发明名称：用逆转录病毒将基因转人靶细胞的方法

摘要

本发明公开了用逆转录病毒将基因转人靶细胞的方法。在本方法中，在有效量的具有逆转录病毒结合区的功能材料与有效量的具有靶细胞结合区的功能材料的混合物，或者在有效量的在同一分子中具有这些结合区的功能材料存在下，用逆转录病毒感染靶细胞。功能材料可以固化或不固化于珠子上进行使用。本方法可用于，如基因治疗。
1. 增加利用逆转录病毒的靶细胞基因转移效率的方法，其中改进包括在有效量的具有逆转录病毒结合区的功能材料与有效量的具有靶细胞结合区的另一种功能材料的混合物存在下，通过逆转录病毒感染靶细胞来进行转导。

2. 根据权利要求1的方法，其中具有逆转录病毒结合区的功能材料是选自纤维结合素的肝素-Ⅱ结合区、成纤维细胞生长因子、胶原、聚赖氨酸和其功能性等价物的功能材料。

3. 根据权利要求1的方法，其中具有靶细胞结合区的功能材料是与靶细胞特异结合的配体。

4. 根据权利要求3的方法，其中配体选自细胞粘附蛋白、激素、细胞因子、抗体、糖链、碳水化合物和代谢产物。

5. 根据权利要求4的方法，其中细胞粘附蛋白是纤维结合素的细胞结合区多肽。

6. 根据权利要求5的方法，其中纤维结合素的细胞结合区多肽是针对VLA-5和/或VLA-4的结合区多肽。

7. 根据权利要求4的方法，其中配体是红细胞生成素。

8. 根据权利要求1-7任一项的方法，其中功能材料是固化的。

9. 用于利用逆转录病毒进行靶细胞基因转移的靶细胞培养基，它包括有效量的具有逆转录病毒结合区的功能材料与有效量的具有靶细胞结合区的另一种功能材料的混合物。

10. 根据权利要求9的培养基，其中具有逆转录病毒结合区的功能材料是选自纤维结合素的肝素-Ⅱ结合区、成纤维细胞生长因子、胶原、聚赖氨酸和其功能性等价物的功能材料。

11. 根据权利要求9的培养基，其中具有靶细胞结合区的功能材料是与靶细胞特异结合的配体。

12. 根据权利要求11的培养基，其中配体选自细胞粘附蛋白、激素、细胞因子、抗体、糖链、碳水化合物和代谢产物。

13. 根据权利要求12的培养基，其中细胞粘附蛋白是纤维结合素的细胞结合区多肽。

14. 根据权利要求13的培养基，其中纤维结合素的细胞结合区多肽是针对VLA-5和/或VLA-4的结合区多肽。
15. 根据权利要求 12 的培养基，其中配体是红细胞生成素。
16. 根据权利要求 9-15 任一项的培养基，其中功能材料是固化的。
17. 逆转录病毒的定位方法，它包括孵育一种培养基，该培养基含有与有效量的具有逆转录病毒结合区的功能材料与有效量的具有靶细胞结合区的另一种功能材料的混合物相接触的逆转录病毒。
18. 根据权利要求 17 的定位方法，其中具有逆转录病毒结合区的功能材料是选自纤维结合素的肝素-II 结合区、成纤维细胞生长因子、胶原、聚赖氨酸和其功能性等价物的功能材料。
19. 根据权利要求 17 的定位方法，其中具有靶细胞结合区的功能材料是与靶细胞特异结合的配体。
20. 根据权利要求 19 的定位方法，其中配体选自细胞粘附蛋白、激素、细胞因子、抗体、糖链、碳水化合物和代谢产物。
21. 根据权利要求 20 的定位方法，其中细胞粘附蛋白是纤维结合素的细胞结合区多肽。
22. 根据权利要求 21 的定位方法，其中纤维结合素的细胞结合区多肽是针对 VLA-5 和/或 VLA-4 的结合区多肽。
23. 根据权利要求 20 的定位方法，其中配体是红细胞生成素。
24. 根据权利要求 17-23 任一项的定位方法，其中功能材料是固化的。
25. 进行逆转录病毒介导的靶细胞基因转移的试剂盒，它包括：
 (a) 有效量的具有逆转录病毒结合区的功能材料和/或有效量的具有靶细胞结合区的另一种功能材料；
 (b) 孵育逆转录病毒和靶细胞的人造材料；和
 (c) 预先刺激靶细胞的靶细胞生长因子。
26. 根据权利要求 25 的试剂盒，其中具有逆转录病毒结合区的功能材料是选自纤维结合素的肝素-II 结合区、成纤维细胞生长因子、胶原、聚赖氨酸和其功能性等价物的功能材料。
27. 根据权利要求 25 的试剂盒，其中具有靶细胞结合区的功能材料是与靶细胞特异结合的配体。
28. 根据权利要求 27 的试剂盒，其中配体选自细胞粘附蛋白、激素、细胞因子、抗体、糖链、碳水化合物和代谢产物。
29. 根据权利要求 27 的试剂盒，其中细胞粘附蛋白是纤维结合素
的细胞结合区多肽。

30. 根据权利要求 29 的试剂盒，其中纤维结合素的细胞结合区多肽是针对 VLA-5 和或 VLA-4 的结合区多肽。

31. 根据权利要求 28 的试剂盒，其中配体是红细胞生成素。

32. 根据权利要求 25-31 任一项的试剂盒，其中功能材料是固化的。

33. 逆转录病毒的定位方法，它包括孵育一种培养基，该培养基含有与有效量的具有来源于成纤维细胞生长因子、胶原或聚赖氨酸的逆转录病毒结合区的功能材料相接触的逆转录病毒。

34. 根据权利要求 33 的定位方法，其中功能材料是固化的。

35. 增加利用逆转录病毒的靶细胞基因转移效率的方法，其中改进包括在有效量的功能材料存在下通过逆转录病毒感染靶细胞来进行转导，所述功能材料同时具有靶细胞结合区和来源于成纤维细胞生长因子、胶原或聚赖氨酸或其功能性等价物的逆转录病毒结合区。

36. 根据权利要求 35 的方法，其中靶细胞结合区是与靶细胞特异结合的配体。

37. 根据权利要求 36 的方法，其中配体选自细胞粘附蛋白、激素、细胞因子、抗体、糖链、碳水化合物和代谢产物。

38. 根据权利要求 37 的方法，其中细胞粘附蛋白是纤维结合素的细胞结合区多肽。

39. 根据权利要求 38 的方法，其中纤维结合素的细胞结合区多肽是针对 VLA-5 和或 VLA-4 的结合区多肽。

40. 根据权利要求 37 的方法，其中配体是红细胞生成素。

41. 根据权利要求 35 的方法，其中成纤维细胞生长因子选自序列表中 SEQ.ID No.3 所表示的成纤维细胞生长因子、该因子的功能性等价物和含有该因子或该因子的功能性等价物的多肽。

42. 根据权利要求 35 的方法，其中功能材料是含有序列表中 SEQ.ID No.4 或 5 所表示的氨基酸序列的多肽。

43. 根据权利要求 35 的方法，其中胶原选自具有来源于 V 型胶原的胰岛素结合区的片段、该片段的功能性等价物和含有该片段或其功能性等价物的多肽。

44. 根据权利要求 43 的方法，其中具有来源于 V 型胶原的胰岛素
结合区的片段是含有序列列表中 SEQ.ID No.6 所表示的氨基酸序列的片段。

45. 根据权利要求 35 的方法，其中功能材料是含有序列列表中 SEQ.ID No.7 或 8 所表示的氨基酸序列的多肽。

46. 根据权利要求 35-45 任一项的方法，其中功能材料是固化的。

47. 根据权利要求 35-45 任一项的方法，其中功能材料不进行固化而使用。

48. 用于利用逆转录病毒进行靶细胞基因转移的靶细胞培养基，它包括有效量的同一分子上具有靶细胞结合区和来源于成纤维细胞生长因子、胶原或聚赖氨酸，或其功能性等价物的逆转录病毒结合区的功能材料。

49. 根据权利要求 48 的培养基，其中成纤维细胞生长因子选自序列列表中 SEQ.ID No.3 所表示的成纤维细胞生长因子，该因子的功能性等价物和含有该因子或该因子的功能性等价物的多肽。

50. 根据权利要求 48 的培养基，其中功能材料是含有序列列表中 SEQ.ID No.4 或 5 所表示的氨基酸序列的多肽。

51. 根据权利要求 48 的培养基，其中胶原选自具有来源于 V 型胶原的胰岛素结合区的片段，该片段的功能性等价物和含有该片段或该片段的功能性等价物的多肽。

52. 根据权利要求 48 的培养基，其中具有来源于 V 型胶原的胰岛素结合区的片段是含有序列列表中 SEQ.ID No.6 所表示的氨基酸序列的片段。

53. 根据权利要求 48 的培养基，其中功能材料是含有序列列表中 SEQ.ID No.7 或 8 所表示的氨基酸序列的多肽。

54. 根据权利要求 48-53 任一项的培养基，其中功能材料是固化的。

55. 逆转录病毒的定位方法，它包括孵育一种培养基，该培养基含有与有效量的在同一分子上具有靶细胞结合区和来源于成纤维细胞生长因子、胶原或聚赖氨酸，或其功能性等价物的逆转录病毒结合区的功能材料相接触的逆转录病毒。

56. 根据权利要求 55 的定位方法，其中成纤维细胞生长因子选自序列列表中 SEQ.ID No.3 所表示的成纤维细胞生长因子，该因子的功能性等
等价物和含有该因子或该因子的功能性等价物的多肽。

57. 根据权利要求 55 的定位方法，其中功能材料是含有序列表中 SEQ.ID No.4 或 5 所表示的氨基酸序列的多肽。

58. 根据权利要求 55 的定位方法，其中胶原选自具有来源于 V 型胶原的胰岛素结合区的片段，该片段的功能性等价物和含有该片段或该片段的功能性等价物的多肽。

59. 根据权利要求 58 的定位方法，其中具有来源于 V 型胶原的胰岛素结合区的片段是含有序列表中 SEQ.ID No.6 所表示的氨基酸序列的片段。

60. 根据权利要求 55 的定位方法，其中功能材料是含有序列表中 SEQ.ID No.7 或 8 所表示的氨基酸序列的多肽。

61. 根据权利要求 50-60 任一项的定位方法，其中功能材料是固化的。

62. 进行逆转录病毒介导的靶细胞基因转移的试剂盒，它包括：
(a) 有效量的同一分子上具有靶细胞结合区和来源于成纤维细胞生长因子、胶原或聚赖氨酸，或其功能性等价物的逆转录病毒结合区的功能材料；
(b) 孵育逆转录病毒和靶细胞的人造材料；和
(c) 预先刺激靶细胞的靶细胞生长因子。

63. 根据权利要求 62 的试剂盒，其中成纤维细胞生长因子选自序列表中 SEQ.ID No.3 所表示的成纤维细胞生长因子、该因子的功能性等价物和含有该因子或该因子的功能性等价物的多肽。

64. 根据权利要求 62 的试剂盒，其中功能材料是含有序列表鉴定号 4 或 5 所表示的氨基酸序列的多肽。

65. 根据权利要求 62 的试剂盒，其中胶原选自具有来源于 V 型胶原的胰岛素结合区的片段，该片段的功能性等价物和含有该片段或该片段的功能性等价物的多肽。

66. 根据权利要求 65 的试剂盒，其中具有来源于 V 型胶原的胰岛素结合区的片段是含有序列表中 SEQ.ID No.6 所表示的氨基酸序列的片段。

67. 根据权利要求 62 的试剂盒，其中功能材料是含有序列表中 SEQ.ID No.7 或 8 所表示的氨基酸序列的多肽。
68. 根据权利要求 62-67 任一项的试剂盒，其中功能材料是固化的。
69. 根据权利要求 8 或 46 的方法，其中功能材料固化于珠子上。
70. 根据权利要求 16 或 54 的培养基，其中功能材料固化于珠子上。
71. 根据权利要求 24、34 或 61 的定位方法，其中功能材料固化于珠子上。
72. 根据权利要求 32 或 68 的试剂盒，其中功能材料固化于珠子上。
73. 增加利用逆转录病毒的靶细胞基因转移效率的方法，其中改进包括在存在有效量的固化于珠子上的功能材料时用逆转录病毒感染靶细胞，所述功能材料选自基本纯化的纤维结合素、基本纯化的纤维结合素片段或其混合物。
74. 增加利用逆转录病毒的靶细胞基因转移效率的方法，其中改进包括在有效量的未进行固化的功能材料存在时用逆转录病毒感染靶细胞，所述功能材料选自基本纯化的纤维结合素、基本纯化的纤维结合素片段或其混合物。
75. 根据权利要求 1-8、35-47、69、73 和 74 任一项的方法，其中靶细胞是选自下列细胞的细胞：干细胞、造血细胞、非粘附的低密度单核细胞、粘附细胞、骨髓细胞、造血干细胞、外周血干细胞、胚带血细胞、胎儿造血干细胞、胚胎形成的干细胞、胚胎细胞、原始胚细胞、卵母细胞、卵原细胞、卵细胞、精母细胞、精子、CD34+细胞、C-kit+细胞、多能造血祖细胞、单能造血祖细胞、红细胞前体细胞、淋巴细胞前体细胞、成熟血细胞、淋巴细胞、B细胞、T细胞、成纤维细胞、成神经细胞、神经细胞、内皮细胞、血管内皮细胞、肝细胞、成肌细胞、骼肌细胞、平滑肌细胞、癌细胞、骨髓瘤细胞和白血病细胞。
76. 根据权利要求 1-8、17-24、33-47、55-61、69、71 和 73-75 任一项的方法，其中逆转录病毒包括外源基因。
77. 根据权利要求 76 的方法，其中逆转录病毒是重组逆转录病毒载体。
78. 根据权利要求 76 的方法，其中逆转录病毒是增殖缺陷的重组逆转录病毒载体。
79. 根据权利要求 1-8、35-47、69 和 73-78 任一项的方法所获得的转化细胞。

