
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number
22 November 2007 (22.11.2007) PCT WO 2007/134278 A3

(51) International Patent Classification: (74) Agents: MURPHY, Michael, J. et a].; Wilson Sonsini
G06F 7/00 (2006.01) G06F 17/30 (2006.01) Goodrich & Rosati, 650 Page Mill Road, Palo Alto, CA

94304-1050 (US).
(21) International Application Number:

PCT/US2007/068856 (81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(22) International Filing Date: 14 May 2007 (14.05.2007) AT, AU, AZ, BA, BB, BU, BI, BR, BW, BY, BZ, CA, CIL
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, FE, EU, ES,

(25) Filing Language: English H, GB, GD, GE, GIL GM, GI, IN, HR, I-U, ID, IL, IN,
IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,

(26) Publication Language: English LS, LI, LU, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, MI, NO, NZ, OM, PU, PH, PL, PT, RO, RS,

(30) Priority Data: RU, SC, SD, SE, SG, SK, SL, SM, SV SY, TJ, TM, TN,
11/383,480 15 May 2006 (15.05.2006) US IR, TI, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
11/383,477 15 May 2006 (15.05.2006) US
11/383,479 15 May 2006 (15.05.2006) US (84) Designated States (unless otherwise indicated, for every
11/383,478 15 May 2006 (15.05.2006) US kind of regional protection available): ARIPO (BW, GIL
11/383,476 15 May 2006 (15.05.2006) US GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
11/383,482 15 May 2006 (15.05.2006) US ZW), Eurasian (AM, AZ, BY, KU, KZ, MD, RU, TJ, TM),

European (AT, BE, BU, CIL, CY CZ, DE, DK, EE, ES, HI,
(71) Applicant (for all designated States except US): FR, GB, UR, IJU, IF, IS, IT, LI, LU, LV, MC, MI, NL, PL,

XSPRADA CORPORATION [US/US]; 12885 Re- PT, RO, SE, SI, SK, IR), GAPI (BE BJ, C, CU, CI CM,
search Boulevard, Suite 202, Austin, TX 78750-3224 GA, UN, UQ, UW, ML, MR, NE, SN, ID, IG).
(US).

- Published:
(72) Inventor; and with international search report
(75) Inventor/Applicant (for US only): PIEDMONTE,

Christopher, M. [US/US]; 50 South Bear Creek Road, (88) Date of publication of the international search report:
9Liberty Hill, TX 78642 (US). 28 August 2008

S(54) Title: SYSTEMS AND METHODS FOR DATA STORAGE AND RETRIEVAL

N(57) Abstract: Systems and methods for storing and accessing data. A query language statement may reference a plurality of data
Sets and a plurality of algebraic relations between the data sets may be composed from the query language statement. The algebraic

relations may be used to define new data sets and to optimize access to data sets. A store of algebraic relations may be accumulated
over time. Alternative collections of algebraic relations may be generated and evaluated to determine an optimized collection of Algebraic relations to use in calculating and providing a requested data set. The optimization may be performed using the algebraic

Relations rather than retrieving underlying data sets from storage. As a result, optimization may be performed at processor speeds to
minimize the amount of time required for data to be retrieved from slower storage.

WO 2007/134278 PCT/US2007/068856

SYSTEMS AND METHODS FOR DATA STORAGE AND RETRIEVAL

CROSS-REFERENCE

[00011 This application is related to the following copending patent applications: U.S. Patent

Application No. 11/383,476 filed on May 15, 2006; U.S. Patent Application No. 11/383,477 filed on May

5 15, 2006; U.S. Patent Application No. 11/383,478 filed on May 15, 2006; U.S. Patent Application No.

11/383,479 filed on May 15, 2006; U.S. Patent Application No. 11/383,480 filed on May 15, 2006; and

U.S. Patent Application No. 11/383,482 filed on May 15, 2006, each of which are incorporated herein by

reference in their entirety.

BACKGROUND OF THE INVENTION

10 I. Field

[00021 The field of the present invention relates to systems and methods for storing and accessing data,

and more particularly to data storage, database queries and data retrieval.

I. Background

[0003] Many database and data storage systems have predetermined schema that impose a structure on

15 data when it is received. The schema may not capture information regarding the structure of data as it is

originally provided. In addition, the schema may be designed around predefined relationships that are not

optimized for the way that data is actually provided or queried. The logical relationships inherent in the

schema may also result in a database structure that is not optimized for the manner in which the data is

actually stored. Moreover, the logical relationships inherent in the schema and/or their associated

20 database structures may constrain the kinds of logical relationships that can be specified in data queries.

A single query may require multiple accesses to storage resulting in significant inefficiencies, particularly

given the increasing disparity between processing speeds and storage access speeds. While substantial

efforts have been made to improve access methods for relational and other conventional databases, they

are inherently limited by the predefined relationships and resulting structures imposed on the data. The

25 tight coupling between these relationships and the structure of many databases also makes it difficult to

efficiently capture, translate and process data provided in various different formats, such as flat files,

comma separated value (CSV) files, and data defined using Extensible Markup Language (XML).

SUMMARY OF THE INVENTION

[0004] Aspects of the present invention provide systems and methods for storing and accessing data.

30 Example embodiments may include a data store for storing data sets, a data set information store for

storing information regarding the data sets, an algebraic relation store for storing algebraic relations

between data sets, an optimizer for using the algebraic relations to optimize storage and access of data

sets from the data store and a set processor for calculating algebraic relations to provide data sets. In

example embodiments, modules may be provided by a combination of hardware, firmware and/or

35 software and may use parallel processing and distributed storage in some example embodiments.

-1-

WO 2007/134278 PCT/US2007/068856
[00051 One aspect of the present invention provides a method for composing algebraic relations between

data sets from query language statements. Another aspect provides a method for providing a requested

data set. A query language statement may be presented to the system. For example, the query language

statement may be in an structured query language (SQL) format using a relational data model or an

5 XQuery format using a markup language format. A plurality of algebraic relations may then be

composed from the query language statement and stored in an algebraic relation store. In this way,

algebraic relations between data sets may be accumulated in the relation store over time as statements are

presented to the system. In some example embodiments, the query language statements may not request

the requested data set, but may still be used to compose algebraic relations that will be useful in providing

10 the requested data set. At least some of these algebraic relations may be retrieved from the relation store

and used to provide the requested data set.

[0006] In a further aspect, algebraic relations between data sets may be accumulated in the relation store

over time as statements are presented to the system. Alternative collections of algebraic relations may be

generated and evaluated to determine an optimized collection of algebraic relations to use in calculating

15 and providing a requested data set. The optimization may be performed using the algebraic relations

rather than retrieving underlying data sets from storage. As a result, optimization may be performed at

processor speeds to minimize the amount of time required for data to be retrieved from slower storage.

[0007] In another aspect, the query language statement requests a data set to be provided and the relation

store includes other algebraic relations for data sets that are not composed from the query language

20 statement. In some examples, both algebraic relations composed from the query language statement and

other algebraic relations in the relation store may be used to provide the requested data set. In a further

aspect, an optimizer may be used to generate a plurality of collections of algebraic relations defining a

result equal to the requested data set, and optimization criteria may be applied to select one of the

collections of algebraic relations to use in providing the requested data set. In example embodiments, the

25 optimization criteria may be based on an estimate of the amount of data required to be transferred from

storage and/or the amount of time required to transfer data sets from storage in order to calculate the

collection of algebraic relations. In another example, the optimization criteria may distinguish among

equivalent data sets containing the same logical data in different physical formats or in different locations

in the data store.

30 [0008] Another aspect provides a method for providing a requested data set in which at least two

alternative algebraic relations may be composed that each define a result equal to the requested data set.

The data sets may contain the same logical data stored in different physical formats and/or in different

locations in the data store. For example, data sets may be stored in stored on storage media in comma

separated value (CSV) format, binary-string encoding (BSTR) format, fixed-offset (FIXED) format, type

35 encoded data (TED) format and/or XML or other markup language format. Type-encoded data (TED) is

a file format that contains data and an associated value that indicates the format of such data. These are

examples only and other physical formats may be used in other embodiments. The data sets may also be

-2-

WO 2007/134278 PCT/US2007/068856
stored in different locations in the data store, such as different disk drives in a distributed storage system,

and may be accessible over different data channels having different data transfer speeds and/or different

available bandwidth. One of the algebraic relations may be selected for use in providing the requested

data set based, at least in part, on the physical format and/or locations of the data sets referenced in the

5 algebraic relations. In other examples, the algebraic relations may be selected based, at least in part, on

the speed and available bandwidth of the channel(s) used to retrieve data sets referenced in the algebraic

relation.

[0009] Another aspect provides a method for providing a requested data set using functions that operate

on operands in different physical formats. Data sets may be stored in a plurality of physical formats, such

10 as comma separated value (CSV) format, binary-string encoding (BSTR) format, fixed-offset (FIXED)

format, type-encoded data (TED) format and/or XML or other markup language format. Functions are

defined that use data sets as operands. Logically equivalent functions may be defined for different

combinations of physical formats that may be used for the operands. In order to provide a requested data

set, an algebraic relation may be composed that defines a result equal to the requested data set. The

15 algebraic relation may reference data sets in storage. In order to calculate the requested data set from the

algebraic relation, the referenced data sets are retrieved from storage and functions are applied to the data

sets to perform the operations specified in the algebraic relation. The functions used to calculate the

algebraic relation may be selected to correspond to the physical formats in which the data sets are

retrieved. In this way, functions can be used that are optimal for the physical formats in which the data

20 sets are retrieved without requiring separate format conversion.

[00101 In a further aspect, multiple algebraic relations are composed that define a result equal to a

requested data set. Some of the algebraic relations may reference the same logical data in different

physical formats. Optimization criteria may be applied to the algebraic relations that take into account the

physical format of the data sets, the functions available to operate on the data sets in those formats, and/or

25 any format conversion that may be required for calculation. An algebraic relation may be selected based

on the optimization criteria and used to provide the requested data set. Format specific functions are then

used to calculate the selected algebraic relation. At least some of the functions are selected based on the

physical formats of the data sets referenced in the algebraic relation.

[00111 In another aspect, algebraic relations may be used to define new data sets. In an example

30 embodiment, a data set information store may be provided for storing information regarding data sets. A

new data set may be created by associating a data set identifier with the data set and storing the data set

identifier in the data information store. In some examples, the new data set may be an explicit data set

presented to the system as part of a query language statement.

[00121 In another aspect, a query language statement may specify one or more of the data sets that have

35 not been stored in the data store at the time the query language statement is received. In some

embodiments, data sets may be defined by algebraic relations without realizing the data set in storage.

-3-

WO 2007/134278 PCT/US2007/068856
[0013] In another aspect, temporal information is stored in the data set information store indicating the

time at which the data set was created. In a further aspect, the data set information store may be

temporally redefined by removing data sets from the data set information store that are associated with

temporal information prior to a specified time. If an unrealized data set references a data set having

5 temporal information prior to the specified time, the data set may be realized and stored in the data store

before removal of the referenced data set.

[0014] Another aspect provides a method for providing a requested data set using mappings between

schema. A mapping may be provided between multiple schemas based on different data models.

Statements may be presented to the system based on the different schema and data models. For example,

10 statements may be presented to the system as query statements in a structured query language (SQL)

format based on a relational data model and/or in an XQuery format based on an extensible markup

language (XML) data model. These statements and data models are examples only and other statements

and data models may be supported in other examples. Algebraic relations between data sets may be

composed from statements presented to the system based on the different schema and data models. When

15 a data set is requested based on a particular schema and data model, the mapping allows algebraic

relations based on the other schema and data model to be used in providing the requested data.

[00151 In a further aspect, multiple algebraic relations may be composed that define a result equal to a

requested data set. Optimization criteria may be used to select one of the algebraic relations to calculate

the requested data set. The algebraic relations may be composed from statements based on different

20 schema and data models. A mapping may be provided between schema based on different data models.

As a result, optimization may be performed across a broader set of possible algebraic relations to provide

the requested data set. Algebraic relations may be considered even if they were composed from

statements based on a different schema using a different data model. For example, algebraic relations

may be composed from query statements presented to the system in both a structured query language

25 (SQL) format based on a relational data model and an XQuery format based on an extensible markup

language (XML) model. These algebraic relations may then be used for optimization in responding to a

subsequent query statement presented to the system. For example, algebraic relations composed from

SQL statements may be used in responding to an XQuery statement. Similarly, algebraic relations

composed from XQuery statements may be used in responding to an SQL statement. These are examples

30 only and other types of statements and data models may be used in other examples.

[0016] Another aspect provides a method for storing data sets using virtualization. Data sets may be

removed from the data store and defined by algebraic relations in the relation store. The data set

information may include information specifying whether each respective data set is realized in the data

store. Criteria may be established for determining when a data set should be virtualized. For example,

35 the criteria may be based on the size of the data set, the number of times it has been referenced and/or the

frequency with which the data set has been accessed in the data store. Data sets that have been realized in

the data store and meet the criteria may be considered from removal from the data store. In example

-4-

WO 2007/134278 PCT/US2007/068856
embodiments, these data sets may be removed if there is an algebraic relation in the relation store that

defines the data set based on other data sets that are realized in the data store (whether directly or

indirectly by referencing other algebraic relations that, in turn, are directly or indirectly based on realized

data sets). After the data set is removed, the information regarding the data set in the data set information

5 store may be changed to indicate that the identified data set is not realized in the data store.

[00171 In a further aspect, a data set may be selected for optimization by dividing it into subsets and then

virtualized by removing the data set from the data store. For example, data sets may be added to the data

store that are subsets of a selected data set. In some examples, the subsets may be partitions of the

selected data set having equal cardinality or may be defined based on a range of scalar values for a data

10 item in the selected data set. These are examples only and other subsets may be defined in other

examples. An algebraic relation may be composed that defines the selected data set based on the union of

the subsets added to the data store. The selected data set may then be removed from the data store and

information in the data set information store may be changed to indicate that the selected data set is not

realized in the data store.

15 [0018] In a further aspect, a requested data set may be retrieved from the system using algebraic relations

that reference virtual data sets. For example, a selected data set may be removed from the data store and

replaced with an algebraic relation defining the selected data set. The algebraic relation may be made

available in the relation store for use in providing other data sets that are requested, even though the

selected data set is no longer realized in the data store. For example, a plurality of collections of algebraic

20 relations defining the requested data set may be composed. Some of these algebraic relations may be

composed by using the algebraic relation defining the selected data set to perform substitutions for

references to the selected data set (which is virtual). For example, an expression referencing the selected

data set may be replaced with an expression referencing one or more subsets that are realized in the data

store. Optimization criteria may then be applied to select one of the collections of algebraic relations to

25 calculate the requested data set.

[0019] In another aspect, a computer system is provided with one or more processors programmed to

perform one or more of the above aspects of the invention. The computer system may include volatile

and/or non-volatile storage to provide a data set store. In another aspect, one or more hardware

accelerators or other circuitry is configured to perform one or more of the above aspects of the invention.

30 In another aspect, a computer readable medium is provided with executable instructions for performing

one or more of the above aspects of the invention.

[0020] It is understood that each of the above aspects of the invention may be used alone or in

combination with other aspects of the invention described above or in the following description.

INCORPORATION BY REFERENCE

35 [0021] All publications and patent applications mentioned in this specification are herein incorporated by

reference to the same extent as if each individual publication or patent application was specifically and

individually indicated to be incorporated by reference.

-5-

WO 2007/134278 PCT/US2007/068856
BRIEF DESCRIPTION OF THE DRAWINGS

[00221 The novel features of the invention are set forth with particularity in the appended claims. A

better understanding of the features and advantages of the present invention will be obtained by reference

to the following detailed description that sets forth illustrative embodiments, in which the principles of

5 the invention are utilized, and the accompanying drawings of which:

[00231 FIG. 1 is a block diagram showing a first example architecture of a computer system that may be

used in connection with example embodiments of the present invention.

[0024] FIG. 2 is a block diagram showing a computer network that may be used in connection with

example embodiments of the present invention.

10 [0025] FIG. 3 is a block diagram showing a second example architecture of a computer system that may

be used in connection with example embodiments of the present invention.

[0026] FIG. 4A is a block diagram illustrating the logical architecture of an example embodiment of the

present invention.

[00271 FIG. 4B is a block diagram illustrating the information stored in a set manager module of an

15 example embodiment of the present invention.

[00281 FIG. 5 is a flow chart of a method for submitting data sets in accordance with an example

embodiment of the present invention.

[0029] FIG. 6 is a flow chart of a method for submitting statements in accordance with an example

embodiment of the present invention.

20 [0030] FIG. 7 illustrates an example statement and XSN tree for the method of Figure 6.

[0031] FIG. 8 is a flow chart of a method for realizing data sets according to an example embodiment of

the present invention.

[0032] FIG. 9A is a flow chart of a method for algebraic and operational optimization according to an

example embodiment of the present invention.

25 [0033] FIG. 9B is a flow chart of a method for algebraic and operational optimization according to an

alternate example embodiment of the present invention.

[0034] FIGS. 9C, 9D, 9E, 9F, 9G and 9H illustrate methods for comprehensive optimization according to

example embodiments of the present invention.

[0035] FIG. 10A illustrates the fields of an example OptoNode structure.

30 [00361 FIG. lOB is a block diagram of an example OptoNode structure according to an example

embodiment of the present invention.

[00371 FIG. II is a flow chart of a method for calculating data sets from algebraic relations according to

an example embodiment of the present invention.

[0038] FIGS. 12A and 12B are block diagrams of example XSN trees according to an example

35 embodiment of the present invention.

[00391 FIGS. 13A, 13B, 13C and 13D are block diagrams illustrating an example implementation of

buffer chaining that may be used in example embodiments of the storage manager.

-6-

WO 2007/134278 PCT/US2007/068856
[00401 FIG. 14A is a block diagram of a relational data to XML transformation in accordance with an

example embodiment.

[00411 FIG. 14B is a block diagram of a relational data to directed graph transform in accordance with

an example embodiment.

5 DETAILED DESCRIPTION

[00421 While the present invention is open to various modifications and alternative constructions, the

embodiments shown in the drawings will be described herein in detail. It is to be understood, however,

there is no intention to limit the invention to the particular forms disclosed. On the contrary, it is intended

that the invention cover all modifications, equivalences and alternative constructions falling within the

10 spirit and scope of the invention as expressed in the appended claims.

[00431 Example embodiments of the present invention provide systems and methods for data storage and

processing using extended set processing and algebraic optimization. In one example, a universal data

model based on extended set theory may be used to capture scalar, structural and temporal information

from data provided in a wide variety of disparate formats. For example, data in fixed format, comma

15 separated value (CSV) format, Extensible Markup Language (XML) and other formats may be captured

and efficiently processed without loss of information. These encodings are referred to as physical

formats. The same logical data may be stored in any number of different physical formats. Example

embodiments may seamlessly translate between these formats while preserving the same logical data.

[00441 By using a rigorous mathematical data model, example embodiments can maintain algebraic

20 integrity of data and their interrelationships, provide temporal invariance and enable adaptive data

restructuring.

[0045] Algebraic integrity enables manipulation of algebraic relations to be substituted for manipulation

of the information it models. For example, a query may be processed by evaluating algebraic expressions

at processor speeds rather than requiring various data sets to be retrieved and inspected from storage at

25 much slower speeds.

[00461 Temporal invariance may be provided by maintaining a constant value, structure and location of

information until it is discarded from the system. Standard database operations such as "insert," "update"

and "delete" functions create new data defined as algebraic expressions which may, in part, contain

references to data already identified in the system. Since such operations do not alter the original data,

30 example embodiments provide the ability to examine the information contained in the system as it existed

at any time in its recorded history.

