returned
to the SQL Connector 601.

[0091] Because the example embodiment in this case requested a result set, a second call would then
made to the XSN Interface 603 to realize any sets that are expected to be returned to the caller. The XSN
tree 703 is then passed to the Optimizer 604 where the XSN tree 703 is optimized for efficiency, resulting
in the optimized XSN tree 704 (shown here in expression format as opposed to tree format merely for
illustrative purposes). Note that, in the example case, the optimizer merged the rdmRest into the rdmJoin
for efficiency. The optimized XSN tree 704 is then passed to the Set Processor 605 where the collection
of algebraic relations in the XSN tree is calculated. The realized sets are then returned to the caller.
[0092] Figure 8 is a block diagram illustrating one example embodiment of a software module
implemented to facilitate set realization. Set realization is the process of calculating the membership of a
set and realizing a physical representation of such set in storage. Set realization can be initiated from the
system’s external interfaces that support realization, such as the SQL Connector or the XML Connector,
or from the Executive software module as part of a set export procedure. In this example embodiment, an
export command is issued to the Executive 801. The command may identify an external identifier or a

GUID to be exported, along with a storage path. The Executive 801 then passes the external identifier or

-20-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
the GUID to the XSN Interface 802. If an external identifier was identified in the command, the XSN

Interface 802 passes the external identifier to the Set Manager 803. The Set Manager 803 determines the
GUID associated with the external identifier and returns the GUID to the XSN Interface 802. This
lookup is performed relative to the temporal values associated with the GUID. Unless otherwise
specified by the user, the example embodiment uses the most recent GUID associated with the external
identifier. Once the associated GUID is determined, the external identifier is replaced with the associated
GUID. The GUID to be realized, whether specified directly in the command or obtained from the
external identifier, is then passed to the Set Manager 803 to determine if it is realized. If the data set
associated with the GUID is already realized, control is returned to the Executive 801. If the data set
associated with the GUID is not realized, the GUID is then submitted to the Optimizer 804 to be realized.
The Optimizer 804 then determines the optimal collection of algebraic relations representing the data set
associated with the GUID. The collection of algebraic relations is then passed to the Set Processor 805
where it is calculated. Once the collection of algebraic relations is submitted to the Set Processor 805,
control is returned to the Executive 801. The Executive 801 then requests that the Storage Manager
provide the data from the data set to the Executive 801, which then saves the data to storage using the
path name specified in the export command.

[0093] Figure 9A is a block diagram illustrating an example embodiment of an algebraic and operational
optimizer software module. The optimizer manipulates collections of algebraic relations to algebraically
and operationally optimize them prior to submission to the Set Processor 909. There are numerous
methods that could be used to determine which collections of algebraic relations are most efficient based
on the system environment and the various limitations or performance weaknesses related thereto.

[0094] In the example embodiment in Figure 9A, the optimizer operates with regard to two basic
principles. First, no alternative plan to realize a data set has a lower cost than simply reusing a data set
which has been previously realized. Second, the amount of data retrieved across the storage-boundary
performance barrier should be minimized. Other principles may also be applied in other example
embodiments, especially as the state of technology changes. The foregoing basic principles are realized
in the example embodiment through three optimization routines, the find AltOps routine 904, the
findMetaGuids routine 905, and the findAltGuids routine 906. It is important to note that other
optimization routines could be used and there could be more or fewer optimization routines in a system.
In the example embodiment, the optimization routines are performed in a specific sequence designed to
attempt the optimizations that are more likely to result in a collection of algebraic relations with
sufficiently low cost as quickly as possible.

[0095] The findLeastCost routine 903 is executed before the optimization routines are executed and after
each optimization routine is executed, as further described below. The cost related to execution of a
particular collection of algebraic relations is determined by estimating the time that it will take the system
to retrieve the data sets necessary to calculate the collection of algebraic relations from storage. The
estimated retrieval time may be calculated based on the speed in which information can be retrieved

across each respective /O storage barrier and the estimated amount of information required to be

21-

10

15

20

25

30

35

. WO 2007/134278))) PCT/US2007/068856
retrieved across such storage barrier. The cost determination could also take into account other factors,

such as whether or not the information will be read across the same or different I/O channels and whether
certain information is used in multiple subparts of the expression, both of which could affect
performance. These optimization techniques may result in different optimizations depending upon the
state of the system when the optimization routines are executed. For example, different data sets with the
same logical data may be available in different data formats having different sizes. If they are available
over the same I/O channel, the data set with the smaller format may be selected. However, the larger
format may be selected if it has been recently accessed and is already available in a high speed memory or
cache.

[0096] In the example embodiment, the XSN Interface 901 calls the optimizer software module in order
to realize a set associated with a collection of algebraic relations. The XSN Interface 901 passes the
GUID of the set to be realized to the buildExpressions routine 902 within the optimizer software module.
The buildExpressions routine 902 retrieves one or more original algebraic relations that define the set or
sets identified by the GUID from the Algebraic Cache. These algebraic relations may be referred to as
genesis expressions. The buildExpressions routine 902 then builds an OptoNode tree representation of
such genesis expressions. OptoNode trees are described in further detail below and can be used to
represent an algebraic relation as a collection of more primitive algebraic relations. The optimizer
software module then executes the findLeastCost routine 903 to determine the lowest cost genesis
expression. If the findLeastCost routine 903 determines that the genesis expression found to be lowest
cost is sufficiently inexpensive to execute, further optimization is aborted and the algebraic relation for
such genesis expression is submitted to the realizeNode routine 908 as described below.

[0097] If the findLeastCost routine 903 determines that the genesis expression found to be the lowest
cost is not sufficiently inexpensive to execute, the findAltOps routine 904 is executed to find alternative
operations. This routine synthesizes alternative versions of the genesis expressions using extended set
theory algebra. The synthesized alternative expressions are constructed to be potentially less costly to
execute, as well as to be easily identified in the Algebraic Cache. Expression synthesis is done based on
the recognition of “forms” of expressions and the substitution of other forms that are algebraically
equivalent but less costly to compute and/or more likely to be recognized in the Algebraic Cache. A
simple example is a restriction on two joined sets. Using some notational shorthand, this could be
expressed as SETA = R(J(a,b,c),d). However, the join operation is also capable of doing restrictions and
an equivalent expression is SETA = J(a,b,CP(c,d)). Both of these forms require the same amount of input
data to compute, however the second form will generate less output data. This means that the second
form will require less computational and I/O resources. Whether or not the second form is preferable
over the first will depend on what is available from the Algebraic Cache and which sets are already
realized in persistent storage. However, exploring both forms in the Optimizer 418 allows for a larger
probability of finding more efficient alternatives.

[0098] If the findAltOps routine 904 indicates that alternative expressions were found, then the

findLeastCost routine 903 is executed again to find the least-costly expression based on the least cost

22-

10

15

20

25

30

35

WO 2007/134278)) PCT/US2007/068856
genests expression and the alternative expressions. Once again, 1f the findL eastCost routine 903

determines that the expression found to be lowest cost is sufficiently inexpensive to execute, further
optimization is aborted and such expression is submitted to the realizeNode routine 908 as described
below. The threshold for discontinuing optimization may be determined based on the relative speed of
the processing resources and data channels and/or other system characteristics. In one example, the
threshold is set to 10 MB of data transfer. In this example, 10 MB of data can typically be transferred in
about one tenth of a second, so further optimization is abandoned and the set is simply calculated from the
expression.

[0099] If neither the genesis expressions nor their alternatives identified by the findAltOps routine 904
were sufficiently inexpensive to execute, as determined by execution of the findLeastCost routine 903,
then the next optimization routine is performed. In the example embodiment, the next optimization
routine is the findMetaGuids routine 905. The findMetaGuids routine 905 locates all expressions that
have an incrementally small cost and submits them to the Set Processor for execution. Expressions with
an incrementally small cost often only contain metadata. Examples of low cost operations include
predicate cross products (CP operation), output scope transforms (OST operation), and relational data
model sort domain for left and right (rdmSFL and rdmSFR operations). These operations typically
operate on metadata in the user data model and produce additional metadata. Physical set sizes are
typically under 500 bytes or so, making them prime candidates for rapid calculation far below the
execution threshold of the Optimizer 418. Therefore, rather than test if these operations meet the
minimum threshold, they may simply be executed immediately from the Optimizer 418. The
findLeastCost routine 903 is then called again to select the least-costly expression as between the least
expensive expression determined from the previous call to the findLeastCost routine 903 and the
expressions resulting from the findMetaGuids routine 905. Once again, if the findLeastCost routine 903
determines that the expression found to be lowest cost is sufficiently inexpensive to execute, further
optimization is aborted and such expression is submitted to the realizeNode routine 908 as described
below.

[00100] If the lowest cost expression identified by the findLeastCost routine 903 is still not
sufficiently inexpensive to execute, then the findAltGuid routine 906 is executed. The findAltGuids
routine 906 determines if one or more subexpressions can be replaced by alternative expressions that
describe previously realized sets. As the cost of reusing realized sets is always less than the cost of
executing the expressions required to realize such sets, this routine may be used to provide a further
reduction in cost. One example of a subset substitution may be described using the relational data model.
Assume that a particular field (called SIZE and the third field of the table) in a table {called BOXES) has
values ranging from 0 to 100. A user then issues a query (Q1) asking for all boxes of size less than 50.
This is expressed in XSN as Q1 = rdmREST(BOXES, {{{*“LT”.<”3”,”CONST”.”50”>}}}). Some time
later, a user asks for all boxes less than 25 in size. This is submitted as Q2 = rdmREST(BOXES,
{{{“LT”.<"3”,”CONST”.”25">}}}). In both of these queries, if executed as submitted, the entire

BOXES data set must be read to determine the results Q1 and Q2. However, mathematical inspection of

23-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
the metadata sets {{{“LT”.<”3”,”CONST”.”50”>}}1} and { {{“LT”.<”3”,”CONST”.”25”>}}} indicates

that any set restricted by the second is a subset of the first. Therefore an algebraic substitution can be
made and the following expression produced: Q2 =rdmREST(Q1, {{{*LT”.<”3”,”"CONST”.”25”>}}}).
If Q1 has already been realized in persistent storage, it can be shown that the size of Q1 must be less than
the size of BOXES, and therefore require less I/O cost to transfer. This then provides an overall less
costly means for evaluation Q2 than the original submitted expression if Q1 is already realized.

[00101] After the subexpressions have been replaced by any suitable alternative expressions, the
findLeastCost routine 903 is executed again to select the least-costly expression as between the least
expensive expression determined from the previous execution of the findLeastCost routine 903 and the
expressions resulting from the find AltGuids routine 906. If the findLeastCost routine 903 determines that
the expression found to be lowest cost 1s sufficiently inexpensive to execute, further optimization is
aborted and such expression is submitted to the realizeNode routine 908 as described below.

[00102] After the optimization work described above is complete, the optimizer calls the
realizeNode routine 908. The realizeNode routine 908 converts the OptoNode tree to an XSN tree, calls
the spProcessXsnTree routine to submit the XSN tree to the Set Processor 909 for execution, deletes the
XSN tree and returns control to the optimizer software module, which then returns to the XSN Interface
901.

[00103] Figure 9B is a block diagram illustrating another example embodiment of an algebraic
and operational optimizer software module. Unlike the example embodiment presented in Figure 9A, the
optimization routines in this example embodiment are applied to each OptoNode tree proceeding from the
leaves to the root. This approach provides the results of each of the optimization routines as the
arguments to the expressions, resulting in further chances for optimization, but at the expense of increased
execution time. Under conditions where significant additional optimizations can be made, this approach
may be preferable.

[00104] The implementation in the example embodiment uses only two optimization routines, the
findOperational routine 913 and the findAlgebraic routine 914. Unlike the previous example
embodiment, the findLeastCost routine 903 is executed only after both findOperational routine 913 and
findAlgebraic routine 914 have been performed. The functionality of the findLeastCost routine 903 is the
same as that described in the previous example embodiment.

[00105] As in the previous embodiment, the XSN Interface 901 calls the optimizer software
module and passes the GUID of the set to be realized to the buildExpressions routine 902. The
buildExpressions routine 902 is the same as that described in the previous example embodiment. After
the buildExpressions routine 902 has constructed the OptoNode tree for the expression, the
findOperational routine 913 is executed to find alternative operations. This routine performs the identical
function to findAltOps routine 904 as described in the previous example embodiment.

[00106] After the find Operational routine 913 completes, the modified OptoNode tree is passed

to the findAlgebraic routine 914 to find additional alternative expressions. The findAlgebraic routine 914

-24-

10

15

20

25

30

35

. WO 2007/134278]] PCT/US2007/068856
iterates over the OptoNode tree from the right to left and innermost to outermost expression. This order

of iteration results in the maximum potential for finding additional alternative expressions. As each
expression contains one operation and between one and three arguments, each combination of arguments
and the operation are presented one at a time to the findExpressions routine 915. The findExpressions
routine 915 then executes code specific to the operation of the expression with the intention of finding or
synthesizing alternative expressions. The code specific to the operation may perform algebraic
substitutions of arguments from the Algebraic Cache, perform calculation of low cost expressions
contained within the expression, calculate the expression itself, and synthesize alternative forms of the
expression or any of the expression’s arguments. Any alternative expressions are then added by the code
specific to the operation to the OptoNode tree at the appropriate location.

[00107] After the optimization work described above is complete, the Optimizer calls the
realizeNode routine 908, which is the same as the realizeNode routine in the previous example
embodiment. Control then returns to the XSN Interface 901.

[00108] The system may also perform comprehensive optimization. Comprehensive optimization
analyzes relations and data sets to add new relations to the Algebraic Cache and sets to the Set Universe
that are expected to be useful in optimizing the evaluation of future requests. This may be performed
based on the pattern of past requests to the system, which can be used to perform optimization in
anticipation of similar requests in the future. This comprehensive optimization may be performed in the
background by using spare processor cycles. Figures 9C, 9D, 9E, 9F, 9G and 9H illustrate example
methods of comprehensive optimization. However, a variety of other comprehensive optimizations are
possible and these example embodiments are only a few examples within the present invention.