80. 细胞移植的方法，它包括将根据权利要求 79 所获得的转化细胞移植入脊椎动物体内。

81. 序列表中 SEQ.ID No.13 所表示的多肽。

82. 编码根据权利要求 81 的多肽的基因。

83. 序列表中 SEQ.ID No.17 所表示的根据权利要求 82 的基因，或者在严紧条件下能与之杂交并且编码提高逆转录病毒将基因转入靶细胞效率的多肽的基因。

84. 序列表中 SEQ.ID No.30 所表示的多肽或者其功能性等价物。

85. 编码根据权利要求 84 的多肽的基因。

86. 序列表中 SEQ.ID No.33 所表示的根据权利要求 85 的基因，或者在严紧条件下能与之杂交并且编码提高逆转录病毒将基因转入靶细胞效率的多肽的基因。

87. 序列表中 SEQ.ID No.5 所表示的多肽或者其功能性等价物。

88. 编码根据权利要求 87 的多肽的基因。

89. 序列表中 SEQ.ID No.26 所表示的根据权利要求 88 的基因，或者在严紧条件下能与之杂交并且编码提高逆转录病毒将基因转入靶细胞效率的多肽的基因。
说明书

用逆转录病毒将基因转入靶细胞的方法

发明领域

本发明涉及一种增加基因转入靶细胞效率的方法。在诸如医学、
细胞技术、遗传工程和发育技术等各种技术领域以及一系列相关技术
中，该方法能够有效转化靶细胞。

现有技术

由于对人类许多疾病机制的理解以及在重组 DNA 技术和基因转移
技术方面的迅速发展，近来有关体细胞基因治疗的方案已经建立以治疗
严重的遗传病。另外，目前尝试将基因治疗不仅应用于治疗遗传
病，而且也用于治疗如 AIDS 等病毒感染疾患和癌症。

迄今为止，几乎所有的在人体内进行的、经过食品药品管理局(FDA)
批准的基因转移实验都是通过重组逆转录病毒载体进行的细胞转导。逆
转录病毒载体可以将所需要的外源基因有效地转入细胞，使外源基因稳
定地整合到染色体 DNA 中，因此，对于需要长期基因表达的基因治疗
来说，这些载体是特别优选的基因转移手段。采用各种方法设计这样的
载体以避免对所转导的有机体产生任何不良反应。例如，缺失载体的增
殖功能以预防由于将基因转入细胞所用的载体的自我增殖而产生的无
限重复感染(转导)。因为这些载体(增殖缺陷逆转录病毒载体)没有自我
增殖的能力，所以，一般地，包装在病毒颗粒中的逆转录病毒载体是用
逆转录病毒生产细胞(包装细胞)来进行制备的。

另一方面，骨髓细胞是体细胞基因治疗的良好靶细胞，因为骨髓
细胞易于体外操作而且含有能够自我增殖的造血干细胞。另一种选择，
人脐带血以前也被证实含有大量的包括造血干细胞在内的原始祖细
胞。当通过基因转入靶细胞并移植入活体中进行基因治疗时，这样转入
的基因长期在血细胞中表达以达到终生成治愈疾病的效果。

然而，尽管许多研究小组进行了深入的研究，但是造血干细胞是
难以有效转导的细胞之一。迄今为止，与小鼠和其它动物造血干细胞有
关的最有效的基因转移方案是造血干细胞同逆转录病毒生产细胞共培
养。然而，对人类的临床基因治疗而言，由于考虑到生物安全性，无细
胞的转导是最可取的。不幸地是，如果不与逆转录病毒生产细胞共培

养，一般来说，基因有效地转入造血干细胞是不可能的。

发明目的

已考虑过利用在同一分子上具有逆转录病毒结合区和靶细胞结合区的纤维结合素或它的片段，来完成上述利用纤维结合素和其片段的基因转移方法(《自然医学》(Nature Medicine), 2, 876 - 872页 (1996))。因此，为了利用上述方法将基因有效转入各种靶细胞中，有必要根据分别不同的特定细胞来制备在同一分子上具有病毒和靶细胞结合区的功能材料，并且它作为一种普通的基因转移方法，仍然存在一个问题。

进一步说，通过将纤维结合素或纤维结合素片段固化在逆转录病毒感染时用于培养靶细胞的培养板表面来进行上述的基因转移方法，然而，这需要复杂步骤以在培养板上进行固化，并且这远不能说是一种简单和方便的基因转移方法。

再者，用于上述基因转移方法的功能材料限于那些含有来源于纤维结合素、作为逆转录病毒结合区的肝素结合区的材料。这样，找到任何其它的逆转录病毒结合物质有可能建立一种改良的基因转移方法。

本发明的目的是解决该问题并提供更方便和有效的基因转移方法。

发明概述

发明人已经发现，即使当具有逆转录病毒结合区的区域和具有细胞结合区的区域不在同一个分子上存在时，利用一种功能材料，一般是纤维结合素或其片段进行的逆转录病毒感染也可以得到提高。这就是说，发明人已经发现通过利用有效量的与含有靶细胞结合区的功能材料混合的包含逆转录病毒结合区的功能材料可以提高逆转录病毒将基因
转入靶细胞的效率。

另外，发明人还发现即使当功能材料没有固化到培养板表面时，
也可观察到利用功能材料增强的逆转录病毒感染活性。发明人进一步发
现，在功能材料固化于珠子的情况下，使逆转录病毒与靶细胞接触可以
提高基因转入靶细胞的效率。

此外，发明人进一步发现了一种不含来源于纤维结合素的肝素结
合区的逆转录病毒结合材料，同时也发现该材料和其衍生物有利于用逆
转录病毒将基因转入靶细胞。再者，发明人已成功地创建了有利于用逆
转录病毒将基因转入靶细胞的功能材料。至此，完成了本发明。

这样，本发明的第一方面涉及增加逆转录病毒将基因转入靶细胞
效率的方法。该方法针对于用逆转录病毒的靶细胞转导，其特征为在有
效量的具有逆转录病毒结合区的功能材料与有效量的具有靶细胞结合
区的另一种功能材料混合物存在下，用逆转录病毒感染靶细胞以使基因
转入靶细胞。

在本发明的第一方面中所采用的具有逆转录病毒结合区的功能材
料不是特别限定的，例如，它是选自以下的一种功能材料：纤维结合素
的肝素 II 绑合区、成纤维细胞生长因子、胶原、聚赖氨酸和其功能性
等价位。具有靶细胞结合区的功能材料可以是含有能够与靶细胞结合的
配体的材料。至于配体，则可以是细胞粘附蛋白、激素、细胞因子、抗
体、糖链、碳水化合物和靶细胞代谢产物等。粘附蛋白的例子包括纤维
结合素细胞结合区的多肽。至于纤维结合素的细胞结合区，则可以是与
VLA-5 和/或 VLA-4 结合的结合区多肽。再者，配体的其它实例包括红
细胞生成素。

在本发明的第一方面中所用的功能材料可以不进行固化而使用，
或进行固化而使用，并且，当它们固化于珠子上时，可以方便地使用。
另外，当靶细胞特异的配体被选为具有靶细胞结合区的功能材料时，本
发明的第一方面使预定靶细胞的转导方便地进行。

正如上所述，在 WO 95/26200 和《自然医学》(Nature Medicine)
中所公开的常规方法中，将逆转录病毒和靶细胞同时定位于同一分子
上既有病毒结合区又有靶细胞结合区的一种功能材料上，这是提高逆转
录病毒将基因转入靶细胞效率的基本机制。然而，根据本发明，基因转
入靶细胞的效率可以采用下述方法进行提高，在有效量的具有逆转录病
毒结合区的功能材料和有效量的具有靶细胞结合区的另一种功能材料混合物存在下，用逆转录病毒将基因转入靶细胞。

本发明的第二方面涉及一种用于逆转录病毒将基因转入靶细胞的靶细胞培养基，它包括有效量的具有逆转录病毒结合区的功能材料和有效量的具有靶细胞结合区的另一种功能材料的混合物。

通过利用本发明第二方面的培养基，本发明的第一方面可以方便地进行。

本发明的第三方面涉及逆转录病毒的定位方法，该方法的特征为将逆转录病毒与有效量的具有逆转录病毒结合区的功能材料和有效量的具有靶细胞结合区的另一种功能材料的混合物相接触，然后孵育含有上述逆转录病毒的培养基。

本发明的第四方面涉及用于进行逆转录病毒介导的基因转入靶细胞的试剂盒，该试剂盒包括：

(a) 有效量的具有逆转录病毒结合区的功能材料和/或有效量的具有靶细胞结合区的另一种功能材料;
(b) 用于孵育靶细胞和逆转录病毒的人造材料；以及
(c) 用于预先刺激靶细胞的靶细胞生长因子。

通过运用本发明第四方面的试剂盒，本发明的第一和第三方面可以方便地进行。

本发明的第五方面涉及提高逆转录病毒将基因转入靶细胞效率的方法，该方法的特征为于同一分子上同时具有靶细胞结合区以及来自成纤维细胞生长因子、胶原或聚赖氨酸，或其功能性等价物的逆转录病毒结合区的有效量的功能材料存在下，用逆转录病毒感染靶细胞以进行靶细胞的转导。

在WO 95/26200和《自然医学》(Nature Medicine)中所述的上述常规方法中，纤维结合素片段被公开为能用于改善逆转录病毒将基因转入靶细胞的最有效方法中的材料。然而，关于除纤维结合素片段之外的其它功能材料，没有特别公开说明何种功能材料能用于逆转录病毒将基因转入靶细胞的高效方法中。更具体地说，在常规方法中，只有纤维结合素

12-14 重复序列被公开为逆转录病毒结合区。

发明人意外发现与纤维结合素 12-14 重复序列没有结构相关性的成纤维细胞生长因子、胶原、聚赖氨酸等也可以有效地用于提高逆转录
病毒将基因转入靶细胞的方法中，因此，这些材料的任何功能性等价物，即，任何具有功能上等价于这些材料的逆转录病毒结合区并能提高逆转录病毒将基因转入靶细胞效率的材料都可用于本发明的第五方面中。

在本发明的第五方面中，具有与靶细胞结合的配体的材料被用作靶细胞结合区，并且该材料与逆转录病毒结合区相偶联。

配体的实例包括细胞粘附蛋白、激素、细胞因子、抗体、糖链、碳水化合物，靶细胞的代谢产物等。细胞粘附蛋白的实例包括纤维结合素细胞结合区的多肽。例如，结合于 VLA-5 和/或 VLA-4 的结合区多肽可用于本发明中。再者，其它的配体实例包括红细胞生成素。

在本发明的第五方面中，用作逆转录病毒结合区的成纤维细胞生长因子，例如，可以选自序列表中 SEQ.ID No.3 所表示的一种成纤维细胞生长因子，该因子的功能性等价物和包含该因子或其功能性等价物的多肽。