[00471 Adaptive data restructuring in combination with algebraic integrity allows the logical and

physical structures of information to be altered while maintaining rigorous mathematical mappings

between the logical and physical structures. Adaptive data restructuring may be used in example

35 embodiments to accelerate query processing and to minimize data transfers between persistent storage

and volatile storage.

-7-

WO 2007/134278 PCT/US2007/068856
[00481 Example embodiments may use these features to provide dramatic efficiencies in accessing,

integrating and processing dynamically-changing data, whether provided in XML, relational or other data

formats. Among other things, example embodiments may provide:

" An independence from information structures that enables all types of enterprise

5 information to be mathematically modeled and processed with equal facility and without

extensive programming.

* Elimination of data prestructuring and database extract, transform and load operations, as

well as most database index structures and their associated storage.

e Faster query processing via adaptive optimizations that eliminate redundant operations

10 and reduce data transfers across the persistent/volatile storage-boundary performance

barrier by adaptively restructuring working data sets.

e Highly asynchronous and parallel internal operations that are scalable and fully leverage

massively-parallel computing and storage systems.

" Improved performance and increased fault tolerance resulting from stateless entity

15 recording and consequent minimization of serially-reusable resources.

e The ability to query databases as they existed at previous times in their recorded histories.

[00491 The mathematical data model allows example embodiments to be used in a wide variety of

computer architectures and systems and naturally lends itself to massively-parallel computing and storage

systems. Some example computer architectures and systems that may be used in connection with

20 example embodiments will now be described.

[00501 Figure 1 is a block diagram showing a first example architecture of a computer system 100 that

may be used in connection with example embodiments of the present invention. As shown in Figure 1,

the example computer system may include a processor 102 for processing instructions, such as an Intel

XeonTM processor, AMD OpteronTm processor or other processor. Multiple threads of execution may be

25 used for parallel processing. In some embodiments, multiple processors or processors with multiple cores

may also be used, whether in a single computer system, in a cluster or distributed across systems over a

network.

[0051] As shown in Figure 1, a high speed cache 104 may be connected to, or incorporated in, the

processor 102 to provide a high speed memory for instructions or data that have been recently, or are

30 frequently, used by processor 102. The processor 102 is connected to a north bridge 106 by a processor

bus 108. The north bridge 106 is connected to random access memory (RAM) 110 by a memory bus 112

and manages access to the RAMI 110 by the processor 102. The north bridge 106 is also connected to a

south bridge 114 by a chipset bus 116. The south bridge 114 is, in turn, connected to a peripheral bus

118. The peripheral bus may be, for example, PCI, PCI-X, PCI Express or other peripheral bus. The

35 north bridge and south bridge are often referred to as a processor chipset and manage data transfer

between the processor, RAM and peripheral components on the peripheral bus 118. In some alternative

-8-

WO 2007/134278 PCT/US2007/068856
architectures, the functionality of the north bridge may be incorporated into the processor instead of using

a separate north bridge chip.

[00521 In some embodiments, system 100 may include an accelerator card 122 attached to the peripheral

bus 118. The accelerator may include field programmable gate arrays (FPGAs) or other hardware for

5 accelerating certain processing. For example, an accelerator may be used for adaptive data restructuring

or to evaluate algebraic expressions used in extended set processing.

[00531 Software and data are stored in external storage 124 and may be loaded into RAM 110 and/or

cache 104 for use by the processor. The system 100 includes an operating system for managing system

resources, such as Linux or other operating system, as well as application software running on top of the

10 operating system for managing data storage and optimization in accordance with example embodiments

of the present invention.

[00541 In this example, system 100 also includes network interface cards (NICs) 120 and 121 connected

to the peripheral bus for providing network interfaces to external storage such as Network Attached

Storage (NAS) and other computer systems that can be used for distributed parallel processing.

15 [00551 Figure 2 is a block diagram showing a network 200 with a plurality of computer systems 202 a, b

and c and Network Attached Storage (NAS) 204 a, b and c. In example embodiments, computer systems

202 a, b and c may manage data storage and optimize data access for data stored in Network Attached

Storage (NAS) 204 a, b and c. A mathematical model may be used for the data and be evaluated using

distributed parallel processing across computer systems 202 a, b and c. Computer systems 202 a, b and c

20 may also provide parallel processing for adaptive data restructuring of the data stored in Network

Attached Storage (NAS) 204 a, b and c. This is an example only and a wide variety of other computer

architectures and systems may be used. For example, a blade server may be used to provide parallel

processing. Processor blades may be connected through a back plane to provide parallel processing.

Storage may also be connected to the back plane or as Network Attached Storage (NAS) through a

25 separate network interface.

[00561 In example embodiments, processors may maintain separate memory spaces and transmit data

through network interfaces, back plane or other connectors for parallel processing by other processors. In

other embodiments, some or all of the processors may use a shared virtual address memory space.

[0057] Figure 3 is a block diagram of a multiprocessor computer system 300 using a shared virtual

30 address memory space in accordance with an example embodiment. The system includes a plurality of

processors 302a-f that may access a shared memory subsystem 304. The system incorporates a plurality

of programmable hardware memory algorithm processors (MAPs) 306 a-f in the memory subsystem 304.

Each MAP 306 a-f may comprise a memory 308a-f and one or more field programmable gate arrays

(FPGAs) 310 a-f. The MAP provides a configurable functional unit and particular algorithms or portions

35 of algorithms may be provided to the FPGAs 310 a-f for processing in close coordination with a

respective processor. For example, the MAPs may be used to evaluate algebraic expressions regarding

the data model and to perform adaptive data restructuring in example embodiments. In this example,

-9-

WO 2007/134278 PCT/US2007/068856
each MAP is globally accessible by all of the processors for these purposes. In one configuration, each

MAP can use Direct Memory Access (DMA) to access an associated memory 308a-f, allowing it to

execute tasks independently of, and asynchronously from, the respective microprocessor 302a-f. In this

configuration, a MAP may feed results directly to another MAP for pipelining and parallel execution of

5 algorithms.

[00581 The above computer architectures and systems are examples only and a wide variety of other

computer architectures and systems can be used in connection with example embodiments, including

systems using any combination of general processors, co-processors, FPGAs and other programmable

logic devices, system on chips (SOCs), application specific integrated circuits (ASICs) and other

10 processing and logic elements. It is understood that all or part of the data management and optimization

system may be implemented in software or hardware and that any variety of data storage media may be

used in connection with example embodiments, including random access memory, hard drives, flash

memory, tape drives, disk arrays, Network Attached Storage (NAS) and other local or distributed data

storage devices and systems.

15 [0059] In example embodiments, the data management and optimization system may be implemented

using software modules executing on any of the above or other computer architectures and systems. In

other embodiments, the functions of the system may be implemented partially or completely in firmware,

programmable logic devices such as field programmable gate arrays (FPGAs) as referenced in Figure 3,

system on chips (SOCs), application specific integrated circuits (ASICs), or other processing and logic

20 elements. For example, the Set Processor and Optimizer may be implemented with hardware acceleration

through the use of a hardware accelerator card, such as accelerator card 122 illustrated in Figure 1.

[0060] Figure 4A is a block diagram illustrating the logical architecture of example software modules

400. The software is component-based and organized into modules that encapsulate specific functionality

as shown in Figure 4A. This is an example only and other software architectures may be used as well.

25 [0061] In this example embodiment, data natively stored in one or more various physical formats may be

presented to the system. The system creates a mathematical representation of the data based on extended

set theory and may assign the mathematical representation a Global Unique Identifier (GUID) for unique

identification within the system. In this example embodiment, data is internally represented in the form

of algebraic expressions applied to one or more data sets, where the data may or may not be defined at the

30 time the algebraic expression is created. The data sets include sets of data elements, referred to as

members of the data set. In an example embodiment, the elements may be data values or algebraic

expressions formed from combinations of operators, values and/or other data sets. In this example, the

data sets are the operands of the algebraic expressions. The algebraic relations defining the relationships

between various data sets are stored and managed by a Set Manager 402 software module. Algebraic

35 integrity is maintained in this embodiment, because all of the data sets are related through specific

algebraic relations. A particular data set may or may not be stored in the system. Some data sets may be

defined solely by algebraic relations with other data sets and may need to be calculated in order to

-10-

WO 2007/134278 PCT/US2007/068856
retrieve the data set from the system. Some data sets may even be defined by algebraic relations

referencing data sets that have not yet been provided to the system and cannot be calculated until those

data sets are provided at some future time.

[00621 In an example embodiment, the algebraic relations and GUIDs for the data sets referenced in

5 those algebraic relations are not altered once they have been created and stored in the Set Manager 402.

This provides temporal invariance which enables data to be managed without concerns for locking or

other concurrency-management devices and related overheads. Algebraic relations and the GUIDs for the

corresponding data sets are only appended in the Set Manager 402 and not removed or modified as a

result of new operations. This results in an ever-expanding universe of operands and algebraic relations,

10 and the state of information at any time in its recorded history may be reproduced. In this embodiment, a

separate external identifier may be used to refer to the same logical data as it changes over time, but a

unique GUID is used to reference each instance of the data set as it exists at a particular time. The Set

Manager 402 may associate the GUID with the external identifier and a time stamp to indicate the time at

which the GUID was added to the system. The Set Manager 402 may also associate the GUID with other

15 information regarding the particular data set. This information may be stored in a list, table or other data

structure in the Set Manager 402 (referred to as the Set Universe in this example embodiment). The

algebraic relations between data sets may also be stored in a list, table or other data structure in the Set

Manager 402 (referred to as the Algebraic Cache in this example embodiment).

[00631 In some embodiments, Set Manager 402 can be purged of unnecessary or redundant information,

20 and can be temporally redefined to limit the time range of its recorded history. For example, unnecessary

or redundant information may be automatically purged and temporal information may be periodically

collapsed based on user settings or commands. This may be accomplished by removing all GUIDs from

the Set Manager 402 that have a time stamp before a specified time. All algebraic relations referencing

those GUIDs are also removed from the Set Manager 402. If other data sets are defined by algebraic

25 relations referencing those GUIDs, those data sets may need to be calculated and stored before the

algebraic relation is removed from the Set Manager 402.

[0064] In one example embodiment, data sets may be purged from storage and the system can rely on

algebraic relations to recreate the data set at a later time if necessary. This process is called virtualization.

Once the actual data set is purged, the storage related to such data set can be freed but the system

30 maintains the ability to identify the data set based on the algebraic relations that are stored in the system.

In one example embodiment, data sets that are either large or are referenced less than a certain threshold

number of times may be automatically virtualized. Other embodiments may use other criteria for

virtualization, including virtualizing data sets that have had little or no recent use, virtualizing data sets to

free up faster memory or storage or virtualizing data sets to enhance security (since it is more difficult to

35 access the data set after it has been virtualized without also having access to the algebraic relations).

These settings could be user-configurable or system-configurable. For example, if the Set Manager 402

contained a data set A as well as the algebraic relation that A equals the intersection of data sets B and C,

then the system could be configured to purge data set A from the Set Manager 402 and rely on data sets B

-11-

WO 2007/134278 PCT/US2007/068856
and C and the algebraic relation to identify data set A when necessary. In another example embodiment,

if two or more data sets are equal to one another, all but one of the data sets could be deleted from the Set

Manager 402. This may happen if multiple sets are logically equal but are in different physical formats.

In such a case, all but one of the data sets could be removed to conserve physical storage space.

5 [00651 When the value of a data set needs to be calculated or provided by the system, an Optimizer 418

may retrieve algebraic relations from the Set Manager 402 that define the data set. The Optimizer 418

can also generate additional equivalent algebraic relations defining the data set using algebraic relations

from the Set Manager 402. Then the most efficient algebraic relation can then be selected for calculating

the data set.

10 [00661 A Set Processor 404 software module provides an engine for performing the arithmetic and

logical operations and functions required to calculate the values of the data sets represented by algebraic

expressions and to evaluate the algebraic relations. The Set Processor 404 also enables adaptive data

restructuring. As data sets are manipulated by the operations and functions of the Set Processor 404, they

are physically and logically processed to expedite subsequent operations and functions. The operations

15 and functions of the Set Processor 404 are implemented as software routines in one example embodiment.

However, such operations and functions could also be implemented partially or completely in firmware,

programmable logic devices such as field programmable gate arrays (FPGAs) as referenced in Figure 3,

system on chips (SOCs), application specific integrated circuits (ASICs), or other hardware or a

combination thereof.

20 [00671 The software modules shown in Figure 4A will now be described in further detail. As shown in

Figure 4A, the software includes Set Manager 402 and Set Processor 404 as well as SQL Connector 406,

SQL Translator 408, XSN Connector 410, XML Connector 412, XML Translator 414, XSN Interface

416, Optimizer 418, Storage Manager 420, Executive 422 and Administrator Interface 424.

[00681 In the example embodiment of Figure 4A, queries and other statements about data sets are

25 provided through one of three connectors, SQL Connector 406, XSN Connector 410 or XML Connector

412. Each connector receives and provides statements in a particular format. In one example, SQL

Connector 406 provides a standard SQL92-compliant ODBC connector to user applications and ODBC

compliant third-party relational database systems, and XML Connector 412 provides a standard Web

Services W3C XQuery-compliant connector to user applications, compliant third-party XML systems,

30 and other instances of the software 400 on the same or other systems. SQL and XQuery are example

formats for providing query language statements to the system, but other formats may also be used.

Query language statements provided in these formats are translated by SQL Translator 408 and XML

Translator 414 into an extended set notation (XSN) format that is used by the system. XSN Connector

410 provides a connector for receiving statements directly in an XSN format. An Example Extended Set

35 Notation is described at the end of this specification below. The Example Extended Set Notation includes

a syntax in which statements regarding extended data sets may be presented to the system. The Example

Extended Set Notation is an example only and other notations may be used in other embodiments. Other

-12-

WO 2007/134278 PCT/US2007/068856
embodiments may also use different types and formats of data sets and algebraic relations to capture

information from statements provided to the system.

[00691 XSN Interface 416 provides a single point of entry for all statements from the connectors. The

statements are provided from SQL Translator 408, XML Translator 414 or XSN Connector 410 in an

5 XSN format. The statements are provided using a text based description of extended set notation. The

XSN Interface 416 provides a parser that converts the text description into an internal representation that

is used by the system. In one example, the internal representation uses an XSN tree data structure, as

described further below. As the XSN statements are parsed, the XSN Interface 416 may call the Set

Manager 402 to assign GUIDs to the data sets referenced in the statements. The overall algebraic relation

10 representing the XSN statement may also be parsed into components that are themselves algebraic

relations. In an example embodiment, these components may be algebraic relations with an expression

composed of a single operation that reference from one to three data sets. Each algebraic relation may be

stored in the Algebraic Cache in the Set Manager 402. A GUID may be added to the Set Universe for

each new algebraic expression, representing a data set defined by the algebraic expression. The XSN

15 Interface 416 thereby composes a plurality of algebraic relations referencing the data sets specified in

statements presented to the system as well as new data sets that may be created as the statements are

parsed. In this manner, the XSN Interface 416 and Set Manager 402 capture information from the

statements presented to the system. These data sets and algebraic relations can then be used for algebraic

optimization when data sets need to be calculated by the system.

20 [00701 The Set Manager 402 provides a data set information store for storing information regarding the

data sets known to the system, referred to as the Set Universe in this example. The Set Manager 402 also

provides a relation store for storing the relationships between the data sets known to the system, referred

to as the Algebraic Cache in this example. Figure 4B illustrates the information maintained in the Set

Universe 450 and Algebraic Cache 452 according to an example embodiment. Other embodiments may

25 use a different data set information store to store information regarding the data sets or a different relation

store to store information regarding algebraic relations known to the system.

[00711 As shown in Figure 4B, the Set Universe 450 may maintain a list of GUIDs for the data sets

known to the system. Each GUID is a unique identifier for a data set in the system. The Set Universe

450 may also associate information about the particular data set with each GUID. This information may

30 include, for example, an external identifier used to refer to the data set (which may or may not be unique

to the particular data set) in statements provided through the connectors, a date/time indicator to indicate

the time that the data set became known to the system, a format field to indicate the format of the data set,

and a set type with flags to indicate the type of the data set. The format field may indicate a logical to

physical translation model for the data set in the system. For example, the same logical data is capable of

35 being stored in different physical formats on storage media in the system. As used herein, the physical

format refers to the format for encoding the logical data when it is stored on storage media and not to the

particular type of physical storage media (e.g., disk, RAM, flash memory, etc.) that is used. The format

field indicates how the logical data is mapped to the physical format on the storage media. For example,

-13-

WO 2007/134278 PCT/US2007/068856
a data set may be stored on storage media in comma separated value (CSV) format, binary-string

encoding (BSTR) format, fixed-offset (FIXED) format, type-encoded data (TED) format and/or markup

language format. Type-encoded data (TED) is a file format that contains data and an associated value

that indicates the format of such data. These are examples only and other physical formats may be used

5 in other embodiments. While the Set Universe stores information about the data sets, the underlying data

may be stored elsewhere in this example embodiment, such as storage 124 in Figure 1, Network Attached

Storage 204 a, b and c in Figure 2, memory 308 a-f in Figure 3 or other storage. Some data sets may not

exist in physical storage, but may be calculated from algebraic relations known to the system. In some

cases, data sets may even be defined by algebraic relations referencing data sets that have not yet been

10 provided to the system and cannot be calculated until those data sets are provided at some future time.

The set type may indicate whether the data set is available in storage, referred to as realized, or whether it

is defined by algebraic relations with other data sets, referred to as virtual. Other types may also be

supported in some embodiments, such as a transitional type to indicate a data set that is in the process of

being created or removed from the system. These are examples only and other information about data

15 sets may also be stored in a data set information store in other embodiments.

[0072] As shown in Figure 4B, the Algebraic Cache 452 may maintain a list of algebraic relations

relating one data set to another. In the example shown in Figure 4B, an algebraic relation may specify

that a data set is equal to an operation or function performed on one to three other data sets (indicated as

"guid OP guid guid guid" in Figure 4B). Example operations and functions include a projection function,

20 inversion function, cardinality function, join function and restrict function. Additional examples are

described at the end of this specification as part of the Example Extended Set Notation. An algebraic

relation may also specify that a data set has a particular relation to another data set (indicated as "guid

REL guid" in Figure 4B). Example relational operators include equal, subset and disjoint as well as their

negations, as further described at the end of this specification as part of the Example Extended Set

25 Notation. These are examples only and other operations, functions and relational operators may be used

in other embodiments, including functions that operate on more than three data sets.

[0073] The Set Manager 402 may be accessed by other modules to add new GUIDS for data sets and

retrieve know relationships between data sets for use in optimizing and evaluating other algebraic

relations. For example, the system may receive a query language statement specifying a data set that is

30 the intersection of a first data set A and a second data set B. The resulting data set C may be determined

and may be returned by the system. In this example, the modules processing this request may call the Set

Manager 402 to obtain known relationships from the Algebraic Cache for data sets A and B that may be

useful in evaluating the intersection of data sets A and B. It may be possible to use known relationships

to determine the result without actually retrieving the underlying data for data sets A and B from the

35 storage system. The Set Manager 402 may also create a new GUID for data set C and store its

relationship in the Algebraic Cache (i.e., data set C is equal to the intersection of data sets A and B).