[00109] Figure 9C illustrates an example in which an individual scalar value or open ended range
of scalar values identifies the membership of a subset. Queries of this nature can benefit from creating
subsets that partition the data into sets of equal cardinality where each subset contains a specific range of
values. For example, a data set may have a data distribution as shown at 950 in Figure 9C. This data set
may be partitioned into multiple data sets of equal cardinality, such as subsets 1-6 as shown at 950 in
Figure 9C. An example of this would be asking for all transactions that occurred after or before a certain
date. This optimization has the advantage of reducing the amount of data that the Set Processor must
examine to calculate future subsets of a similar nature. The comprehensive optimization routine would
identify this situation by detecting a significant number of relational restrictions against a specific set
using a range of scalar values by inspection of the Algebraic Cache. From these entries, the Optimizer
would determine the maximum and minimum scalar values queried to establish the range of scalar values
to be partitioned. The Optimizer would then determine the number of partitioning subsets to be equal to
the average number of available /O channels. Finally, the Optimizer would insert the appropriate
relations into the Algebraic Cache and sets into the Set Universe for each of the partitioning subsets. The
Optimizer may also insert a relation indicating that the union of the subsets equaled the set and invoke the

Set Processor to calculate each of the partitioning subsets.

25-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
[00110] Figure 9D illustrates an example comprehensive optimization that is similar to the

optimization in Figure 9C, except the criteria for membership in the portioning subsets is based on the
scalar values falling within specific ranges. An example of this would be determining that desired subsets
are for given ranges of customers’ ages. For example, the data in a data set may fall within specific
ranges as shown at 954 in Figure 9D. This data set may be partitioned into subsets 1-5 encompassing
each of these ranges, as shown at 956 in Figure 9D. As with the other example comprehensive
optimizations, this type of partitioning allows for less data to be examined by the Set Processor, resulting
in an improvement via the reduction of the calculation time and resources required.

[00111] Figure 9E illustrates another form of comprehensive optimization, but this example
optimization is based on the domains of the members of a set instead of the scalar values. In this
example, the Optimizer determines that only certain domains are required to produce useful subsets and
that other domains are not required. For example, the data set 958 in Figure 9E has columns 1-5, but the
Optimizer may determine that many requests only require columns 1, 3 and 4 to be used. The Optimizer
would then make entries in the Set Manager to generate a subset with members containing only the
domains of interest and invoke the Set Processor to generate this subset. For example, a data set may be
created with only columns 1, 3 and 4 as shown at 960 in Figure 9E.

[00112] Figure 9F illustrates an example in which it is determined that the scalar value of a
domain of interest has relatively low cardinality. An example would be a binary domain having the scalar
values TRUE and FALSE as shown at 962. The Optimizer would then create relations for subsets where
this domain was monotonic for each value present in the domain while eliminating the domain from the
resultant subset. For example, as shown at 964, a subset could be created for all members of the original
data set where the value of the domain is FALSE and a separate subset could be created for all members
where the value of the domain is TRUE. This optimization can have significant performance benefits, as
even a binary field offers an average improvement in performance of one hundred percent.

[00113] Figure 9G illustrates an example in which a set is comprised of the relational join of two
sets. In conditions where the join results in a data set where the cost is equal to or less than the original
two sets, the Optimizer would perform the join. An example of this would be a relational inner join
where primary and foreign keys exist that do not correspond between the relational sets. For example, a
first data set 966 may include three columns (shown as columns 1, 2 and 3 of data set 966 in Figure 9G)
and a second data set 968 may include four columns (shown as columns 1, 2, 3 and 4 of data set 968 in
Figure 9G). These two data sets may be joined to create a third data set 970 with seven columns (shown
as columns 1, 2, 3, 4, 5, 6, and 7 of data set 970 in Figure 9G)

[00114] Figure 9H illustrates an example of vectored muitipaging. If users often access
information in a particular way (e.g., 2 phone number is used to look up name and address information
about a person), the Optimizer may automatically define new data sets and add new relations to the
Algebraic Cache to make these requests more efficient (e.g., defining a data set that includes only phone

number, name and address) by creating vectored multipages. For example, the Optimizer may determine

-26-

10

15

20

25

30

35

WO 2007/134278 _ o PCT/US2007/068856
that the three digit area code, three digit prefix and four digit postfix components of a phone number are

to be used for vectored multipaging. The Optimizer would then create a set 972 containing 1,000 subsets
974 for each of the 1,000 possible area codes (000-999). Each of these subsets would contain 1,000
GUIDs referencing subsets for each of the possible prefix values (000-999) and each of these subsets
would contain 10,000 members with the name and address information about a person for each four digit
postfix. Fully populated, this could create 100,000 subsets based on the area code and phone number
prefix. However, since many area code and prefix combinations would not be in use, these entries would
simply refer to the NULL set. Once these sets were created, the Set Processor can make use of them to
quickly locate an individual person based on their phone number by simply using the area code as an
offset (vector) into the area code set, retrieving the GUID representing the appropriate prefix subset, then
using the prefix as an offset to determine the GUID of the appropriate postfix subset. Finally, the phone
number postfix would be used as an offset to locate the data for the individual person.

[00115] Figure 10A is an illustration of an OptoNode tree structure. OptoNode trees are used to
keep track of the relations, expressions and arguments being manipulated by the Optimizer. At the root of
the tree is an OptoNode 1001, which is a list of a plurality of OptoExpressions 1002. Each
OptoExpression 1002 in the list contains information related to a mathematically equivalent variation of
the other expressions in the same list. Specifically, in the example embodiment, each OptoExpression
1002 contains an operation type, a GUID identifying the expression, various flags (these Boolean flags
indicate if the OptoExpression has a GUID, if the expression it represents is in the Algebraic Cache, and
if the OptoExpression is used as part of an alternative expression for the GUID), cost information (a value
indicating the cost to be used in evaluating the cost of this OptoExpression and a value indicating the cost
of the expression if it is realized independently of the rest of the expression it is contained in) , and up to
three OptoNode arguments. The Optimizer creates one or more OptoExpressions 1002 in order to
determine the most efficient method for evaluating the desired expression. As described above, the
Optimizer analyzes each OptoExpression 1002 and determines the cost associated with evaluating the
expression. The Optimizer can then determine which OptoExpression 1002 to use for efficiency.
[00116] Figure 10B illustrates an example OptoNode tree. At the root of the tree is OptoNode
1004 which is a list of OptoExpressions representing mathematically equivalent expressions. Each
OptoExpression includes a list of the arguments for the expression. For instance, OptoExpression 1006
includes three arguments Arg[0], Arg[1] and Arg[2]. Each argument may, in turn, reference an
OptoNode that lists alternative expressions that may be used for the particular argument. For instance,
OptoNode 1008 references a list of expressions (List[0], List[1], List[2], ...) that may be used for Arg[2]
of OptoExpression 1006. These expressions, in turn, are represented by OptoExpressions 1010, 1012 and
1014. Each of these expressions provides a mathematically equivalent result when used for the argument
Arg[2] of the expression represented by OptoNode 1006. This OptoNode tree structure allows muitiple
equivalent expressions to be listed at each level of the tree. For example, the findAlgebraic routine 914 in
the Optimizer (shown in Figure 9B) can iterate over the OptoNode tree to find additional alternative

expressions and add them to the OptoNode tree. The findLeastCost routine 915 can then traverse the

-27-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
OptoNode tree to identify the particular collection of expressions that can be used to calculate the overall

result with the least cost. The selected collection of expressions can then be converted into an XSN tree
and sent to the Set Processor for calculation.

[00117] The Set Processor is responsible for all calculations and logical value comparisons
performed by the system on data sets. In one example embodiment, it may be a multithreaded, reentrant
body of software designed to take advantage of systems containing multiple processors and multiple
independent, non-contending I/O channels between system memory and persistent storage. The Set
Processor may also be designed to take advantage of data pipelining between operations. That is, the
result of one operation may be directly passed on as the input of the next without such result being written
to persistent storage intermediately. Data pipelining can greatly improve the efficiency of the Set
Processor by reducing the amount of data crossing the I/O performance barrier, as well as reducing the
burden on the Storage Manager, which is responsible for obtaining data from persistent storage.

[00118] The execution of the various operations is monitored by an object known as the Thread
Pool. The Thread Pool is responsible for launching the execution threads for each operation as requested
by the ProcessOp routine, monitoring their execution and reporting their success or failure. The Thread
Pool also works with the Executive to limit the current number of threads executing within the engine as
required to manage system resources. Threads could be implemented with a number of different
hardware and software platforms. For example, a traditional single-core processor such as processor 102
in Figure 1 could be used with an operating system such as Microsoft Windows®, which simulates multi-
processing. In an alternative embodiment, multiple processors or multi-core processors could be used
with one or more threads being assigned to each of the processors. In another embodiment, a
multiprocessor system as illustrated in Figure 3 could be used, with a thread of execution assigned to each
MAP 306 a-f. Regardless of the physical implementation of the system, the Set Processor in an example
embodiment may chain together operations using lists, tree, or other structures such that the output from
one thread becomes the input of another thread in order to increase performance.

[00119] The operations within the Set Processor are individual routines designed to perform a
calculation on one or more input data sets and produce an output data set. These operations are
equivalent to the extended set operations and functions found to be useful in data processing. The Set
Processor may also have multiple implementations of the algorithms for each operation in order to
support a wide variety of physical to logical format mappings. By tailoring the operational routine to the
physical data formats, higher efficiencies and performance can be achieved over converting all data into a
single physical representation for processing. One example embodiment supports logical to physical
mappings between different formats such that, for example, data can be mapped between comma
separated value (CSV) format, binary-string encoding (BSTR) format, fixed-offset (FIXED) format, type-
encoded data (TED) format, and/or markup language format. This allows the data to be processed by the
system without having to convert all of the data into a common format. For example, if the system needs
to calculate the result of a join between a first data set in CSV format and a second data set in XML

format, the system could use its mappings to calculate the result and return such result in either CSV

28-

10

15

20

25

30

35

WO 2007/134278)) PCT/US2007/068856
format, XML format, or another selected format without having to convert any of the data into another

format. In addition, one example embodiment contains a number of logical to physical mappings for
atomic values as well, such as strings, 32-bit integers, 64-bit integers, floating point numbers, currencies,
Boolean values, datetime values, and interval values. These mappings can be used in a similar way as the
data format mappings. A system may contain all of the potential mappings for the various data formats
and atomic formats supported, or only selected mappings can be included. For example, if an example
embodiment supported five data formats, then there are five inputs and five outputs for each mapping
routine, resulting in 125 potential versions of the software routines. In the example embodiment,
software routines for mapping between various formats are only included when there is a material
increase in efficiency. If no material efficiency would result, the example embodiment would convert the
data into a common format instead of using a mapping function.

[00120] Another function of the Set Processor is to provide instances of object oriented data
models of common sets schemas used throughout the program. This includes predicate sets, domain sets,
cardinality sets and others that meet certain definitions and are useful constructs within the algebraic and
calculation processing performed by the program.

[00121] Figure 11 illustrates an example embodiment of the set processor software module. In
the example, the Optimizer is presenting an XSN tree to the Set Processor for evaluation through the
spProcessXsnTree routine 1102. The spProcessXsnTree routine 1102 examines the XSN tree and
determines if the XSN tree represents an assignment or relational statement, or if the XSN tree represents
an explicit set.

[00122] In the case of an assignment statement, the ProcessXsnAssignment routine 1105
examines the statement to determine if the left value (lvalue) of the statement is confirmed to be an XSN
set. If the Ivalue is not a set, the routine returns a failure code. The right value (rvalue) is then examined
to determine if it is an operation or an explicit set. If the rvalue is an explicit set, the external identifier
associated with the lvalue is associated with the GUID of the rvalue. If the rvalue is neither an operation
nor an explicit set, the routine returns a failure code. If the rvalue is an operation, the ProcessXSN routine
1107 is called to continue the processing.

[00123] In the case of a relation statement, the ProcessXSNRelation routine 1106 checks to verify
that the Ivalue and rvalue are operations. If either or both are operations, the ProcessXSN routine 1106 is
called to continue the processing for either or both. If the lvalue or rvalue are not operations, they are
simply ignored. The purpose of this is to realize any set that is referenced in a relation statement so that
the relation can be evaluated, typically, but not limited to, supporting the optimizer.

[00124] In the case of a request to realize an explicit set, the spProcessXsnTree routine 1102
immediately realizes the set in routine 1103 and returns a2 GUID identifying the realized set.

[00125] The ProcessXSN routine 1107 examines all of the members of the XSN tree, starting

with the current operation at the root of the XSN tree and recursively calls itself for all operations. Each

20

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
operation to be executed is passed to the ProcessOp routine 1108 in an order such that the root operations

of the XSN tree are initiated before the lower operations, to ensure proper data pipelining is established.
[00126] The ProcessOp routine 1108 takes each operation and inserts it into the Thread Pool 1109
with the appropriate GUIDs for all sets associated with the operation to be performed. The Thread Pool
1109 then launches individual threads of execution for each operation within the statement presented to
the ProcessXSN routine 1107. These threads of execution then run independently by calling the
appropriate operation 1110 until the operation completes. Upon the completion of each of these threads,
the Thread Pool 1109 is notified of the thread’s completion and provides the appropriate clean-up and
error handling, which includes removing the thread from the list of active threads.

[00127] The Set Processor also contains functions known as spLogical routines, which are
designed to perform logical operations on sets. These logical operations are fundamentally different than
the calculation operations performed by the spProcessXsnTree routine 1102 of the Set Processor. The
spLogical routines, which include spLogicalEqual, spLogicalPrediateEqual and
spLogicalPredicateSubSet are designed to compare two data sets, typically stored in binary XSN notation,
and determine their logical relationship to each other. These relationships include equality, subset,
superset and disjoint. These functions are used by the Optimizer in determining alternative expressions.
[00128] Figure 12A is an illustration of an XSN tree structure that can be used to represent an
example XSN expression in the system. The XSN tree provides a convenient format for processing XSN
expressions in the system. Figure 12A illustrates an XSN tree for the expression A REL OP(B,C,D).
This expression relates the data set A by a relation (REL) to an operation (OP) performed on data sets B,
C and D. The XSN ftree is a doubly-linked list that is comprised of a relation node 1201, an operation
node 1205, a plurality of member nodes 1202, 1203, 1206, 1207 and 1208, and a plurality of data sets
1204, 1209, 1210 and 1211. The relation node 1201 specifies the relation of the expression, such as
equals, less than, greater than, etc. The relation node 1201 is linked to member node 1202, which has as
its left child a link to data set A 1204 (which is the left value of the statement) and as its right child a link
to member node 1203. Member node 1203 is linked to the operation node 1205 as its left child. The
operation node 1205 identifies the operation to be performed, such as projection, restriction, join, etc.
The operation node 1205 is linked to member node 1206, which has as its left child a link to data set B
1209 and as its right child a link to another member node 1207. Member node 1207 has as its left child a
link to data set C 1210 and as its right child member node 1208. Member node 1208 is linked to data set
D 1211.