这些功能材料的实例包括那些含有序列表中 SEQ.ID No.4 和 5 所表示的氨基酸序列的多肽。

在本发明的第五方面中，被用作逆转录病毒结合区的胶原包括，例如选自下述的胶原：含有来源于 V 型胶原的胰岛素结合区的胶原片段，该片段的功能性等价物和含有该片段或其功能性等价物的多肽。另外，该片段的实例包括含有序列表中 SEQ.ID No.6 所表示的氨基酸序列的片段。

这些功能材料的实例包括那些序列表中 SEQ.ID No.7 和 8 所表示的多肽。

在本发明的第五方面中，被用作逆转录病毒结合区的聚赖氨酸是一种 L-赖氨酸的聚合物，例如，具有适当聚合程度的聚合物可选自商业上可购买的产品并进行使用。

如果来源于成纤维细胞生长因子、胶原或聚赖氨酸的逆转录病毒结合区同时具有靶细胞的结合区，存在有效量的来源于成纤维细胞生长因子、胶原或聚赖氨酸的逆转录病毒结合区的情况下，通过逆转录病毒感染靶细胞可以提高逆转录病毒将基因转入靶细胞的效率。如果靶细胞是粘附细胞，逆转录病毒和靶细胞分别结合和粘附于功能材料，并且在存在有效量的来源于成纤维细胞生长因子、胶原或聚赖氨酸的逆转录
病毒结合区的情况下，通过逆转录病毒感染靶细胞可以提高逆转录病毒将基因转入靶细胞的效率。

人们也发现，如果序列表中 SEQ.ID No.1 所表示的多肽(此后称之为 H-271)同时具有靶细胞结合区，也就是说，如果靶细胞结合于多肽 H-271，在存在有效量的多肽的情况下，通过逆转录病毒感染靶细胞可以提高逆转录病毒将基因转入靶细胞的效率。

这就是说，尽管在上述《自然医学》(Nature Medicine)中所公开的逆转录病毒结合区仅仅是一段纤维结合素的 12-14 重复序列，但是发明人已经意外地发现，根据特定的一种靶细胞，该 H-271 可有效地作为靶细胞结合区，结果提高基因转入靶细胞的效率。另外，若靶细胞为粘附细胞，靶细胞和逆转录病毒分别结合并粘附于多肽。在有效量的多肽存在下，通过用逆转录病毒感染靶细胞可以提高用逆转录病毒将基因转入靶细胞的效率。

在本发明的第五方面中，尽管靶细胞是粘附细胞的情况下优选功能材料是固化的，但它可以在没有固化的状况下使用。

本发明的第六方面涉及用于逆转录病毒将基因转入靶细胞的靶细胞培养基，它包括有效量的一种功能材料，该功能材料在同一种子上既有靶细胞结合区也有来源于成纤维细胞生长因子、胶原或聚赖氨酸或它们的等价物的逆转录病毒感染结合区。

本发明的第七方面涉及逆转录病毒的定位方法，它包括孵育含有逆转录病毒的培养基，并且该病毒与有效量的含有来源于成纤维细胞生长因子、胶原或聚赖氨酸的功能材料接触，这些功能材料可被有效地用于逆转录病毒的定位以改善利用逆转录病毒的靶细胞基因转移。

再者，本发明的逆转录病毒定位方法包括孵育同有效量的功能材料接触的逆转录病毒。该功能材料在同一种子上既有靶细胞结合区也有来源于成纤维细胞生长因子、胶原或聚赖氨酸或它们等价物的逆转录病毒感染结合区。

本发明的第八方面是用于进行逆转录病毒介导的靶细胞基因转移的试剂盒，该试剂盒包括：

(a) 有效量的在同一种子上含有来源于成纤维细胞生长因子、胶原或聚赖氨酸或它们等价物的靶细胞结合区以及逆转录病毒结合区的功能材料;
(b) 用于孵育同逆转录病毒接触的人造材料；以及
(c) 用于预先刺激靶细胞的靶细胞生长因子。

为了实际应用本发明第一和第五方面的任一方法，第二和第六方面的任一培养基，第三和第七方面的任一方法，以及第四和第八方面的任一试剂盒，可以适当使用固化在珠子上的功能材料。

本发明的第九方面涉及提高逆转录病毒将基因转入靶细胞效率的方法，并且其特征为：在存在有效量的固化于珠子上的选自基本纯化的纤维结合素、基本纯化的纤维结合素片段或它们的混合物的功能材料的情况下，用逆转录病毒感染靶细胞以进行利用逆转录病毒的靶细胞转移。

本发明的第十方面也涉及提高逆转录病毒将基因转入靶细胞效率的方法，并且其特征为：在存在有效量的未固化的选自基本纯化的纤维结合素、基本纯化的纤维结合素片段或它们的混合物的功能材料的情况下，用逆转录病毒感染靶细胞以进行利用逆转录病毒的靶细胞转移。

上述已公开于 WO 95/26200 和《自然医学》(Nature Medicine)的常规方法中，逆转录病毒和靶细胞应定位于同一分子上既有逆转录病毒结合区又有靶细胞结合区的功能材料上，这是提高逆转录病毒基因转移效率的基本机制。在这些方法中，通过将在同一分子上既有逆转录病毒结合区又有靶细胞结合区的功能材料固化于培养材料上，逆转录病毒和靶细胞同时定位于同一分子上既有逆转录病毒结合区又有靶细胞结合区的功能材料上首先成为可能。

然而，根据本发明，即使当使用基本纯化的纤维结合素、基本纯化的纤维结合素片段或它们的混合物时，意外的是，通过应用没有固化的纤维结合素片段或它们的混合物的功能材料，在同一分子上既有逆转录病毒结合区又有靶细胞结合区的功能材料，可以有效提高逆转录病毒将基因转入靶细胞的效率。

在本发明的第一、五、九和第十方面中所用的靶细胞，例如，可以使用选自下列细胞的细胞：干细胞、造血细胞、非粘附的低密度单核细胞、粘附细胞、骨髓细胞、造血干细胞、外周血干细胞、脐带血细胞、胎儿造血干细胞、胚胎形成的干细胞、胚胎细胞、原始胚细胞、卵母细胞、卵原细胞、卵细胞、精原细胞、精子、CD34+ 细胞，C-kit+ 细胞、多能造血祖细胞、单能造血祖细胞、红细胞前体细胞、淋巴细胞前体细胞、成熟血细胞、淋巴细胞、B 细胞、T 细胞、成纤维细胞、成神经细
胞、神经细胞、内皮细胞、血管内皮细胞、肝细胞、成肌细胞、骨骼肌细胞、平滑肌细胞、癌细胞、骨髓瘤细胞和白血病细胞。

在本发明的第一、三、五、七、九和第十方面中所用的逆转录病毒，可以使用含有外源基因的逆转录病毒，例如，逆转录病毒可为重组逆转录病毒载体。再者，例如逆转录病毒可为增殖缺陷的重组逆转录病毒载体。

本发明的第十一方面涉及通过本发明第一、五、九或第十方面所获得的转导细胞。

本发明的第十二方面涉及将本发明第十一方面的转导细胞移植入脊椎动物的细胞移植方法。

本发明的第十三方面涉及能提高逆转录病毒将基因转入靶细胞效率的序列表中 SEQ.ID No.13 所表示的多肽或其功能等价物。

本发明的第十四方面涉及编码本发明第十三方面的多肽的基因。基因的实例包括序列表中 SEQ.ID No.17 所表示的基因，或者在严格条件下能与上述基因杂交并编码能提高逆转录病毒将基因转入靶细胞效率的多肽的基因。

上述已公开于 WO 95/26200 和《自然医学》(Nature Medicine)的常规方法中，用于基因转导的最有效的肽是 CH-296。另一方面，发明人已经意外地发现没有 VLA-5 结合区和 VLA-4 结合区的同一种多肽可以用于本发明中。

本发明的第十五方面涉及能提高逆转录病毒将基因转入靶细胞效率的序列表中 SEQ.ID No.30 所表示的多肽或其功能等价物。

本发明的第十六方面涉及编码本发明第十五方面中多肽的基因。基因的实例包括序列表中 SEQ.ID No.33 所表示的基因，或者在严格条件下能与上述基因杂交并编码能提高逆转录病毒将基因转入靶细胞效率的多肽的基因。

本发明的第十七方面涉及能提高逆转录病毒将基因转入靶细胞效率的序列表中 SEQ.ID No.5 所表示的多肽或其功能等价物。

本发明的第十八方面涉及编码本发明第十七方面中多肽的基因。基因的实例包括 SEQ.ID No.26 所表示的基因，或者能与上述基因杂交并编码能提高逆转录病毒将基因转入靶细胞效率的多肽的基因。

发明详述
对于本发明的基因转移方法，通常使用重组逆转录病毒载体，并
且增加缺陷的重组逆转录病毒载体尤其适合。使载体缺失增殖能力是为
了预防在感染的细胞中进行自我增殖，所以载体是非致病性的。这些载
体能够侵入诸如脊椎动物细胞等宿主细胞，尤其是哺乳动物细胞，以使
插入到载体的外源基因稳定整合到宿主细胞的染色体 DNA 中。

在本发明中，转入细胞的外源基因可以通过插入到逆转录病毒载
体中，在适当的启动子的控制下进行使用，所述启动子如在逆转录病毒
中的 LTR 启动子或外源启动子。另外，为了使外源基因转录，在载体
中也有与启动子和转录起始位点协作的其它调控元件，例如增强子。再
者，插入的基因优先在其下游有终止序列。被转入细胞的外源基因可为
天然基因或人工构建基因，并且可含有通过连接或本领域已知的其它手
段与其偶联的其它外源 DNA 分子。

用于细胞转导的插入到逆转录病毒的外源基因可为任何感兴趣的
基因。例如，外源基因可以编码与要治疗的一种疾病相关的酶、蛋白质、
反义核酸、核酶或配对引物 (见，如 WO 90/13641)、细胞内抗体 (如 WO
94/02610)、生长因子等。

本发明中所用的逆转录病毒载体可有标志基因以使转导的细胞易于
筛选，作为标志基因，例如，可以使用为转化的细胞提供抗生素抗性的
耐药基因或者为转化的细胞提供用于检测的酶活性的报告基因。

至于所用的载体，有一些逆转录病毒载体，如已知的 MFG 载体
(ATCC 号 69754)、α-SGC (ATCC 号 68755) 等。另外，以后的实例中所
用的 N2/ZipTKNEO 载体 (TKNEO，《血液》(Blood),78 卷, 310-317 页
(1991)) 和 PM5neo 载体 (《实验血液学》(Exp. Hematol.)23 卷, 630-638
页 (1995)) 都含有新霉素抗性基因 (新霉素磷酸转移酶基因) 作为它们的
标志基因。这样，用载体转化的细胞可被识别为具有抗生素 (新霉素，
G418 等) 抗性的细胞，这些抗生素是被基因产物所灭活的。再者，这些
载体可制备成含有已知的包装细胞株包装的载体的病毒颗粒，包装细
胞例如 PG13 (ATCC CRL-10686)、PG13/LNc8 (ATCC CRL-10685)、
PA317 (ATCC CRL-9078)、在美国专利 5,278,056 中所述的细胞株，GP
+ E-86 (ATCC CRL-9642), GP.envAm-12 (ATCC CRL-9641) 等。

此处所用的功能材料的 “有效量” 这个术语是指在用逆转录病毒
将基因转入靶细胞中，靶细胞转化所需要的量。通过采用此处所描述的
方法，可以根据特定的材料，逆转录病毒和特定种类的靶细胞来选择该量。此处所用的术语“基因转移效率”是指转化效率。

正如此后实施例中所公开的，通过常规试验可以证实功能材料与逆转录病毒结合的能力，如，本发明中功能材料的效率和有效性。

这些试验可以测定逆转录病毒颗粒与功能材料结合的程度，功能材料固化于本发明所用的基质中以防止物质脱落。例如，简而言之，含病毒的上清可孵育于含有固化的具有逆转录病毒结合区的功能材料的培养基中，然后用生理盐水彻底冲洗该培养基，接着在该孔中孵育靶细胞以测定在该孔中剩余的病毒的感染活性水平。评估相对于最初的病毒上清的感染活性的降低或滴度，并与相似对照（如采用BSA包被的培养基）的对应参数进行比较。与对照培养基相比，在含功能材料的培养基中所保持的显著增高的滴度说明该材料可以用作本发明的功能材料。