Once this relationship is added to the Algebraic Cache, it is available for use in future optimizations and

calculations. All data sets and algebraic relations may be maintained in the Set Manager 402 to provide

-14-

WO 2007/134278 PCT/US2007/068856
temporal invariance. The existing data sets and algebraic relations are not deleted or altered as new

statements are received by the system. Instead, new data sets and algebraic relations are composed and

added to the Set Manager 402 as new statements are received. For example, if data is requested to be

removed from a data set, a new GUID can be added to the Set Universe and defined in the Algebraic

5 Cache as the difference of the original data set and the data to be removed.

[00741 The Optimizer 418 receives algebraic expressions from the XSN Interface 416 and optimizes

them for calculation. When a data set needs to be calculated (e.g., for purposes of realizing it in the

storage system or returning it in response to a request from a user), the Optimizer 418 retrieves an

algebraic relation from the Algebraic Cache that defines the data set. The Optimizer 418 can then

10 generate a plurality of collections of other algebraic relations that define an equivalent data set. Algebraic

substitutions may be made using other algebraic relations from the Algebraic Cache and algebraic

operations may be used to generate relations that are algebraically equivalent. In one example

embodiment, all possible collections of algebraic relations are generated from the information in the

Algebraic Cache that define a data set equal to the specified data set.

15 [0075] The Optimizer 418 may then determine an estimated cost for calculating the data set from each of

the collections of algebraic relations. The cost may be determined by applying a costing function to each

collection of algebraic relations, and the lowest cost collection of algebraic relations may be used to

calculate the specified data set. In one example embodiment, the costing function determines an estimate

of the time required to retrieve the data sets from storage that are required to calculate each collection of

20 algebraic relations and to store the results to storage. If the same data set is referenced more than once in

a collection of algebraic relations, the cost for retrieving the data set may be allocated only once since it

will be available in memory after it is retrieved the first time. In this example, the collection of algebraic

relations requiring the lowest data transfer time is selected for calculating the requested data set.

[0076] The Optimizer 418 may generate different collections of algebraic relations that refer to the same

25 logical data stored in different physical locations over different data channels and/or in different physical

formats. While the data may be logically the same, different data sets with different GUIDs may be used

to distinguish between the same logical data in different locations or formats. The different collections of

algebraic relations may have different costs, because it may take a different amount of time to retrieve the

data sets from different locations and/or in different formats. For example, the same logical data may be

30 available over the same data channel but in a different format. Example formats may include comma

separated value (CSV) format, binary-string encoding (BSTR) format, fixed-offset (FIXED) format, type

encoded data (TED) format and markup language format. Other formats may also be used. If the data

channel is the same, the physical format with the smallest size (and therefore the fewest number of bytes

to transfer from storage) may be selected. For instance, a comma separated value (CSV) format is often

35 smaller than a fixed-offset (FIXED) format. However, if the larger format is available over a higher

speed data channel, it may be selected over a smaller format. In particular, a larger format available in a

high speed, non-volatile memory such as a DRAM would generally be selected over a smaller format

available on lower speed non-volatile storage such as a disk drive or flash memory.

-15-

WO 2007/134278 PCT/US2007/068856
[00771 In this way, the Optimizer 418 takes advantage of high processor speeds to optimize algebraic

relations without accessing the underlying data for the data sets from data storage. Processor speeds for

executing instructions are often higher than data access speeds from storage. By optimizing the algebraic

relations before they are calculated, unnecessary data access from storage can be avoided. The Optimizer

5 418 can consider a large number of equivalent algebraic relations and optimization techniques at

processor speeds and take into account the efficiency of data accesses that will be required to actually

evaluate the expression. For instance, the system may receive a query requesting data that is the

intersection of data sets A, B and D. The Optimizer 418 can obtain known relationships regarding these

data sets from the Set Manager 402 and optimize the expression before it is evaluated. For example, it

10 may obtain an existing relation from the Algebraic Cache indicating that data set C is equal to the

intersection of data sets A and B. Instead of calculating the intersection of data sets A, B and D, the

Optimizer 418 may determine that it would be more efficient to calculate the intersection of data sets C

and D to obtain the equivalent result. In making this determination, the Optimizer 418 may consider that

data set C is smaller than data sets A and B and would be faster to obtain from storage or may consider

15 that data set C had been used in a recent operation and has already been loaded into higher speed memory

or cache.

[00781 The Optimizer 418 may also continually enrich the information in the Set Manager 402 via

submissions of additional relations and sets discovered through analysis of the sets and Algebraic Cache.

This process is called comprehensive optimization. For instance, the Optimizer 418 may take advantage

20 of unused processor cycles to analyze relations and data sets to add new relations to the Algebraic Cache

and sets to the Set Universe that are expected to be useful in optimizing the evaluation of future requests.

Once the relations have been entered into the Algebraic Cache, even if the calculations being performed

by the Set Processor 404 are not complete, the Optimizer 418 can make use of them while processing

subsequent statements. There are numerous algorithms for comprehensive optimization that may be

25 useful. These algorithms may be based on the discovery of repeated calculations on a limited number of

sets that indicate a pattern or trend of usage emerging over a recent period of time.

[00791 The Set Processor 404 actually calculates the selected collection of algebraic relations after

optimization. The Set Processor 404 provides the arithmetic and logical processing required to realize

data sets specified in algebraic extended set expressions. In an example embodiment, the Set Processor

30 404 provides a collection of functions that can be used to calculate the operations and functions

referenced in the algebraic relations. The collection of functions may include functions configured to

receive data sets in a particular physical format. In this example, the Set Processor 404 may provide

multiple different algebraically equivalent functions that operate on data sets and provide results in

different physical formats. The functions that are selected for calculating the algebraic relations

35 correspond to the format of the data sets referenced in those algebraic relations (as may be selected during

optimization by the Optimizer 418). In example embodiments, the Set Processor 404 is capable of

parallel processing of multiple simultaneous operations, and, via the Storage Manager 420, allows for

pipelining of data input and output to minimize the total amount of data that is required to cross the

-16-

WO 2007/134278 PCT/US2007/068856
persistent/volatile storage boundary. In particular, the algebraic relations from the selected collection

may be allocated to various processing resources for parallel processing. These processing resources may

include processor 102 and accelerator 122 shown in Figure 1, distributed computer systems as shown in

Figure 2, multiple processors 302 and MAPs 306 as shown in Figure 3, or multiple threads of execution

5 on any of the foregoing. These are examples only and other processing resources may be used in other

embodiments.

[00801 The Executive 422 performs overall scheduling of execution, management and allocation of

computing resources, and proper startup and shutdown.

[0081] Administrator Interface 424 provides an interface for managing the system. In example

10 embodiments, this may include an interface for importing or exporting data sets. While data sets may be

added through the connectors, the Administrator Interface 424 provides an alternative mechanism for

importing a large number of data sets or data sets of very large size. Data sets may be imported by

specifying the location of the data sets through the interface. The Set Manager 402 may then assign a

GUID to the data set. However, the underlying data does not need to be accessed until a request is

15 received that requires the data to be accessed. This allows for a very quick initialization of the system

without requiring data to be imported and reformatted into a particular structure. Rather, relationships

between data sets are defined and added to the Algebraic Cache in the Set Manager 402 as the data is

actually queried. As a result, optimizations are based on the actual way the data is used (as opposed to

predefined relationships built into a set of tables or other predefined data structures).

20 [00821 Example embodiments may be used to manage large quantities of data. For instance, the data

store may include more than a terabyte, one hundred terabytes or a petabyte of data or more. The data

store may be provided by a storage array or distributed storage system with a large storage capacity. The

data set information store may, in turn, define a large number of data sets. In some cases, there may be

more than a million, ten million or more data sets defined in the data information store. In one example

25 embodiment, the software may scale to 264 data sets, although other embodiments may manage a smaller

or larger universe of data sets. Many of these data sets may be virtual and others may be realized in the

data store. The entries in the data set information store may be scanned from time to time to determine

whether additional data sets should be virtualized or whether to remove data sets to temporally redefine

the data sets captured in the data set information store. The relation store may also include a large

30 number of algebraic relations between data sets. In some cases, there may be more than a million, ten

million or more algebraic relations included in the relation store. In some cases, the number of algebraic

relations may be greater than the number of data sets. The large number of data sets and algebraic

relations represent a vast quantity of information that can be captured about the data sets in the data store

and allow extended set processing and algebraic optimization to be used to efficiently manage extremely

35 large amounts of data. The above are examples only and other embodiments may manage a different

number of data sets and algebraic relations.

-17-

WO 2007/134278 PCT/US2007/068856
[0083] Figure 5 is a block diagram illustrating one example embodiment of a software module

implemented to facilitate importing information into the system. Unlike conventional database systems,

the system does not immediately operate on the data sets presented. Rather, the system records a

reference to the new data set in a data set information store. In an example embodiment, this is

5 accomplished by adding a new GUID to the Set Universe. Once the data sets are known to the Set

Universe, they can be used by the system.

[0084] As mentioned previously, information may be added to the system through the functions

contained within the Administrative Interface 424 and described in further detail below. One such

method to add information to the system is by issuing a command 501 to the import function 502 to

10 import an information set 506. In one embodiment, the command includes the physical location of the

data set to be imported, the external identifier, and a value indicating the logical to physical mapping that

the data set employs to encode the data for storage. A variety of physical formats can be supported,

including comma-separate value (CSV) files, extensible markup language (XML) files, fixed length files

(FIXED), XSN formatted files, and others. In addition, the information set may be located on a variety of

15 persistent or volatile storage media and may be locally attached or remotely accessed via a network or

other communication methods. The information set could also be distributed across a plurality of

different physical storage media or may be provided from a real-time data stream, such as data packets

received over a network or input from a user (e.g., to be input by an end user in real time). After the

command is issued, the import function 502 parses the command and causes the Set Manager 503 to

20 create a data set with the associated external identifier and physical format value. The Set Manager 503

then creates a GUID for the associated data set and enters various information into the Set Universe,

including the physical format type value, the external identifier, the associated GUID, and the fact that the

GUID is realized. The Import Function 502 then calls the Storage Manager 504 to create an association

between the data set's physical location identifier and the GUID assigned by the Set Manager 503.

25 Specifically, the Storage Manager 504 adds an index record to the Storage Map 505 that contains the

physical path of the data and the associated GUID. The data set 506 is now imported into the system and

control is returned to the caller. Information about data sets may also be captured by the system even if

the data set has not been realized on storage (i.e., it is virtual). For instance, a data set C may be defined

as the union of data sets A and B. Data sets A and B may be realized in storage, but data set C may only

30 be defined by the relation "C = A UNION B" in the Algebraic Cache and may not be realized in storage

at the time that a GUID for data set C is added to the Set Universe.

[00851 Statement submission is the process of providing an assignment or relation to the system.

Statements may be submitted to the system through a variety of interfaces. In one example embodiment,

three interfaces are provided: an SQL connector for submitting standard SQL92-compliant statements an

35 XSN connector for submitting statements using XSN, and an XML connector for submitting Web

Services W3C XQuery-compliant and other XML-based statements.

-18-

WO 2007/134278 PCT/US2007/068856
[00861 Figure 6 is a block diagram illustrating one example embodiment of how a software module may

be implemented to facilitate submitting statements to the system. In this example, a standard SQL

command is submitted to the system through the SQL Connector 601. The SQL command may contain

one more standard SQL92-compliant SQL statements. The SQL Connector 601 first captures the time of

5 the submission in order to establish the temporal value for all sets contained within the statements

submitted. The command is then parsed in order to validate that the syntax of the SQL statements is

correct. If there are any syntax or compliance errors, an error message is returned to the caller and the

submission is discontinued. If there are no errors, the SQL Connector 601 then constructs an internal

navigable representation of the SQL command that is outputted to the SQL Translator 602. The SQL

10 Translator 602 then converts the internal navigable representation of the SQL command into the

appropriate equivalent XSN statements. After the translation, the resulting XSN statements are passed to

the XSN Interface 603 for further processing. Each statement is then converted from its textual XSN

representation to an internal structure referred to as an XSN tree. The XSN tree provides a means for

programmatically examining the members of the XSN statement as well as a means for navigating the

15 elements of the statement.

[00871 The XSN tree is then examined to determine if the statement represents an assignment or a

relation. If the statement is an assignment, a GUID is assigned by the Set Manager 402 to the algebraic

expression specified in the statement. Then the XSN tree is examined to assign GUIDs to all data sets

and operations within the expression and to determine if the expression includes any explicit sets or any

20 redundant assignments. Explicit sets are sets that are inputted into the system as part of the statement,

such as may occur in the context of a standard SQL "insert" statement. Redundant assignments are

assignments that contain operations and arguments that are already in the Algebraic Cache. In the case of

explicit sets, these sets are assigned a new GUID by the Set Manager 402 and immediately realized by the

Set Processor 404. In the case of redundant assignments, which are discovered by searching the

25 Algebraic Cache for expressions that contain the same operation and right values (rvalues), the GUID of

left value valueu) of the existing assignment entry in the Algebraic Cache is retrieved from the Set

Manager 402 and assigned to the value of the redundant assignment within the expression. If an

assignment is not redundant, a new GUID is provided for the assignment from the Set Manager 402 and

assigned to Ivalue of the assignment within the expression. Complex algebraic relations specified by the

30 statement may also be decomposed into a collection of primitive (atomic) relations and assignments.

GUIDs may be provided for these relations and assignments and the corresponding algebraic relations

may be added to the Algebraic Cache.

[0088] Once all explicit sets and assignment Ivalues have been assigned GUIDs, control is then returned

to the SQL Connector 601. If necessary, a second call is then made to the XSN Interface 603 to realize

35 any sets that are expected to be returned to the caller. The realized sets are then returned to the caller.

[00891 Figure 7 illustrates an example of a statement that may be submitted to the system for the method

of Figure 6. In this example, a user is querying the database for certain information related to a standard

-19-

WO 2007/134278 PCT/US2007/068856
commercial transaction. The request is represented by the standard SQL statement 701. The

ORDERKEY being requested in this case is "12345." Specifically, the user in this example is requesting

the discount, ship date, and comment for items in a particular customer order numbered "12345." The

information is obtained from two tables, LINEITEM and ORDERS. The two tables will be joined based

5 on the LORDERKEY field being equal to the OORDERKEY field. SQL statement 701 is passed to

the SQL Connector 601 by the user. The SQL Translator 602 converts the internal navigable

representation of the SQL statement into the appropriate equivalent XSN statement 702. Note that the

columns or fields of the LINEITEM and ORDERS tables have been converted into representations that

are not specific to relational databases. Specifically, the columns or fields of the LINEITEM table are

10 now represented by domains "1" through "16" and the columns or fields of the ORDERS table are now

represented by domains "17" and above. Starting from the inner-most function in the equation, the join

operation of SQL statement 701 has been converted into the rdmJoin operation, with LINEITEM,

ORDERS, and NULL being passed as the three parameters. The result of the rdmJoin is then passed to

the rdmRest operation which restricts the data resulting from the join operation to only the data in which

15 domain "1", the LORDERKEY domain of the LINEITEM dataset, is equal to the constant "12345" and

domain "1", the LORDERKEY field from the LINEITEM dataset, is also equal to domain "17", the

OORDERKEY domain from the ORDERS dataset. The XSN statement 702 is then passed to the XSN

Interface for further processing.

[0090] The XSN Interface 603 records the time of the submission in order to establish the temporal value

20 for the sets contained within the statement submitted. The statement is then converted from the XSN

statement 702 into an XSN tree 703. The structure of XSN trees is described further below in connection

with Figures 12A and 12B. As part of the conversion process, GUIDs are created or retrieved from the

Set Manager 402 and inserted into the XSN tree 703 for the corresponding sets. Control is then returned

to the SQL Connector 601.

25 [0091] Because the example embodiment in this case requested a result set, a second call would then

made to the XSN Interface 603 to realize any sets that are expected to be returned to the caller. The XSN

tree 703 is then passed to the Optimizer 604 where the XSN tree 703 is optimized for efficiency, resulting

in the optimized XSN tree 704 (shown here in expression format as opposed to tree format merely for

illustrative purposes). Note that, in the example case, the optimizer merged the rdmRest into the rdmJoin

30 for efficiency. The optimized XSN tree 704 is then passed to the Set Processor 605 where the collection

of algebraic relations in the XSN tree is calculated. The realized sets are then returned to the caller.

[0092] Figure 8 is a block diagram illustrating one example embodiment of a software module

implemented to facilitate set realization. Set realization is the process of calculating the membership of a

set and realizing a physical representation of such set in storage. Set realization can be initiated from the

35 system's external interfaces that support realization, such as the SQL Connector or the XML Connector,

or from the Executive software module as part of a set export procedure. In this example embodiment, an

export command is issued to the Executive 801. The command may identify an external identifier or a

GUID to be exported, along with a storage path. The Executive 801 then passes the external identifier or

-20-

WO 2007/134278 PCT/US2007/068856
the GUID to the XSN Interface 802. If an external identifier was identified in the command, the XSN

Interface 802 passes the external identifier to the Set Manager 803. The Set Manager 803 determines the

GUID associated with the external identifier and returns the GUID to the XSN Interface 802. This

lookup is performed relative to the temporal values associated with the GUID. Unless otherwise

5 specified by the user, the example embodiment uses the most recent GUID associated with the external

identifier. Once the associated GUID is determined, the external identifier is replaced with the associated

GUID. The GUID to be realized, whether specified directly in the command or obtained from the

external identifier, is then passed to the Set Manager 803 to determine if it is realized. If the data set

associated with the GUID is already realized, control is returned to the Executive 801. If the data set

10 associated with the GUID is not realized, the GUID is then submitted to the Optimizer 804 to be realized.

The Optimizer 804 then determines the optimal collection of algebraic relations representing the data set

associated with the GUID. The collection of algebraic relations is then passed to the Set Processor 805

where it is calculated. Once the collection of algebraic relations is submitted to the Set Processor 805,

control is returned to the Executive 801. The Executive 801 then requests that the Storage Manager

15 provide the data from the data set to the Executive 801, which then saves the data to storage using the

path name specified in the export command.

[00931 Figure 9A is a block diagram illustrating an example embodiment of an algebraic and operational

optimizer software module. The optimizer manipulates collections of algebraic relations to algebraically

and operationally optimize them prior to submission to the Set Processor 909. There are numerous

20 methods that could be used to determine which collections of algebraic relations are most efficient based

on the system environment and the various limitations or performance weaknesses related thereto.

[0094] In the example embodiment in Figure 9A, the optimizer operates with regard to two basic

principles. First, no alternative plan to realize a data set has a lower cost than simply reusing a data set

which has been previously realized. Second, the amount of data retrieved across the storage-boundary

25 performance barrier should be minimized. Other principles may also be applied in other example

embodiments, especially as the state of technology changes. The foregoing basic principles are realized

in the example embodiment through three optimization routines, the findAltOps routine 904, the

findMetaGuids routine 905, and the findAltGuids routine 906. It is important to note that other

optimization routines could be used and there could be more or fewer optimization routines in a system.

30 In the example embodiment, the optimization routines are performed in a specific sequence designed to

attempt the optimizations that are more likely to result in a collection of algebraic relations with

sufficiently low cost as quickly as possible.

[0095] The findLeastCost routine 903 is executed before the optimization routines are executed and after

each optimization routine is executed, as further described below. The cost related to execution of a

35 particular collection of algebraic relations is determined by estimating the time that it will take the system

to retrieve the data sets necessary to calculate the collection of algebraic relations from storage. The

estimated retrieval time may be calculated based on the speed in which information can be retrieved

across each respective 1/0 storage barrier and the estimated amount of information required to be

-21-

WO 2007/134278 PCT/US2007/068856
retrieved across such storage barrier. The cost determination could also take into account other factors,

such as whether or not the information will be read across the same or different I/O channels and whether

certain information is used in multiple subparts of the expression, both of which could affect

performance. These optimization techniques may result in different optimizations depending upon the

5 state of the system when the optimization routines are executed. For example, different data sets with the

same logical data may be available in different data formats having different sizes. If they are available

over the same I/O channel, the data set with the smaller format may be selected. However, the larger

format may be selected if it has been recently accessed and is already available in a high speed memory or

cache.