[00129] Figure 12B is an illustration of an XSN tree structure that can be used to represent an
example XSN assignment statement in the system. Figure 12B illustrates an XSN tree for the assignment
statement SQL1 = rdmPROJ(rdmREST(A, C1), C2). This statement assigns the alphanumeric identifier
SQL1 to the expression rdmPROJ(rdmREST(A, C1), C2). The XSN tree is a doubly-linked list that is
comprised of an assignment node 1251, an alphanumeric identifier 1254, a plurality of member nodes
1252, 1253, 1256, 1257, 1260 and 1261, operation nodes 1255 and 1258 and a plurality of data sets 1259,

-30-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
1262 and 1263. The assignment node 1251 is linked to member node 1252, which has as its left child a

link to the alphanumeric identifier SQL1 1254 and as its right child a link to member node 1253.
Member node 1253 is linked to the operation node 1255 (rdmPROJ) as its left child. The operation node
1255 identifies the operation to be performed (in this case, a projection). The operation node 1255 is
linked to member node 1256, which has as its left child a link to operation node 1258 (in this case, a
restrict operation rdmREST) and as its right child a link to another member node 1257. Member node
1257 has as its left child a link to data set C2 1259. The operation node 1258 is linked to member node
1260, which has as its left child a link to the data set A 1262 and as its right child a link to another
member node 1261. Member node 1261 is linked to data set D 1263. In example embodiments, these
XSN ftrees may be internally stored in the system as an array.

[00130] Storage Manager 420 maintains the actual data that comprises each set and provides for
the efficient transfer between persistent and volatile storage.

[00131] Figures 13A, B, C and D illustrate how buffer chaining may be used in the Storage
Manager 420 to allow for pipelined transfer of data, as well as the sharing of data through these buffer
chains. Note that this is only an example embodiment and there are a variety of ways in which the
Storage Manager 420 could be implemented, with or without buffer chaining. Storage Manager 420
provides access to the set data via a simple mechanism in the form of SetReader and SetWriter (called
Reader and Writer for short) classes, which are separate subclasses of a class called SetBase. Readers
read data from storage and Writers write data to storage, and together they encapsulate the more complex
functionality of the Storage Manager 420.

[00132] This encapsulation allows for a flexible Storage Manager 420 implementation that may
be different for different platforms or storage systems. In addition, it allows the underlying Storage
Manager 420 to provide pipelining between operations to minimize the amount of data that must be
transferred from physical storage. Pipelining, in this sense, is the sharing of underlying data buffers,
whether the data is being written or read. As an example, consider Operation A (OpA) and Operation B
(Op B), where OpA produces (and thus stores) data, and OpB needs to read that data. A non-pipelined
approach would be for OpA to simply write the data, and for OpB to read that data from storage in a
separate action. Instead the Storage Manager 420 design allows OpA to write the data, and OpB to get
access to the data as it is being produced, and in fact in many cases even before it is actually written to
storage. Since OpB only knows the SetReader interface, it does not need to know that the data actually
resulted from the output of OpA rather than from storage. As a second example, consider OpC and OpD,
both of which need to read data from the same set. The pipelined Storage Manager 420 will read the data
only once, for both operations.

[00133] This mechanism is illustrated in Figures 13 A, B, C and D. Data Sets are either generated
by operations of the Set Processor or retrieved from disk via the Storage Manager. In either case, a
Writer is used to place the data serially into a linked-list of RAM buffers known as a BufferChain. As

operations of the Set Processor require data from the Data Sets, a Reader is used to serially retrieve the

31-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
data from the linked-list of RAM buffers for use by the operations. In one example embodiment, a Data

Set may have only one Writer but any number of Readers. This is illustrated in Figure 13A, which shows
a BufferChain 1302 containing four serial buffers, Dbuf 1, 2, 3 and 4. A Writer 1304 is used to point to a
buffer to write data into the BufferChain 1302. The Writer 1304 proceeds serially through the
BufferChain and new buffers are created as additional data is appended to the BufferChain by the Writer.
Readers 1306 and 1308 are used to point to the buffers so data can be read from the BufferChain 1302.
[00134] Due to the nature of operations within the Set Processor, it is likely that a Data Set being
read by more than one Reader will have Readers proceeding at a different pace through the data. For
instance, as shown in Figure 13 A, a slow Reader 1308 is reading Dbuf 1 while another Reader 1306 has
already completed reading Dbuf 3. As the Writer and Readers proceed through the BufferChain, the
Writer creates additional buffers and the Readers are free to proceed through the data at whatever pace the
operations in the Set Processor require. Figure 13B illustrates the same combination of Readers and
Writer as shown in Figure 13A, however the Writer 1304 has advanced to Dbuf 7, Reader 1306 has
advanced to Dbuf 6 and the slow Reader 1308 remains on Dbuf 1.

[00135] As the operations of the Set Processor continue, it is possible that a long series of buffers
can be created between the slow Reader 1308 and the Writer 1304 and Readers 1306 ahead of it as
illustrated in Figure 13C. As the BufferChain 1302 grows, more and more free RAM is consumed to
maintain the data in memory. At some point, the amount of RAM in use becomes excessive due to the
needs of other routines that require additional RAM and some of the RAM must be released to allow its
use by these other routines. When this situation is detected, a buffer chain break is initiated.

[00136] A buffer chain break is accomplished by creating an additional BufferChain associated
with the Data Set. In the example shown in Figure 13D, the slow Reader 1308 which has now advanced
to Dbuf 2, is copied to a new BufferChain 1310. This new BufferChain 1310 will also be assigned a new
Writer 1312 to provide the serial data from the disk. The existing BufferChain 1302, which now contains
Dbuf 3 through Dbuf 12, only contains the Writer 1304. As there are no more Readers behind the Writer
1304, Dbuf 3 through Dbuf 11 will be removed by the DoCleanup routine, a separate asynchronous
routine that frees RAM buffers that are no longer in use by the Storage Manager. As the number of
buffers can be significantly large, this provides a substantial amount of RAM that can be used by other
routines that require additional RAM.

[00137] In addition to providing optimized data storage and retrieval, example embodiments can
be used to translate and map requests and statements between different schema using different data
models. For example, the system may include mappings between schema using different data models,
such as an SQL data model, XML data model, XSN data model or other data model. Statements may be
provided based on schema using the different data models. For instance, a number of query language
statements based on a first schema may be provided in a first format, such as SQL format. As described
above, these statements may be converted into XSN format and data sets and algebraic relations from

these statements may be composed and stored in the Set Manager 402. Later, a statement may be

32—

10

15

20

25

30

35

) V_VO 2007/134278 } PCT/US2007/068856
received in a second format, such as XQuery format. This may also be converted to XSN format and data

sets and algebraic relations from this statement may be composed and stored in the Set Manager 402. In
particular, this statement may request a data set to be provided based on a schema using the second data
model. Because all of the statements are converted into a unified XSN data model, the data sets and
algebraic relations composed from the statements received in the first format may be used by the
Optimizer 418 to determine an optimized collection of algebraic relations for calculating the data set
requested in the second format. The algebraic relations stored in the Algebraic Cache and the mappings
between the schema allow data sets and relations captured from statements in a first format to be used to
optimize and calculate a data set requested in the second format. This allows multiple different data
models to be supported in a single system. The system can translate between one model and another,
because all of the information from the statements is captured by Set Manager as data sets and algebraic
relations. Moreover, this information can be used to optimize algebraic relations being used to calculate
data sets for the other data model, including substitution of subexpressions and other optimization
techniques used by the Optimizer as described above. The data models may be relational data models,
markup language data models, set notation data models or other data models. The formats of the
statements submitted to the system may include standard query language statements, XQuery statements,
set notation statements or other formats.

[00138] By way of example, consider the relational table and XML document presented in Figure
14A. The relational table can be represented mathematically as an extended set. Members of the
extended set representing the relational table are commonly referred to as rows within the relational table.
The rows within the relational table can also be mathematically represented as extended sets. Members of
the extended set representing the rows within the relational table are commonly referred to as fields.
Fields common to the rows are referred to as columns. Thus, a relational table can be represented by an
extended set of the form <<f11, f12, f13, ..., flc>>, ..., <frl, {12, fr3, ..., frc>> where f represents the
value of the field and the subscripts r and ¢ represent an enumeration of the unique row and column.
[00139] The XML document can also be mathematically represented as an extended set.
Members of the extended set representing the XML document are commonly referred to as XML
fragments, containing a tag and a value to represent the data. The values of these XML fragments may be
a character string or another XML fragment. Thus, an XML document can be represented by an extended
set of the form <t1.{v1}, ..., tn.{vn}> where t represents the tag and v represents the value of the XML
fragment.

[00140] Using the properly defined extended set transformation function gRX() members of the
extended set representing the relational table can be mapped to members of the extended set representing
the XML document, allowing for the transparent representation of data in either relational or XML
format. The transformation function, which provides the structural relationship between fields in the
relational table and the fragments in the XML document, operates on the extended set representation of

the relational table. The result of this transformation is to provide a functional mapping between the

-33-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
value and structure of the relational representation and the value and structure of the XML representation

of the same data.

[00141] The transformation function can be stored within the Algebraic Cache as a collection of
relations between a relational table and a collection of XML fragments. To map from an XML document
to a relational table, the compliment of function fXR(), denoted as gRX() in Figure 14A is used. For
these functions to provide the appropriate mappings, constraints on the terms and relationships of the
terms must be valid. These constraints are listed in Figure 14A as the where clause. The constraints that
a must equal s.{x} along with the membership constraints of x and z in B, and B and D in C, indicate that
the XML fragment must contain one value and only one value. Further, the constraint that b must equal
s.x along with the membership constraints of x and y in A indicates that the relational field in a particular
row must have one and only one value. Combined, these constraints ensure the unique mapping from the
XML fragment to a field in the relational table.

[00142] Another example would be the mapping of the vector representation of a directed graph
to a relational data table. The directed graph illustrated in Figure 14B is comprised of paths and
junctions. At each junction, one or more paths lead to and away from the junction, with the exception of
the start of the directed graph, which only has paths leading away, and the end of the directed graph,
which only has paths leading to. Each junction of the directed graph and the paths leading to and from it
can be expressed as an extended set of the form {from.{pl, p2, ..., pm}, to.{pm+1, pm+2,,pn}}
where the values p1 through pm uniquely identify paths from the junction and values pm+1 through pn
uniquely identify paths to the junction. Thus, the directed graph may be represented by the extended set
{jl.{from.{p11, p12, ..., plm}, to.{plm+1, plm+2, ..., pln}}, j2.{from.{p21, p22, ..., p2m},
to.{p2m+1, p2m+2,, p2n}}, ..., jk.{from.{pkl, pk2, ..., pkm}, to.{pkm+1, pkm+2,, pkn}}. In this
case, the transformation function is fNR(). The transformation function which fully maps the directed
graph to the relational table is explicitly defined as presented in Figure 14B. As in the case of the
relational to XML mapping, constraints are required to enforce the rules of each model, as well as provide
for the mapping of values and structures between models. The directed graph is fully represented by the
extended set N. The extended set N is the union of the terms nk.Jk, which represent the paths, for all k
junctions of the graph. The paths nk.Jk are defined in terms of the from paths f.Fk and the to paths t. Tk
each junction. The relational table is represented by the extended set R. The extended set R is the union
of the terms Rijk, which represent each row of the relational table containing the fields from, to and path.
The remaining constraints define the relationships between the terms and limits on the terms themselves.
This includes the constraint that f, t, and p must exist and cannot be equal to each other, that Fk must
equal {xi} and Tk must equal {yj} to define the relationship between the relational table ficlds and the
directed graphic paths, that the pairs of Fk and Tk representing a path must be unique, and that there is
one unique value of scope f and of scope t for each path represented by Jk.

[00143] It will be understood that the above formats, schemas and mappings are examples only

and that other formats, schemas and mappings may be used in the other embodiments.

-34-

10

WO 2007/134278 PCT/US2007/068856
EXAMPLE EXTENDED SET NOTATION

[00144] As described above, Extended Set Notation (XSN) may be used in example
embodiments. The following describes one example of an Extended Set Notation (XSN) that may be
used. This is only one possible embodiment of Extended Set Notation and other embodiments may use
different terminology, types of sets, syntax, parameters, operations and functions than those below. The
example of the Extended Set Notation provides a straightforward, easy to use syntax to specify and
manipulate expressions based on extended set mathematics within the environment of a modern
computing system. This notation, expressible in standard ASCII characters, provides a standard syntax to
represent values, sets, operations, relations and expressions in a manner suitable for computer-based
manipulation and processing. This notation provides the capability for standard ASCII characters to

specify algebraic extended set expressions in a machine readable form.

[00145] The terminology used to describe and identify the major components of XSN is defined
in Table 1 below.

Table 1
Values A Value represents a unique scalar quantity in a specific number system

domain. Values can be specified explicitly by using a collection of
symbols representing a specific, unique value or implicitly by an

Alphanumeric Identifier.

Alphanumeric Identifiers Alphanumeric Identifiers represent implied Values or Sets and can be
specified by the digits 0 through 9, the lower-case alphabetic characters a
through z, and the upper-case alphabetic characters A through Z in any

string combination.

Scopes and Constituents Scopes and Constituents are the two distinct parts of elements or members
representing the two conditions of membership required for extended sets.
Scopes and Constituents can be represented by Values, Alphanumeric

Identifiers, Elements or Sets.

Elements Elements are Scopes or Constituents that have a compound structure
requiring at least one Scope and one Constituent. A Constituent must be
stated explicitly; however a Value of NULL is implied for Scopes not
explicitly stated.

Members Members are an Element specified within the context of a Set.

Sets Sets are collections of members. Sets include the Empty Set — a Set with
no members. Sets, like Values, can be explicitly specified by enumerating

the membership or implicitly specified via an Alphanumeric Identifier.

Functions and Operations Functions and Operations are specified explicitly and define a Set

specified by the Function or Operation in combination with one to three

Sets providing the arguments to that Function or Operation. Operations

_35-

WO 2007/134278

PCT/US2007/068856

are atomic and specified in the extended set mathematics. Functions are
combinations of one or more Operations and are a notational convenience

for frequently performed combinations of Operations.