为了使筛选过程容易进行，病毒载体可含有可选择的标志基因。

通过这些试验可以筛选用于本发明的含有逆转录病毒结合区的功能材料。

作为这样一种具有逆转录病毒结合区的功能材料，是具有来源于纤维结合素的肝素-Ⅱ结合区、成纤维细胞生长因子、胶原或聚赖氨酸的逆转录病毒结合区的功能材料。

用于本发明的功能材料的细胞结合区与细胞的结合，即含有靶细胞结合配体的材料与细胞的结合，用常规方法同样可以进行测定。例如，这种方法包括在《自然》（Nature）352: 438-441(1991)中所描述的那些。

简而言之，具有细胞结合区的功能材料被固化于培养板上并且要测定的细胞群体在培养基中重叠生长，随后孵育30分钟到2小时。孵育之后，未粘附于功能材料的细胞被回收，计数并测定活性。粘附于功能材料的细胞用胰酶或细胞分离缓冲液（如，Gibco）也进行回收，计数并测定其活性。在一些情况下，例如造血细胞与基底细胞的形成，细胞进一步培养12到14天以确定细胞的集落形成特性。然后计算粘附细胞的百分比并与标准品或诸如固化于培养板的牛血清白蛋白（BSA）等标准对照进行比较。靶细胞与所测定的功能材料的大量结合提供证据表明功能材料/细胞组合适合本发明并且具有细胞结合区的功能材料能与具有逆转录病毒结合区的功能材料共存或偶联。随后测定靶细胞的逆转
录病毒感染以构建用于本发明的功能材料。

如上所述，作为能用于本发明的具有逆转录病毒结合区的功能材料是具有来源于纤维结合素肝素 II 结合区、成纤维细胞生长因子、胶原或聚赖氨酸的逆转录病毒结合区的功能材料。所有的具有等价于上述的逆转录病毒结合区并且通过与具有靶细胞结合区的配体偶联或共存能提高逆转录病毒将基因转入靶细胞效率的材料均包括于来源于成纤维细胞生长因子、胶原或聚赖氨酸的逆转录病毒结合区的功能性等价物中。

在所选择的偶联于或共存于具有靶细胞结合区的功能材料的具有逆转录病毒结合区的功能材料存在下，在本发明的基因转移方法中利用靶细胞和逆转录病毒，然后根据上述方法评估基因转移效率的提高，通过以上手段可以测定用于本发明的功能材料的有效量。

此后，将详细说明本发明。

本发明的一个方面是提高用逆转录病毒将基因转入靶细胞效率的方法。该方法特征是在具有逆转录病毒结合区的功能材料与有效地提高用逆转录病毒将基因转入靶细胞效率的具有靶细胞结合区的功能材料混合存在下，用逆转录病毒感染选的靶细胞。

该方法可用于获得逆转录病毒转基因的转化细胞并且将细胞移植入个体中，使基因转移入个体中。

在该方法中所用的具有逆转录病毒结合区的功能材料不是特别限定的，其实例包括纤维结合素的肝素-II 结合区、成纤维细胞生长因子、胶原、聚赖氨酸等。同样，其功能性等价物，如具有肝素结合区的功能材料也可使用。另外，也可使用功能材料的混合物、含有功能材料的多肽、功能材料的聚合物、功能材料的衍生物等。可从天然存在的产物，或人造产物（如通过遗传工程技术或化学合成制备的产物）获得这些功能材料。再者，它们可通过自然存在的产物与人造产物结合来进行制备。

只要保持此处所述的能获得高效基因转移的逆转录病毒结合区和/或靶细胞结合区，使用的功能材料可以是天然存在的多肽的氨基酸序列中有突变的那些材料。在本发明中，即使一个或多个，例如多达几个氨基酸缺失、替代、插入和/或添加到天然存在的多肽的氨基酸序列中，只要保持所需要的逆转录病毒结合区和/或靶细胞结合区，这些多肽被
称为具有天然存在的氨基酸序列的多肽的功能性等价物，通过制备编码功能性的等价物的基因以制备这些等价物并验证它们的生物活性后可以获得这些功能材料。

关于这方面，相关的生物技术领域已经在需要的功能区可以常规进行氨基酸的缺失、替代、插入或进行其它修饰的这种阶段，然后常规筛选所得到的氨基酸序列以获得所需要的功能结合活性。

通过寻找能够与上述功能材料的编码基因杂交的基因可以获得编码功能性等价物的编码基因。

这就是说，编码上述功能材料或其部分核苷酸序列的基因可用作杂交的探针或 PCR 等基因扩增方法的引物以筛选编码与功能材料有相似活性的蛋白质的基因。在该方法中，有时候会获得只含有部分所需基因的 DNA 片段。在这种情况下，当证实所获得的 DNA 片段是所需基因的一部分后，通过用该 DNA 片段或其部分片段作为探针来进行杂交或用根据 DNA 片段的核苷酸序列合成的引物来进行 PCR，可获得全长的所需基因。

例如，上述杂交可在下列条件下进行。

这就是说，在含有 0.5% SDS、0.1% 的 BSA、0.1% 聚乙烯吡咯烷酮 (Polyvinyl Pyrrolidone)、0.1% Ficoll 400 和 0.01% 变性鲑精 DNA 的 6XSSC(1XSSC:0.15M NaCl、0.015 柠檬酸钠，pH7.0) 中，有 DNA 固定在上面的薄膜与探针一起在 50℃ 共育 12 到 20 小时。孵育后，首先用含 0.5% SDS 的温度为 37℃ 的 2×SSC 溶液冲洗，然后浓度改变为 0.1×SSC 并且温度上升至 50℃ 进行冲洗。直至已固定的 DNA 所表示的信号能与背景区分为止。

另外，测定根据上述方法所获得的基因编码的蛋白质的活性可以确定这样获得的基因是否是所需要的基因。

如上述 WO 95/26200 所述，纤维结合素的肝素-II 结合区是含有逆转录病毒结合区的多肽，尽管成纤维细胞生长因子、胶原和聚赖氨酸与纤维结合素的肝素-II 结合区不具有任何的结构相似性 (如，氨基酸序列的相似性)，但是发明人已经发现这些材料具有逆转录病毒结合区。

用于本发明的具有靶细胞结合区的功能材料也不是特别限定的，并且它是具有能与靶细胞结合的配体的材料。配体的实例包括细胞粘附
蛋白、激素、细胞因子、抗细胞表面抗原的抗体、多糖、在糖蛋白或糖脂中的糖链和靶细胞的代谢产物等。另外，也可以使用含有功能材料的多肽、功能材料的聚合物、功能材料的衍生物、功能材料的功能性等价物等。这些功能材料可来源于天然存在的产物或人造产物（如，遗传工程技术或化学合成技术所制备的产物）。再者，它们也可以通过天然存在的产物与人造产物结合来进行制备。

所用的细胞粘附蛋白可以是，例如，纤维结合素或其片段。例如，与 Pro^{1239}-Ser^{1515} 相对应的人纤维结合素的细胞结合区，如在美国专利号5,198,423 中所述，它已被证实具有与此处公开的 C-274 多肽等价的功能并能与包括 BHK 和 B16-F10 细胞（Kimizuka 等，《生物化学杂志》（J. Biochem.) 110 卷，285-291 页 (1991)）在内的细胞结合。在这些多肽中存在由 RGDS 四个氨基酸组成的序列是 VLA-5 受体的配体。在众多种类的细胞中可见 VLA-5 受体的表达并且它在未分化细胞中的表达优于分化细胞中的表达。另外，已知纤维结合素的 CS-1 区是 VLA-4 受体的配体并且能与表达该受体的细胞结合（T 细胞、B 细胞、单核细胞、NK 细胞、嗜酸性细胞、嗜碱性细胞、胸腺细胞、骨髓单核细胞、红细胞生成的前体细胞、淋巴细胞前体细胞、黑色瘤瘤细胞、肌细胞等）。在 JP-A 3-284700 中所述、由 SEQ.ID No.29 所代表的多肽（此后称为 C277-CS1）是具有 VLA-5 和 VLA-4 受体配体的多肽并能用于具有这些受体的细胞的基因转移。再者，已经证实肝素-II 区能与成纤维细胞、内皮细胞和肿瘤细胞结合。在具有逆转录病毒结合区的多肽存在下，肝素-II 区的细胞结合区的多肽序列有助于引导病毒感染靶细胞。

具有细胞特异性活性的激素和细胞因子适合作为本发明中含细胞结合区功能材料。例如，在造血系统中为一种细胞因子的红细胞生成素可用于红细胞的基因转移。根据已知的方法可以制备红细胞生成素并可进行使用。另外，也可以使用红细胞生成素的功能性等价物和含有红细胞生成素或其功能性等价物的多肽。

正如前面的实施例中所述，当具有逆转录病毒结合活性的功能材料（如，H-271 和成纤维细胞生长因子）与具有来源于纤维结合素等的细胞结合活性的多肽 C-274 混合使用时，可获得高效基因转移。在这些实验中所用的 NIH/3T3 细胞表达能与 C-274 结合的 VLA-5 受体并且它们之间的相互作用有助于提高基因转移效率。
进一步说，在表达红细胞生成素受体的 TF-1 细胞的基因转移中，当存在红细胞生成素的衍生物时，也可以观察到同样的现象。（《血液》（Blood），73 卷 375-380 页 (1989)）。再者，在不表达任何红细胞生成素受体的细胞中观察不到该效果。

从这些结果中很明显地看出，在具有逆转录病毒结合区的功能材料与具有细胞结合区的功能材料共存下，可发生细胞特异的基因转移效率的增加。

在本发明的这个方面中，具有逆转录病毒结合区的功能材料可与具有靶细胞结合区的另一种功能材料混合的形式进行使用。因此，与功能材料有亲和力的靶细胞的基因转移效率被明显地提高。因为基因转移效率提高了，所以可避免与病毒生产细胞的共培养，这是本发明的优点之一。

上述的 WO 95/26200 提出，于与具有细胞结合活性的适当配体共价偶联的纤维结合素片段的存在下，没有进行任何特异修饰的逆转录病毒载体可转移入细胞中。然而，这种方法使用既有病毒结合活性又有细胞结合活性的功能分子，因此应该根据特定的细胞种类制各个体特异的功能材料。另外，目前不池道所制备的功能材料是否保持两种活性。

本发明中有逆转录病毒结合区的功能材料与具有靶细胞结合区的另一种功能材料组合使用可为众多种类的细胞提供一种用逆转录病毒介导的基因转移系统。为此目的，具有逆转录病毒结合区的功能材料不需要与有细胞结合区的功能材料共价偶联，因此，不需要根据特定细胞种类制备具有逆转录病毒结合区的功能材料与有细胞结合区的功能材料共价偶联的这种个体特异的功能材料，而且靶细胞的基因转移可以方便有效地进行。

采用本发明的方法将基因转入靶细胞的实例是造血系统的细胞基因转移。已知上述纤维结合素的 CS-1 细胞黏附区有助于造血干细胞的基因转移。再者，也已知，除了上述红细胞生成素之外，各种其它的细胞特异性细胞因子与造血细胞的分化有关，并且利用它们可以进行靶细胞(细胞系)的特异性基因转移。例如，当使用 G-CSF 时，成熟抗细胞和粒细胞前体细胞可用作转导的靶细胞。

当使用特异性或主要与恶性细胞结合的材料作为具有细胞结合区的功能材料时，可以将基因转入这样的靶细胞。

另外，含磷的功能材料用于甲状腺(癌)细胞或含高密度脂蛋白 (HDL)、脱唾液酸糖蛋白或其一部分的功能材料用于肝(癌)细胞，通过上述方法，这些细胞可用作转导的靶细胞。

再者，通过使用抗细胞表面抗原的抗体，适当使用单集落抗体作为具有细胞结合活性的功能材料，任何能获抗体的细胞均可用作靶细胞。这祥，通过利用本发明所公开的逆转录病毒载体和靶细胞的定位方法，众多种类的细胞可用作靶细胞。

在特别优选的方面中，利用新型的功能材料可以增加用逆转录病
毒将基因转入靶细胞的效率。

迄今为止，只有纤维结合素的肝素-II 区已知是有助于逆转录病毒
将基因转入靶细胞的具有逆转录病毒结合区的功能材料。

如上所述，区域本身有与某些细胞结合的活性，在某些情况下，
根据某些靶细胞这种活性是不需要的。在这种情况下，用另外的细胞结
合区置换该结合区可以获得需要的结果。在这种方法中，可使用具有不
同特性的多种功能材料并且这使得更广泛应用根据本发明的基因治疗
成为可能，而且易于进行预定靶细胞的转导。