10 [00961 In the example embodiment, the XSN Interface 901 calls the optimizer software module in order

to realize a set associated with a collection of algebraic relations. The XSN Interface 901 passes the

GUID of the set to be realized to the buildExpressions routine 902 within the optimizer software module.

The buildExpressions routine 902 retrieves one or more original algebraic relations that define the set or

sets identified by the GUID from the Algebraic Cache. These algebraic relations may be referred to as

15 genesis expressions. The buildExpressions routine 902 then builds an OptoNode tree representation of

such genesis expressions. OptoNode trees are described in further detail below and can be used to

represent an algebraic relation as a collection of more primitive algebraic relations. The optimizer

software module then executes the findLeastCost routine 903 to determine the lowest cost genesis

expression. If the findLeastCost routine 903 determines that the genesis expression found to be lowest

20 cost is sufficiently inexpensive to execute, further optimization is aborted and the algebraic relation for

such genesis expression is submitted to the realizeNode routine 908 as described below.

[00971 If the findLeastCost routine 903 determines that the genesis expression found to be the lowest

cost is not sufficiently inexpensive to execute, the findAltOps routine 904 is executed to find alternative

operations. This routine synthesizes alternative versions of the genesis expressions using extended set

25 theory algebra. The synthesized alternative expressions are constructed to be potentially less costly to

execute, as well as to be easily identified in the Algebraic Cache. Expression synthesis is done based on

the recognition of "forms" of expressions and the substitution of other forms that are algebraically

equivalent but less costly to compute and/or more likely to be recognized in the Algebraic Cache. A

simple example is a restriction on two joined sets. Using some notational shorthand, this could be

30 expressed as SETA = R(J(a,b,c),d). However, the join operation is also capable of doing restrictions and

an equivalent expression is SETA = J(a,b,CP(c,d)). Both of these forms require the same amount of input

data to compute, however the second form will generate less output data. This means that the second

form will require less computational and I/O resources. Whether or not the second form is preferable

over the first will depend on what is available from the Algebraic Cache and which sets are already

35 realized in persistent storage. However, exploring both forms in the Optimizer 418 allows for a larger

probability of finding more efficient alternatives.

[00981 If the findAltOps routine 904 indicates that alternative expressions were found, then the

findLeastCost routine 903 is executed again to find the least-costly expression based on the least cost

-22-

WO 2007/134278 PCT/US2007/068856
genesis expression and the alternative expressions. Once again, if the findLeastCost routine 903

determines that the expression found to be lowest cost is sufficiently inexpensive to execute, further

optimization is aborted and such expression is submitted to the realizeNode routine 908 as described

below. The threshold for discontinuing optimization may be determined based on the relative speed of

5 the processing resources and data channels and/or other system characteristics. In one example, the

threshold is set to 10 MB of data transfer. In this example, 10 MB of data can typically be transferred in

about one tenth of a second, so further optimization is abandoned and the set is simply calculated from the

expression.

[0099] If neither the genesis expressions nor their alternatives identified by the findAltOps routine 904

10 were sufficiently inexpensive to execute, as determined by execution of the findLeastCost routine 903,

then the next optimization routine is performed. In the example embodiment, the next optimization

routine is the findMetaGuids routine 905. The findMetaGuids routine 905 locates all expressions that

have an incrementally small cost and submits them to the Set Processor for execution. Expressions with

an incrementally small cost often only contain metadata. Examples of low cost operations include

15 predicate cross products (CP operation), output scope transforms (OST operation), and relational data

model sort domain for left and right (rdmSFL and rdmSFR operations). These operations typically

operate on metadata in the user data model and produce additional metadata. Physical set sizes are

typically under 500 bytes or so, making them prime candidates for rapid calculation far below the

execution threshold of the Optimizer 418. Therefore, rather than test if these operations meet the

20 minimum threshold, they may simply be executed immediately from the Optimizer 418. The

findLeastCost routine 903 is then called again to select the least-costly expression as between the least

expensive expression determined from the previous call to the findLeastCost routine 903 and the

expressions resulting from the findMetaGuids routine 905. Once again, if the findLeastCost routine 903

determines that the expression found to be lowest cost is sufficiently inexpensive to execute, further

25 optimization is aborted and such expression is submitted to the realizeNode routine 908 as described

below.

[001001 If the lowest cost expression identified by the findLeastCost routine 903 is still not

sufficiently inexpensive to execute, then the findAltGuid routine 906 is executed. The findAltGuids

routine 906 determines if one or more subexpressions can be replaced by alternative expressions that

30 describe previously realized sets. As the cost of reusing realized sets is always less than the cost of

executing the expressions required to realize such sets, this routine may be used to provide a further

reduction in cost. One example of a subset substitution may be described using the relational data model.

Assume that a particular field (called SIZE and the third field of the table) in a table (called BOXES) has

values ranging from 0 to 100. A user then issues a query (Q1) asking for all boxes of size less than 50.

35 This is expressed in XSN as Q1 = rdmREST(BOXES, {{ {"LT".<"3","CONST"."50">}} }). Some time

later, a user asks for all boxes less than 25 in size. This is submitted as Q2 = rdmREST(BOXES,

{{ {"LT".<"3","CONST"."25">}}}). In both of these queries, if executed as submitted, the entire

BOXES data set must be read to determine the results Ql and Q2. However, mathematical inspection of

-23-

WO 2007/134278 PCT/US2007/068856
the metadata sets I {{"LT".<"3","CONST"."50">} } } and { {{"LT".<"3","CONST"."25">} } } indicates

that any set restricted by the second is a subset of the first. Therefore an algebraic substitution can be

made and the following expression produced: Q2 = rdmREST(Q1, {{{"LT".<"3","CONST"."25">}}}).

If QI has already been realized in persistent storage, it can be shown that the size of QI must be less than

5 the size of BOXES, and therefore require less 1/0 cost to transfer. This then provides an overall less

costly means for evaluation Q2 than the original submitted expression if QI is already realized.

[001011 After the subexpressions have been replaced by any suitable alternative expressions, the

findLeastCost routine 903 is executed again to select the least-costly expression as between the least

expensive expression determined from the previous execution of the findLeastCost routine 903 and the

10 expressions resulting from the findAltGuids routine 906. If the findLeastCost routine 903 determines that

the expression found to be lowest cost is sufficiently inexpensive to execute, further optimization is

aborted and such expression is submitted to the realizeNode routine 908 as described below.

[001021 After the optimization work described above is complete, the optimizer calls the

realizeNode routine 908. The realizeNode routine 908 converts the OptoNode tree to an XSN tree, calls

15 the spProcessXsnTree routine to submit the XSN tree to the Set Processor 909 for execution, deletes the

XSN tree and returns control to the optimizer software module, which then returns to the XSN Interface

901.

[00103] Figure 9B is a block diagram illustrating another example embodiment of an algebraic

and operational optimizer software module. Unlike the example embodiment presented in Figure 9A, the

20 optimization routines in this example embodiment are applied to each OptoNode tree proceeding from the

leaves to the root. This approach provides the results of each of the optimization routines as the

arguments to the expressions, resulting in further chances for optimization, but at the expense of increased

execution time. Under conditions where significant additional optimizations can be made, this approach

may be preferable.

25 [001041 The implementation in the example embodiment uses only two optimization routines, the

findOperational routine 913 and the findAlgebraic routine 914. Unlike the previous example

embodiment, the findLeastCost routine 903 is executed only after both findOperational routine 913 and

findAlgebraic routine 914 have been performed. The functionality of the findLeastCost routine 903 is the

same as that described in the previous example embodiment.

30 [00105] As in the previous embodiment, the XSN Interface 901 calls the optimizer software

module and passes the GUID of the set to be realized to the buildExpressions routine 902. The

buildExpressions routine 902 is the same as that described in the previous example embodiment. After

the buildExpressions routine 902 has constructed the OptoNode tree for the expression, the

findOperational routine 913 is executed to find alternative operations. This routine performs the identical

35 function to findAltOps routine 904 as described in the previous example embodiment.

[00106] After the find Operational routine 913 completes, the modified OptoNode tree is passed

to the findAlgebraic routine 914 to find additional alternative expressions. The findAlgebraic routine 914

-24-

WO 2007/134278 PCT/US2007/068856
iterates over the OptoNode tree from the right to left and innermost to outermost expression. This order

of iteration results in the maximum potential for finding additional alternative expressions. As each

expression contains one operation and between one and three arguments, each combination of arguments

and the operation are presented one at a time to the findExpressions routine 915. The findExpressions

5 routine 915 then executes code specific to the operation of the expression with the intention of finding or

synthesizing alternative expressions. The code specific to the operation may perform algebraic

substitutions of arguments from the Algebraic Cache, perform calculation of low cost expressions

contained within the expression, calculate the expression itself, and synthesize alternative forms of the

expression or any of the expression's arguments. Any alternative expressions are then added by the code

10 specific to the operation to the OptoNode tree at the appropriate location.

[00107] After the optimization work described above is complete, the Optimizer calls the

realizeNode routine 908, which is the same as the realizeNode routine in the previous example

embodiment. Control then returns to the XSN Interface 901.

1001081 The system may also perform comprehensive optimization. Comprehensive optimization

15 analyzes relations and data sets to add new relations to the Algebraic Cache and sets to the Set Universe

that are expected to be useful in optimizing the evaluation of future requests. This may be performed

based on the pattern of past requests to the system, which can be used to perform optimization in

anticipation of similar requests in the future. This comprehensive optimization may be performed in the

background by using spare processor cycles. Figures 9C, 9D, 9E, 9F, 9G and 9H illustrate example

20 methods of comprehensive optimization. However, a variety of other comprehensive optimizations are

possible and these example embodiments are only a few examples within the present invention.

[001091 Figure 9C illustrates an example in which an individual scalar value or open ended range

of scalar values identifies the membership of a subset. Queries of this nature can benefit from creating

subsets that partition the data into sets of equal cardinality where each subset contains a specific range of

25 values. For example, a data set may have a data distribution as shown at 950 in Figure 9C. This data set

may be partitioned into multiple data sets of equal cardinality, such as subsets 1-6 as shown at 950 in

Figure 9C. An example of this would be asking for all transactions that occurred after or before a certain

date. This optimization has the advantage of reducing the amount of data that the Set Processor must

examine to calculate future subsets of a similar nature. The comprehensive optimization routine would

30 identify this situation by detecting a significant number of relational restrictions against a specific set

using a range of scalar values by inspection of the Algebraic Cache. From these entries, the Optimizer

would determine the maximum and minimum scalar values queried to establish the range of scalar values

to be partitioned. The Optimizer would then determine the number of partitioning subsets to be equal to

the average number of available 1/0 channels. Finally, the Optimizer would insert the appropriate

35 relations into the Algebraic Cache and sets into the Set Universe for each of the partitioning subsets. The

Optimizer may also insert a relation indicating that the union of the subsets equaled the set and invoke the

Set Processor to calculate each of the partitioning subsets.

-25-

WO 2007/134278 PCT/US2007/068856
[001101 Figure 9D illustrates an example comprehensive optimization that is similar to the

optimization in Figure 9C, except the criteria for membership in the portioning subsets is based on the

scalar values falling within specific ranges. An example of this would be determining that desired subsets

are for given ranges of customers' ages. For example, the data in a data set may fall within specific

5 ranges as shown at 954 in Figure 9D. This data set may be partitioned into subsets 1-5 encompassing

each of these ranges, as shown at 956 in Figure 9D. As with the other example comprehensive

optimizations, this type of partitioning allows for less data to be examined by the Set Processor, resulting

in an improvement via the reduction of the calculation time and resources required.

[001111 Figure 9E illustrates another form of comprehensive optimization, but this example

10 optimization is based on the domains of the members of a set instead of the scalar values. In this

example, the Optimizer determines that only certain domains are required to produce useful subsets and

that other domains are not required. For example, the data set 958 in Figure 9E has columns 1-5, but the

Optimizer may determine that many requests only require columns 1, 3 and 4 to be used. The Optimizer

would then make entries in the Set Manager to generate a subset with members containing only the

15 domains of interest and invoke the Set Processor to generate this subset. For example, a data set may be

created with only columns 1, 3 and 4 as shown at 960 in Figure 9E.

[001121 Figure 9F illustrates an example in which it is determined that the scalar value of a

domain of interest has relatively low cardinality. An example would be a binary domain having the scalar

values TRUE and FALSE as shown at 962. The Optimizer would then create relations for subsets where

20 this domain was monotonic for each value present in the domain while eliminating the domain from the

resultant subset. For example, as shown at 964, a subset could be created for all members of the original

data set where the value of the domain is FALSE and a separate subset could be created for all members

where the value of the domain is TRUE. This optimization can have significant performance benefits, as

even a binary field offers an average improvement in performance of one hundred percent.

25 [001131 Figure 9G illustrates an example in which a set is comprised of the relational join of two

sets. In conditions where the join results in a data set where the cost is equal to or less than the original

two sets, the Optimizer would perform the join. An example of this would be a relational inner join

where primary and foreign keys exist that do not correspond between the relational sets. For example, a

first data set 966 may include three columns (shown as columns 1, 2 and 3 of data set 966 in Figure 9G)

30 and a second data set 968 may include four columns (shown as columns 1, 2, 3 and 4 of data set 968 in

Figure 9G). These two data sets may be joined to create a third data set 970 with seven columns (shown

as columns 1, 2, 3, 4, 5, 6, and 7 of data set 970 in Figure 9G)

[00114] Figure 9H illustrates an example of vectored multipaging. If users often access

information in a particular way (e.g., a phone number is used to look up name and address information

35 about a person), the Optimizer may automatically define new data sets and add new relations to the

Algebraic Cache to make these requests more efficient (e.g., defining a data set that includes only phone

number, name and address) by creating vectored multipages. For example, the Optimizer may determine

-26-

WO 2007/134278 PCT/US2007/068856
that the three digit area code, three digit prefix and four digit postfix components of a phone number are

to be used for vectored multipaging. The Optimizer would then create a set 972 containing 1,000 subsets

974 for each of the 1,000 possible area codes (000-999). Each of these subsets would contain 1,000

GUIDs referencing subsets for each of the possible prefix values (000-999) and each of these subsets

5 would contain 10,000 members with the name and address information about a person for each four digit

postfix. Fully populated, this could create 100,000 subsets based on the area code and phone number

prefix. However, since many area code and prefix combinations would not be in use, these entries would

simply refer to the NULL set. Once these sets were created, the Set Processor can make use of them to

quickly locate an individual person based on their phone number by simply using the area code as an

10 offset (vector) into the area code set, retrieving the GUID representing the appropriate prefix subset, then

using the prefix as an offset to determine the GUID of the appropriate postfix subset. Finally, the phone

number postfix would be used as an offset to locate the data for the individual person.

[001151 Figure 1OA is an illustration of an OptoNode tree structure. OptoNode trees are used to

keep track of the relations, expressions and arguments being manipulated by the Optimizer. At the root of

15 the tree is an OptoNode 1001, which is a list of a plurality of OptoExpressions 1002. Each

OptoExpression 1002 in the list contains information related to a mathematically equivalent variation of

the other expressions in the same list. Specifically, in the example embodiment, each OptoExpression

1002 contains an operation type, a GUID identifying the expression, various flags (these Boolean flags

indicate if the OptoExpression has a GUID, if the expression it represents is in the Algebraic Cache, and

20 if the OptoExpression is used as part of an alternative expression for the GUID), cost information (a value

indicating the cost to be used in evaluating the cost of this OptoExpression and a value indicating the cost

of the expression if it is realized independently of the rest of the expression it is contained in) , and up to

three OptoNode arguments. The Optimizer creates one or more OptoExpressions 1002 in order to

determine the most efficient method for evaluating the desired expression. As described above, the

25 Optimizer analyzes each OptoExpression 1002 and determines the cost associated with evaluating the

expression. The Optimizer can then determine which OptoExpression 1002 to use for efficiency.

[001161 Figure lOB illustrates an example OptoNode tree. At the root of the tree is OptoNode

1004 which is a list of OptoExpressions representing mathematically equivalent expressions. Each

OptoExpression includes a list of the arguments for the expression. For instance, OptoExpression 1006

30 includes three arguments Arg[0], Arg[1] and Arg[2]. Each argument may, in turn, reference an

OptoNode that lists alternative expressions that may be used for the particular argument. For instance,

OptoNode 1008 references a list of expressions (List[0], List(1], List[2], ...) that may be used for Arg[2]

of OptoExpression 1006. These expressions, in turn, are represented by OptoExpressions 1010, 1012 and

1014. Each of these expressions provides a mathematically equivalent result when used for the argument

35 Arg[2] of the expression represented by OptoNode 1006. This OptoNode tree structure allows multiple

equivalent expressions to be listed at each level of the tree. For example, the findAlgebraic routine 914 in

the Optimizer (shown in Figure 9B) can iterate over the OptoNode tree to find additional alternative

expressions and add them to the OptoNode tree. The findLeastCost routine 915 can then traverse the

-27-

WO 2007/134278 PCT/US2007/068856
OptoNode tree to identify the particular collection of expressions that can be used to calculate the overall

result with the least cost. The selected collection of expressions can then be converted into an XSN tree

and sent to the Set Processor for calculation.

[00117] The Set Processor is responsible for all calculations and logical value comparisons

5 performed by the system on data sets. In one example embodiment, it may be a multithreaded, reentrant

body of software designed to take advantage of systems containing multiple processors and multiple

independent, non-contending 1/0 channels between system memory and persistent storage. The Set

Processor may also be designed to take advantage of data pipelining between operations. That is, the

result of one operation may be directly passed on as the input of the next without such result being written

10 to persistent storage intermediately. Data pipelining can greatly improve the efficiency of the Set

Processor by reducing the amount of data crossing the 1/0 performance barrier, as well as reducing the

burden on the Storage Manager, which is responsible for obtaining data from persistent storage.

[001181 The execution of the various operations is monitored by an object known as the Thread

Pool. The Thread Pool is responsible for launching the execution threads for each operation as requested

15 by the ProcessOp routine, monitoring their execution and reporting their success or failure. The Thread

Pool also works with the Executive to limit the current number of threads executing within the engine as

required to manage system resources. Threads could be implemented with a number of different

hardware and software platforms. For example, a traditional single-core processor such as processor 102

in Figure 1 could be used with an operating system such as Microsoft Windows®, which simulates multi

20 processing. In an alternative embodiment, multiple processors or multi-core processors could be used

with one or more threads being assigned to each of the processors. In another embodiment, a

multiprocessor system as illustrated in Figure 3 could be used, with a thread of execution assigned to each

MAP 306 a-f. Regardless of the physical implementation of the system, the Set Processor in an example

embodiment may chain together operations using lists, tree, or other structures such that the output from

25 one thread becomes the input of another thread in order to increase performance.