Expressions

Expressions are a symbolic means for specifying a Set. An Alphanumeric
Identifier representing a Set is the simplest form of an Expression.
Expressions can also be comprised of many Functions, Operations and

Sets expressing a Set.

Relational Operators

Relational Operators are a symbolic means for specifying a relationship
between two Expressions. Relational Operators include equal, subset and

disjoint, as well as their negations.

Assignments Assignments are Statements that assign Alphanumeric Identifiers to
Expressions.

Relations Relations are Statements relating two expressions by a Relational
Operator.

Statements Statements are Assignments or Relations.

[00146] Syntax. The XSN syntax comprises a symbolic means for specifying sets as well as the

grammar for formulating expressions and statements. In the description below, terms enclosed in

brackets ([]) indicate optional syntax. For example, in the case where the scope is not required, an

element is expressed as [scope].constituent. Ellipses (...) denote repetition of a sequence of arbitrary

length. For Example, <’17,727,737,...>

[00147] Symbols. The syntax employs common punctuation symbols as set forth in Table 2

below. Optional spaces can be inserted between punctuation where desired to aid in readability. Line

breaks may occur anywhere within a statement, expression, or set for clarity.

-36-

10

15

20

WO 2007/134278 PCT/US2007/068856

Table 2
Description | Symbol Usage Example
Double " Double Quotes delimit explicit values. "Curly","Moe"
Quotes
Periods . Periods are used to separate scopes from | "Curly"."Moe"
constituents within the same element.
Commas , Commas are used to separate members in | {"Curly","Moe","Larry"}
an explicitly defined set.
Curly {} Curly Braces enclose members of an {"Curly","Moe","Larry"}
Braces explicit set .
Angle <> Angle Braces enclose members of an <"Curly","Moe","Larry">
Braces explicit ordered set.
Parentheses O Parentheses enclose combinations of ("Curly"."Moe")."Larry"
scopes, constituents and expressions
when specifying an element to
distinguish scopes from constituents CRD(SETA)
separated by Periods. Parenthesis are
also used in the specification of
operations and functions.
Equals = The equal sign assigns alphanumeric Name={"Curly","Moe","Larry"}
identifiers to sets.
[00148] Values. Values are specified by explicitly stating the value within double quotes.

Examples of values include “Curly”, “123”, and “$2,343.76”. If the value includes the double quote
character (%), it can be delimited by inserting a double quote in advance of it. For example, “John said
“»shoot”” when he saw the moose.” A null value is specified by two successive double quotes, such as
[00149] Alphanumeric Identifiers. Sets to be identified by alphanumeric identifiers are specified
by assignment statements. Once specified, the alphanumeric identifier can be used interchangeably with
the expression to which it is assigned. For example, if a set is assigned the alphanumeric identifier
NDCENSUS1960, then NDCENSUS1960 can be used in any expression to reference the set to which
NDCENSUS1960 is assigned.

[00150] Scopes, Constituents and Elements. Scopes and constituents can be represented by
values, alphanumeric identifiers, elements or sets. The syntax for an element is [scope.]constituent.
Scopes are separated from constituents through the use of a period, with the term to the left of the period
representing the scope and the term to the right of the period representing the constituent. For example,
an element where the scope has a value of “1” and the constituent has the value of “Bob” would be
expressed as “1”.”Bob” in proper notation.

[00151] Elements are scopes or constituents that have a compound structure requiring at least one

scope and one constituent. A constituent must be stated explicitly; however a value of NULL is implied

37-

10

15

20

25

WO 2007/134278 PCT/US2007/068856
for scopes not explicitly stated. In the example above, the element “1”.”Bob” has a scope of “1” and a

constituent of “Bob”. However, both scopes and constituents can also be alphanumeric identifiers,
elements and sets, resulting in potentially complex expressions.
[00152] One issue arising from these potentially complex expressions is precedence regarding

29 9%

scope and constituent. For example, given the element “integer”.”sum”.”5” a question of delimiting the
scope and constituent arises: is the scope “integer” or “integer”.”sum”? Is the constituent “5” or
“sum”.”5”? By convention in this example XSN, the term to the left of the first period is the scope, and
the term to the right is the constituent. This would then infer that “integer” is the scope and “sum”.”5” is

93 33

the constituent. However, if it is desired that “integer”.”sum” be the scope and “5” be the constituent, this
can be specified through the use of parentheses, as in the element (“integer”.”sum”).”5”.

[00153] Members and Sets. Members are elements, sets or expressions contained within sets.
Sets are specified by expressions or by enumerating their individual members, some or all of which can
be elements, sets or expressions. Any set containing the same members enumerated in any sequence is
the same set.

[00154] In many cases, the members of a set contain scopes that belong to the set of natural
numbers. In some cases these scopes are contiguous, unique and include the value one. In these cases,
the sets can be referred to as ordered sets. All sets that do not meet these criteria can be referred to as
unordered sets.

[00155] Sets are expressed as {member[,member[,...]]}. The members of an unordered set are
enclosed in curly braces, as in {"a","x","b","g"} or {"Groucho","Harpo","Gummo"}. The members of an
ordered set are enclosed in angle braces, as in <"a","b","x","g">. The members of an ordered set have the
implicit order in which they are listed in its specification. The scope of each successive member of an
ordered set is the corresponding member of the set of natural numbers. Thus, <"a","b","x","g"> is
equivalent to {"1"."a","2"."b","3"."x","4" "g"}.

[00156] For example, an ordered set can represent a data record with any number of data fields, in
which the members of the set represent the fields of the record and the scopes of the members are the
ordinal positions of the corresponding fields in the record. The comma-separated values in the first row

of the table below can be specified as a set for processing. The data can be grouped into hierarchies in

many different ways. Table 3 below illustrates several possibilities.

-38-

10

15

20

25

WO 2007/134278 PCT/US2007/068856

Table 3
St Members

Original "A", "B nC"

comma- "D"’ NBH’ "E"

separated "R tGronC"

values "HY, K", "C"

Set 1 { {"A","B","C" } . {"D"’"BII’UEH}’ {IIFH’"GII’"C"}, {"H","K"’"C" } }
Set 2 <{"A"’"B'I,HC"}’ {"D","B","E"}, {"FII’IIG"’I'C"} , {"H”’"K“’"C"}>
Set 3 {<"All’NBII,HC">,<|'DH,"B","EH>’<IIFH,"GII’"C">’<HHI|’"KN’"C">}
Set4 {"l”. {"l"."A","2"."B","3"."C"},"2"_ {,,1 "."D","Z"_"B","3H-"Eu},

"3" X {ll 1 ”n -"F"’"z"'"G",II3H'"C" } ,"4" . {" 1 "-IIHH’"2" _"K"’"3 " ."CN } }

[00157] The original comma-separated values comprise four sequences of values, each with three
values.
[00158] Set 1 is specified as an unordered set of four members, each of which contains an

unordered set of three members.

[00159] Set 2 is specified as an ordered set of four members, each of which contains an unordered
set of three members.

[00160] Set 3 is specified as an unordered set of four members, each of which contains an ordered
set of three members.

[00161] Set 4 is specified as unordered. It uses scopes to indicate the positioning of each member
of the set relative to the other members of the set.

[00162] The content and structure of sets is sometimes dictated by their purpose, particularly
when the sets are used as arguments in functions and operations. Several of these dictated structures
occur frequently when using the example XSN to describe relational data operations. Some of these
common sets are typically called predicate, mapping, transformation, or aggregation sets and are explored
in more detail below.

[00163] Predicate Sets. Predicate sets provide for mapping specification between the members of
one set and another. Predicate sets describe a nested conditional expression to determine truth. In the
case of conditional expressions, like those used in the RDMREST function, the basic condition is
expressed: "condition".<elementl, element2>

[00164] An element may be specified as "column value" or as "const"."scalar value". The
condition is specified as equal ("EQ"), not-equal ("NEQ"), less-than ("L'T"), less-than-or-equal ("LE"),
greater-than ("GT"), greater-than-or-equal ("GE"), like ("LK") or not like ("NLK"). In the case of the
RDMREST function, each element will specify a column to be compared on the conditional or a constant
scalar value designated by the scope "const".

[00165] For example, the condition phrase "EQ".<"2","const"."MI"> in which the condition is
EQ, the first element names the column and the second element provides a constant value, indicates that

all members (rows) with the second column equal to the value of "MI" will be included in the output set.

-39-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
[00166] In the example below, a single conditional is specified for the Predicate Set of the

RDMREST function. The resulting set will contain only the members (rows) from set zipcitystate that
contain the value "IN" in the third column. Note the two additional sets of braces.

RDMREST(zipcitystate, { { {"EQ".<"3","const" "IN">}}})

[00167] These are necessary to support the construction of AND and OR conditionals, covered
below.
[00168] AND Statement. A set of conditions is an AND statement; all conditions in the list are

ANDed together. If they are all true, the overall conditional is true. Here is an example of an AND

structure:
{ {"EQ" .<"2","COl’lSt" .HMI||>} , {"GE“.<"5","COHSt" ."49000">} s {IILT" .<”5","COI]St" ‘HS 1 OOO
H>} }
[00169] The three condition phrases are enclosed in a set of curly braces to delimit the AND
statement.
[00170] OR Statement. An OR statement is created by combining two or more AND statements.

If the result of any AND statement is true the entire statement is true. Here is an example:

{ { {"GE" -<|| 1 "’"constll-" 1 0000">} } s { {"GT".<"3",HCOnStII-HAK">} s {UL’I‘" ‘<|l3”,"const" ."C
A">} }’{ {"EQ",<"2"’"COHSt" '"Pasadena">} } })
[00171] In this example, there are three OR statements. The first contains one condition phrase,

the second contains two AND’ed condition phrases, and the last contains a single condition phrase. In
this manner, complex conditional expressions can be built up to define the operation.
[00172] Mapping Sets. For some operations and functions, sets are required to provide mappings.
In most cases, the scope and constituent are used to provide a relationship between the input and output
sets. For example in the RDMPROJ operation, a set provides the mapping between the columns of the
input set and the columns of the output set. The scope value indicates the column of the output set, the
constituent the column of the input set. For example:

<tz tit>
[00173] This Predicate set indicates that the third, fifth and first columns of the input set should
be mapped to the first, second and third columns of the output set.
[00174] Transformation Sets. Transformation expressions are used to transform one or more
input values from a set into a value in the output set. Transformations include operations such as
subtraction ("SUB™), addition ("ADD"), division ("DIV") and multiplication ("MUL"). An additional
transformation operation is constant ("CONST"). Transformation expressions are typically used with
relational operations, such as RDMMATH, to define the members of the output set. For example, if the
first column of an output set were designated as the sum of the first and second column of the input set,
the following transformation set would be used to specify this:

<llell.<ll 1","2">>
[00175] This indicates that the first and second columns of the input set should be used as the first

and second arguments of the addition transformation to produce the value for the first column of the

output. Transformations can be deeply nested to provide specifications, for example if the calculation

-40-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
(COL1 + COL 2)/ (COL3 — 1) were desired to represent column one 1n the output set, and columns five

and six of the input set were to map to columns two and three, the transformation set would be:

<HDIV"-<NADD" '<" 1 n ’||2H>, YISUB" .<||3"’ "CONST"-" 1 ">>,"5"’H6">
[00176] Transformation sets can also include specific scalar domain qualifiers. For example, if

the math is to take place in the integer domain, the example of <"ADD".<"1","2">> would be expressed
as:

<(“i1’]t64”,"ADD").<"1 ","2">>
[00177] This would indicate that the scalar values of columns 1 and 2 would be added together as

if they were integer values. The resuit would also be produced in the integer scalar domain. Like
function and operation names, the scalar domain identifiers are not case sensitive.

[00178] Aggregation Sets. Sets are also be used in the RDMGROUP function to provide
aggregation. The aggregation operations include summation ("SUM"), average ("AVG"), count ("CNT"),
minimum ("MIN") and maximum ("MAX"). These functions specify the operations to be performed on
the members of the set in each group created by the RDMGROUP function. For example:

<N 1 " ,"3 |I,HCOIJNTH ." 1 ll,"AVG" ." 1 ">
[00179] This would indicate that the first and third column of the input provide the basis of the

group and be included as the first and second column of the output. The third column of the output would
be the count of members from column one in the group, and the fourth would be the average of the
members in column one of the group.

[00180] Like the transformation sets, the aggregate sets can specify the scalar domain in which
the operations are to be performed. For example, if the above were to be performed in the string domain,
the set specified would be:

<" 1","3 "’"(“STR[NG”.,,COUNT")-l| 1ll’(“STRING”"'AVG“)-" 1">
[00181] Functions and Operations. Functions and operations are specified explicitly and define a

set specified by the function or operation in combination with one to three sets providing the arguments to
that function or operation. Other embodiments may permit a different number of arguments. Operations
are atomic and specified in the extended set mathematics. Functions are combinations of one or more
operations and are a notational convenience for frequently performed combinations of operations.
[00182] Functions and operations are expressed via a predefined alphanumeric identifier,
parenthesis and between one to three set arguments. An example would be CRD({17,727, “3”}) which
represents the set that is the cardinality set of {17, “2”, “3”}.

[00183] Generally, functions are specified:
function(expressionl[,expression2{,expression3[,...}]), where the number of arguments is dependent on
the function. Specifically, a unary function requires one argument a binary function requires two
arguments, and a ternary function requires three arguments. In some functions, the final argument is a set
used to specify mappings and transformations. Unlike alphanumeric identifiers used for sets, function
and operation names are not case sensitive.