本发明提供的具有逆转录病毒结合区的新型功能材料包括成纤维
细胞生长因子。含有该因子的多肽、胶原片段、该片段的混合物，含有
该片段的多肽和功能材料的聚合物等。聚赖氨酸也用于本发明的此目
的。这些功能材料可来自天然存在的产物或来自人造产物(如，通过遗
传工程或化学合成制备的产物)。再者，它们也可以通过组合天然存在
的产物和化学合成的产物来进行制备。功能材料可用于本发明第一方
面的基因转移方法，并且功能材料和其它具有细胞结合区的功能材料的
嵌合分子也可用于基因转移。

上述所有的功能材料均有逆转录病毒结合活性。然而，这些材料
不包括 WO 95/26200 中所述的人纤维结合素的肝素-II 区或有相似氨基
酸序列的多肽。

成纤维细胞生长因子，可以使用基本纯化的天然存在的产物或者
使用遗传工程技术制备的产物。在本发明中，可使用序列中 SEQ.ID
No.3 所代表的成纤维细胞生长因子并且也可使用保持多肽功能的修饰
衍生物。成纤维细胞生长因子衍生物的实例包括序列中 SEQ.ID No.4
所代表的多肽(此后称为 C-FGF·A)，该多肽是纤维结合素的细胞粘附
区多肽偶联于 SEQ.ID No.3 所代表的成纤维细胞生长因子的 N-端，并
且可通过遗传工程技术来制备，正如美国专利号 5,302,701 中所一般公
开描述的。采用已在上述美国专利中公开的大肠杆菌 FERM P-12637 可
以获得该多肽，并且根据布达佩斯条约将其保藏于国立生命科学和人体
技术研究所(NIBH), 1-1-3, Higashi, Tsukuba-shi Ibaraki-ken, 日本，保藏
号 FERM BP-5278(原始保藏日，1991 年 12 月 9 日)。

根据此处所述的方法，利用根据布达佩斯条约保藏于 NIBH, 1-1-
3, Higashi Tsukuba-shi Ibaraki-ken，日本，保藏号为 FERM BP-5654(原
始保藏日，1996年9月6日)的大肠杆菌可以获得具有来源于纤维结合素的CS-1细胞粘附区的上述C-FGF·A的多肽衍生物，由SEQ.ID No.5代表(此后称为C-FGF-CS1)。该C-FGF-CS1尤其有助于将基因转入具有CS-1结合特性的靶细胞，尤其是造血干细胞。

胶原片段，可以使用通过酶或化学裂解天然胶原所获得的基本纯化的片段，或者使用通过遗传工程技术制备的那些胶原片段。另外，可使用保持其功能的这些片段的修饰物。在这些胶原中，人Ⅴ型胶原具有强的胰岛素结合活性(JP-A 2-209899)。具有胰岛素结合区的多肽实例之一是含有序列表中SEQ.ID No.28所代表的氨基酸序列的多肽(JP-A 5-97698)。例如，序列表中SEQ.ID No.6所代表的多肽(此后称为ColIV)。根据此处实例中所公开的方法可以制备ColIV。含有ColIV并由SEQ.ID No.7所代表的多肽(此后称为C277-ColIV)是这样的多肽，其中纤维结合素的细胞粘附区多肽偶联于ColIV的N-末端，并且根据上述的JP-A 5-97698通过遗传工程技术可以制备。利用在JP-A 5-97698公开的保藏号为FERM P-12560的大肠杆菌可以获得C277-ColIV，该大肠杆菌根据布达佩斯条约保藏于NIBH，1-1-3，Higashi,Tsukuba-shi Ibaraki-ken，日本，保藏号为FERM BP-5277(原始保藏日：1991年10月7日)。

按如下步骤可以制备来源于SEQ.ID No.8所代表的并且含有来源于纤维结合素的CS-1细胞粘附区的C277-ColIV的多肽(此后称为C-ColIV-CS1)。用上述质粒pCH1022作为模板和引物CS1-S(核苷酸序列由序列表中SEQ.ID No.9表示)与M4通过PCR扩增分离出一段DNA片段，然后用限制性酶NheⅠ和SalⅠ酶解，其中该质粒pCH1022根据布达佩斯条约保藏于NIBH，1-1-3，Higashi,Tsukuba-shi Ibaraki-ken，日本，保藏号为FERM BP-2800(原始保藏日：1989年5月12日)的大肠杆菌制备。

另一方面，用质粒pTF7520ColIV作为模板以及引物CF和CNR通过PCR扩增分离出一段DNA片段，并用限制酶AccⅢ和NheⅠ酶切，其中该质粒含有编码C277-ColIV的基因并由上述大肠杆菌制备。CF和CNR的核苷酸序列由序列表中SEQ.ID No.10和12表示。将上述两个DNA片段混合并与限制酶AccⅢ和SalⅠ酶切质粒pTF7520ColIV所获得的大小为4.4kb的DNA片段连接，所得到的质粒编码含有C277-ColIVC端的CS-1细胞粘附区的多肽C-ColIV-CS1，并且在多肽中从ColIVC未
端起的第二个谷氨酸和 C 末端的苏氨酸分别被丙氨酸和丝氨酸置换。当培养了用这个质粒转化的大肠杆菌后，可以从培养物中获得所必要的多肽。该 C-CoIV-CS1 尤其有助于将基因转入具有 CS1 结合特性的靶细胞，尤其是干细胞。

如上所述，具有适当聚合程度的聚赖氨酸可自商业上可购买的聚赖氨酸并且使用。

本发明中所用的功能材料包括上述功能材料的衍生物。其实例包括上述 C-FGF-CS1 或其功能性等价物和 C-CoIV-CS1 或其功能性等价物。另外，通过聚合功能材料的多个分子得到的聚合物和根据已知的方法进行功能材料修饰（添加糖链等）所得到的修饰材料也可用于本发明中。利用编码聚合物的基因和编码它们功能性等价物的基因，通过遗传工程技术可以制备这些聚合物和它们的功能性等价物。另外，通过在功能材料的氨基酸序列中添加、插入和替代半胱氨酸可以制备用于制备功能材料聚合物的添加了半胱氨酸的功能材料。此外，为添加了半胱氨酸的功能材料并具有逆转录病毒结合区的分子容易偶联于另一个为添加了半胱氨酸的功能材料并且具有靶细胞结合区的分子上。再者，利用添加了半胱氨酸的功能材料的半胱氨酸残基的活性可以制备偶联于其它功能材料的材料。

在本发明的另一优选方面中，利用能增加逆转录病毒将基因转入靶细胞效率的纤维结合素的逆转录病毒结合区的聚合物来进行基因转移。

功能材料如上面 WO 95/26200 所述的在同一分子中具有多个纤维结合素肝素-II 结合区的多肽或多肽的衍生物。只要其保持与功能材料相同的活性，部分氨基酸序列不同于天然存在产物的序列的功能性等价物也可包括在内。

功能材料聚合物的实例包括通过酶或化学聚合上述来源于纤维结合素的多肽或通过遗传工程技术获得的那些聚合物。在分子中具有两个来源于纤维结合素的肝素-II 结合区的多肽实例包括具有序列表中 SEQ.ID No.13 所表示的氨基酸序列的多肽(此后称为 H2-547). 根据本发明所述的方法，利用根据布达佩斯条约保存于 NIBH, 1-1-3, Higashi, Tsukuba-shi Ibaraki-ken, 日本，保藏号为 FERM BP-5656(原始保藏日：1996 年 9 月 6 日)的大肠杆菌可以获得 H2-547。具有序列表中
SEQ.ID No.14所表示的氨基酸序列的多肽是含有偶联于H2-547N末端的纤维结合素的细胞粘附多肽的多肽衍生生物(此后称CH2-826)。根据本发明所公开的方法可以获取该多肽。再者具有序列表中SEQ.ID No.30所表示的氨基酸序列的多肽是含有偶联于H2-547C-末端的纤维结合素的CS-1细胞粘附区的多肽衍生物(此后称为H2S-573)。根据本发明中所述的方法，利用根据布达佩斯条约保存于NIBH，1-1-3，Higashi,Tsukuba-shi Ibaraki-ken，日本，保藏号为FERM BP-5655(原始保藏日：1996年9月6日的大肠杆菌可以获得该多肽。具有CS-1细胞粘附区的H2S-573有助于造血干细胞的基因转移。

本发明的另一优选方面中，当被固化于珠子上的能够有效地提高逆转录病毒载体将基因转入细胞的效率的功能材料存在时，用增殖缺陷的逆转录病毒载体感染活的靶细胞。

将功能材料固化到用于病毒感染细胞的容器(细胞培养板)上来进行利用上面的WO95/26200和《自然医学》(Natural Medicine)中所述的功能材料以提高逆转录病毒载体将基因转入靶细胞的效率的常规方法。这些方法需要复杂的步骤，如用含功能材料的溶液处理培养板后冲洗过量的功能材料。

然而，利用有功能材料固化于其上的培养板的基因转移方法难以说是一种方便的方法。另一方面，利用功能材料固化于珠子上的方法有如下优点。

与培养板相比，固化于珠子上可以在相对狭小的空间中进行并且珠子能在密封的容器中进行处理，因为功能材料固化于其上的培养板的表面暴露于空气中，所以在功能材料稳定性低的情况下有必要仔细预防由于储存过程中的干燥而引起的功能下降等。然而，珠子可以悬浮在溶液中进行储存，这样可以避免这种问题。再者，使用珠子可以扩大功能材料的表面积，因此，与培养板相比，可以获得更高的基因转移效率。

功能材料的固化可以用常规方法进行，例如，功能材料包括被靶细胞培养容器，或者例如，功能材料固化于培养细胞的培养珠上。根据预定的用途可以选择原材料和珠子的种类。例如，珠子可具有环状或球状核心作为中央部分并且用疏水的聚合物包被核心的表面。原材料的实例和核心与聚合物的种类见JP-A8-501092所述。例如，有功能材料固化于其上的可生物降解的珠子可以用于活体。另一种选择，一种有效的
方法是应用下列两者的混合物，即具有逆转录病毒结合区的分子固化于其上的珠子和具有靶细胞结合区的分子固化于其上的珠子。

当功能材料不进行固化而使用时，例如，靶细胞培养容器可以用一种材料预先处理，该材料预防功能材料粘附于容器上，如牛血清白蛋白 (BSA)。这样，功能材料使用时不会非特异地粘附于容器上。

根据本发明，即使在本发明的功能材料没有固化而使用的系统中，也可以高效地进行基因转移。

另外，如下所述，利用特异为实施本发明的方法而设计的试剂盒，可以非常方便地进行基因转移。

如上所述，根据本发明的方法所获得的转化细胞可移植入活体中，因而可以进行在活体中表达外源基因的基因治疗。

例如，当造血干细胞被用作靶细胞时，按下列步骤可以进行基因治疗。首先，从供者中收集含有造血干细胞的材料，例如，骨髓组织、外周血、胎儿脐带血等。这些材料可以作为靶细胞。然而，通常用密度梯度离心等制备含有造血干细胞的单核细胞部分。另一种选择，可以利用细胞表面诸如 CD34 和/或 C-kit 等标志纯化造血干细胞。含有造血干细胞的材料可以任选是否用适当的细胞生长因子等预先刺激，然后用重组逆转录病毒载体感染细胞。该载体是已根据本发明的方法，尤其是在含有干细胞结合活性的功能材料存在下，将预定的基因插入其中的。这样获得的转化细胞可以移植入受者中，比如，通过静脉输药的方法。优选受者是自体供者，但也包括同种异体移植，后者尤其适合脐带血用于移植的情况。

利用造血干细胞作为靶细胞的基因治疗是为了弥补患者的缺陷或异常基因，其实例包括 ADA 缺陷和高甘病。另外，有时候进行耐药基因的转导以缓解在癌症、白血病等的治疗中所用的化疗而引起的造血干细胞失调。

已知造血干细胞表达 VLA-4 受体，因此利用本发明所公开的具有 CS-1 细胞粘附区的功能材料可以高效地进行基因转移。再者，如上所述，在造血干细胞表面表达诸如 CD34 和 C-kit 这样的分子，因而将抗这些分子的抗体或者为 C-kit 配体的干细胞因子与具有逆转录病毒结合区的功能材料组合起来应用，可以提高基因转移效率。

再者，作为癌症的基因治疗，对肿瘤疫苗疗法已经进了研究，在
该治疗中将细胞因子基因转入癌细胞，使其丧失了生长力后，将细胞重
输入患者体内以增加肿瘤免疫力（《人基因治疗》（Human Gene Therapy）5
卷 153-164(1994)）。采用本发明的方法利用对癌细胞有高亲和力的功能
材料，也可以有效地进行这些治疗。