[001191 The operations within the Set Processor are individual routines designed to perform a

calculation on one or more input data sets and produce an output data set. These operations are

equivalent to the extended set operations and functions found to be useful in data processing. The Set

Processor may also have multiple implementations of the algorithms for each operation in order to

30 support a wide variety of physical to logical format mappings. By tailoring the operational routine to the

physical data formats, higher efficiencies and performance can be achieved over converting all data into a

single physical representation for processing. One example embodiment supports logical to physical

mappings between different formats such that, for example, data can be mapped between comma

separated value (CSV) format, binary-string encoding (BSTR) format, fixed-offset (FIXED) format, type

35 encoded data (TED) format, and/or markup language format. This allows the data to be processed by the

system without having to convert all of the data into a common format. For example, if the system needs

to calculate the result of a join between a first data set in CSV format and a second data set in XML

format, the system could use its mappings to calculate the result and return such result in either CSV

-28-

WO 2007/134278 PCT/US2007/068856
format, XML format, or another selected format without having to convert any of the data into another

format. In addition, one example embodiment contains a number of logical to physical mappings for

atomic values as well, such as strings, 32-bit integers, 64-bit integers, floating point numbers, currencies,

Boolean values, datetime values, and interval values. These mappings can be used in a similar way as the

5 data format mappings. A system may contain all of the potential mappings for the various data formats

and atomic formats supported, or only selected mappings can be included. For example, if an example

embodiment supported five data formats, then there are five inputs and five outputs for each mapping

routine, resulting in 125 potential versions of the software routines. In the example embodiment,

software routines for mapping between various formats are only included when there is a material

10 increase in efficiency. If no material efficiency would result, the example embodiment would convert the

data into a common format instead of using a mapping function.

[001201 Another function of the Set Processor is to provide instances of object oriented data

models of common sets schemas used throughout the program. This includes predicate sets, domain sets,

cardinality sets and others that meet certain definitions and are useful constructs within the algebraic and

15 calculation processing performed by the program.

1001211 Figure 11 illustrates an example embodiment of the set processor software module. In

the example, the Optimizer is presenting an XSN tree to the Set Processor for evaluation through the

spProcessXsnTree routine 1102. The spProcessXsnTree routine 1102 examines the XSN tree and

determines if the XSN tree represents an assignment or relational statement, or if the XSN tree represents

20 an explicit set.

[001221 In the case of an assignment statement, the ProcessXsnAssignment routine 1105

examines the statement to determine if the left value valueu) of the statement is confirmed to be an XSN

set. If the Ivalue is not a set, the routine returns a failure code. The right value (rvalue) is then examined

to determine if it is an operation or an explicit set. If the rvalue is an explicit set, the external identifier

25 associated with the value is associated with the GUID of the rvalue. If the rvalue is neither an operation

nor an explicit set, the routine returns a failure code. If the rvalue is an operation, the ProcessXSN routine

1107 is called to continue the processing.

[001231 In the case of a relation statement, the ProcessXSNRelation routine 1106 checks to verify

that the value and rvalue are operations. If either or both are operations, the ProcessXSN routine 1106 is

30 called to continue the processing for either or both. If the Ivalue or rvalue are not operations, they are

simply ignored. The purpose of this is to realize any set that is referenced in a relation statement so that

the relation can be evaluated, typically, but not limited to, supporting the optimizer.

[001241 In the case of a request to realize an explicit set, the spProcessXsnTree routine 1102

immediately realizes the set in routine 1103 and returns a GUID identifying the realized set.

35 [001251 The ProcessXSN routine 1107 examines all of the members of the XSN tree, starting

with the current operation at the root of the XSN tree and recursively calls itself for all operations. Each

-29-

WO 2007/134278 PCT/US2007/068856
operation to be executed is passed to the ProcessOp routine 1108 in an order such that the root operations

of the XSN tree are initiated before the lower operations, to ensure proper data pipelining is established.

[001261 The ProcessOp routine 1108 takes each operation and inserts it into the Thread Pool 1109

with the appropriate GUIDs for all sets associated with the operation to be performed. The Thread Pool

5 1109 then launches individual threads of execution for each operation within the statement presented to

the ProcessXSN routine 1107. These threads of execution then run independently by calling the

appropriate operation 1110 until the operation completes. Upon the completion of each of these threads,

the Thread Pool 1109 is notified of the thread's completion and provides the appropriate clean-up and

error handling, which includes removing the thread from the list of active threads.

10 [00127] The Set Processor also contains functions known as spLogical routines, which are

designed to perform logical operations on sets. These logical operations are fundamentally different than

the calculation operations performed by the spProcessXsnTree routine 1102 of the Set Processor. The

spLogical routines, which include spLogicalEqual, spLogicalPrediateEqual and

spLogicalPredicateSubSet are designed to compare two data sets, typically stored in binary XSN notation,

15 and determine their logical relationship to each other. These relationships include equality, subset,

superset and disjoint. These functions are used by the Optimizer in determining alternative expressions.

[00128] Figure 12A is an illustration of an XSN tree structure that can be used to represent an

example XSN expression in the system. The XSN tree provides a convenient format for processing XSN

expressions in the system. Figure 12A illustrates an XSN tree for the expression A REL OP(B,C,D).

20 This expression relates the data set A by a relation (REL) to an operation (OP) performed on data sets B,

C and D. The XSN tree is a doubly-linked list that is comprised of a relation node 1201, an operation

node 1205, a plurality of member nodes 1202, 1203, 1206, 1207 and 1208, and a plurality of data sets

1204, 1209, 1210 and 1211. The relation node 1201 specifies the relation of the expression, such as

equals, less than, greater than, etc. The relation node 1201 is linked to member node 1202, which has as

25 its left child a link to data set A 1204 (which is the left value of the statement) and as its right child a link

to member node 1203. Member node 1203 is linked to the operation node 1205 as its left child. The

operation node 1205 identifies the operation to be performed, such as projection, restriction, join, etc.

The operation node 1205 is linked to member node 1206, which has as its left child a link to data set B

1209 and as its right child a link to another member node 1207. Member node 1207 has as its left child a

30 link to data set C 1210 and as its right child member node 1208. Member node 1208 is linked to data set

D 1211.

[00129] Figure 12B is an illustration of an XSN tree structure that can be used to represent an

example XSN assignment statement in the system. Figure 12B illustrates an XSN tree for the assignment

statement SQL1 = rdmPROJ(rdmREST(A, Cl), C2). This statement assigns the alphanumeric identifier

35 SQLI to the expression rdmPROJ(rdmREST(A, C1), C2). The XSN tree is a doubly-linked list that is

comprised of an assignment node 1251, an alphanumeric identifier 1254, a plurality of member nodes

1252, 1253, 1256, 1257, 1260 and 1261, operation nodes 1255 and 1258 and a plurality of data sets 1259,

-30-

WO 2007/134278 PCT/US2007/068856
1262 and 1263. The assignment node 1251 is linked to member node 1252, which has as its left child a

link to the alphanumeric identifier SQL1 1254 and as its right child a link to member node 1253.

Member node 1253 is linked to the operation node 1255 (rdmPROJ) as its left child. The operation node

1255 identifies the operation to be performed (in this case, a projection). The operation node 1255 is

5 linked to member node 1256, which has as its left child a link to operation node 1258 (in this case, a

restrict operation rdmREST) and as its right child a link to another member node 1257. Member node

1257 has as its left child a link to data set C2 1259. The operation node 1258 is linked to member node

1260, which has as its left child a link to the data set A 1262 and as its right child a link to another

member node 1261. Member node 1261 is linked to data set D 1263. In example embodiments, these

10 XSN trees may be internally stored in the system as an array.

[001301 Storage Manager 420 maintains the actual data that comprises each set and provides for

the efficient transfer between persistent and volatile storage.

[001311 Figures 13A, B, C and D illustrate how buffer chaining may be used in the Storage

Manager 420 to allow for pipelined transfer of data, as well as the sharing of data through these buffer

15 chains. Note that this is only an example embodiment and there are a variety of ways in which the

Storage Manager 420 could be implemented, with or without buffer chaining. Storage Manager 420

provides access to the set data via a simple mechanism in the form of SetReader and SetWriter (called

Reader and Writer for short) classes, which are separate subclasses of a class called SetBase. Readers

read data from storage and Writers write data to storage, and together they encapsulate the more complex

20 functionality of the Storage Manager 420.

[00132] This encapsulation allows for a flexible Storage Manager 420 implementation that may

be different for different platforms or storage systems. In addition, it allows the underlying Storage

Manager 420 to provide pipelining between operations to minimize the amount of data that must be

transferred from physical storage. Pipelining, in this sense, is the sharing of underlying data buffers,

25 whether the data is being written or read. As an example, consider Operation A (OpA) and Operation B

(Op B), where OpA produces (and thus stores) data, and OpB needs to read that data. A non-pipelined

approach would be for OpA to simply write the data, and for OpB to read that data from storage in a

separate action. Instead the Storage Manager 420 design allows OpA to write the data, and OpB to get

access to the data as it is being produced, and in fact in many cases even before it is actually written to

30 storage. Since OpB only knows the SetReader interface, it does not need to know that the data actually

resulted from the output of OpA rather than from storage. As a second example, consider OpC and OpD,

both of which need to read data from the same set. The pipelined Storage Manager 420 will read the data

only once, for both operations.

[001331 This mechanism is illustrated in Figures 13 A, B, C and D. Data Sets are either generated

35 by operations of the Set Processor or retrieved from disk via the Storage Manager. In either case, a

Writer is used to place the data serially into a linked-list of RAM buffers known as a BufferChain. As

operations of the Set Processor require data from the Data Sets, a Reader is used to serially retrieve the

-31-

WO 2007/134278 PCT/US2007/068856
data from the linked-list of RAM buffers for use by the operations. In one example embodiment, a Data

Set may have only one Writer but any number of Readers. This is illustrated in Figure 13A, which shows

a BufferChain 1302 containing four serial buffers, Dbuf 1, 2, 3 and 4. A Writer 1304 is used to point to a

buffer to write data into the BufferChain 1302. The Writer 1304 proceeds serially through the

5 BufferChain and new buffers are created as additional data is appended to the BufferChain by the Writer.

Readers 1306 and 1308 are used to point to the buffers so data can be read from the BufferChain 1302.

[00134] Due to the nature of operations within the Set Processor, it is likely that a Data Set being

read by more than one Reader will have Readers proceeding at a different pace through the data. For

instance, as shown in Figure 13A, a slow Reader 1308 is reading Dbuf 1 while another Reader 1306 has

10 already completed reading Dbuf 3. As the Writer and Readers proceed through the BufferChain, the

Writer creates additional buffers and the Readers are free to proceed through the data at whatever pace the

operations in the Set Processor require. Figure 13B illustrates the same combination of Readers and

Writer as shown in Figure 13A, however the Writer 1304 has advanced to Dbuf 7, Reader 1306 has

advanced to Dbuf 6 and the slow Reader 1308 remains on Dbuf 1.

15 [00135] As the operations of the Set Processor continue, it is possible that a long series of buffers

can be created between the slow Reader 1308 and the Writer 1304 and Readers 1306 ahead of it as

illustrated in Figure 13C. As the BufferChain 1302 grows, more and more free RAM is consumed to

maintain the data in memory. At some point, the amount of RAM in use becomes excessive due to the

needs of other routines that require additional RAM and some of the RAM must be released to allow its

20 use by these other routines. When this situation is detected, a buffer chain break is initiated.

[00136] A buffer chain break is accomplished by creating an additional BufferChain associated

with the Data Set. In the example shown in Figure 13D, the slow Reader 1308 which has now advanced

to Dbuf 2, is copied to a new BufferChain 1310. This new BufferChain 1310 will also be assigned a new

Writer 1312 to provide the serial data from the disk. The existing BufferChain 1302, which now contains

25 Dbuf 3 through Dbuf 12, only contains the Writer 1304. As there are no more Readers behind the Writer

1304, Dbuf 3 through Dbuf 11 will be removed by the DoCleanup routine, a separate asynchronous

routine that frees RAM buffers that are no longer in use by the Storage Manager. As the number of

buffers can be significantly large, this provides a substantial amount of RAM that can be used by other

routines that require additional RAM.

30 [001371 In addition to providing optimized data storage and retrieval, example embodiments can

be used to translate and map requests and statements between different schema using different data

models. For example, the system may include mappings between schema using different data models,

such as an SQL data model, XML data model, XSN data model or other data model. Statements may be

provided based on schema using the different data models. For instance, a number of query language

35 statements based on a first schema may be provided in a first format, such as SQL format. As described

above, these statements may be converted into XSN format and data sets and algebraic relations from

these statements may be composed and stored in the Set Manager 402. Later, a statement may be

-32-

WO 2007/134278 PCT/US2007/068856
received in a second format, such as XQuery format. This may also be converted to XSN format and data

sets and algebraic relations from this statement may be composed and stored in the Set Manager 402. In

particular, this statement may request a data set to be provided based on a schema using the second data

model. Because all of the statements are converted into a unified XSN data model, the data sets and

5 algebraic relations composed from the statements received in the first format may be used by the

Optimizer 418 to determine an optimized collection of algebraic relations for calculating the data set

requested in the second format. The algebraic relations stored in the Algebraic Cache and the mappings

between the schema allow data sets and relations captured from statements in a first format to be used to

optimize and calculate a data set requested in the second format. This allows multiple different data

10 models to be supported in a single system. The system can translate between one model and another,

because all of the information from the statements is captured by Set Manager as data sets and algebraic

relations. Moreover, this information can be used to optimize algebraic relations being used to calculate

data sets for the other data model, including substitution of subexpressions and other optimization

techniques used by the Optimizer as described above. The data models may be relational data models,

15 markup language data models, set notation data models or other data models. The formats of the

statements submitted to the system may include standard query language statements, XQuery statements,

set notation statements or other formats.

[00138] By way of example, consider the relational table and XML document presented in Figure

14A. The relational table can be represented mathematically as an extended set. Members of the

20 extended set representing the relational table are commonly referred to as rows within the relational table.

The rows within the relational table can also be mathematically represented as extended sets. Members of

the extended set representing the rows within the relational table are commonly referred to as fields.

Fields common to the rows are referred to as columns. Thus, a relational table can be represented by an

extended set of the form <<f1, fl2, fl3, ... , flc>>, ... , <fr1, fr2, fr3, ... , frc>> where f represents the

25 value of the field and the subscripts r and c represent an enumeration of the unique row and column.

[00139] The XML document can also be mathematically represented as an extended set.

Members of the extended set representing the XML document are commonly referred to as XML

fragments, containing a tag and a value to represent the data. The values of these XML fragments may be

a character string or another XML fragment. Thus, an XML document can be represented by an extended

30 set of the form <tl.{v1}, ... , tn.{vn}> where t represents the tag and v represents the value of the XML

fragment.

[001401 Using the properly defined extended set transformation function gRX() members of the

extended set representing the relational table can be mapped to members of the extended set representing

the XML document, allowing for the transparent representation of data in either relational or XML

35 format. The transformation function, which provides the structural relationship between fields in the

relational table and the fragments in the XML document, operates on the extended set representation of

the relational table. The result of this transformation is to provide a functional mapping between the

-33-

WO 2007/134278 PCT/US2007/068856
value and structure of the relational representation and the value and structure of the XML representation

of the same data.

[001411 The transformation function can be stored within the Algebraic Cache as a collection of

relations between a relational table and a collection of XML fragments. To map from an XML document

5 to a relational table, the compliment of function fXRO, denoted as gRX() in Figure 14A is used. For

these functions to provide the appropriate mappings, constraints on the terms and relationships of the

terms must be valid. These constraints are listed in Figure 14A as the where clause. The constraints that

a must equal s. {x} along with the membership constraints of x and z in B, and B and D in C, indicate that

the XML fragment must contain one value and only one value. Further, the constraint that b must equal

10 s.x along with the membership constraints of x and y in A indicates that the relational field in a particular

row must have one and only one value. Combined, these constraints ensure the unique mapping from the

XML fragment to a field in the relational table.

[00142] Another example would be the mapping of the vector representation of a directed graph

to a relational data table. The directed graph illustrated in Figure 14B is comprised of paths and

15 junctions. At each junction, one or more paths lead to and away from the junction, with the exception of

the start of the directed graph, which only has paths leading away, and the end of the directed graph,

which only has paths leading to. Each junction of the directed graph and the paths leading to and from it

can be expressed as an extended set of the form {from.{pl, p2, ... , pm}, to. {pm+1, pm+2., pn}}

where the values p 1 through pm uniquely identify paths from the junction and values pm+1 through pn

20 uniquely identify paths to the junction. Thus, the directed graph may be represented by the extended set

{jl.{from.{p11, p12, ... , p1m}, to.{plm+1, plm+2., pln}},j2.{from.{p21, p22, ... , p2m},

to.{p2m+l, p2m+2., p2n}}, ... , jk.{from.{pkl, pk2, ... , pkm}, to.{pkm+1, pkm+2., pkn}}. In this

case, the transformation function is fNRO. The transformation function which fully maps the directed

graph to the relational table is explicitly defined as presented in Figure 14B. As in the case of the

25 relational to XML mapping, constraints are required to enforce the rules of each model, as well as provide

for the mapping of values and structures between models. The directed graph is fully represented by the

extended set N. The extended set N is the union of the terms nk.Jk, which represent the paths, for all k

junctions of the graph. The paths nk.Jk are defined in terms of the from paths f.Fk and the to paths t.Tk

each junction. The relational table is represented by the extended set R. The extended set R is the union

30 of the terms Rijk, which represent each row of the relational table containing the fields from, to and path.

The remaining constraints define the relationships between the terms and limits on the terms themselves.

This includes the constraint that f, t, and p must exist and cannot be equal to each other, that Fk must

equal {xi} and Tk must equal {yj } to define the relationship between the relational table fields and the

directed graphic paths, that the pairs of Fk and Tk representing a path must be unique, and that there is

35 one unique value of scope f and of scope t for each path represented by Jk.

[00143] It will be understood that the above formats, schemas and mappings are examples only

and that other formats, schemas and mappings may be used in the other embodiments.

-34-

WO 2007/134278 PCT/US2007/068856
EXAMPLE EXTENDED SET NOTATION

[00144] As described above, Extended Set Notation (XSN) may be used in example

embodiments. The following describes one example of an Extended Set Notation (XSN) that may be

used. This is only one possible embodiment of Extended Set Notation and other embodiments may use

5 different terminology, types of sets, syntax, parameters, operations and functions than those below. The

example of the Extended Set Notation provides a straightforward, easy to use syntax to specify and

manipulate expressions based on extended set mathematics within the environment of a modem

computing system. This notation, expressible in standard ASCII characters, provides a standard syntax to

represent values, sets, operations, relations and expressions in a manner suitable for computer-based

10 manipulation and processing. This notation provides the capability for standard ASCII characters to

specify algebraic extended set expressions in a machine readable form.

[001451 The terminology used to describe and identify the major components of XSN is defined

in Table 1 below.

Table 1

Values A Value represents a unique scalar quantity in a specific number system

domain. Values can be specified explicitly by using a collection of

symbols representing a specific, unique value or implicitly by an

Alphanumeric Identifier.

Alphanumeric Identifiers Alphanumeric Identifiers represent implied Values or Sets and can be

specified by the digits 0 through 9, the lower-case alphabetic characters a

through z, and the upper-case alphabetic characters A through Z in any

string combination.

Scopes and Constituents Scopes and Constituents are the two distinct parts of elements or members

representing the two conditions of membership required for extended sets.

Scopes and Constituents can be represented by Values, Alphanumeric

Identifiers, Elements or Sets.

Elements Elements are Scopes or Constituents that have a compound structure

requiring at least one Scope and one Constituent. A Constituent must be

stated explicitly; however a Value of NULL is implied for Scopes not

explicitly stated.

Members Members are an Element specified within the context of a Set.

Sets Sets are collections of members. Sets include the Empty Set - a Set with

no members. Sets, like Values, can be explicitly specified by enumerating

the membership or implicitly specified via an Alphanumeric Identifier.

Functions and Operations Functions and Operations are specified explicitly and define a Set

specified by the Function or Operation in combination with one to three

Sets providing the arguments to that Function or Operation. Operations

-35-

WO 2007/134278 PCT/US2007/068856
are atomic and specified in the extended set mathematics. Functions are

combinations of one or more Operations and are a notational convenience

for frequently performed combinations of Operations.