[00184] The following are some examples of functions:

-41-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
[00185] RDMPROJ(ASet,<"7","1","2","3">) -- RDMPROYJ is the Relational Data Model (RDM)

projection function. The set named ASet is the argument to the operation representing the relational
table. The second set is a set specifying the mapping of the members (columns) from ASet to be used as
the columns in the resulting set.
[00186] INV(OldSet) -- INV is the inversion function, resulting in the exchange of scopes and
constituents for the members of the set. The set named OldSet is the argument for the operation; it is
inverted to produce the output.
[00187] CRD(MySet) -- CRD is the cardinality function, resulting in the cardinality set for the
input argument set. The set named MySet is the input, used to produce the output set.
[00188] RDMIJOIN(cities_and_states,states_and_zips,{{{"EQ".<"2","3">}11}) -- RDMIJOIN is the
Relational Data Model (RDM) join function. The first two sets named cities_and_states and
states_and_zips are to be joined by the operation. The explicit Predicate set provided for the third set
specifies the condition used to select members for the joined resulting set. In this case, the Predicate set
specifies that if the second column of the first set is equal to the first column of the second set (the states
columns), the rows should be joined in the output set.
[00189] RDMREST(zips, {{ {"GE".<"1","const"."10000">} {"LE".<"1","const"."14999">}} . {{"G
T".<"3" "const"."AK">}, {"LT".<"3","const"."CA">}}}) -- RDMREST is the Relational Data Model
(RDM) restrict function. The first set named zips is the argument for the operation representing the
relational table. The second argument is the Predicate set that specifies which members (rows) shall be
included in the restricted output set.
[00190] In this example, functions with names beginning with RDM (Relational Data Model) are
specifically designed for manipulating relational data as sets. For example, RDMSORT is a binary
function that sorts the set of the first argument using the members in the set of the second argument that
indicate sort order and precedence.
[00191] Expressions. Expressions are a symbolic means for specifying a set. An alphanumeric
identifier representing a set is the simplest form of an expression. Expressions can also be comprised of
many functions, operations and sets. Some examples of expressions include:

CRD(SetA)

rdmPROJ(SetA, <’17,757,7237>)

CRD(rdmPROIJ(SetA, <’17,757,7237>))
[00192] Relations and Relational Operators. Relational operators are a symbolic means for
specifying a relationship between two expressions. Relational operators include equal, subset and
disjoint, as well as their negations. These are specified with the values “EQ”, “SUB”, “DIS” and “NEQ?”,
“NSB”, and “NDS”, some example statements using relational operators include:

SetA EQ CRD(SetB)

SetC SUB SetB

42-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
[00193] Assignments. Assignments are statements that assign alphanumeric identifiers to

expressions. Syntactically, assignments are specified as: alphanumeric identifier=expression. For

example:
NewSet=<"1","2","12","4">
SetA=SS(SETB)
SetC=<"b","c","a","x">
SetD={"Larry","Moe","Curly"}
SetG=NULL
[00194] Relational Data Model. The relational data model (RDM) is a subset of the extended set

data model that can be described with XSN. Relational tables are considered to be sets of ordered sets,
with the rows of the table being represented by these ordered sets. The members of the sets representing
the rows are the values of the columns (fields) within the rows. A relational table with three rows, with
each row containing four columns, would be represented by a set with the structure:

<<al,bl,cl,d1>, <a2,b2,c2,d2>, <a3,b3,c3,d3>>
[00195] Both the table and the individual rows are represented as ordered sets, but it is also

possible to express the relational table as a set containing members that are unordered, such as:

{<al,bl,cl,d1>, <a2,b2,c2,d2>, <a3,b3,c3,d3>>}
[00196] Cardinality Sets. In the case where the set is presented as ordered, information must be

present to indicate the ordering of the set. To preserve some of the additional characteristics of the
relational data model and to provide cardinality information useful to optimize processing of XSN
expression, cardinality sets are typically specified for sets representing relational tables. The cardinality
set for the unordered set above is:

<"3" <"4" <Ca,Cb,Cc,Cd>>>
[00197] The cardinality set is a nested set. The outermost set contains the cardinality of the set

(which in this example is 3 as the table contains three rows), followed by the cardinality set for the
members representing the rows. Ca through Cd are values representing the cardinality of the values
making up the members of the sets representing the rows. Each value of Cn represents the maximum
cardinality for that particular member. The cardinality set is generated via the cardinality function:

CardinalityOfSetA=CRD(SetA)
[00198] RDM Functions. The standard relational data model is composed of eight operations.

However, it can be shown that only five are required to implement the entire relational model, and only
four are typically used for practical implementations. XSN provides for notation of these functions
within the framework of extended set mathematics.

[00199] These functions are extended set versions of the relational data model UNION
(RDMUNION), PROJECT (RDMPROYJ), RESTRICT (RDMREST), JOIN (RDMIJOIN), DIFFERRENCE
(RDMDIFF) and DIVIDE (RDMDIV). In addition to these functions, three additional functions are
available under XSN. These include RDMSORT, RDMPIVOT and RDMGROUP.

-43-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
[00200] RDMDIFF Function. RDMDIFF defines an unordered set equivalent to the relational A

— B operation. The resulting set contains all members of A that are not in B. The following is an
example format and description of this function:

RDMDIFF(A, B) == {}
[00201] Arguments:

A — an unordered set.

B — an unordered set whose members will be excluded from A to produce the result.
[00202] Result: A unordered set containing those members of A that are not members of B as
specified by the conditional of the difference function.
[00203] Remarks: As an extension to the standard relational difference, which requires that all
values of the column members be equivalent, the XSN version allows for the specification of a Predicate
set to define the equivalence relationship. If NUL is provided for the conditional Predicate set, the
standard RDM function is performed. If A EQ B, then the NUL set results. If the intersection of A and B
is the NUL set, then A results.
[00204] Requirements: Set A must be an RDM set. Results when these conditions are not met
are the NUL set. A and B must have the same member column cardinality.
[00205] Example:

A — {<lla", Nb"’ IIC">’ <"d"’"b","r|'>}
B —_ {<ll3|l,"c"’"8">}

RDMD]I‘F(A’B) —_— {<"a"’"b","0">}
[00206] RDMGROUP Function: RDMGROUP defines an unordered set where columns are

aggregated based on specified groupings identified by the members of one or more columns. In
conjunction with an aggregate Predicate set, this function provides for the ability to generate sum, count,
average, minimum and maximum (SCAMM) values. The following is an example format and description
of this function.

RDMGROUP(A, Z)
[00207] Arguments: A — an ordered or unordered set.
[00208] Result: An unordered set containing members that have been generated based on
aggregate functions of the members of the columns of set A and the specified aggregation Predicate set Z.
[00209] Remarks: RDMGROUP will produce one member row for each unique combination of
the value of member columns as specified in the Predicate set. Member columns to aggregate on are
specified by enumerating them in the Predicate set without scope. Other members to be included in the
output set should indicate which aggregate SCAMM values should be executed to produce the output set.
[00210] Requirements: Set A must be an RDM set. Set Z must be an aggregate Predicate set.
Results when these conditions are not met are the NUL set.
[00211] Example:

A =<<"3""Tom","a">,

<"2","Sam","0">,

_44-

10

15

20

25

30

35

40

WO 2007/134278 PCT/US2007/068856
<II6H’ NHarry"’"a">’
<H7|l’, "Han.yll ,"a">>

7 = <n3u,
"COUNT"."2",
n"QUM"."1">

RDMGROUP (A’Z) _> {<Ha")l|3","16ll>, <"C"’"l"’"2">}
[00212] RDMIJOIN Function. RDMJOIN defines an unordered set whose member rows are the

concatenation of one member row from set A and one member row from set B when determined by the
satisfaction of the conditional Predicate set Z between the two member rows. The following is an
example format and description of this function:

RDMIJOIN(A,B,Z) == {}
[00213] Arguments:

A — an unordered set to be joined as the left side of the resulting member row.

B — an unordered set to be joined as the right side of the resulting member row.

Z — a Predicate set containing the conditional set for determining the members to join.
[00214] Result: An unordered set whose members are created from one member row from A and
one member row from B matching the conditions specified in the conditional Predicate set Z. When a
member row from set A and a member row from set B are found which satisfy the condition specified in
the Predicate set Z, a member of the resultant set is produced. The resulting member row 1s an ordered
member containing the member columns of the member row from set A, followed by the member
columns from the member row of set B.
[00215] Remarks: The conditional Predicate set Z specifies the conditions that must hold
between a member row of set A and a member row of set B.
[00216] Requirements: Sets A and B must be an RDM sets. Set Z must be a conditional
Predicate set. Results when these conditions are not met are the NUL set. The Predicate set Z must have
the schema defined for conditionals. The scope of the members in the Predicate set specify the member
column of set A; the constituent of the members in the Predicate set specify the member column from set
B.
[00217] Example:

A = {<"sales", "Tom">,
<"sales", nsamu>,
<"shipping", "Bill">,
<"shipping", "Sally">}

B = {<"Bldg 1", "sales">,

<"Bldg 2", "shipping">}

Z -— { { {IIEQ".<"1"’"2">} } }

RDMIOIN(A, B, Z) > {
<"sales", "Tom", "Bldg 1", "sales">,
<"sales", "Sam", "Bldg 1", "sales">,
<"shipping", "Bill", "Bldg 2", "shipping">,
<"shipping", "Sally", "Bldg 2", "shipping"> }

-45-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
[00218] RDMPIVOT Function. RDMPIVOT defines an ordered set which exchanges the

member columns and member rows of the specified set. The following is an example format and
description of this function:

RDMPIVOT(A) = <>
[00219] Arguments:

A — an ordered set.
[00220] Result: The resulting set contains member rows comprised of the member columns of set
A. The set is ordered by the order of the member columns in set A.
[00221} Remarks: Pivoting extremely large sets can be costly and time consuming and should

only be done if no other means of processing the sets can be found.

[00222] Requirements: Set A must be an RDM set. Results when these conditions are not met
are the NUL set.
[00223] Example:

A= {<"3","Tom", "a">,
<"2", "Sam", "¢">,
<"6", "Hany", "a">,
<"7", "Harry", "a">}

RDMPIVOT(A) > <
<ll3"’ "2"’ "6"’ ||7”>’
<"T0m"’ "Sam"’ "Harry"’ "Hart.y">,
<"a"’ "c"’ "a"’ "a">>
[00224] RDMPROIJ Function. RDMPROJ defines an unordered set comprised of members from

all member rows of the argument set, but member column values specified through a transformation
Predicate set. The following is an example format and description of this function:

RDMPROIJ(A,Z) == {}
[00225] Arguments:

A — an unordered set to be projected.

Z — a transformation Predicate set for the projection.
[00226] Result: The resulting set contains a member row for each member row of the A, but with
the member columns specified by the transformation Predicate set.
[00227] Remarks: See specification for the transformation Predicate set for information on how
to properly specify set Z.
[00228] Requirements: Set A must be an RDM set. Set Z must be a transformation Predicate set.

Results when these conditions are not met are the NUL set.

—46-

10

15

20

25

30

35

40

WO 2007/134278 PCT/US2007/068856

[00229] Example:

A={<"3""Tom", "a", "b", "s">,
<"2","Sam", "c", "b", "s">,
<"6", "Harry", "a", "z", "s"> }

Z = <||3",l12”>

RDMPROJ(A, Z) > {<"2", "Tom">,
<|lcl|, "Sam”>,
<|'a"’ "Hal.ry">}
[00230] RDMREST Function. RDMREST defines an unordered set whose member rows are

restricted to those that satisfy the conditions specified within the conditional Predicate set. The following
is an example format and description of this function:
[00231] RDMREST(A,Z) == {}
[00232] Arguments:
A — an unordered set to be restricted.
Z — a conditional Predicate set specifying the conditions for restriction.
[00233] Result: The resulting set contains only those member rows from the set A that meet the

conditions specified by the conditional Predicate set Z.

[00234] Remarks: See specifications for the conditional Predicate set for information on how to
specify set Z.
[00235] Requirements: Set A must meet the requirements for an RDM set. Set Z must be a

conditional Predicate set. If these conditions are not met, the NUL set results.
[00236] Example:

A —_ { <Il3l|, l'Tomll, "all, l|bl!, "S">,
<"2", "Sam", "c", "f", "S">,
<“6", "Harry", "a", "Z", "S">}

Z = {{{"EQ".<"2","const"."Tom">} },
{{"EQ".<"2","const"."Harry">}, {"EQ".<"4","const"."f">} }}

RDMREST(A, Z) _> {<"3|', llTom", "a"’ "b", "S">}
[00237] RDMSORT Function. RDMSORT defines an ordered set based on an unordered set A

and the ordering specified by Predicate set Z. The following is an example format and description of this
function:

RDMSORT(A, Z) == <>
[00238] Arguments:

A — an unordered set.

Z — a mapping set describing the sort order of the resultant set.
[00239] Result: An ordered set containing all the member rows of set A sorted by ordering
specified in mapping set Z.
[00240] Remarks: Z is a mapping set containing the scopes of the member columns specifying

the most to least significant members, which determine the ascending sort order.

47-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
[00241] Requirements: The Predicate set Z must be an ordered set whose elements are members

of NAT each less than the cardinality of set A. Set A must be an RDM set. If these conditions are not
met, the result is the NUL set.
[00242] Example:

A = {<H3", "Toml', "a"’ "'b"’ ”S">,
<N2|l’, "Sam"’ "C"’ llbll, "S">,
<"6||’, llHarry"’ "a", "Z", "s">}

Z —_ <ll3"’"2">

RDMSORT(A, Z) > <<"6", "Harry", nan’ "Z", "S">,
<n3u’ "Tom", nan, nbvr, "S">,
<v12n, nsamn, "C", ”b", nghr>>

[00243] RDMUNION Function. RDMUNION defines an unordered set that contains all the
member rows for sets A and B. The following is an example format and description of this function:
RDMUNION(A, B) == {}
[00244] Arguments:
A — an unordered set.

B — an unordered set.

[00245] Result: An unordered set containing the member rows of both A or B.
[00246] Remarks: None.
[00247] Requirements: A and B must be RDM sets and must have the same member column

cardinality. If these conditions are not met, the NUL set is the result.

[00248] Example:

A — {<uau’ Hb", HC">}
B —_ {<"3H’ "cll’ "8">}

RDMUNION(A’ B) > {<"au’ "b", "C">,
< "3","0","8">}

[00249] The above functions, formats and arguments are examples only and may be different in
other embodiments. For example, different or additional functions may be used in other embodiments.
[00250] While preferred embodiments of the present invention have been shown and described
herein, it will be obvious to those skilled in the art that such embodiments are provided by way of
example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art
without departing from the invention. It should be understood that various alternatives to the
embodiments of the invention described herein may be employed in practicing the invention. It is
intended that the following claims define the scope of the invention and that methods and structures

within the scope of these claims and their equivalents be covered thereby.

-48-

10

15

20

25

30

WO 2007/134278 PCT/US2007/068856

CLAIMS
WHAT IS CLAIMED IS:
1. A method for establishing algebraic relations from a query language statement
comprising:

providing a relation store for storing algebraic relations between data sets;

receiving a query language statement referencing a plurality of data sets;

composing a plurality of algebraic relations referencing the data sets specified in the
query language statement; and

storing the plurality of algebraic relations in the relation store.

2. The method of claim 1 further comprising:
defining at least one new data set by composing an algebraic relation referencing at least
one of the data sets specified in the query language statement; and

storing the algebraic relation for the new data set in the relation store.