另外，已知尝试了许多方法以达到基因治疗 AIDS 的目的。在这种
情况下，已有人提议将编码抑制 HIV 增殖或基因表达的核酸分子（如反
义核酸，核酶等）的基因转入已感染了引起 AIDS 的 HIV 的 T 细胞（《病
毒学杂志》（J. Virol.）69 卷 4045-4052 页(1995)）。通过本发明中利用功
能材料的方法可以完成 T 细胞的基因转移，这些功能材料例如，能与 T
细胞表面存在的分子相结合的 CD4 抗体等。

这样，作为基因治疗的靶细胞，只要本发明中具有靶细胞结合区
的功能材料能够获得或能进行制备，任何细胞都能使用。

再者，本发明的方法适合于临床基因治疗的方案，因为该方法不
需要在逆转录病毒生产细胞的存在下培养靶细胞并且在缺乏溴化乙二
胺（其应用在临床上不利于人体）的情况下也可以进行本发明的方
法。

再进一步，本发明能应用于基因治疗之外的技术领域，例如，将
胚胎形成的干细胞、原始胚细胞、卵母细胞、卵原细胞、卵细胞、精母
细胞、精子等用作靶细胞，可以简单地制备脊椎动物的转基因动物。

即，作为一方面，本发明提供了细胞移植的方法，该方法包括通
过本发明的方法获得的转化体细胞移植入脊椎动物细胞，转化体细胞移
植的脊椎动物的实例包括哺乳动物（如，小鼠、大鼠、兔、山羊、猪、
马、狗、猴、猩猩、人等），鸟类（如，鸡、火鸡、鹅、鸭、野鸭等），
爬行动物（如，蛇、短吻鳄、龟等），两栖动物（如，蛙、火龙、蝾螈等），
鱼类（如，狗鳍、鳍鱼、鲈鱼、笛鲷、石斑鱼、鲫、鲭、鲑、鳟、鲤、鳗、鱼、香
鱼、鳗、鲽、鲨鱼、虹、鲶鱼等）。

这样，根据本发明的这个方面，正如基本纯化的纤维结合素、基
本纯化的纤维结合素片段或它们的混合物，通过本发明中所应用的功能
材料的逆转录病毒结合区和靶细胞结合区可以有效地进行使用逆转录
病毒的基因转移。因而，本发明能够提供将遗传材料转入脊椎动物细胞
的技术而没有常规技术的任何限制。

在本发明进一步的方面中，使用有效量的如下材料作为功能材
料，即在每一分子上既有逆转录病毒结合区又有靶细胞结合区并且其功能等价于基本纯化的纤维结合素，基本纯化的纤维结合素片段或其混合物的材料。

这样的功能材料是这样一种功能材料，能够以与纤维结合素、纤维结合素片段或其混合物相同的效率进行基因转移。典型情况是，这是一种在同一分子上同时具有本发明的新型逆转录病毒结合区和靶细胞结合区的功能材料。在应用这些材料的情况下，考虑逆转录病毒和靶细胞至少与一种功能材料相结合。

在同一分子上既有逆转录病毒结合区又有靶细胞结合区的功能材料的实例包括序列表中 SEQ.ID No.21 和 22 所表示的多肽(此后分别称为 CHV-181 和 CHV-179)。

这些肽包括在 H-271 中所包含的 III 型相似序列(III-12，III-13 和 III-14)。在 CHV-181 中，将 III-12 和 III-13 序列，以及在 HCV-179 中，将 III-13 和 III-14 序列通过蛋氨酸添加到细胞粘附多肽(Pro1239-Ser1515)的 C-末端，表达多肽 CHV-181 的质粒可以通过，例如以下步骤进行构建。

首先，从大肠杆菌 HB101/pHD101(FERM BP-2264)中制备含有编码纤维结合素的肝素结合多肽(H-271)的 DNA 片段的质粒 pHD101。通过定点突变在该质粒编码 III-13 序列 C-末端的区域中引入 Hind III 位点，随后用 Nco I 和 Hind III 酶切以获得编码 III-12 和 III-13 序列的 DNA 片段。另一方面，用 Hind III 和 Sal I 酶切质粒载体 pIN III-ompA\textsubscript{1}，以获得编码脂蛋白末端终止子区的 DNA 片段。

接着，从大肠杆菌 JM 109/pTF7021(FERM BP-1941)中制备含有编码纤维结合素的细胞粘附多肽(C-279)的 DNA 片段的质粒 pTF7021，并且通过定点诱变在质粒 C-279 的终止密码子紧邻的上游引入 Nco I 位点以获得质粒 pTF 7520。该质粒用 Nco I 和 Sal I 酶切，随后与编码 III-12 和 III-13 序列的 DNA 片段和编码脂蛋白终止子区的 DNA 片段混合，将它们连接起来以获得表达多肽 CHV-181 的质粒 pCHV181。在质粒 pCHV181 中编码多肽 CHV-181 的区域的核苷酸序列见于序列表中 SEQ.ID No.27。

表达多肽 CHV-179 的质粒，例如，可通过下述步骤进行构建。

首先，通过定点诱变在质粒 pHD101 上 III-13 序列 N 末端的编码
区中引入Nco I位点，随后用Nco I和Hind III酶切以获得编码III-13和III-14序列的DNA片段。该片段与编码上述脂蛋白终止子区的DNA片段和Nco I和Sal I酶切的质粒pTF7520混合以使其连接获得表达多肽CHV-179的质粒pCHV179。

培养分别用上述质粒转化的大肠杆菌，然后对所获得的培养物进行纯化，可以获得CHV-181和CHV-179。

这些功能材料可以通过固化使用，例如固化在上述的珠子上，或者不进行固化而使用。

在另一方面中，本发明提供了用于逆转录病毒将基因转入靶细胞的靶细胞的培养基，它包括(1)上述有效量的具有逆转录病毒结合区的功能材料和有效量的具有靶细胞结合区的另一种功能材料的混合物或者(2)有效量的在同一分子上同时具有上述新型逆转录病毒结合区和靶细胞结合区的功能材料。功能材料可以固化也可以不固化而使用。

本发明中培养基的其它成分就其用于培养靶细胞而言，它们不是特别限定的，并且也可以使用商业上可购买的培养细胞的培养基。本发明的培养基也可含有血清，靶细胞的生长所必需的细胞生长因子，预防微生物感染的抗生素等。例如，在NIH3T3细胞的情况下，可以使用含有10%胎牛血清(Gibco)，50单位/ml的青霉素和50μg/ml链霉素(均来自Gibco)的Dulbecco's改良Eagle's培养基(DMEM，JRHBioscience)。

在进一步的方面中，本发明提供了逆转录病毒的定位方法，该方法包括孵育含有逆转录病毒的培养基，该逆转录病毒与以下材料相接触，(1)上述具有逆转录病毒结合区的分子与含有靶细胞结合区的另一分子的混合物，(2)上述在同一分子上具有本发明的新型逆转录病毒结合区和靶细胞结合区的功能材料，或者(3)上述具有逆转录病毒结合区的功能材料。

如上所述，功能材料可以固化或者不固化而进行使用。根据常规方法，比如，于37°C CO₂浓度为5%以及湿度为99.5%的条件下，来进行孵育。这些条件可以根据所用的特定靶细胞加以适当调整，并且根据特定的细胞和目的也可以改变培养时间。

通过利用本发明的方法，病毒颗粒可以固定在各种构建物上，这些构建物将病毒传递给靶细胞。

在本发明的另一方面中，提供了逆转录病毒介导的基因转入靶细
胞的试剂盒。该试剂盒包括：

(a)有效量的(1)具有上述逆转录病毒结合区的分子和具有靶细胞结合区的另一分子的混合物或者(2)在同一分子上具有本发明的新型逆转录病毒结合区和靶细胞结合区的功能材料；

(b)用于孵育与靶细胞接触的逆转录病毒的人造材料；和

(c)预先刺激靶细胞的靶细胞生长因子。(a)的功能材料可进行固化或者不进行固化。该试剂盒进一步包括重组逆转录病毒载体，必要的缓冲液等。

作为人造材料，可以使培养板培养细胞，也可以使用培养皿，培养瓶等。这些培养器皿可由聚苯乙烯制成。

为了避免靶细胞是 Go 期细胞而不能进行逆转录病毒感染，因此，优选预先刺激细胞使细胞进入细胞周期。为了达到该目的，在用逆转录病毒感 染之前，靶细胞于适当细胞生长因子的存在下进行培养。例如，在基因转入骨髓细胞和造血干细胞的情况下，可以使用白介素-6 或者干细胞因子等靶细胞生长因子。

根据本来已知的方法，试剂盒的各个组成成份还可以制备成除去水溶液之外的冻干制品、颗粒和片剂的形式。

通过应用本发明的试剂盒，例如，可以获得已转化的存活靶细胞培养物并且可易于进行逆转录病毒介导的靶细胞基因转导。

本发明也包括利用逆转录病毒将基因转入靶细胞的方法，其中功能材料选自基本纯化的纤维结合素、基本纯化的纤维结合素片段和它们的混合物，或者它们的聚合物，该功能材料固化在珠子上或不进行固化而使用。

本发明包括上述的 CH2-826 和其功能性等价物。另外，本发明提供了编码 CH2-826 的基因。它的实例之一是序列中 SEQ.ID No.20 所表示的基因。本发明也包括该基因的功能性等价物。

再者，本发明提供了上述的 CHV-181 并包括其功能性等价物。另外，本发明提供了编码 CHV-181 镰状的基因。该基因的实例之一是序列中 SEQ.ID No.27 所表示的基因。本发明也包括该基因的功能性等价物。

本发明也提供了含有逆转录病毒结合区的聚合物和/或靶细胞结合区的聚合物的聚合物。聚合物的特定实例是成纤维细胞生长因子的聚合
物和含有来源于 V 型胶质原的胰岛素结合区的多肽的聚合物。

正如此后所述，虽然本发明不受限于任何理论，但据信通过逆转录病毒和靶细胞分别结合到功能材料上可以促进逆转录病毒将基因转入细胞，即转化。

作为与逆转录病毒结合的在本发明中有效的这样一种功能材料，有基本纯化的纤维结合素、基本纯化的纤维结合素片段或它们的混合物。发明人已经发现本发明中具有与基本纯化的纤维结合素等基本上相同的功能的功能材料能够提高基因转移效率，即逆转录病毒的靶细胞转化效率。

容，见《EMBO 杂志》(EMBO J.)4 卷，1755-1759(1985)，它报道了人
纤维结合素基因的结构；以及见《生物化学》(Biochemistry)，25，
4936-4941(1986)，它对人纤维结合素的肝素-II 结合区进行了报道。在
目前的工作中人们发现含有 CS-1 细胞粘附区和肝素-II 结合区的纤维结
合素片段能够明显增加造血细胞的基因转移效率。

可以这样理解，此处所述的纤维结合素有关的多肽将提供具有纤
维结合素的 CS-1 细胞粘附区中细胞结合活性的氨基酸序列以及与病毒
结合的纤维结合素中肝素-II 结合区的氨基酸序列。

在 WO 95/26200 中所公开的用来增加逆转录病毒载体转导的病毒
结合多肽包括(i)与人纤维结合素中肝素-II 结合区的 Ala^{1690} -Thr^{1960} 相应
的第一段氨基酸序列，由通用序列表示(SEQ.ID No.1):

```
Ala Ile Pro Ala Pro Thr Asp Leu Lys Phe Thr Gln Val Thr Pro
Thr Ser Leu Ser Ala Gln Trp Thr Pro Pro Asn Val Gln Leu Thr
Gly Tyr Arg Val Arg Val Pro Lys Glu Lys Thr Gly Pro Met
Lys Glu Ile Asn Leu Ala Pro Asp Ser Ser Ser Ser Val Val Ser
Gly Leu Met Val Ala Thr Lys Tyr Glu Val Ser Val Tyr Ala Leu
Lys Asp Thr Leu Thr Ser Arg Pro Ala Gln Gly Val Val Thr Thr
Leu Glu Asn Val Ser Pro Pro Arg Arg Ala Arg Val Thr Asp Ala
Thr Glu Thr Thr Ile Thr Ile Ser Thr Arg Thr Lys Thr Glu Thr
Ile Thr Gly Phe Gln Val Asp Ala Val Pro Ala Asn Gly Gln Thr
Pro Ile Gln Arg Thr Ile Sys Pro Asp Val Arg Ser Tyr Thr Ile
Thr Gly Leu Gln Pro Gly Thr Asp Tyr Lys Ile Tyr Leu Tyr Thr
Leu Asn Asp Asn Ala Arg Ser Ser Pro Val Ile Asp Ala Ser
Thr Ala Ile Asp Ala Pro Ser Asn Leu Arg Phe Leu Ala Thr Thr
Pro Asn Ser Leu Leu Val Ser Trp Gln Pro Pro Arg Ala Arg Ile
Thr Gly Tyr Ile Ile Lys Tyr Glu Sys Pro Gly Sev Pro Pro Arg
Glu Val Val Pro Arg Pro Gly Val Thr Glu Ala Thr Ile
Thr Gly Leu Glu Pro Gly Thr Glu Tyr Thr Ile Tyr Val Ile Ala
Leu Lys Asn Asn Gln Lys Ser Glu Pro Leu Ile Gly Arg Lys Lys
Thr;
```
或者与其足够相似、表现出与逆转录病毒结合能力的氨基酸序列；以及(ii)与人纤维结合素中III CS 结合区的一部分相对应的第二段氨基酸序列(CS-1)；由通用序列表示(SEQ.ID No.2)：