Expressions Expressions are a symbolic means for specifying a Set. An Alphanumeric

Identifier representing a Set is the simplest form of an Expression.

Expressions can also be comprised of many Functions, Operations and

Sets expressing a Set.

Relational Operators Relational Operators are a symbolic means for specifying a relationship

between two Expressions. Relational Operators include equal, subset and

disjoint, as well as their negations.

Assignments Assignments are Statements that assign Alphanumeric Identifiers to

Expressions.

Relations Relations are Statements relating two expressions by a Relational

Operator.

Statements Statements are Assignments or Relations.

[001461 Syntax. The XSN syntax comprises a symbolic means for specifying sets as well as the

grammar for formulating expressions and statements. In the description below, terms enclosed in

brackets ([]) indicate optional syntax. For example, in the case where the scope is not required, an

element is expressed as [scope].constituent. Ellipses (...) denote repetition of a sequence of arbitrary

5 length. For Example, <"1","2","3",...>

[00147] Symbols. The syntax employs common punctuation symbols as set forth in Table 2

below. Optional spaces can be inserted between punctuation where desired to aid in readability. Line

breaks may occur anywhere within a statement, expression, or set for clarity.

-36-

WO 2007/134278 PCT/US2007/068856
Table 2

Description Symbol Usage Example

Double Double Quotes delimit explicit values. "Curly","Moe"
Quotes

Periods . Periods are used to separate scopes from "Curly"."Moe"
constituents within the same element.

Commas , Commas are used to separate members in {"Curly","Moe","Larry"}
an explicitly defined set.

Curly { } Curly Braces enclose members of an {"Curly","Moe","Larry"}
Braces explicit set .

Angle < > Angle Braces enclose members of an <"Curly", "Moe","Larry">
Braces explicit ordered set.

Parentheses () Parentheses enclose combinations of ("Curly"."Moe")."Larry"
scopes, constituents and expressions
when specifying an element to
distinguish scopes from constituents
separated by Periods. Parenthesis are
also used in the specification of
operations and functions.

Equals = The equal sign assigns alphanumeric Name={"Curly", "Moe","Larry"}
identifiers to sets.

[001481 Values. Values are specified by explicitly stating the value within double quotes.

Examples of values include "Curly", "123", and "$2,343.76". If the value includes the double quote

5 character ("), it can be delimited by inserting a double quote in advance of it. For example, "John said

""shoot"" when he saw the moose." A null value is specified by two successive double quotes, such as

1001491 Alphanumeric Identifiers. Sets to be identified by alphanumeric identifiers are specified

by assignment statements. Once specified, the alphanumeric identifier can be used interchangeably with

10 the expression to which it is assigned. For example, if a set is assigned the alphanumeric identifier

NDCENSUS 1960, then NDCENSUS 1960 can be used in any expression to reference the set to which

NDCENSUS 1960 is assigned.

[001501 Scopes, Constituents and Elements. Scopes and constituents can be represented by

values, alphanumeric identifiers, elements or sets. The syntax for an element is [scope.]constituent.

15 Scopes are separated from constituents through the use of a period, with the term to the left of the period

representing the scope and the term to the right of the period representing the constituent. For example,

an element where the scope has a value of "1" and the constituent has the value of "Bob" would be

expressed as "l"."Bob" in proper notation.

[001511 Elements are scopes or constituents that have a compound structure requiring at least one

20 scope and one constituent. A constituent must be stated explicitly; however a value of NULL is implied

-37-

WO 2007/134278 PCT/US2007/068856
for scopes not explicitly stated. In the example above, the element "1"."Bob" has a scope of "1" and a

constituent of "Bob". However, both scopes and constituents can also be alphanumeric identifiers,

elements and sets, resulting in potentially complex expressions.

[00152] One issue arising from these potentially complex expressions is precedence regarding

5 scope and constituent. For example, given the element "integer"."sum"."5" a question of delimiting the

scope and constituent arises: is the scope "integer" or "integer ."sum"? Is the constituent "5" or

"sum"."5"? By convention in this example XSN, the term to the left of the first period is the scope, and

the term to the right is the constituent. This would then infer that "integer" is the scope and "sum"."5" is

the constituent. However, if it is desired that "integer"."sum" be the scope and "5" be the constituent, this

10 can be specified through the use of parentheses, as in the element ("integer"."sum")."5".

[001531 Members and Sets. Members are elements, sets or expressions contained within sets.

Sets are specified by expressions or by enumerating their individual members, some or all of which can

be elements, sets or expressions. Any set containing the same members enumerated in any sequence is

the same set.

15 [001541 In many cases, the members of a set contain scopes that belong to the set of natural

numbers. In some cases these scopes are contiguous, unique and include the value one. In these cases,

the sets can be referred to as ordered sets. All sets that do not meet these criteria can be referred to as

unordered sets.

[00155] Sets are expressed as {member[,member[,...]]}. The members of an unordered set are

20 enclosed in curly braces, as in {"a","x","b","g"} or {"Groucho"Harpo","Gummo"}. The members of an

ordered set are enclosed in angle braces, as in <"a","b","x","g">. The members of an ordered set have the

implicit order in which they are listed in its specification. The scope of each successive member of an

ordered set is the corresponding member of the set of natural numbers. Thus, <"a", "b","x","g"> is

equivalent to {"1"."a","2"."b","3"."',4"."g"}

25 [001561 For example, an ordered set can represent a data record with any number of data fields, in

which the members of the set represent the fields of the record and the scopes of the members are the

ordinal positions of the corresponding fields in the record. The comma-separated values in the first row

of the table below can be specified as a set for processing. The data can be grouped into hierarchies in

many different ways. Table 3 below illustrates several possibilities.

-38-

WO 2007/134278 PCT/US2007/068856
Table 3

Sets Members
Original "A", "B", "C"
comma- "D'', "B", "E"

separated "F", "G", "C"
values "H", "K", "C"
Set 1 {{"A","B,"C},D" , {"F","G","C"},{ , " }

Set 2 {, , }D , }{'' " , "

Set 3 {<"A"l,"1B"1,"1C">,<D"t,"B","E"l>,<"FT", "G"l,"1C">,<"H"l,"K"I,"11C">}

Set 4{""{".A,2.B,3.C}""{1.D,2.B,3.E,

[001571 The original comma-separated values comprise four sequences of values, each with three

values.

5 [001581 Set 1 is specified as an unordered set of four members, each of which contains an

unordered set of three members.

[001591 Set 2 is specified as an ordered set of four members, each of which contains an unordered

set of three members.

[001601 Set 3 is specified as an unordered set of four members, each of which contains an ordered

10 set of three members.

[001611 Set 4 is specified as unordered. It uses scopes to indicate the positioning of each member

of the set relative to the other members of the set.

[00162] The content and structure of sets is sometimes dictated by their purpose, particularly

when the sets are used as arguments in functions and operations. Several of these dictated structures

15 occur frequently when using the example XSN to describe relational data operations. Some of these

common sets are typically called predicate, mapping, transformation, or aggregation sets and are explored

in more detail below.

[001631 Predicate Sets. Predicate sets provide for mapping specification between the members of

one set and another. Predicate sets describe a nested conditional expression to determine truth. In the

20 case of conditional expressions, like those used in the RDMREST function, the basic condition is

expressed: "condition".<elementl, element2>

[00164] An element may be specified as "column value" or as "const"."scalar value". The

condition is specified as equal ("EQ"), not-equal ("NEQ"), less-than ("LT"), less-than-or-equal ("LE"),

greater-than ("GT"), greater-than-or-equal ("GE"), like ("LK") or not like ("NLK"). In the case of the

25 RDMREST function, each element will specify a column to be compared on the conditional or a constant

scalar value designated by the scope "const".

[001651 For example, the condition phrase "EQ".<"2","const"."MI"> in which the condition is

EQ, the first element names the column and the second element provides a constant value, indicates that

all members (rows) with the second column equal to the value of "MI" will be included in the output set.

-39-

WO 2007/134278 PCT/US2007/068856
[00166] In the example below, a single conditional is specified for the Predicate Set of the

RDMREST function. The resulting set will contain only the members (rows) from set zipcitystate that

contain the value "IN" in the third column. Note the two additional sets of braces.

RDMREST(zipcitystate, {{f{"EQ".<"3","const"."IN">}} })
5 [00167] These are necessary to support the construction of AND and OR conditionals, covered

below.

[00168] AND Statement. A set of conditions is an AND statement; all conditions in the list are

ANDed together. If they are all true, the overall conditional is true. Here is an example of an AND

structure:

10 {{"EQ".<"2","const"."MI">}, {"GE".<"5","const"."49000">}, {"LT".<"5","const"."5 1000
">}}

[00169] The three condition phrases are enclosed in a set of curly braces to delimit the AND

statement.

[00170] OR Statement. An OR statement is created by combining two or more AND statements.

15 If the result of any AND statement is true the entire statement is true. Here is an example:

{{{"GE".<"1","const"."10000">}},{{"GT".<"3 ","const". "AK">},{"LT".<"3","const"."C
A">} },{ {"EQ".<"2","const"."Pasadena">} }})

[00171] In this example, there are three OR statements. The first contains one condition phrase,

the second contains two AND'ed condition phrases, and the last contains a single condition phrase. In

20 this manner, complex conditional expressions can be built up to define the operation.

[001721 Mapping Sets. For some operations and functions, sets are required to provide mappings.

In most cases, the scope and constituent are used to provide a relationship between the input and output

sets. For example in the RDMPROJ operation, a set provides the mapping between the columns of the

input set and the columns of the output set. The scope value indicates the column of the output set, the

25 constituent the column of the input set. For example:

<"3","5",11">

[001731 This Predicate set indicates that the third, fifth and first columns of the input set should

be mapped to the first, second and third columns of the output set.

[00174] Transformation Sets. Transformation expressions are used to transform one or more

30 input values from a set into a value in the output set. Transformations include operations such as

subtraction ("SUB"), addition ("ADD"), division ("DIV") and multiplication ("MUL"). An additional

transformation operation is constant ("CONST"). Transformation expressions are typically used with

relational operations, such as RDMMATH, to define the members of the output set. For example, if the

first column of an output set were designated as the sum of the first and second column of the input set,

35 the following transformation set would be used to specify this:

<"ADD"v.<"1"1,"12"1>>
[001751 This indicates that the first and second columns of the input set should be used as the first

and second arguments of the addition transformation to produce the value for the first column of the

output. Transformations can be deeply nested to provide specifications, for example if the calculation

-40-

WO 2007/134278 PCT/US2007/068856
(COL1 + COL 2)/ (COL3 - 1) were desired to represent column one in the output set, and columns five

and six of the input set were to map to columns two and three, the transformation set would be:

<" DIV".<"tADD"f.<"1","2"1>, "SUB".<"13", "?CONST"1."1"1>>,"?5","16">
[001761 Transformation sets can also include specific scalar domain qualifiers. For example, if

5 the math is to take place in the integer domain, the example of <"ADD".<" 1 ","2">> would be expressed

as:

<("int64"."ADD").<" 1 ","2">>
[00177] This would indicate that the scalar values of columns 1 and 2 would be added together as

if they were integer values. The result would also be produced in the integer scalar domain. Like

10 function and operation names, the scalar domain identifiers are not case sensitive.

[001781 Aggregation Sets. Sets are also be used in the RDMGROUP function to provide

aggregation. The aggregation operations include summation ("SUM"), average ("AVG"), count ("CNT"),

minimum ("MIN") and maximum ("MAX"). These functions specify the operations to be performed on

the members of the set in each group created by the RDMGROUP function. For example:

15 <" 1","13","COUNT"."1I","AVG"." 1"I>
[00179] This would indicate that the first and third column of the input provide the basis of the

group and be included as the first and second column of the output. The third column of the output would

be the count of members from column one in the group, and the fourth would be the average of the

members in column one of the group.

20 [00180] Like the transformation sets, the aggregate sets can specify the scalar domain in which

the operations are to be performed. For example, if the above were to be performed in the string domain,

the set specified would be:

<"1","3I","("STRING"."COUNT")."",("STRING"."AVG")."1">

[00181] Functions and Operations. Functions and operations are specified explicitly and define a

25 set specified by the function or operation in combination with one to three sets providing the arguments to

that function or operation. Other embodiments may permit a different number of arguments. Operations

are atomic and specified in the extended set mathematics. Functions are combinations of one or more

operations and are a notational convenience for frequently performed combinations of operations.

[001821 Functions and operations are expressed via a predefined alphanumeric identifier,

30 parenthesis and between one to three set arguments. An example would be CRD({"l","2", "3"}) which

represents the set that is the cardinality set of {"l", "2", "3"}.

[00183] Generally, functions are specified:

function(expressionl [,expression2[,expression3[,...]]), where the number of arguments is dependent on

the function. Specifically, a unary function requires one argument a binary function requires two

35 arguments, and a ternary function requires three arguments. In some functions, the final argument is a set

used to specify mappings and transformations. Unlike alphanumeric identifiers used for sets, function

and operation names are not case sensitive.

[00184] The following are some examples of functions:

-41-

WO 2007/134278 PCT/US2007/068856
1001851 RDMPROJ(ASet,<"7","1","2","3">) -- RDMPROJ is the Relational Data Model (RDM)

projection function. The set named ASet is the argument to the operation representing the relational

table. The second set is a set specifying the mapping of the members (columns) from ASet to be used as

the columns in the resulting set.

5 [001861 INV(OldSet) -- INV is the inversion function, resulting in the exchange of scopes and

constituents for the members of the set. The set named OldSet is the argument for the operation; it is

inverted to produce the output.

[001871 CRD(MySet) -- CRD is the cardinality function, resulting in the cardinality set for the

input argument set. The set named MySet is the input, used to produce the output set.

10 [001881 RDMJO1N(cities andstatesstatesand zips,{{{"EQ".<"2","3">}}}) -- RDMJOIN is the

Relational Data Model (RDM) join function. The first two sets named cities and states and

statesandzips are to be joined by the operation. The explicit Predicate set provided for the third set

specifies the condition used to select members for the joined resulting set. In this case, the Predicate set

specifies that if the second column of the first set is equal to the first column of the second set (the states

15 columns), the rows should be joined in the output set.

[001891 RDMREST(zips,{{{"GE".<"1 ,"const"."10000">},{"LE".<"1 ","const"."14999">}},{{"G

T" .<"3","const"."AK">}, {"LT" .<"3 ","const"."CA">}}}) -- RDMREST is the Relational Data Model

(RDM) restrict function. The first set named zips is the argument for the operation representing the

relational table. The second argument is the Predicate set that specifies which members (rows) shall be

20 included in the restricted output set.

[001901 In this example, functions with names beginning with RDM (Relational Data Model) are

specifically designed for manipulating relational data as sets. For example, RDMSORT is a binary

function that sorts the set of the first argument using the members in the set of the second argument that

indicate sort order and precedence.

25 [001911 Expressions. Expressions are a symbolic means for specifying a set. An alphanumeric

identifier representing a set is the simplest form of an expression. Expressions can also be comprised of

many functions, operations and sets. Some examples of expressions include:

CRD(SetA)

rdmPROJ(SetA, <"1","5'","23">)

30 CRD(rdmPROJ(SetA, <"1","5","23">))

[001921 Relations and Relational Operators. Relational operators are a symbolic means for

specifying a relationship between two expressions. Relational operators include equal, subset and

disjoint, as well as their negations. These are specified with the values "EQ", "SUB", "DIS" and "NEQ",

"NSB", and "NDS", some example statements using relational operators include:

35 SetA EQ CRD(SetB)

SetC SUB SetB

-42-

WO 2007/134278 PCT/US2007/068856
[00193] Assignments. Assignments are statements that assign alphanumeric identifiers to

expressions. Syntactically, assignments are specified as: alphanumeric identifier-expression. For

example:

NewSet=-<"1","2"," 12","4">

5 SetA=SS(SETB)

SetC=<"b"," c","'a"f,"lx">

SetD= {"Larry","Moe"," Curly"}

SetG=NULL

[001941 Relational Data Model. The relational data model (RDM) is a subset of the extended set

10 data model that can be described with XSN. Relational tables are considered to be sets of ordered sets,

with the rows of the table being represented by these ordered sets. The members of the sets representing

the rows are the values of the columns (fields) within the rows. A relational table with three rows, with

each row containing four columns, would be represented by a set with the structure:

<<al,b1,c1,d1>, <a2,b2,c2,d2>, <a3,b3,c3,d3>>
15 [001951 Both the table and the individual rows are represented as ordered sets, but it is also

possible to express the relational table as a set containing members that are unordered, such as:

{<al,bl,c1,d1>, <a2,b2,c2,d2>, <a3,b3,c3,d3>>}
[001961 Cardinality Sets. In the case where the set is presented as ordered, information must be

present to indicate the ordering of the set. To preserve some of the additional characteristics of the

20 relational data model and to provide cardinality information useful to optimize processing of XSN

expression, cardinality sets are typically specified for sets representing relational tables. The cardinality

set for the unordered set above is:

<"3",<"4",<Ca,Cb,Cc,Cd>>>
[00197] The cardinality set is a nested set. The outermost set contains the cardinality of the set

25 (which in this example is 3 as the table contains three rows), followed by the cardinality set for the

members representing the rows. Ca through Cd are values representing the cardinality of the values

making up the members of the sets representing the rows. Each value of Cn represents the maximum

cardinality for that particular member. The cardinality set is generated via the cardinality function:

CardinalityOfSetA=CRD(SetA)
30 [001981 RDM Functions. The standard relational data model is composed of eight operations.

However, it can be shown that only five are required to implement the entire relational model, and only

four are typically used for practical implementations. XSN provides for notation of these functions

within the framework of extended set mathematics.

[001991 These functions are extended set versions of the relational data model UNION

35 (RDMUNION), PROJECT (RDMPROJ), RESTRICT (RDMREST), JOIN (RDMJOIN), DIFFERRENCE

(RDMDIFF) and DIVIDE (RDMDIV). In addition to these functions, three additional functions are

available under XSN. These include RDMSORT, RDMPIVOT and RDMGROUP.

-43-

WO 2007/134278 PCT/US2007/068856
[002001 RDMDIFF Function. RDMDIFF defines an unordered set equivalent to the relational A

- B operation. The resulting set contains all members of A that are not in B. The following is an

example format and description of this function:

RDMDIFF(A, B)== {}

5 [002011 Arguments:

A - an unordered set.

B - an unordered set whose members will be excluded from A to produce the result.

[002021 Result: A unordered set containing those members of A that are not members of B as

specified by the conditional of the difference function.

10 [002031 Remarks: As an extension to the standard relational difference, which requires that all

values of the column members be equivalent, the XSN version allows for the specification of a Predicate

set to define the equivalence relationship. If NUL is provided for the conditional Predicate set, the

standard RDM function is performed. If A EQ B, then the NUL set results. If the intersection of A and B

is the NUL set, then A results.

15 [00204] Requirements: Set A must be an RDM set. Results when these conditions are not met

are the NUL set. A and B must have the same member column cardinality.

[00205] Example:

A = <"a", "b", "c">, <"d","b","r">}
B ={<"13",ll c11,"8"1>}

20
RDMDIFF(A,B) == {<"a","b","c">}

[00206] RDMGROUP Function: RDMGROUP defines an unordered set where columns are

aggregated based on specified groupings identified by the members of one or more columns. In

conjunction with an aggregate Predicate set, this function provides for the ability to generate sum, count,

25 average, minimum and maximum (SCAMM) values. The following is an example format and description

of this function.

RDMGROUP(A, Z)

[002071 Arguments: A - an ordered or unordered set.