3. The method of claim 1, wherein the data sets specified in the query language statement
include at least one explicit data set, the method further comprising:
providing a data set information store for storing information regarding the data sets;
associating a data set identifier with the explicit data set; and

storing the data set identifier in the data set information store.

4. The method of claim 1, further comprising a data store for storing at least some of the
data sets, wherein at least one of the data sets specified in the query language statement has not been

stored in the data store at the time the query language statement is received.

5. The method of claim 1, further comprising providing a data set information store for
storing information regarding the data sets, wherein temporal information is associated with each of the
data sets in the data set information store to indicate the time at which information regarding the data set

is added to the data set information store.

6. The method of claim 1, further comprising providing a data set information store for
storing information regarding the data sets, wherein the data set information store includes a unique
identifier and an external identifier associated with each data set in the data information store and wherein

the external identifier is the same for at least some of the data sets.

7. The method of claim 5, wherein the data set information store includes a unique identifier
and an external identifier associated with each data set in the data information store and wherein the

external identifier is the same for at least some of the data sets.

~49-

10

15

20

25

30

WO 2007/134278 PCT/US2007/068856
8. The method of claim 5, further comprising temporally redefining the data set information

store by removing data sets from the data set information store that are associated with temporal

information prior to a specified time.

9. The method of claim 8, further comprising removing algebraic relations from the relation

store that reference the data sets removed from the data set information store.

10. The method of claim 1, further comprising a data store for storing at least some of the
data sets, wherein the data set information store includes information regarding at least one data set that is

defined by an algebraic relation in the relation store and is not stored in the data store.

11. The method of claim 9, further comprising a data store for storing at least some of the
data sets, wherein the data set information store includes information regarding at least one unrealized
data set that is not stored in the data set store and is defined by an algebraic relation in the relation store
that references a data set having temporal information prior to the specified time, wherein the step of
temporally redefining the data set information store further comprising storing the unrealized data set in
the data set store before removing the data set having temporal information prior to the specified time

from the data set information store.

12. The method of claim 1, wherein the plurality of algebraic relations composed from the
query language statement have a single operator and a number of operands in the range of from one to

three.

13. The method of claim 2 wherein the algebraic relation for the new data set has a single

operator and a number of operands in the range of from one to three.

14. The method of claim 1, wherein the query language statement is based on a relational
data model.
15. The method of claim 1, wherein the query language statement is received in an structured

query language (SQL) format.

16. The method of claim 1, wherein the query language statement is based on a markup

language model.

17. The method of claim 1, wherein the query language statement is received in an XQuery

format.

18. The method of claim 1, wherein the query language statement requests a data set to be
provided, the method further comprising using at least some of the plurality of algebraic relations

composed from the query language statement to provide the requested data set.

-50-

10

15

20

25

30

WO 2007/134278)) PCT/US2007/068856
19. The method of claim 1, wherein the query language statement requests a data set to be

provided and the relation store includes other algebraic relations for data sets that are not composed from
the query language statement, the method further comprising using at least some of the other algebraic

relations to provide the requested data set.

20. The method of claim 18, wherein the query language statement requests a data set to be
provided and the relation store includes other algebraic relations for data sets that are not composed from
the query language statement, the method further comprising using at least some of the other algebraic

relations to provide the requested data set.

21. The method of claim 1, wherein the query language statement requests a data set to be
provided, the method further comprising:
providing a plurality of collections of algebraic relations defining a result equal to the
requested data set;
applying optimization criteria to select one of the collections of algebraic relations; and

using the selected collection of algebraic relations to provide the requested data set.

22. The method of claim 20, further comprising:
providing a plurality of collections of algebraic relations defining a result equal to the
requested data set;
applying optimization criteria to select one of the collections of algebraic relations; and

using the selected collection of algebraic relations to provide the requested data set.

23. The method of claim 21, further comprising storing each collection of algebraic relations

in a tree data structure.

24. The method of claim 21, further comprising allocating the algebraic relations from the

selected collection to processing resources for parallel processing.
25. The method of claim 21, wherein the optimization criteria includes a costing algorithm.

26. The method of claim 22, wherein the optimization criteria includes a costing algorithm

and the selected collection of algebraic relations has the least cost according to the costing algorithm.

27. The method of claim 21, wherein the optimization criteria is based, at least in part, on an
estimate of the time required to retrieve data sets from storage that are required in order to calculate each

of the collections of algebraic relations.

28. The method of claim 21, wherein the optimization criteria is based, at least in part, on the

amount of data to be retrieved from storage to calculate each of the collections of algebraic relations.

-51-

10

15

20

25

30

WO 2007/134278) PCT/US2007/068856
29. The method of claim 22, wherein the optimization criteria is based, at least in part, on an

estimate of the transfer speed of the data channel for retrieving the data sets required to calculate each of

the collections of algebraic relations.

30. The method of claim 21, wherein:
the optimization criteria is based, at least in part, on a cost for retrieving data sets from
storage required to calculate each of the collections of algebraic relations; and
the optimization criteria allocates the cost for retrieving a respective data set from storage

only once if the respective data set is referenced in a collection of algebraic relations more than one time.

31. The method of claim 21, wherein the step of providing a plurality of collections of
algebraic relations includes:
retrieving an algebraic relation from the relation store that defines the requested data set;
and
generating a plurality of collections of algebraic relations that are algebraically equivalent

to the retrieved algebraic relation.

32. The method of claim 21, wherein the plurality of collections of algebraic relations further
includes at least two collections of algebraic relations that are not algebraically equivalent to one another,

but will both provide a result equal to the requested data set.

33. The method of claim 21, wherein the step of providing a plurality of collections of
algebraic relations includes generating collections of algebraic relations that differentiate between

equivalent data sets containing the same logical data in different physical formats.

34. The method of claim 33, wherein the different physical formats are selected from the
group consisting of comma separated value format, tab delimited value format, binary string format, fixed

offset format and markup language format.

35. The method of claim 21, wherein the step of providing a plurality of collections of
algebraic relations includes generating collections of algebraic relations that differentiate between

equivalent data sets containing the same logical data in different storage locations.

36. The method of claim 35, wherein at least some of the equivalent data sets are available

over different data channels.

37. The method of claim 21, wherein:
the collections of algebraic relations reference at least two equivalent data sets containing

the same logical data in different physical formats; and

-52-

10

15

20

25

30

WO 2007/134278) o o _ PCT/US2007/068856
the step of applying the optimization criteria further comprises estimating the transfer

time required to obtain the equivalent data sets from storage and selecting one of the equivalent data sets

that has the lowest estimated transfer time.

38. The method of claim 21, wherein:
the collections of algebraic relations reference at least two equivalent data sets containing
the same logical data in different storage locations; and
the step of applying the optimization criteria further comprises estimating the transfer
time required to obtain the equivalent data sets from storage and selecting one of the equivalent data sets

that has the lowest estimated transfer time.

39. The method of claim 21, further comprising:
providing plurality of functions for calculating algebraic relations, wherein the plurality
of functions includes at least two algebraically equivalent functions that operate on data sets in different
physical formats; and

using at least some of the functions to provide the requested data set.

40. The method of claim 37, further comprising:
providing plurality of functions for calculating algebraic relations, wherein the plurality
of functions includes at least two algebraically equivalent functions that operate on data sets in different
physical formats;
selecting one of the algebraically equivalent functions based on the format of the selected
equivalent data set to be retrieved from storage; and
using at least some of the functions to realize the requested data set, including the

selected one of the algebraically equivalent functions.

41. A method of providing a requested data set comprising:
receiving a plurality of query language statements that do not request the requested data
set;
composing a plurality of algebraic relations between data sets based on the query
language statements; and
providing the requested data set based, at least in part, on the plurality of algebraic

relations composed from the query language statements.

42. The method of claim 41, wherein the query language statements specify at least one
explicit data set, the method further comprising:
providing a data set information store for storing information regarding the data sets;
associating a data set identifier with the explicit data set; and

storing the data set identifier in the data set information store.

-53-

10

15

20

25

30

WO 2007/134278 . . o PCT/US2007/068856
43, The method of claim 41, further comprising providing a data store for storing at least

some of the data sets, wherein the query language statements specify at least one data set that has not

been stored in the data store at the time the request for the requested data set is received.

44. The method of claim 43, wherein the step of using at least some of the algebraic relations
composed from the query language statements to calculated the requested data set further comprises using
the at least one data set that has not been stored in the data store at the time the request for the requested

data set 1s received.

45. The method of claim 41, wherein each of the algebraic relations has a single operator and

a number of operands in the range of from one to three.

46. The method of claim 41, wherein the query language statements are based on a relational
data model.
47. The method of claim 41, wherein the query language statements are based on a markup

language model.

48. The method of claim 41, wherein at least one of the query language statements is based
on a relational data model and at least one of the query language statements is based on a markup

language model.

49. A method of providing a requested data set comprising:
providing a relation store containing a plurality of algebraic relations composed from a
plurality of query language statements;
using at least some of the algebraic relations from the relation store to compose a
collection of algebraic relations that defines a result equal to the requested data set; and

calculating the requested data set from the collection of algebraic relations.

50. The method of claim 49, further comprising:
receiving a query language statement requesting the requested data set;
composing a plurality of additional algebraic relations based on the query language
statement requesting the requested data set; and
using at least some of the additional algebraic relations to compose the collection of

algebraic relations.

51. The method of claim 50 further comprising defining at least one new data set by
composing an algebraic relation based on a portion of the data sets referenced in the query language

statement; and storing the algebraic relation for the new data set in the relation store.

52. A method of providing a requested data set comprising:

-54-

10

15

20

25

30

wOo 2007/13427$) _) PCT/US2007/068856
providing a relation store containing a plurality of algebraic relations composed from a

plurality of query language statements;

using at least some of the algebraic relations from the relation store to compose a
plurality of collections of algebraic relations defining a result equal to the requested data set;

applying optimization criteria to select one of the collections of algebraic relations; and

using the selected collection of algebraic relations to calculate the requested data set.

53. The method of claim 52 further comprising storing each collection of algebraic relations

in a tree data structure.

54. The method of claim 52, wherein the optimization criteria is based, at least in part, on an
estimate of the time required to retrieve data sets from storage that are required in order to calculate each

of the collections of algebraic relations.

55. The method of claim 52, wherein:
the optimization criteria is based, at least in part, on a cost for retrieving data sets from
storage required to calculate each of the collections of algebraic relations; and
the optimization criteria allocates the cost for retrieving a respective data set from storage

only once if the respective data set is referenced in a collection of algebraic relations more than one time.

56. The method of claim 52, further comprising allocating the algebraic relations from the

selected collection to processing resources for parallel processing.

57. The method of claim 52, wherein the step of providing a plurality of collections of
algebraic relations includes generating collections of algebraic relations that differentiate between

equivalent data sets containing the same logical data in different physical formats.

58. The method of claim 52, wherein the collections of algebraic relations reference at least
two equivalent data sets containing the same logical data in different physical formats; and

the step of applying the optimization criteria further comprises estimating the transfer time
required to obtain the equivalent data sets from storage and selecting one of the equivalent data sets that

has the lowest estimated transfer time.

59. The method of claim 56, further comprising:
providing a plurality of functions, wherein the plurality of functions includes at least two
algebraically equivalent functions that operate on data sets in different physical formats; and

using at least some of the functions to provide the requested data set.

60. The method of claim 58, further comprising:
providing plurality of functions, wherein the plurality of functions includes at least two

algebraically equivalent functions that operate on data sets in different physical formats;

-55-

10

15

20

25

30

WO 2007/134278 PCT/US2007/068856
selecting one of the algebraically equivalent functions based on the format of the selected

one of the equivalent data sets; and
using at least some of the functions to realize the requested data set, including the

selected one of the algebraically equivalent functions.

61. A method for providing a requested data set, comprising:

providing a plurality of algebraic relations defining relationships between a plurality of
data sets;

using at least some of the plurality of algebraic relations to compose a plurality of
collections of algebraic relations that define a result equal to the requested data set;

determining a cost for each of the plurality of collections of algebraic relations, wherein
the cost is based, at least in part, on an estimate of the transfer time required to retrieve the data sets
required to calculate the requested data set from the collection of algebraic relations;

selecting the collection of algebraic relations with the lowest cost; and

using the selected collection of algebraic relations to provide the requested data set.

62. The method of claim 61, wherein composing the plurality of collections of algebraic
relations further comprises using at least some of the plurality of algebraic relations to generate new

algebraic relations that were not previously available at the time the requested data set is first requested.

63. The method of claim 61, wherein composing the plurality of collections of algebraic
relations further comprises composing at least one algebraic relation defining the requested data set and
generating a plurality of collections of algebraic relations that are algebraically equivalent to the at least

one algebraic relation defining the requested data set.

64. The method of claim 61, wherein the plurality of collections of algebraic relations further
includes at least two collections of algebraic relations that are not algebraically equivalent to one another,

but will both provide a result equal to the requested data set.

65. The method of claim 61 further comprising storing each collection of algebraic relations

in a tree data structure.

66. The method of claim 61 further comprising allocating algebraic relations from the

selected collection to processing resources for parallel processing.

67. The method of claim 61, wherein the step of determining cost further comprises
allocating cost for retrieving a respective data set only once if the respective data set is referenced in a

collection of algebraic relations more than one time.

-56-

10

15

20

25

30

WO 2007/134278 PCT/US2007/068856
68. The method of claim 61, wherein composing the plurality of collections of algebraic

relations further comprises generating collections of algebraic relations that differentiate between

equivalent data sets containing the same logical data in different physical formats.

69. The method of claim 68, wherein the different physical formats are selected from the
group consisting of comma separated value format, tab delimited value format, binary string format, fixed

offset format and markup language format.

70. The method of claim 61, wherein composing the plurality of collections of algebraic
relations further comprises generating collections of algebraic relations that differentiate between

equivalent data sets containing the same logical data in different storage locations.

71. The method of claim 70, wherein at least some of the equivalent data sets are available

over different data channels.

72. The method of claim 61, wherein:
the collections of algebraic relations reference at least two equivalent data sets containing
the same logical data in different physical formats;
the step of determining cost further comprises estimating the transfer time required to
obtain the equivalent data sets from storage; and
the step of selecting the collection of algebraic relations with the lowest cost further
comprises selecting the collection of algebraic relations that references the equivalent data set that has the

lowest estimated transfer time.