Asp Glu Leu Pro Gln Leu Val Thr Leu Pro His Pro Asn Leu His
Gly Pro Glu Ile Leu Asp Val Pro Ser Thr；

或者表现出与诸如原始祖细胞和/或长期种群恢复(干)细胞等造血细胞有结合能力的与其足够相似的氨基酸序列。

上述SEQ.ID No.1(H-271)所表示的多肽的逆转录病毒结合活性表现出浓度依赖，并且如在下面的实施例8中所表明的，在高浓度它表现出与CH-271基本相同的活性。这就是说，在高浓度的H-271存在下，逆转录病毒和靶细胞第一次至少结合1分子的H-271。

病毒与本发明中功能材料的病毒结合区牢固结合可用于构建针对各种细胞类型的适合病原体介导的基因治疗的运载体系。为达到此目的，含有本发明中功能材料的逆转录病毒结合区的多肽可以偶联于含有细胞结合区的使构建系统对靶细胞有特异性的任何一种材料，或者也可以与含有细胞结合区的材料共同定位，也就是说，结合病毒的多肽可以共价偶联于结合细胞的材料或者两者可为不同的分子。

该方法将避开以前为每一种靶细胞构建特异的逆转录病毒细胞系的必要性，并且有利于根据特定种类的靶细胞选择具有最适合靶细胞结合区的功能材料。因此，利用本发明的功能材料，可易于进行靶细胞特异的转导，并且尤其是，本发明的方法，应用具有逆转录病毒结合区的功能材料和具有靶细胞结合区的功能材料的混合物，对特定靶细胞的所需基因的转移是特别有效的。另外，对于提高逆转录病毒将基因转入靶细胞的方法和相关技术的方法而言，本发明提供的新型功能材料是特别有效的。

下面的实施例进一步详细说明本发明，并不是限定本发明的范围。

实施例1
(1)制备病毒上清
含有具有新霉素抗性基因的逆转录病毒质粒PM5neo的GP + E-86生产细胞(ATCC CRL-9642)(《实验血液病学》(Exp. Hemtol.)23,630-
638(1995)) 培养于含有 10% 胎牛血清 (FCS, Gibco) 和 50 单位/ml 青霉素和
50μg/ml 链霉素 (均购自 Gibco) 的 Dulbecco’s 改良 Eagle 培养基
(DMEM，JRH Bioscience) 中。此后所用的所有 DMEM 均含 50 单位/ml 青霉素和 50μg/ml 链霉素。将 4ml 含 10%FCS 的 DMEM 加到半合的
培养板中，过夜培养后，收集含 PM5 neo 病毒的培养上清。回收的培
养基用 0.45 微米的滤膜 (Millipore) 过滤以获得病毒上清，将其保藏在-80℃ 直至应用它。

另外，关于逆转录病毒质粒 TKNeo 载体 (《血液》(Blood)，78，
310-317(1991))，根据上述相同的步骤用 GP + envAm-12 细胞制备
TKNeo 病毒上清。

(2) 测定上清的病毒滴度

按照标准方法 (《病毒学杂志》(J.Virol)62，1120-1124(1988))用
NIT/3T3 细胞测定上清的病毒滴度。即，将 DMEM 和每孔 2000 个 NIT
/3T3 细胞加入到 6 孔的组织培养板中，过夜培养后，将系稀释的病
毒上清加入到每孔中，同时加入终浓度为 7.5μg/ml 的溴化乙二胺 (由
Aldrich 制造的聚凝胺)。将其于 37℃ 孵育 24 小时，然后用含终浓度为
0.75mg/ml 的 G418(Gibco) 的培养基替换原来的培养基。培养板进一步
孵育。10-12 天后长出的 G418 抗性(G418') 集落用结晶紫染色以记录细
胞数。每孔的集落数乘上稀释倍数计算出每 1ml 的上清中所含的感染
性颗粒数 (cfu/ml)，将其作为上清滴度以确定在随后的实验中所加的病
毒上清量。

实施例 2

(1) 制备来源于纤维结合素的多肽

根据美国专利号 5,198,423 中所公开的方法，来源于人纤维结合素
的多肽，H-271(氨基酸序列示于序列表中 SEQ.ID No.1) 制备于含有编码
多肽的 DNA 的重组质粒 pHD101 所转化的大肠杆菌，即大肠杆菌
HB101/pHD101(FERM BP-2264)。

多肽，CH-271(氨基酸序列示于序列表中 SEQ.ID No.23) 制备如下。
即，根据上述专利中所描述的方法培养大肠杆菌 HB101/pCH101(FERM
BP-2799)，并从培养菌中获得 CH-271。

多肽，CH-296(氨基酸序列示于序列表中 SEQ.ID No.24) 制备如下。
即，根据上述专利中所描述的方法培养大肠杆菌 HB101/pCH102(FERM
BP-2800)，并从培养菌中获得 CH-296。

多肽 C-274(氨基酸序列示于序列表中 SEQ.ID No.25)制备如下。即，根据美国专利号 5,102,988 中所描述的方法培养大肠杆菌 JM109/pTF7221(FERM BP-1915)，并从培养菌中获得 C-274。

再者，多肽 C277-CS1(氨基酸序列见序列表中 SEQ.ID No.29)制备如下。即，根据上述专利中所述的方法培养大肠杆菌 HB101/pCS25，并从培养菌中获得 C277-CS1, 该大肠杆菌在 JP-A 3-284700 中公开为 FERM P-11339，并且按照布达佩斯条约保藏于上述 1-1-3，Higashi, Tsukubashi, Ibaraki-Ken 的 NIBH(原始保藏日：1990,3,5)。

(2) 制备 C-FGF·A

多肽 C-FGF·A（氨基酸序列示于序列表中的 SEQ.ID No.4）制备如下。即，含有编码上述多肽的 DNA 的重组质粒 pYMH-CF·A 所转化的大肠杆菌，即大肠杆菌 JM109/pYMH-CF·A（FERM BP-5278）于 37℃在含有 100μg/ml 氨苄青霉素的 5ml LB 肉汤培养基中培养 8 小时。该预培养的肉汤培养基接种入 500ml 含有 100μg/ml 氨苄青霉素和 1mM IPTG（异丙基-β-D-硫代半乳糖苷）的 LB 肉汤培养基中并于 37℃过夜培养。回收培养菌，悬浮于 10ml 含有 1mM PMSF（苯基甲基氯硫腈）和 0.05％的 Nonidet P-40 的 PBS 中（磷酸缓冲盐溶液），并超声破碎细菌细胞。离心该混合物以获得上清。加入 1ml 5％的聚乙烯亚胺使上清在 260nm 的吸收值为 4,000，然后离心混合物以获得上清。将上清上样至 PBS 平衡的 HiTrap-肝素素柱（Pharmacia）。用 PBS 冲洗掉非吸附的部分后，用含有 0.5M-2M NaCl 梯度的 PBS 洗脱柱中吸附的部分。通过 SDS-聚丙烯酰胺凝胶电泳（SDS-PAGE）分析洗脱液。表明存在两部分含有 47kd 的多肽，其中在较高 NaCl 浓度下洗脱的部分收集起来并上样至用含 1.5M NaCl 的 PBS 平衡的 Superose 6 柱（Pharmacia）。通过 SDS-PAGE 分析洗脱液并且回收含大约 47kd 多肽的部分以获得用于以下步骤的纯化 C-FGF·A。

(3) 制备 C-FGF-CS1

首先，在作为宿主的大肠杆菌中构建表达多肽 C-FCF-CS1（氨基酸序列示于序列表中 SEQ.ID No.5）的质粒。

培养大肠杆菌 HB 101/pCH102(FERM BP-2800)并通过碱-SDS 法从所得的培养菌中制备质粒 pCH102。用该质粒作为模板以及引物 M4
（Takara Shuzo Co., Ltd）和引物 CS1-S 来进行 PCR，引物核苷酸序列示于序列表中的 SEQ.ID No.9，然后用乙醇沉淀回收反应液中扩增的 DNA 片段。所获得的 DNA 片段用 Nhe I 和 Sal I（均购自 Takara Shuzo Co., Ltd）酶切，随后进行琼脂糖凝胶电泳以从凝胶回收大约 970bp 的 DNA 片段。

然后培养大肠杆菌 JM109/pYMH-CF·A（FERM BP-5278）并通过碱-SDS 法从所获得的培养菌中制备质粒 pYMH-CF·A。用该质粒作为模板以及引物 CF（其核苷酸序列示于 SEQ.ID No.10）和引物 FNR（其核苷酸序列示于序列表中 SEQ.ID No.11）来进行 PCR，然后用乙醇沉淀从反应液中回收扩增的 DNA 片段。所获得的 DNA 片段用 Eco 52I（Takara Shuzo Co., Ltd）和 Nhe I 酶切，随后进行琼脂糖凝胶电泳以从凝胶中回收大约 320bp 的 DNA 片段。

用 Eco 52I 和 Sal I 酶切质粒 pYMH-CF·A 并进行琼脂糖凝胶电泳所分离的 DNA 片段与上述 970bp 的 DNA 片段和大约 320bp 的 DNA 片段混合，将它们连接起来以获得插入到大肠杆菌 JM109 中的重组质粒。从所获得的转化体中制备质粒并筛选出含有 1 分子上述三段 DNA 片段的质粒，命名为质粒 pCFS100。用质粒 pCFS100 转化的大肠杆菌 JM109 称为大肠杆菌 JM109/pCRS100。质粒 pCFS100 具有位于 C-FGF·A C 末端的来源于纤维结合素的 CS-I 细胞粘附区，并编码多肽，C-FGF-CS1，其中 FGF C 末端的第二个赖氨酸替换为丙氨酸。

多肽，C-FGF-CS1 制备如下。即，上述大肠杆菌 JM109/pCFS100 在 5ml 含 100μg/ml 氨苄青霉素的 LB 肉汤培养基中于 37℃ 培养 8 小时。该预培养的肉汤培养基接种至 500ml 含 100μg/ml 氨苄青霉素和 1mM IPTG 的 LB 肉汤培养基中并于 37℃ 过夜培养直至收集培养菌，所获得的培养菌悬浮于 10ml 含 0.5M NaCl、1mM PMSF 和 0.05％Nonidet P-40 的 PBS 中，然后超声破碎细菌并离心以获得上清。该上清上样至用含有 0.5M NaCl 的 PBS 预先平衡的 HiTrap-肝素柱中，用含 0.5mM NaCl 的 PBS 冲洗掉非吸附的部分，用含有 0.5M-2M 浓度梯度 NaCl 的 PBS 洗脱吸附的部分。洗脱液用 SDS-聚丙烯酰胺凝胶电泳分析并回收含有大约50kd多肽的部分以获得用于随后步骤的纯化 C-FGF-CS1。

研究纯化的 C-FGF-CS1 从 N-末端到第五个氨基酸的氨基酸序列并发现与序列表中 SEQ.ID No.5 所示的序列相一致。另外，通过质谱测定
的纯化 C-FGF-CS1 的分子量与从上述氨基酸序列中所预期的分子量一致。