[002081 Result: An unordered set containing members that have been generated based on

30 aggregate functions of the members of the columns of set A and the specified aggregation Predicate set Z.

[00209] Remarks: RDMGROUP will produce one member row for each unique combination of

the value of member columns as specified in the Predicate set. Member columns to aggregate on are

specified by enumerating them in the Predicate set without scope. Other members to be included in the

output set should indicate which aggregate SCAMM values should be executed to produce the output set.

35 [002101 Requirements: Set A must be an RDM set. Set Z must be an aggregate Predicate set.

Results when these conditions are not met are the NUL set.

[00211] Example:

A <<"3", Tom" , "a">,
<"2","Sam","c">,

-44-

WO 2007/134278 PCT/US2007/068856
<"v6","tHarry","a">,
<"v7","Harr-y"v,"a">>

Z = <''3'',
"COUNT"."2",

5 "SUI'M"."1">

RDMGROUP (A,Z) -> {<"a","3","16">, <"c","1 ","2">}
[002121 RDMJOIN Function. RDMJOIN defines an unordered set whose member rows are the

concatenation of one member row from set A and one member row from set B when determined by the

10 satisfaction of the conditional Predicate set Z between the two member rows. The following is an

example format and description of this function:

RDMJOIN(A,B,Z) == {}

[002131 Arguments:

A - an unordered set to be joined as the left side of the resulting member row.

15 B - an unordered set to be joined as the right side of the resulting member row.

Z - a Predicate set containing the conditional set for determining the members to join.

[002141 Result: An unordered set whose members are created from one member row from A and

one member row from B matching the conditions specified in the conditional Predicate set Z. When a

member row from set A and a member row from set B are found which satisfy the condition specified in

20 the Predicate set Z, a member of the resultant set is produced. The resulting member row is an ordered

member containing the member columns of the member row from set A, followed by the member

columns from the member row of set B.

[002151 Remarks: The conditional Predicate set Z specifies the conditions that must hold

between a member row of set A and a member row of set B.

25 [002161 Requirements: Sets A and B must be an RDM sets. Set Z must be a conditional

Predicate set. Results when these conditions are not met are the NUL set. The Predicate set Z must have

the schema defined for conditionals. The scope of the members in the Predicate set specify the member

column of set A; the constituent of the members in the Predicate set specify the member column from set

B.

30 [002171 Example:

A = {<"sales", "Tom">,
<"sales", "Sam">,
<"shipping", "Bill">,
<"shipping", "Sally">}

35 B = {<"Bldg 1", "sales">,
<"Bldg 2", "shipping">}

Z = {{ {"EQ".<" 1 ","2">}}}

RDMJOIN(A, B, Z) -> {
40 <"sales", "Tom", "Bldg 1", "sales">,

<"sales", "Sam", "Bldg 1", "sales">,
<"shipping", "Bill", "Bldg 2", "shipping">,
<"shipping", "Sally", "Bldg 2", "shipping"> }

-45-

WO 2007/134278 PCT/US2007/068856
[00218] RDMPIVOT Function. RDMPIVOT defines an ordered set which exchanges the

member columns and member rows of the specified set. The following is an example format and

description of this function:

RDMPIVOT(A) =<>

5 [002191 Arguments:

A - an ordered set.

[002201 Result: The resulting set contains member rows comprised of the member columns of set

A. The set is ordered by the order of the member columns in set A.

[00221] Remarks: Pivoting extremely large sets can be costly and time consuming and should

10 only be done if no other means of processing the sets can be found.

[00222] Requirements: Set A must be an RDM set. Results when these conditions are not met

are the NUL set.

[00223] Example:

A = {<"3", "Tom", "a">,
15 <"2", "Sam", "c">,

<"6", "Harry", "a">,
<"17", "Harry" "a">

RDMPIVOT(A) -> <
20 <"*3", "2"1,1"6", "17">,

<"Tom", "Sam", "Harry", "Harry">,
<"a"l, "c" "a"l, "a"l>>

[002241 RDMPROJ Function. RDMPROJ defines an unordered set comprised of members from

all member rows of the argument set, but member column values specified through a transformation

25 Predicate set. The following is an example format and description of this function:

RDMPROJ(A,Z) == {}

[00225] Arguments:

A - an unordered set to be projected.

Z - a transformation Predicate set for the projection.

30 [002261 Result: The resulting set contains a member row for each member row of the A, but with

the member columns specified by the transformation Predicate set.

[002271 Remarks: See specification for the transformation Predicate set for information on how

to properly specify set Z.

[002281 Requirements: Set A must be an RDM set. Set Z must be a transformation Predicate set.

35 Results when these conditions are not met are the NUL set.

-46-

WO 2007/134278 PCT/US2007/068856

[002291 Example:

A = { <"3", "Tom", "a", "b", "s">,
<"2", "Sam", "C", "b", "s">,

5 <"6", "Harry", "a", "z", "Is">}
Z = <"3","2">

RDMPROJ(A, Z) -> {<"a", "Tom">,
<"C", "Sam">,

10 <"a", "Harry">}
[002301 RDMREST Function. RDMREST defines an unordered set whose member rows are

restricted to those that satisfy the conditions specified within the conditional Predicate set. The following

is an example format and description of this function:

[00231] RDMREST(A,Z)== {}

15 [00232] Arguments:

A - an unordered set to be restricted.

Z - a conditional Predicate set specifying the conditions for restriction.

[00233] Result: The resulting set contains only those member rows from the set A that meet the

conditions specified by the conditional Predicate set Z.

20 [002341 Remarks: See specifications for the conditional Predicate set for information on how to

specify set Z.

[002351 Requirements: Set A must meet the requirements for an RDM set. Set Z must be a

conditional Predicate set. If these conditions are not met, the NUL set results.

[002361 Example:

25 A { <"3", 'Tom", "a", "b", "s">,
<"2", "Sam", "c", "f"% "s"1>,
<"6", "Harry", "a", "z" "s">

Z = {{{"EQ".<"2","const"."Tom">}},
{{"EQ".<"2","const"."Harry">},{"EQ".<"4","const"."f">}}}

30
RDMREST(A, Z) -> {<"3", "Tom", "a", "b", "s">}

[002371 RDMSORT Function. RDMSORT defines an ordered set based on an unordered set A

and the ordering specified by Predicate set Z. The following is an example format and description of this

function:

35 RDMSORT(A, Z) ==<>

[002381 Arguments:

A - an unordered set.

Z - a mapping set describing the sort order of the resultant set.

[002391 Result: An ordered set containing all the member rows of set A sorted by ordering

40 specified in mapping set Z.

[00240] Remarks: Z is a mapping set containing the scopes of the member columns specifying

the most to least significant members, which determine the ascending sort order.

-47-

WO 2007/134278 PCT/US2007/068856
[002411 Requirements: The Predicate set Z must be an ordered set whose elements are members

of NAT each less than the cardinality of set A. Set A must be an RDM set. If these conditions are not

met, the result is the NUL set.

[002421 Example:

5 A = {<"3", "Tom", "a", "b", "s">,
<"2", "Sam", "c", "b", "s">,
<"6", "Harry", "a", "iz", "1s">}

Z = <'3","'2">

10 RDMSORT(A, Z) -> <<"6", "Harry", "a", "z", "s">,
<"3", "Tom", "a", "b", "s">,
<"2", "Sam", "C", "b", "s">>

[002431 RDMUNION Function. RDMUNION defines an unordered set that contains all the

member rows for sets A and B. The following is an example format and description of this function:

15 RDMUNION(A, B) == {}

[002441 Arguments:

A - an unordered set.

B - an unordered set.

[002451 Result: An unordered set containing the member rows of both A or B.

20 [002461 Remarks: None.

[002471 Requirements: A and B must be RDM sets and must have the same member column

cardinality. If these conditions are not met, the NUL set is the result.

[002481 Example:

A = {<"a", "b", "c">}
25 B = {<"3", "c", "8">}

RDMUNION(A, B) -> {<"a", "b", "c">,
< "3","c","8"1>}

[00249] The above functions, formats and arguments are examples only and may be different in

30 other embodiments. For example, different or additional functions may be used in other embodiments.

[00250] While preferred embodiments of the present invention have been shown and described

herein, it will be obvious to those skilled in the art that such embodiments are provided by way of

example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art

without departing from the invention. It should be understood that various alternatives to the

35 embodiments of the invention described herein may be employed in practicing the invention. It is

intended that the following claims define the scope of the invention and that methods and structures

within the scope of these claims and their equivalents be covered thereby.

-48-

WO 2007/134278 PCT/US2007/068856
CLAIMS

WHAT IS CLAIMED IS:

1. A method for establishing algebraic relations from a query language statement

5 comprising:

providing a relation store for storing algebraic relations between data sets;

receiving a query language statement referencing a plurality of data sets;

composing a plurality of algebraic relations referencing the data sets specified in the

query language statement; and

10 storing the plurality of algebraic relations in the relation store.

2. The method of claim I further comprising:

defining at least one new data set by composing an algebraic relation referencing at least

one of the data sets specified in the query language statement; and

storing the algebraic relation for the new data set in the relation store.

15 3. The method of claim 1, wherein the data sets specified in the query language statement

include at least one explicit data set, the method further comprising:

providing a data set information store for storing information regarding the data sets;

associating a data set identifier with the explicit data set; and

storing the data set identifier in the data set information store.

20 4. The method of claim 1, further comprising a data store for storing at least some of the

data sets, wherein at least one of the data sets specified in the query language statement has not been

stored in the data store at the time the query language statement is received.

5. The method of claim 1, further comprising providing a data set information store for

storing information regarding the data sets, wherein temporal information is associated with each of the

25 data sets in the data set information store to indicate the time at which information regarding the data set

is added to the data set information store.

6. The method of claim 1, further comprising providing a data set information store for

storing information regarding the data sets, wherein the data set information store includes a unique

identifier and an external identifier associated with each data set in the data information store and wherein

30 the external identifier is the same for at least some of the data sets.

7. The method of claim 5, wherein the data set information store includes a unique identifier

and an external identifier associated with each data set in the data information store and wherein the

external identifier is the same for at least some of the data sets.

-49-

WO 2007/134278 PCT/US2007/068856
8. The method of claim 5, further comprising temporally redefining the data set information

store by removing data sets from the data set information store that are associated with temporal

information prior to a specified time.

9. The method of claim 8, further comprising removing algebraic relations from the relation

5 store that reference the data sets removed from the data set information store.

10. The method of claim 1, further comprising a data store for storing at least some of the

data sets, wherein the data set information store includes information regarding at least one data set that is

defined by an algebraic relation in the relation store and is not stored in the data store.

11. The method of claim 9, further comprising a data store for storing at least some of the

10 data sets, wherein the data set information store includes information regarding at least one unrealized

data set that is not stored in the data set store and is defined by an algebraic relation in the relation store

that references a data set having temporal information prior to the specified time, wherein the step of

temporally redefining the data set information store further comprising storing the unrealized data set in

the data set store before removing the data set having temporal information prior to the specified time

15 from the data set information store.

12. The method of claim 1, wherein the plurality of algebraic relations composed from the

query language statement have a single operator and a number of operands in the range of from one to

three.

13. The method of claim 2 wherein the algebraic relation for the new data set has a single

20 operator and a number of operands in the range of from one to three.

14. The method of claim 1, wherein the query language statement is based on a relational

data model.

15. The method of claim 1, wherein the query language statement is received in an structured

query language (SQL) format.

25 16. The method of claim 1, wherein the query language statement is based on a markup

language model.

17. The method of claim 1, wherein the query language statement is received in an XQuery

format.

30

18. The method of claim 1, wherein the query language statement requests a data set to be

provided, the method further comprising using at least some of the plurality of algebraic relations

composed from the query language statement to provide the requested data set.

-50-

WO 2007/134278 PCT/US2007/068856
19. The method of claim 1, wherein the query language statement requests a data set to be

provided and the relation store includes other algebraic relations for data sets that are not composed from

the query language statement, the method further comprising using at least some of the other algebraic

relations to provide the requested data set.

5 20. The method of claim 18, wherein the query language statement requests a data set to be

provided and the relation store includes other algebraic relations for data sets that are not composed from

the query language statement, the method further comprising using at least some of the other algebraic

relations to provide the requested data set.

21. The method of claim 1, wherein the query language statement requests a data set to be

10 provided, the method further comprising:

providing a plurality of collections of algebraic relations defining a result equal to the

requested data set;

applying optimization criteria to select one of the collections of algebraic relations; and

using the selected collection of algebraic relations to provide the requested data set.

15 22. The method of claim 20, further comprising:

providing a plurality of collections of algebraic relations defining a result equal to the

requested data set;

applying optimization criteria to select one of the collections of algebraic relations; and

using the selected collection of algebraic relations to provide the requested data set.

20 23. The method of claim 21, further comprising storing each collection of algebraic relations

in a tree data structure.

24. The method of claim 21, further comprising allocating the algebraic relations from the

selected collection to processing resources for parallel processing.

25. The method of claim 21, wherein the optimization criteria includes a costing algorithm.

25 26. The method of claim 22, wherein the optimization criteria includes a costing algorithm

and the selected collection of algebraic relations has the least cost according to the costing algorithm.

27. The method of claim 21, wherein the optimization criteria is based, at least in part, on an

estimate of the time required to retrieve data sets from storage that are required in order to calculate each

of the collections of algebraic relations.

30 28. The method of claim 21, wherein the optimization criteria is based, at least in part, on the

amount of data to be retrieved from storage to calculate each of the collections of algebraic relations.

-51-

WO 2007/134278 PCT/US2007/068856
29. The method of claim 22, wherein the optimization criteria is based, at least in part, on an

estimate of the transfer speed of the data channel for retrieving the data sets required to calculate each of

the collections of algebraic relations.

30. The method of claim 21, wherein:

5 the optimization criteria is based, at least in part, on a cost for retrieving data sets from

storage required to calculate each of the collections of algebraic relations; and

the optimization criteria allocates the cost for retrieving a respective data set from storage

only once if the respective data set is referenced in a collection of algebraic relations more than one time.

31. The method of claim 21, wherein the step of providing a plurality of collections of

10 algebraic relations includes:

retrieving an algebraic relation from the relation store that defines the requested data set;

and

generating a plurality of collections of algebraic relations that are algebraically equivalent

to the retrieved algebraic relation.

15 32. The method of claim 21, wherein the plurality of collections of algebraic relations further

includes at least two collections of algebraic relations that are not algebraically equivalent to one another,

but will both provide a result equal to the requested data set.

33. The method of claim 21, wherein the step of providing a plurality of collections of

algebraic relations includes generating collections of algebraic relations that differentiate between

20 equivalent data sets containing the same logical data in different physical formats.

34. The method of claim 33, wherein the different physical formats are selected from the

group consisting of comma separated value format, tab delimited value format, binary string format, fixed

offset format and markup language format.

35. The method of claim 21, wherein the step of providing a plurality of collections of

25 algebraic relations includes generating collections of algebraic relations that differentiate between

equivalent data sets containing the same logical data in different storage locations.

36. The method of claim 35, wherein at least some of the equivalent data sets are available

over different data channels.

37. The method of claim 21, wherein:

30 the collections of algebraic relations reference at least two equivalent data sets containing

the same logical data in different physical formats; and

-52-

WO 2007/134278 PCT/US2007/068856
the step of applying the optimization criteria further comprises estimating the transfer

time required to obtain the equivalent data sets from storage and selecting one of the equivalent data sets

that has the lowest estimated transfer time.

38. The method of claim 21, wherein:

5 the collections of algebraic relations reference at least two equivalent data sets containing

the same logical data in different storage locations; and

the step of applying the optimization criteria further comprises estimating the transfer

time required to obtain the equivalent data sets from storage and selecting one of the equivalent data sets

that has the lowest estimated transfer time.

10 39. The method of claim 21, further comprising:

providing plurality of functions for calculating algebraic relations, wherein the plurality

of functions includes at least two algebraically equivalent functions that operate on data sets in different

physical formats; and

using at least some of the functions to provide the requested data set.

15 40. The method of claim 37, further comprising:

providing plurality of functions for calculating algebraic relations, wherein the plurality

of functions includes at least two algebraically equivalent functions that operate on data sets in different

physical formats;

selecting one of the algebraically equivalent functions based on the format of the selected

20 equivalent data set to be retrieved from storage; and

using at least some of the functions to realize the requested data set, including the

selected one of the algebraically equivalent functions.

41. A method of providing a requested data set comprising:

receiving a plurality of query language statements that do not request the requested data

25 set;

composing a plurality of algebraic relations between data sets based on the query

language statements; and

providing the requested data set based, at least in part, on the plurality of algebraic

relations composed from the query language statements.

30 42. The method of claim 41, wherein the query language statements specify at least one

explicit data set, the method further comprising:

providing a data set information store for storing information regarding the data sets;

associating a data set identifier with the explicit data set; and

storing the data set identifier in the data set information store.

-53-

WO 2007/134278 PCT/US2007/068856
43. The method of claim 41, further comprising providing a data store for storing at least

some of the data sets, wherein the query language statements specify at least one data set that has not

been stored in the data store at the time the request for the requested data set is received.

44. The method of claim 43, wherein the step of using at least some of the algebraic relations

5 composed from the query language statements to calculated the requested data set further comprises using

the at least one data set that has not been stored in the data store at the time the request for the requested

data set is received.

45. The method of claim 41, wherein each of the algebraic relations has a single operator and

a number of operands in the range of from one to three.

10 46. The method of claim 41, wherein the query language statements are based on a relational

data model.

47. The method of claim 41, wherein the query language statements are based on a markup

language model.

48. The method of claim 41, wherein at least one of the query language statements is based

15 on a relational data model and at least one of the query language statements is based on a markup

language model.

49. A method of providing a requested data set comprising:

providing a relation store containing a plurality of algebraic relations composed from a

plurality of query language statements;

20 using at least some of the algebraic relations from the relation store to compose a

collection of algebraic relations that defines a result equal to the requested data set; and

calculating the requested data set from the collection of algebraic relations.

50. The method of claim 49, further comprising:

receiving a query language statement requesting the requested data set;

25 composing a plurality of additional algebraic relations based on the query language

statement requesting the requested data set; and

using at least some of the additional algebraic relations to compose the collection of

algebraic relations.

51. The method of claim 50 further comprising defining at least one new data set by

30 composing an algebraic relation based on a portion of the data sets referenced in the query language

statement; and storing the algebraic relation for the new data set in the relation store.

52. A method of providing a requested data set comprising:

-54-

WO 2007/134278 PCT/US2007/068856
providing a relation store containing a plurality of algebraic relations composed from a

plurality of query language statements;

using at least some of the algebraic relations from the relation store to compose a

plurality of collections of algebraic relations defining a result equal to the requested data set;

5 applying optimization criteria to select one of the collections of algebraic relations; and

using the selected collection of algebraic relations to calculate the requested data set.

53. The method of claim 52 further comprising storing each collection of algebraic relations

in a tree data structure.

54. The method of claim 52, wherein the optimization criteria is based, at least in part, on an

10 estimate of the time required to retrieve data sets from storage that are required in order to calculate each

of the collections of algebraic relations.

55. The method of claim 52, wherein:

the optimization criteria is based, at least in part, on a cost for retrieving data sets from

storage required to calculate each of the collections of algebraic relations; and

15 the optimization criteria allocates the cost for retrieving a respective data set from storage

only once if the respective data set is referenced in a collection of algebraic relations more than one time.

56. The method of claim 52, further comprising allocating the algebraic relations from the

selected collection to processing resources for parallel processing.