73. The method of claim 61, wherein:
the collections of algebraic relations reference at least two equivalent data sets containing
the same logical data in different storage locations;
the step of determining cost further comprises estimating the transfer time required to
obtain the equivalent data sets from storage; and
the step of selecting the collection of algebraic relations with the lowest cost further
comprises selecting the collection of algebraic relations that references the equivalent data set that has the

lowest estimated transfer time.

74. The method of claim 61, further comprising:
providing a plurality of functions for calculating algebraic relations, wherein the plurality
of functions includes at least two algebraically equivalent functions that operate on data sets in different
physical formats; and

using at least some of the functions to provide the requested data set.

75. The method of claim 68, further comprising:

-57-

10

15

20

25

30

WO 2007/134278 PCT/US2007/068856
providing a plurality of functions for calculating algebraic relations, wherein the plurality

of functions includes at least two algebraically equivalent functions that operate on data sets in different
physical formats;

selecting one of the algebraically equivalent functions based, at least in part, on the
format of the data sets referenced in the selected collection of algebraic relations; and

using at least some of the functions to realize the requested data set, including the

selected one of the algebraically equivalent functions.

76. The method of claim 68, wherein the equivalent data sets include a first data set in a first
format and a second data set in a second format that has a larger size than the first format, wherein the
step of selecting the collection of algebraic relations with the lowest cost further comprises selecting the
data collection that references the second data set if the second data set is available over a data channel

with a higher transfer speed than the first data set.

77. The method of claim 68, wherein the equivalent data sets include a first data set available
in non-volatile storage in a first format and a second data set available in a volatile memory in a second
format that has a larger size than the first format, wherein the step of selecting the collection of algebraic
relations with the lowest cost further comprises selecting the collection of algebraic relations that

references the second data set.

78. A method for storing a specified data set, comprising:

providing a plurality of algebraic relations defining relationships between a plurality of
data sets;

using at least some of the plurality of algebraic relations to compose a plurality of
collections of algebraic relations that define a result equal to the specified data set;

determining a cost for each of the plurality of collections of algebraic relations, wherein
the cost is based, at least in part, on an estimate of the transfer time required to retrieve the data sets
required to calculate the requested data set from the collection of algebraic relations;

selecting the collection of algebraic relations with the lowest cost; and

using the selected collection of algebraic relations to calculate the specified data set; and

storing the specified data set that has been calculated from the selected collection of

algebraic relations.

79. The method of claim 78, wherein composing the plurality of collections of algebraic
relations further comprises generating new algebraic relations that were not previously available at the

time the specified data set is first specified.

80. The method of claim 78, wherein composing the plurality of collections of algebraic

relations further comprises composing at least one algebraic relation defining the specified data set and

-58-

10

15

20

25

30

35

WO 2007/134278 PCT/US2007/068856
generating a plurality of collections of algebraic relations that are algebraically equivalent to the at least

one algebraic relation defining the specified data set.

81. A method for providing a requested data set:

providing a storage system for storing data sets;

composing at least two alternative algebraic relations that each define a result equal to the
requested data set, including a first algebraic relation based on a first collection of data sets stored in the
storage system and a second algebraic relation based on a second collection of data sets stored in the
storage system; 7

selecting between the first algebraic relation and the second algebraic relation based, at
least in part, on an estimate of the transfer time required to retrieve the first collection of data sets from
the storage system in order to use the first algebraic relation to calculate the requested data set and on an
estimate of the transfer time required to retrieve the second collection of data sets from the storage system
in order to use the second algebraic relation to calculate the requested data set; and

using the selected algebraic relation to calculate the requested data set.

82. A method for providing a requested data set:

providing a storage system for storing data sets;

composing at least two alternative algebraic relations that each define a result equal to the
requested data set, including a first algebraic relation based on at least a first data set stored in the storage
system and a second algebraic relation based on at least a second data set stored in the storage system;

wherein the first data set and the second data set contain the same logical data stored in
different physical formats;

selecting between the first algebraic relation and the second algebraic relation based, at
least in part, on the physical format of the first data set and the physical format of the second data set; and

using the selected algebraic relation to calculate the requested data set.

83. The method of claim 82, wherein the physical format of the first data set is selected from
the group consisting of comma separated value format, tab delimited value format, binary string format,

fixed offset format and markup language format.

84. The method of claim 83, wherein the physical format of the second data set 1s selected
from the group consisting of comma separated value format, tab delimited value format, binary string

format, fixed offset format and markup language format.

85. The method of claim 82, further comprising providing plurality of functions for
calculating algebraic relations, wherein the plurality of functions includes a first function that operates on
a data set in the physical format of the first data set and a second function that operates on a data set in the
physical format of the second data set, wherein the first function and the second function are algebraically

equivalent;

-59-

10

15

20

25

30

35

WO 2007/134278) PCT/US2007/068856
wherein the step of using the selected algebraic relation to calculate the requested data set further

comprises using the first function if the first algebraic relation is selected and using the second function if

the second algebraic relation is selected.

86. The method of claim 82, wherein the storage system includes a plurality of data channels

and the first data set and the second data set are available over different data channels.

87. The method of claim 86, wherein the first data set in the first physical format has a first
size and is available over a first data channel having a first data transfer rate, and the second data set in
the second physical format has a second size and is available over a second data channel having a second
data transfer rate, the method further comprising:

determining a first cost based, at least in part, on the first size and the first data transfer
rate;

determining a second cost based, at least in part, on the second size and the second data
transfer rate; and

selecting the first algebraic relation to calculate the requested data set if the first cost is

lower than the second cost.

88. A method for providing a requested data set:

providing a storage system for storing data sets, wherein the storage system includes a
volatile memory and a non-volatile storage medium;

composing at least two alternative algebraic relations that each define a result equal to the
requested data set, including a first algebraic relation based on at least a first data set stored in the storage
system and a second algebraic relation based on at least a second data set stored in the storage system,;

wherein the first data set and the second data set contain the same logical data stored in
different physical formats, the first data set being stored in a first physical format having a first size and
the second data being stored in a second physical format having a second size that is smaller than the first
size;

determining that the first data set is available in the volatile memory; and

selecting the first algebraic relation to calculate the requested data set.

89. A method for providing a requested data set:
providing a storage system for storing data sets in a plurality of physical formats;
providing a plurality of functions for operating on the data sets in the plurality of physical
formats, wherein each function is configured to operate on at least one operand in a respective one of the
physical formats;
providing an algebraic relation that defines a result equal to the requested data set,
wherein the algebraic relation references at least a first data set stored in the storage system;

retrieving the first data set in a respective one of the physical formats;

-60-

10

15

20

25

30

WO 2007/134278)] PCT/US2007/068856
selecting one of the plurality of functions that is configured to operate on an operand in

the respective physical format of the first data set; and

using the selected function to calculate the requested data set from the algebraic relation.

90. The method of claim 89, wherein the algebraic relation specifies at least one operation

and the selected function corresponds to the specified operation.

91. The method of claim 89, wherein the plurality of functions includes algebraically

equivalent functions configured to operate on operands in different physical formats.

92. The method of claim 89, wherein the step of providing the algebraic relation further
comprises selecting the algebraic relation from a plurality of algebraic relations that each define a result

equal to the requested data set.

93. The method of claim 91, wherein the step of providing the algebraic relation further
comprises selecting the algebraic relation from a plurality of algebraic relations that each define a result

equal to the requested data set.

94, The method of claim 93, wherein the step of selecting the algebraic relation further
comprises selecting the algebraic relation based, at least in part, on an estimate of the time required to

retrieve the first data set from the storage system.

95. The method of claim 89, wherein the algebraic relation references at least a second data
set stored in the storage system, the method further comprising retrieving the second data set in a

respective one of the physical formats.

96. The method of claim 95, wherein the selected function is configured to operate on at least

a second operand in the respective physical format of the second data set.

97. The method of claim 95, wherein the algebraic relation specifies at least one operation

and the selected function corresponds to the specified operation.

98. The method of claim 95, wherein the plurality of functions includes algebraically

equivalent functions configured to operate on operands in different physical formats.

99. The method of claim 95, wherein the step of providing the algebraic relation further
comprises selecting the algebraic relation from a plurality of algebraic relations that each define a result

equal to the requested data set.

100. The method of claim 99, wherein the step of selecting the algebraic relation further
comprises selecting the algebraic relation based, at least in part, on an estimate of the time required to

retrieve the second data set from the storage system.

-61-

10

15

20

25

30

WO 2007/134278 . _ o PCT/US2007/068856
101. The method of claim 98, wherein the step of providing the algebraic relation further

comprises selecting the algebraic relation from a plurality of algebraic relations that each define a result

equal to the requested data set.

102. A method for providing a requested data set:

providing a mapping between a first schema based on a first data model and a second
schema based on a second data model;

receiving a first statement based on the first schema;

composing a plurality of algebraic relations between data sets based on the first
statement;

receiving a second statement based on the second schema that requests the requested data
set; and

using at least one of the algebraic relations composed from the first statement and the

mapping between the first schema and the second schema to provide the requested data set.
103. The method of claim 102, wherein the first data model is a relational data model.

104. The method of claim 103, wherein the second data model is a markup language data

model.
105. The method of claim 102, wherein the first data model is a markup language data model.
106. The method of claim 105, wherein the second data model is a relational data model.

107. The method of claim 102, wherein the first statement is a query statement in a structured

query language (SQL) format.

108. The method of claim 107, wherein the second statement is a query language statement in

an XQuery format.

109. The method of claim 102, wherein the first statement is a query language statement in an

XQuery format.

110. The method of claim 109, wherein the second statement is in a query language statement

in a structured query language (SQL) format.
111. The method of claim 102, wherein the first statement is a set notation statement.

112. The method of claim 111, wherein the second statement is a query statement in a

structured query language (SQL) format.

113. The method of claim 107, wherein the second statement is a set notation statement.

-62-

10

15

20

25

30

WO 2007/134278) PCT/US2007/068856
114. The method of claim 111, wherein the second statement is a query language statement in

an XQuery format.
115. The method of claim 109, wherein the second statement is a set notation statement.

116. A method for providing a requested data set based on a first schema:

providing a mapping between the first schema based on a first data model and a second
schema based on a second data model;

providing a first plurality of algebraic relations between data sets based on the second
schema;

composing an algebraic relation defining a result equal to the requested data set based, at
least in part, on the first plurality of algebraic relations; and

using the algebraic relation defining a result equal to the requested data set and the

mapping between the first schema and the second schema to provide the requested data set.

117. The method of claim 116 wherein the first plurality of algebraic relations is composed

from a first plurality of statements based on the second schema.

118. The method of claim 116 further comprising providing a second plurality of algebraic
relations between data sets based on the first schema, wherein the algebraic relation defining a result

equal to the requested data set is also based, at least in part, on the second plurality of algebraic relations.

119. The method of claim 118 wherein the first plurality of algebraic relations is composed

from a first plurality of statements based on the second schema.

120. The method of claim 118 wherein the second plurality of algebraic relations is composed

from a second plurality of statements based on the first schema.

121. The method of claim 119 wherein the second plurality of algebraic relations is composed

from a second plurality of statements based on the first schema.
122. The method of claim 116, wherein the first data model is a relational data model.

123. The method of claim 122, wherein the second data model is a markup language data

model.
124. The method of claim 116, wherein the first data model is a markup language data model.
125. The method of claim 124, wherein the second data model is a relational data model.

126. A method for storing data sets comprising:

providing a data store;

-63-

10

15

20

25

30

WO 2007/134278) PCT/US2007/068856
providing a data set information store for storing information regarding a plurality of data

sets, including information specifying whether each respective data set is realized in the data store;

providing a relation store for storing a plurality of algebraic relations between the data
sets;

establishing a criteria for virtualization of data sets in the data set information store;

identifying at least one data set that is realized in the data store and meets the criteria for
virtualization;

determining that the relation store includes at least one algebraic relation defining the
identified data set based upon at least one other data set that is realized in the data store;

removing the identified data set from the data store; and

changing the information regarding the identified data set in the data set information store

to indicate that the identified data set is not realized in the data store.

127. The method of claim 126, wherein the criteria for virtualization include the size of the

respective data set.

128. The method of claim 126, wherein the criteria for virtualization include the number of

times that the data set has been referenced.

129. The method of claim 126, wherein the criteria for virtualization include the frequency

which the respective data set has been accessed in the data store.

130. The method of claim 126, wherein the algebraic relation defining the identified data set

references at least two other data sets that are realized in the data store.

131. The method of claim 126, wherein the at least one other data set used to define the

identified data set contains the same logical data in a different physical format.

132. The method of claim 131, wherein the physical format in which the identified data set is

stored is larger than the physical format of the at least one other data set.

133. The method of claim 132, wherein the physical format in which the identified data set is
stored is selected from the group consisting of comma separated value format, tab delimited value format,

binary string format, fixed offset format and markup language format.

134. The method of claim 132, wherein the physical format in which the at least one other data
set is stored is selected from the group consisting of comma separated value format, tab delimited value

format, binary string format, fixed offset format and markup language format.

135. The method of claim 126, further comprising using the algebraic relation defining the

identified data set to provide a requested data set without realizing the identified data set.

-64-

10

15

20

25

30

35

WO 2007/134278) PCT/US2007/068856
136. The method of claim 135, wherein the step of using the algebraic relation defining the

identified data set to provide a requested data set further comprises:

composing a plurality of collections of algebraic relations defining the requested data set,
wherein the algebraic relation defining the identified data is used to compose at least one of the
collections of algebraic relations;

applying an optimization criteria to select one of the collections of algrebraic relations to
calculate the requested data set;

using the selected collection of algebraic relations to calculate the requested data set.

137. The method of claim 136, wherein the algebraic relation defining the identified data is
used as a substitution for a reference to the identified data set in at least one of the collections of algebraic

relations.

138. A method for storing data sets comprising:

providing a data store;

providing a data set information store for storing information regarding a plurality of data
sets, including information specifying whether each respective data set is realized in the data store;

providing a relation store for storing a plurality of algebraic relations between the data
sets;

selecting at least one data set from the data set information store that is realized in the
data store;

adding data sets to the data set information store that are subsets of the selected data set
and realizing the added data sets in the data store;

adding an algebraic relation to the relation store that defines the selected data set based
on the added data sets;

removing the selected data set from the data store; and

changing the information regarding the selected data set in the data set information store

to indicate that the selected data set is not realized in the data store.