57. The method of claim 52, wherein the step of providing a plurality of collections of

20 algebraic relations includes generating collections of algebraic relations that differentiate between

equivalent data sets containing the same logical data in different physical formats.

58. The method of claim 52, wherein the collections of algebraic relations reference at least

two equivalent data sets containing the same logical data in different physical formats; and

the step of applying the optimization criteria further comprises estimating the transfer time

25 required to obtain the equivalent data sets from storage and selecting one of the equivalent data sets that

has the lowest estimated transfer time.

59. The method of claim 56, further comprising:

providing a plurality of functions, wherein the plurality of functions includes at least two

algebraically equivalent functions that operate on data sets in different physical formats; and

30 using at least some of the functions to provide the requested data set.

60. The method of claim 58, further comprising:

providing plurality of functions, wherein the plurality of functions includes at least two

algebraically equivalent functions that operate on data sets in different physical formats;

-55-

WO 2007/134278 PCT/US2007/068856
selecting one of the algebraically equivalent functions based on the format of the selected

one of the equivalent data sets; and

using at least some of the functions to realize the requested data set, including the

selected one of the algebraically equivalent functions.

5 61. A method for providing a requested data set, comprising:

providing a plurality of algebraic relations defining relationships between a plurality of

data sets;

using at least some of the plurality of algebraic relations to compose a plurality of

collections of algebraic relations that define a result equal to the requested data set;

10 determining a cost for each of the plurality of collections of algebraic relations, wherein

the cost is based, at least in part, on an estimate of the transfer time required to retrieve the data sets

required to calculate the requested data set from the collection of algebraic relations;

selecting the collection of algebraic relations with the lowest cost; and

using the selected collection of algebraic relations to provide the requested data set.

15 62. The method of claim 61, wherein composing the plurality of collections of algebraic

relations further comprises using at least some of the plurality of algebraic relations to generate new

algebraic relations that were not previously available at the time the requested data set is first requested.

63. The method of claim 61, wherein composing the plurality of collections of algebraic

relations further comprises composing at least one algebraic relation defining the requested data set and

20 generating a plurality of collections of algebraic relations that are algebraically equivalent to the at least

one algebraic relation defining the requested data set.

64. The method of claim 61, wherein the plurality of collections of algebraic relations further

includes at least two collections of algebraic relations that are not algebraically equivalent to one another,

but will both provide a result equal to the requested data set.

25 65. The method of claim 61 further comprising storing each collection of algebraic relations

in a tree data structure.

66. The method of claim 61 further comprising allocating algebraic relations from the

selected collection to processing resources for parallel processing.

67. The method of claim 61, wherein the step of determining cost further comprises

30 allocating cost for retrieving a respective data set only once if the respective data set is referenced in a

collection of algebraic relations more than one time.

-56-

WO 2007/134278 PCT/US2007/068856
68. The method of claim 61, wherein composing the plurality of collections of algebraic

relations further comprises generating collections of algebraic relations that differentiate between

equivalent data sets containing the same logical data in different physical formats.

69. The method of claim 68, wherein the different physical formats are selected from the

5 group consisting of comma separated value format, tab delimited value format, binary string format, fixed

offset format and markup language format.

70. The method of claim 61, wherein composing the plurality of collections of algebraic

relations further comprises generating collections of algebraic relations that differentiate between

equivalent data sets containing the same logical data in different storage locations.

10 71. The method of claim 70, wherein at least some of the equivalent data sets are available

over different data channels.

72. The method of claim 61, wherein:

the collections of algebraic relations reference at least two equivalent data sets containing

the same logical data in different physical formats;

15 the step of determining cost further comprises estimating the transfer time required to

obtain the equivalent data sets from storage; and

the step of selecting the collection of algebraic relations with the lowest cost further

comprises selecting the collection of algebraic relations that references the equivalent data set that has the

lowest estimated transfer time.

20 73. The method of claim 61, wherein:

the collections of algebraic relations reference at least two equivalent data sets containing

the same logical data in different storage locations;

the step of determining cost further comprises estimating the transfer time required to

obtain the equivalent data sets from storage; and

25 the step of selecting the collection of algebraic relations with the lowest cost further

comprises selecting the collection of algebraic relations that references the equivalent data set that has the

lowest estimated transfer time.

74. The method of claim 61, further comprising:

providing a plurality of functions for calculating algebraic relations, wherein the plurality

30 of functions includes at least two algebraically equivalent functions that operate on data sets in different

physical formats; and

using at least some of the functions to provide the requested data set.

75. The method of claim 68, further comprising:

-57-

WO 2007/134278 PCT/US2007/068856
providing a plurality of functions for calculating algebraic relations, wherein the plurality

of functions includes at least two algebraically equivalent functions that operate on data sets in different

physical formats;

selecting one of the algebraically equivalent functions based, at least in part, on the

5 format of the data sets referenced in the selected collection of algebraic relations; and

using at least some of the functions to realize the requested data set, including the

selected one of the algebraically equivalent functions.

76. The method of claim 68, wherein the equivalent data sets include a first data set in a first

format and a second data set in a second format that has a larger size than the first format, wherein the

10 step of selecting the collection of algebraic relations with the lowest cost further comprises selecting the

data collection that references the second data set if the second data set is available over a data channel

with a higher transfer speed than the first data set.

77. The method of claim 68, wherein the equivalent data sets include a first data set available

in non-volatile storage in a first format and a second data set available in a volatile memory in a second

15 format that has a larger size than the first format, wherein the step of selecting the collection of algebraic

relations with the lowest cost further comprises selecting the collection of algebraic relations that

references the second data set.

78. A method for storing a specified data set, comprising:

providing a plurality of algebraic relations defining relationships between a plurality of

20 data sets;

using at least some of the plurality of algebraic relations to compose a plurality of

collections of algebraic relations that define a result equal to the specified data set;

determining a cost for each of the plurality of collections of algebraic relations, wherein

the cost is based, at least in part, on an estimate of the transfer time required to retrieve the data sets

25 required to calculate the requested data set from the collection of algebraic relations;

selecting the collection of algebraic relations with the lowest cost; and

using the selected collection of algebraic relations to calculate the specified data set; and

storing the specified data set that has been calculated from the selected collection of

algebraic relations.

30 79. The method of claim 78, wherein composing the plurality of collections of algebraic

relations further comprises generating new algebraic relations that were not previously available at the

time the specified data set is first specified.

80. The method of claim 78, wherein composing the plurality of collections of algebraic

relations further comprises composing at least one algebraic relation defining the specified data set and

-58-

WO 2007/134278 PCT/US2007/068856
generating a plurality of collections of algebraic relations that are algebraically equivalent to the at least

one algebraic relation defining the specified data set.

81. A method for providing a requested data set:

providing a storage system for storing data sets;

5 composing at least two alternative algebraic relations that each define a result equal to the

requested data set, including a first algebraic relation based on a first collection of data sets stored in the

storage system and a second algebraic relation based on a second collection of data sets stored in the

storage system;

selecting between the first algebraic relation and the second algebraic relation based, at

10 least in part, on an estimate of the transfer time required to retrieve the first collection of data sets from

the storage system in order to use the first algebraic relation to calculate the requested data set and on an

estimate of the transfer time required to retrieve the second collection of data sets from the storage system

in order to use the second algebraic relation to calculate the requested data set; and

using the selected algebraic relation to calculate the requested data set.

15 82. A method for providing a requested data set:

providing a storage system for storing data sets;

composing at least two alternative algebraic relations that each define a result equal to the

requested data set, including a first algebraic relation based on at least a first data set stored in the storage

system and a second algebraic relation based on at least a second data set stored in the storage system;

20 wherein the first data set and the second data set contain the same logical data stored in

different physical formats;

selecting between the first algebraic relation and the second algebraic relation based, at

least in part, on the physical format of the first data set and the physical format of the second data set; and

using the selected algebraic relation to calculate the requested data set.

25 83. The method of claim 82, wherein the physical format of the first data set is selected from

the group consisting of comma separated value format, tab delimited value format, binary string format,

fixed offset format and markup language format.

84. The method of claim 83, wherein the physical format of the second data set is selected

from the group consisting of comma separated value format, tab delimited value format, binary string

30 format, fixed offset format and markup language format.

85. The method of claim 82, further comprising providing plurality of functions for

calculating algebraic relations, wherein the plurality of functions includes a first function that operates on

a data set in the physical format of the first data set and a second function that operates on a data set in the

physical format of the second data set, wherein the first function and the second function are algebraically

35 equivalent;

-59-

WO 2007/134278 PCT/US2007/068856
wherein the step of using the selected algebraic relation to calculate the requested data set further

comprises using the first function if the first algebraic relation is selected and using the second function if

the second algebraic relation is selected.

86. The method of claim 82, wherein the storage system includes a plurality of data channels

5 and the first data set and the second data set are available over different data channels.

87. The method of claim 86, wherein the first data set in the first physical format has a first

size and is available over a first data channel having a first data transfer rate, and the second data set in

the second physical format has a second size and is available over a second data channel having a second

data transfer rate, the method further comprising:

10 determining a first cost based, at least in part, on the first size and the first data transfer

rate;

determining a second cost based, at least in part, on the second size and the second data

transfer rate; and

selecting the first algebraic relation to calculate the requested data set if the first cost is

15 lower than the second cost.

88. A method for providing a requested data set:

providing a storage system for storing data sets, wherein the storage system includes a

volatile memory and a non-volatile storage medium;

composing at least two alternative algebraic relations that each define a result equal to the

20 requested data set, including a first algebraic relation based on at least a first data set stored in the storage

system and a second algebraic relation based on at least a second data set stored in the storage system;

wherein the first data set and the second data set contain the same logical data stored in

different physical formats, the first data set being stored in a first physical format having a first size and

the second data being stored in a second physical format having a second size that is smaller than the first

25 size;

determining that the first data set is available in the volatile memory; and

selecting the first algebraic relation to calculate the requested data set.

89. A method for providing a requested data set:

providing a storage system for storing data sets in a plurality of physical formats;

30 providing a plurality of functions for operating on the data sets in the plurality of physical

formats, wherein each function is configured to operate on at least one operand in a respective one of the

physical formats;

providing an algebraic relation that defines a result equal to the requested data set,

wherein the algebraic relation references at least a first data set stored in the storage system;

35 retrieving the first data set in a respective one of the physical formats;

-60-

WO 2007/134278 PCT/US2007/068856
selecting one of the plurality of functions that is configured to operate on an operand in

the respective physical format of the first data set; and

using the selected function to calculate the requested data set from the algebraic relation.

90. The method of claim 89, wherein the algebraic relation specifies at least one operation

5 and the selected function corresponds to the specified operation.

91. The method of claim 89, wherein the plurality of functions includes algebraically

equivalent functions configured to operate on operands in different physical formats.

92. The method of claim 89, wherein the step of providing the algebraic relation further

comprises selecting the algebraic relation from a plurality of algebraic relations that each define a result

10 equal to the requested data set.

93. The method of claim 91, wherein the step of providing the algebraic relation further

comprises selecting the algebraic relation from a plurality of algebraic relations that each define a result

equal to the requested data set.

94. The method of claim 93, wherein the step of selecting the algebraic relation further

15 comprises selecting the algebraic relation based, at least in part, on an estimate of the time required to

retrieve the first data set from the storage system.

95. The method of claim 89, wherein the algebraic relation references at least a second data

set stored in the storage system, the method further comprising retrieving the second data set in a

respective one of the physical formats.

20 96. The method of claim 95, wherein the selected function is configured to operate on at least

a second operand in the respective physical format of the second data set.

97. The method of claim 95, wherein the algebraic relation specifies at least one operation

and the selected function corresponds to the specified operation.

98. The method of claim 95, wherein the plurality of functions includes algebraically

25 equivalent functions configured to operate on operands in different physical formats.

99. The method of claim 95, wherein the step of providing the algebraic relation further

comprises selecting the algebraic relation from a plurality of algebraic relations that each define a result

equal to the requested data set.

100. The method of claim 99, wherein the step of selecting the algebraic relation further

30 comprises selecting the algebraic relation based, at least in part, on an estimate of the time required to

retrieve the second data set from the storage system.

-61-

WO 2007/134278 PCT/US2007/068856
101. The method of claim 98, wherein the step of providing the algebraic relation further

comprises selecting the algebraic relation from a plurality of algebraic relations that each define a result

equal to the requested data set.

102. A method for providing a requested data set:

5 providing a mapping between a first schema based on a first data model and a second

schema based on a second data model;

receiving a first statement based on the first schema;

composing a plurality of algebraic relations between data sets based on the first

statement;

10 receiving a second statement based on the second schema that requests the requested data

set; and

using at least one of the algebraic relations composed from the first statement and the

mapping between the first schema and the second schema to provide the requested data set.

103. The method of claim 102, wherein the first data model is a relational data model.

15 104. The method of claim 103, wherein the second data model is a markup language data

model.

105. The method of claim 102, wherein the first data model is a markup language data model.

106. The method of claim 105, wherein the second data model is a relational data model.

107. The method of claim 102, wherein the first statement is a query statement in a structured

20 query language (SQL) format.

108. The method of claim 107, wherein the second statement is a query language statement in

an XQuery format.

109. The method of claim 102, wherein the first statement is a query language statement in an

XQuery format.

25 110. The method of claim 109, wherein the second statement is in a query language statement

in a structured query language (SQL) format.

111. The method of claim 102, wherein the first statement is a set notation statement.

112. The method of claim 111, wherein the second statement is a query statement in a

structured query language (SQL) format.

30 113. The method of claim 107, wherein the second statement is a set notation statement.

-62-

WO 2007/134278 PCT/US2007/068856
114. The method of claim 111, wherein the second statement is a query language statement in

an XQuery format.

115. The method of claim 109, wherein the second statement is a set notation statement.

116. A method for providing a requested data set based on a first schema:

5 providing a mapping between the first schema based on a first data model and a second

schema based on a second data model;

providing a first plurality of algebraic relations between data sets based on the second

schema;

composing an algebraic relation defining a result equal to the requested data set based, at

10 least in part, on the first plurality of algebraic relations; and

using the algebraic relation defining a result equal to the requested data set and the

mapping between the first schema and the second schema to provide the requested data set.

117. The method of claim 116 wherein the first plurality of algebraic relations is composed

from a first plurality of statements based on the second schema.

15 118. The method of claim 116 further comprising providing a second plurality of algebraic

relations between data sets based on the first schema, wherein the algebraic relation defining a result

equal to the requested data set is also based, at least in part, on the second plurality of algebraic relations.

119. The method of claim 118 wherein the first plurality of algebraic relations is composed

from a first plurality of statements based on the second schema.

20 120. The method of claim 118 wherein the second plurality of algebraic relations is composed

from a second plurality of statements based on the first schema.

121. The method of claim 119 wherein the second plurality of algebraic relations is composed

from a second plurality of statements based on the first schema.

122. The method of claim 116, wherein the first data model is a relational data model.

25 123. The method of claim 122, wherein the second data model is a markup language data

model.

124. The method of claim 116, wherein the first data model is a markup language data model.

125. The method of claim 124, wherein the second data model is a relational data model.

126. A method for storing data sets comprising:

30 providing a data store;

-63-

WO 2007/134278 PCT/US2007/068856
providing a data set information store for storing information regarding a plurality of data

sets, including information specifying whether each respective data set is realized in the data store;

providing a relation store for storing a plurality of algebraic relations between the data

sets;

5 establishing a criteria for virtualization of data sets in the data set information store;

identifying at least one data set that is realized in the data store and meets the criteria for

virtualization;

determining that the relation store includes at least one algebraic relation defining the

identified data set based upon at least one other data set that is realized in the data store;

10 removing the identified data set from the data store; and

changing the information regarding the identified data set in the data set information store

to indicate that the identified data set is not realized in the data store.

127. The method of claim 126, wherein the criteria for virtualization include the size of the

respective data set.

15 128. The method of claim 126, wherein the criteria for virtualization include the number of

times that the data set has been referenced.

129. The method of claim 126, wherein the criteria for virtualization include the frequency

which the respective data set has been accessed in the data store.

130. The method of claim 126, wherein the algebraic relation defining the identified data set

20 references at least two other data sets that are realized in the data store.

131. The method of claim 126, wherein the at least one other data set used to define the

identified data set contains the same logical data in a different physical format.

132. The method of claim 131, wherein the physical format in which the identified data set is

stored is larger than the physical format of the at least one other data set.

25 133. The method of claim 132, wherein the physical format in which the identified data set is

stored is selected from the group consisting of comma separated value format, tab delimited value format,

binary string format, fixed offset format and markup language format.

134. The method of claim 132, wherein the physical format in which the at least one other data

set is stored is selected from the group consisting of comma separated value format, tab delimited value

30 format, binary string format, fixed offset format and markup language format.

135. The method of claim 126, further comprising using the algebraic relation defining the

identified data set to provide a requested data set without realizing the identified data set.

-64-

WO 2007/134278 PCT/US2007/068856
136. The method of claim 135, wherein the step of using the algebraic relation defining the

identified data set to provide a requested data set further comprises:

composing a plurality of collections of algebraic relations defining the requested data set,

wherein the algebraic relation defining the identified data is used to compose at least one of the

5 collections of algebraic relations;

applying an optimization criteria to select one of the collections of algrebraic relations to

calculate the requested data set;

using the selected collection of algebraic relations to calculate the requested data set.

137. The method of claim 136, wherein the algebraic relation defining the identified data is

10 used as a substitution for a reference to the identified data set in at least one of the collections of algebraic

relations.

138. A method for storing data sets comprising:

providing a data store;

providing a data set information store for storing information regarding a plurality of data

15 sets, including information specifying whether each respective data set is realized in the data store;

providing a relation store for storing a plurality of algebraic relations between the data

sets;

selecting at least one data set from the data set information store that is realized in the

data store;

20 adding data sets to the data set information store that are subsets of the selected data set

and realizing the added data sets in the data store;

adding an algebraic relation to the relation store that defines the selected data set based

on the added data sets;

removing the selected data set from the data store; and

25 changing the information regarding the selected data set in the data set information store

to indicate that the selected data set is not realized in the data store.

139. The method of claim 138, further comprising:

receiving a statement requesting a requested data set, wherein the statement includes an

expression referencing the selected data set;

30 composing an algebraic relation having a result equal to the requested data set, wherein

the algebraic relation includes an expression referencing at least one of the added subsets as a substitution

for the expression referencing the selected data set;

using the algebraic relation to calculate the requested data set.

140. The method of claim 138, wherein the added data sets are partitions of the selected data

35 set having equal cardinality.

-65-

WO 2007/134278 PCT/US2007/068856
141. The method of claim 138, wherein the added data sets are subsets defined by ranges of

scalar values for a data item that is included in the selected data set.

142. A method for storing data sets comprising:

providing a relation store for storing algebraic relations between data sets;

5 providing a data store for storing data sets, including at least a first data set, a second data

set and a third data set;

composing an algebraic relation that defines the first data set using at least the second

data set and the third data set;

adding the algebraic relation to the relation store; and

10 removing the first data set from the data store after the algebraic relation has been added

to the relation store.

143. The method of claim 142, wherein at least one of the second data set and the third data

set is stored in the data store in a physical format different from the physical format in which the first data

set is stored in the data store.

15 144. The method of claim 143, wherein the physical format in which the first data set is stored

is selected from the group consisting of comma separated value format, tab delimited value format, binary

string format, fixed offset format and markup language format.

145. The method of claim 142 further comprising:

providing a data set information store for storing information regarding a plurality of data

20 sets, including information indicating that the first data set, the second data set and the third data set are

realized in the data store; and

changing the information regarding the first data set in the data set information store to

indicate that the first data set is not realized in the data store.

25

-66-

	Abstract
	Description
	Claims
	Drawings