139. The method of claim 138, further comprising:
receiving a statement requesting a requested data set, wherein the statement includes an
expression referencing the selected data set;
composing an algebraic relation having a result equal to the requested data set, wherein
the algebraic relation includes an expression referencing at least one of the added subsets as a substitution
for the expression referencing the selected data set;

using the algebraic relation to calculate the requested data set.

140. The method of claim 138, wherein the added data sets are partitions of the selected data

set having equal cardinality.

-65-

10

15

20

25

WO 2007/134278 PCT/US2007/068856
141. The method of claim 138, wherein the added data sets are subsets defined by ranges of

scalar values for a data item that is included in the selected data set.

142. A method for storing data sets comprising:

providing a relation store for storing algebraic relations between data sets;

providing a data store for storing data sets, including at least a first data set, a second data
set and a third data set;

composing an algebraic relation that defines the first data set using at least the second
data set and the third data set;

adding the algebraic relation to the relation store; and

removing the first data set from the data store after the algebraic relation has been added

to the relation store.

143. The method of claim 142, wherein at least one of the second data set and the third data
set is stored in the data store in a physical format different from the physical format in which the first data

set is stored in the data store.

144. The method of claim 143, wherein the physical format in which the first data set is stored
is selected from the group consisting of comma separated value format, tab delimited value format, binary

string format, fixed offset format and markup language format.

145. The method of claim 142 further comprising:
providing a data set information store for storing information regarding a plurality of data
sets, including information indicating that the first data set, the second data set and the third data set are
realized in the data store; and
changing the information regarding the first data set in the data set information store to

indicate that the first data set is not realized in the data store.

-66-

PCT/US2007/068856

WO 2007/134278

1/23

144

r\J

abeiois

I E

ccl

f

Lcl

FJ

J10}elg|a0dYy

OIN

0ci

F\J

JOIN

02\1

gLl sng [eseydued ——

9Ll sngilasdiypy —

80} sSng J0SSa30lyg —

% obpug ynog
141!

M, abpug yuoN
Q01

¢l sng
Aowasy

10$88201d

Nov(ﬂ

WVvY

N\o:

ayoen

Hvov

WO 2007/134278 PCT/US2007/068856

2(§0

@)
A\ o
Ty %
T
)
L] §
—33
£y
@ -8
/

FIG. 2

WO 2007/134278

-

3/23

PCT/US2007/068856

Processors 302 Memory Subsystem 304
AL N
4 N\
306a
30231 1 MAP M Memory }|J4—— 308a
Processor |_
FPGA L —— 310a
306b
302b1 1 MAP Memory | 308b
Processor
FPGA L—— 310b
306¢c
30201 ’1_ MAP Memory | _— 308c
Processor
FPGA L— 310c
306d
3020'1 1 MAP r_Memory |1— 308d
Processor
I—- FPGA L—— 310d
306e
30261 1 MAP Memory |—— 308e
Processor
FPGA | —— 310e
306f
302f1 [map Memory 1L 308f
Processor |_
FPGA L —— 310f

FIG. 3

WO 2007/134278

406
L

SQL
Connector

400 \

SQL
Translator

w08 l

PCT/US2007/068856
4/23
XML
XSN Connector Administrator
Connector Interface
410 XML 424
Translator

l 414f

'

XSN Interface 416

'

Optimizer 418

'

Set Processor 404

'

]
]
Set
Manager
402
-
—>

Storage Manager

420

I

Executive 422

FIG. 4A

PCT/US2007/068856

WO 2007/134278

5/23

gy "Old

[uhsn

pInB 73y pinb YO pinb ‘pinb ‘pinb 4o pinb

pinB 13y pinb YO pinb ‘pinb ‘pinb 4O pinb

pING 73y pIn6 YO pinb ‘pinb ‘pinb 4o pind

pinb 134 pinb YO pinb ‘pinb ‘pinb 4O pinb

ayoe) olelqably

..N(csy

[ulsiT

(sbe))) adA) Jos ‘Jewloy) ‘swyalep ‘1aluspl [eulsixs ‘pinb

(sbe)y) adA} 1os ‘Jewoy) ‘swyayep ‘Jayiuapl [eusaxa ‘pinb

(sbeyy) adA) 19s ‘yewlo} ‘swiysjep ‘18unuap! [euIsixa ‘pinb

(sbeyy) adAy 19s ‘Jewloy ‘swiysiep ‘1Buuapl [eulsixa ‘pinb

8sIBAIUN 198

H oSy

Jabeuepiog

H oy

WO 2007/134278 PCT/US2007/068856

6/23
User Command
Import Set Raptor
501 O P
CRaptorAdmin
Import
502
h 4
SetManager
smCreateSet
503
A 4
StorageManager
SetReader
504
'y Storage Map

505

Information Set
506

FIG. 5

WO 2007/134278 PCT/US2007/068856

7/23

SQL |Raptor

Statement
CRaptorSQLConnector
SQLConnector
601

l

SQLTranslator

SQLllInterface
602

l

XSNInterface

XSNinterface
603

l

Optimizer

Optimize
604

l

SetProcessor

ProcessXSN
605

l

To SetProcessor
Operations

FIG. 6

WO 2007/134278 PCT/US2007/068856

8/23

select L_DISCOUNT, L_SHIPDATE, O_ORDERSTATUS f 701
from LINEITEM, ORDERS where L. ORDERKEY =
O_ORDERKEY and L_ORDERKEY ='12345"

rdmProj(rdmRest(rdmJoin(LINEITEM, ORDERS, NULL), f 702
{{"EQ".<"1""const" "12345">},{"EQ".<"1","17">}}}),
<u7u’u1 1Il’"19">)

A REL OP(B,C,D)

Relation Member
Node | *~¥ P | Node | %

\ Me?nber
SetA| | ¥ | Node

OP
ﬁode ?

4
Member

? | Node \
M\‘b
‘ ember
ISetB ? | Node | %
7Y
‘ Member
[setC] | % | Node
[Set D]

SQL000009,RDMPROJ (RDMJOIN 704
(LINEITEM,ORDERS {GUID(953609a2-4ff8-11da-8717- f
00132066196a)}),{GUID(0bB01696-4f8-11da-8717-
00132066196a)})

FIG. 7

WO 2007/134278 PCT/US2007/068856

9/23

User Command | Executive

Realize CRaptorAdmin
Oi Realize
801

XSNinterface

XSNInterface

802
Optimizer
Optimize
804
\
SetManager
GetGuidFromName
803
SetProcessor
SetProcessor
805

FIG. 8

WO 2007/134278

XSNinterface

901

10/23

PCT/US2007/068856

Optimizer

findLeastCost
903

v

findAltOps
904

!

findLeastCost
903

b

O

buildExpressions
902

findMetaGuids
905

!

findLeastCost
903

Y

realizeNode

SetProcessor
spProcessXsnTree

909

908

findAltGuids
906

'

findLeastCost
903

A

&

FIG. 9A

O

FIG. 9B

WO 2007/134278 PCT/US2007/068856
11/23
Optimizer
findOperational
® id 913
®
5 <
£8
z
)
x
O buildExpressions
902
findAlgebraic findExpressions
914 915
@
.
=
findLeastCost 82
903 § A
e 8
o QO
W a
&
realizeNode
—>
908 O

909

WO 2007/134278

12/23

Occurences
V4

PCT/US2007/068856

Values

Data Distribution (Equal Cardinality) Optimization

/ 952

N
q) N -
£ Stb- | Sub- Subset 3 | Subset4 | Subset5 | Subset6
3 set1 set2-.| T R NG
O h Seeet - S o M~ '/‘ \
Values
FIG. 9C
Q
2 954
5 e
o }
Q
[&]
; |]
Values
Range Optimization / 956
(/2]
8
§ Subset 1 |Subset 2 |Subset 3 Subset 4 Subset 5
3
O
o
Values

FIG. 9D

WO 2007/134278 PCT/US2007/068856
13/23
Column1 |+ Column2 [«| Column3 Column 4 -: Column 5
Domain Optimization
\ 958
Column 1 Column 3 Column 4
960
FIG. 9E
[71]
[0
O
c
o
§ FALSE TRUE N 962
@]

Values

Low Cardinality Optimization

FALSE
subset

TRUE
subset

FIG. 9F

PCT/US2007/068856

WO 2007/134278

14 /23

H6 "Old

.16 o%/6 Pv.6 oF/6 ar.6 Ev/6
S S S S S S
.............................. -6 vWB
91Z pinb 9le
GLZ pinb Gle
#1Z pinb 1474
€Lz pinb €le
96 'Old
J uwnjo) 9 uwnjon G uwinjon # uwnjo) ¢ uwnjo) Z uwnjon L uwnjon
\ uoieziwndo uiop
wom/} 06 906 ~
cuwnjo) | zuwnjo)y | | uwnjo)
uwnjon € uwnjo) Z uwnjon | uwnjon

WO 2007/134278 PCT/US2007/068856

15/23

1001 1002

List[1] ¢—>» Arg[1] *—>»

List2] ¢—> | Argl2] ¢—>

- *—> OptoExpression
List[3] Operation Type
Guid
Flags
Cost Info
Up to 3 OptoNode arguments

List[n] @—»

OptoNode
List of OptoExpressions

FIG. 10A

WO 2007/134278 PCT/US2007/068856

16 /23

Arg[0]
/| NULL
List[0] NULL
Arg[Q] ATl
NULL L
NULL Ty
List[0] List[0] NULL

List[1] ¢—» Arg[O]/

List2] Argl0]
Lo ¢— 2rg[(1)1 /NULL
{ Nrgl[_L] ﬁ List0] NULL gy
1004 [List[0] $—{ Arg[0] ﬁ;gﬂ]
NULL

. List[0]
o List[0] List[1] NULL
gwﬂ List[2] > Arg[0]
List[2] List[3] Arg[1]
. List[n] NULL
1008 Lsmnk\\\\\~‘ Arg[0]
nee A 1
Arg[O] NE£E
NULL
NULL L
NULL
\1014

FIG. 10B

1101

Optimizer

Q

WO 2007/134278 PCT/US2007/068856
17723
)
& o
SetProcessor =
33
& &
(Reall 2
ealize an)
spProc??%)z(snTree explicit set)
1103
ProcessXsnAssignment ProcessXSNRelation
1105 1106
ProcessXSN
1107
ProcessOp
1108
@
o
(]
C
| m
= 3
ThreadPool Operations 8
Insert (rdmJoin, S
1109 rdmProject, »
rdmRestrict ...)
1110

SetReader

1104

O

SetWriter

FIG. 11

O

PCT/US2007/068856

WO 2007/134278

18 /23

V¢l 'Old
Licl oLcl 60¢1
= - 5
802! ailes L0¢Cl J18S 90¢lt g1es Gocl 14014
S W . W N W =
9PON P 9PON p 9pPON ~ 9PON V18S
JaqUisi\ JoqUIBIN JBqUIBIA \\t d0O 2021 L0ZL
S G
SPON w 9PON & » SPON
JaqUIBIN s Jaquisy ¥— uoneey

ﬁL

€0cl

(@o'a)do 13y v

PCT/US2007/068856

WO 2007/134278

19/23

g¢l "old

€9Cl [4*14*
5 o
L9¢L (30} 09¢L Y
WA X
SpON H SPON ~
soquan| ©| A" |sequem 85z}
J —
[40)
6521 ‘% v/ hw‘mmc_e mmmﬁ SNF_J
9PON k 9pPON /o Wb L710S
BETITETTY, \\o Joquiap \\o FOudWP [ATA" LGCl
~ ~ ™ . -
LGCl 9G¢cl SpPON 3pON
o -
Jaquis\ \\- laquisy N)
ﬂ/p

€qdl

(22 ‘(19 ‘'V)LSTHWPI)roydwpd = |LTOS

PCT/US2007/068856

WO 2007/134278

20/23

a€l 'Old

«—P (ureyos |)
£3nq@ [94nga | S4nqq | ¥4nqa | €4nqa | 24nqa | L 4nqq JsI ureyJsyng
oM Ispeay Jopesy
c0¢gl
vomrrh J(9081 momrw
Vel "Old
#4nqq | €4nqd | z4naa | | naq [e— (ureyo 1)
}1sI7 uleynJlayng

vom_‘rh

P

JBJUM
90¢1

%» lapesy %
80¢1

Japeay 4/

¢0c)

PCT/US2007/068856

WO 2007/134278

21723

aci 'old

clel 80¢1
\NLQ__>> lapeay (w;

' v

oLEl
| 2anag (sureyo g)
JSI7 UleyDIaYNg
zLinaa | 11 4naa | o1 inaa | 63naa | gnaa | 2 naa | 9naa| s naa | v inaa | € snaqg e
a N J /
~
SO dnues|noq Aq panoway coel
»Nx yeaig uley) Jayng
pogL
o¢1L "Old
zunaa | 11 snaa | o1 inaa | 6naa | gnaa | 2naa | 9naa | s inaa | vnaa | ¢ inaa | zingg les] (WEUWL)
A 17 uleyOIRYNg
._®u_._>>\N\ Jopeay H ._mbmm‘m/
pogL 901 % coel
80E}

PCT/US2007/068856

WO 2007/134278

22/123

V¥l "Old

A=g#0%3Qz2=x#g3z2'A=xF Y3k puw

0%3g'gu3X'¥YI3x‘'X=q'{x}=e amym

q=(e)¥y

<3d03dIZ/>€¥9¥9<3A0IdIZ>
<d1VIS/>IN<ILVIS>
<ALIO/>BYBWO<ALID>
<zdaqv/>vz Wy<zdaav>

<1 ddav/>1s uinog €21 <14aav>
<3JNVN/>80Q UYor<3jnvN>

e = ()6

(42%14%

3N

eyewo

¢ 1y

1S yinos €2}

20(Q uyor

P 300JdIZ

31VIS

ALID

cyaay

Lyaavy

JNVN

(198} WQ@Y) s1oe0)

PCT/US2007/068856
23/23

WO 2007/134278

arl 'old
N=21L# Jr3n'9="47,)r39 puy

[+1 1A ‘g="Lv'L
[£1T1A ‘G ="9Vv'd puy

Ry =" {x}="4 4xd=x1z) pue @g=dl‘} aloym

Aav_c _H._\A ,%_Xv — v___m_ puy
% o_

WL =3 m__mv: 46N = N 218um
6
u\ WMO v - N = (4)"6

ONII“_IWQ\
3 p 9
a p q
o) p 0
g q e
\v 0 B
—Y = (N)¥N > opoN o1 wol]

(391 N@Y) ydelo

	Abstract
	Description
	Claims
	Drawings