(4) 制备 C 277-ColIV

多肽，C277-ColIV（氨基酸序列示于序列表中 SEQ.ID No.6）按如下方法纯化。即，含有编码上述多肽的 DNA 的重组质粒 pTF 7520 CoIV 所转化的大肠杆菌 JM109/pTF 7520 CoIV(FERM-5277)在 5ml 含有 100μg/ml 氯苄青霉素的 LB 培养基中于 37℃培养 6.5 小时，预培养的肉汤培养基接种入 500ml 含 100μg/ml 氯苄青霉素的 LB 肉汤培养基中并于 37℃培养，当在 660nm 的吸收值达到 0.6 时，IPTG 加入到肉汤培养基中至终浓度 1mM，然后培养基过夜培养直至收集细菌。所获得的培养菌悬浮于 10ml 含 1mM EDTA, 0.05％ Nonidet P-40 和 2mM PMSF 的 PBS 中，超声破碎细菌 10 分钟。离心细胞破碎液并将所获得的上清上样至 ResourceQ 柱（Pharmacia）以获得含有所需多肽的非吸附部分。该部分上样至 PBS 平衡的 HiTrap-肝素柱。用 PBS 冲洗掉非吸附部分后，用含 0.1M-0.5M 梯度 NaCl 的 PBS 洗脱吸附部分。洗脱液用 SDSPAGE 分析并回收含 48kd 多肽的部分以获得用于随后步骤中的纯化 C277-ColIV。

(5) 制备 ColIV

首先在作为宿主的大肠杆菌中构建用于表达多肽，ColIV（氨基酸序列见于序列表中的 SEQ.ID No.6）的质粒。

培养大肠杆菌 HB101/pTF 7520 ColIV（FERM BP-5277）并且用碱-SDS 法从所获得的细菌细胞中制备质粒 pTF 7520 ColIV。该质粒用 NcoI 和 BamHI（均购自 Takara Shuzo 有限公司）进行酶切，随后通过琼脂糖凝胶电泳从凝胶中回收大约 0.58kb 的 DNA 片段。该片段与已经用 NcoI 和 BamHI 预切的质粒载体 pET8C(Novagen)混合，以将它们连接起来。所获得的重组质粒导入大肠杆菌 BL21 以获得转化体，从转化体中制备质粒，并筛选出仅含一分子上述大约 0.58kb 的 DNA 片段的质粒，命名为 pET ColIV。

用上述质粒 pETColIV 转化的大肠杆菌 BL21，即，大肠杆菌 BL21/pETColIV 于 37℃在 10ml 含有 50μg/ml 氯苄青霉素的 LB 肉汤培养基中过夜培养。该预培养液 0.2ml 接种到 100ml 含有 50 μg/ml 氯苄青霉素的 LB 肉汤培养基中，随后于 37℃培养。当在 600nm 的吸收达
到 0.4 时，加入 IPTG 至终浓度 1mM，然后过夜培养以收集细菌细胞。
所得的细菌细胞悬浮于 5ml 含 1mM EDTA，0.05% Nonidet P-40，
10μg/ml 抗酶肽，10μg/ml 亮抑酶肽，和 2mM PMSF 的 PBS（磷酸缓冲
冲盐溶液）中，超声破碎细菌，随后离心收集上清。该上清加样于 PBS
平衡的 HiTrap 肝素柱，用 PBS 冲洗掉柱中非吸附的部分，用含 0.5M
NaCl 的 PBS 洗脱柱中吸附的部分，洗脱液用 SDS-聚丙烯酰胺凝胶电泳
分析并证实为几乎均一的大约 18kb 的多肽，这样获得的纯化 CoIV 用
于下列步骤中。

(6) 制备 H2-547

用于表达多肽 H2-547（氨基酸序列见于序列列表中的 SEQ.ID
No.13）的质粒构建如下。培养大肠杆菌 HB101/pCH101（FERM BP-
2800）并且用碱-SDS 法从所获得的细菌中制备质粒 pCH102。用该质
粒作为模板以及用引物 12S（其核苷酸序列见于序列列表中的 SEQ.ID
No.15）和引物 14A（其核苷酸序列见于序列列表中的 SEQ.ID No.16）来
进行 PCR，随后通过琼脂糖凝胶电泳从凝胶中回收编码纤维结合素肝
素结合区多肽的大约 0.8kb 的 DNA 片段，所获得的 DNA 片段用 NcoI
和 BamHI（均购自 Takara Shuzo 有限公司）进行酶切，并与 NcoI-BamHI
酶切的 pTV118N（Takara Shuzo CO., Ltd.）混合，将它们连接起来并导
入大肠杆菌 JM109 中，从而获得的转化体中制备质粒并筛选出含有上
述 DNA 片段的质粒，命名为质粒 pH1.

质粒载体，pINIII-ompA，（《EMBO 杂志》（EMBO Journal）,
3,3437-2442(1984)）用 BmHI 和 HincII(Takara Shuzo 有限公司)酶切以
回收含有脂蛋白终止子区的大约 0.9kb 的 DNA 片段，它与 BamHI-HincII
酶切的质粒 pH1 混合，将它们连接起来，以获得按顺序含有乳糖启
动子、编码肝素结合区多肽的 DNA 片段和脂蛋白终止子的质粒
pRH1-T.

分别制备通过 NheI 和 Scal（均购自 Takara Shuzo 有限公司）酶切
质粒 pRH1-T 所获得的大约 3.1kb 的 DNA 片段以及通过 SpeI（Takara
Shuzo 有限公司）和 Scal 酶切质粒 pRH1-T 所获得的大约 2.5kb 的 DNA
片段，将这两个片段连接起来以获得按顺序含有乳糖启动子、编码含有
两个肝素结合多肽首尾连接的多肽的开放阅读框架和脂蛋白终止子的
质粒 pRH2-T。上述开放阅读框架的核苷酸序列见于序列列表中的 SEQ.ID
No.17.

多肽 H2-547 制备如下，准备四个 500ml 有盖的锥形烧瓶，加入 120ml 含有 100μg/ml 氨苄青霉素的 LB 肉汤培养基，孵育用上述质粒 pH2-T 转化的大肠杆菌 HB101，这就是说，于 37℃ 过夜培养大肠杆菌 HB101/pRH2-T。从培养物中离心收集细菌细胞，悬浮于 40ml 裂解液中（50mM Tris-HCl, 1mM EDTA, 150mM NaCl 1mM DTT, 1mM PMSF, pH7.5）且经超声破碎细菌。离心获得的上清加样于已用纯化缓冲液 (50mM Tris-HCl, pH7.5) 平衡的高捕获（High trap）肝素柱（Pharmacia）。用同样的缓冲液冲洗掉柱中非吸附的部分，随后用含有 0-1M 浓度梯度 NaCl 的纯化缓冲液洗脱。洗脱液用 SDS-聚丙烯酰胺凝胶电泳分析并收集含有分子量大约 60,000 的多肽的样品部分以获得纯化的 H2-547 制品。用牛血清白蛋白作为标准，利用 BCA 蛋白试验试剂 (Pierce) 分析所得制品中所含的蛋白含量，结果表明获得了 10mg H2-547。

研究这样获得的纯化 H2-547 的从 N-末端到第五残基的氨基酸序列，并发现其与序列表中 SEQ.ID No.17 所示的核苷酸序列预期的 N-末端除去蛋氨酸的 H2-547 的氨基酸序列一致（序列见于序列表中 SEQ.ID No.13）。通过质谱测定的纯化 H2-547 的分子量与序列表中 SEQ.ID No.13 所示的氨基酸序列预期的分子量一致。

用于表达多肽，CH2-286 (氨基酸序列见于序列表中的 SEQ.ID No.14) 的质粒构建如下。用上述质粒 pH102 作为模板以及用引物 CLS (其核苷酸序列见于序列表中的 SEQ.ID No.18) 和引物 CLA (其核苷酸序列见于序列表中的 SEQ.ID No.19) 来进行 PCR，随后通过琼脂糖凝胶电泳中回收编码纤维结合素细胞粘附多肽的大约 0.8kb 的 DNA 片段。所获得的 DNA 片段用 NcoI 和 BglIII（均购自 Takara Shuzo 有限公司）进行酶切，并与 Ncol-BamHI 酶切的 pTV118N 混合，将它们连接起来并引入大肠杆菌 JM109。从所获得的转化体中制备质粒并筛选出含有上述 DNA 片段的质粒，命名为质粒 pRC1。通过 SpeI 和 Scal 酶切质粒 pRC1 所获得的大约 2.5kb 的 DNA 片段与通过 NheI 和 Scal 酶切上述质粒 pH2-T 所获得的大约 3.9kb 的 DNA 片段混合，将它们连接起来以获得编码含有两个肝素结合多肽首尾连接到细胞粘附多肽
C-末端的多肽的质粒 pRCH2-T。编码这个多肽的质粒 pRCH2-T 的开放阅读框架见于序列中的 SEQ.ID No.20。

根据实施例 2(6) 中所述的用于多肽 H2-547 的相同方法制备多肽 CH2-826。从高捕获肝素柱的洗脱液中收集含有分子量大约 90,000 的多肽的样品部分以得到纯化的 CH2-826。

(8) 制备 H2S-537

用于表达多肽，H2S-537（氨基酸序列见于序列中的 SEQ.ID No.30）的质粒构建如下。用上述质粒 pCH102 作为模板以及用引物 CS1S（其核苷酸序列见于序列中的 SEQ.ID No.31）和引物 CS1A（其核苷酸序列见于序列中的 SEQ.ID No.32）来进行 PCR，随后通过琼脂糖凝胶电泳中回收编码纤维结合素细胞粘附多肽的约 0.1kb 的 DNA 片段。所获得的 DNA 片段用 NcoI 和 BamHI（均购自 Takara Shuzo 有限公司）进行酶切，并与 NcoI-BamHI 酶切的 pTV118N 混合，将它们连接起来并引入大肠杆菌 JM109。从所获得的转化体中制备质粒并筛选出含有上述 DNA 片段的质粒，命名为质粒 pRS1。

质粒载体，pINIII-ompA，用 BamHI 和 HincII 酶切以回收含有脂蛋白终止子区的约 0.9kb 的片段。它与 BamHI-HincII 酶切的质粒 pRS1 混合，将它们连接起来，以获得按顺序含有乳糖启动子、编码 CS-1 区多肽的 DNA 片段和脂蛋白终止子的质粒 pRS1-T。

制备用 NheI 和 Scal 酶切质粒 pRS1-T 所获得的大约 2.4kb 的 DNA 片段与用 SpeI、Scal 和 PstI（Takara Shuzo 有限公司）酶切上述质粒 pRH2-T 所获得的大约 3.3kb 的 DNA 片段。将它们连接起来以获得质粒 pRH2S-T，其按顺序含有乳糖启动子、编码具有两个肝素结合多肽首尾连接以及 CS-1 区进一步连接到其 C-末端这样结构的多肽的开放阅读框架和脂蛋白终止子。上述开放阅读框架的核苷酸序列见于序列中的 SEQ.ID No.32。

根据实施例 2(6) 中所述的用于多肽 H2-547 的相同方法制备多肽 H2S-573。从高捕获肝素柱的洗脱液中收集含有分子量大约 60,000 的多肽样品部分以得到纯化的 H2S-573。

(9) 功能材料固化至培养板中

为了在逆转录病毒感染细胞的实验中使用功能材料固化于其上的培养板（6 孔组织培养板，Falcon），根据以下步骤进行固化。即，上
述实施例中所述的每一种功能材料以合适的浓度溶于 PBS 的溶液按每孔 2ml 的量加入到培养板中（底面积 9.6cm²），室温下无盖培养板在紫外光下照射 1 小时，然后加盖再照射 1 小时。随后多肽液改 5 换 2ml 含 2% 牛血清白蛋白（BSA, Boehringer Mannheim）的 PBS 并室温下孵育 30 分钟。培养板用含 25mM HEPES 的 PBS 冲洗。除了不进行与多肽的孵育之外，根据与上述相同的方法制备 BSA 固化于其上的对照包被的培养板。

在下列实施例中的基因转移（病毒感染）实验中，如果没有指明，均使用上述 6 孔组织培养板。当指明在培养板用于固化的功能材料的浓度时，培养孔每单位底面积的多肽量描述为用作单位的 pmol/cm²（和 μg/cm²）。例如，当用 2ml 的 48μg/ml 的 H-271 溶液在上述培养板（底面积 9.6cm²）上进行固化时，该描述为“用 H-271 333pmol/cm²(10μg/cm²) 进行固化”。再者，转导后用于培养非粘附细胞（TF-1, HL-60）的 CH-296 固化培养板是根据上述步骤通过 48pmol/cm²（3μg/cm²）的 CH-296 溶液进行固化所制备的培养板。在下述的实施例中，靶细胞的病毒感染总是在没有聚凝胺的培养基中进行。当指明病毒、细胞和培养 15 基等的量时，如果没有另外指出，是指每孔的量。

实施例 3
（1）用功能材料的混合物进行的基因转移

在结合细胞的材料和结合逆转录病毒的材料混合物被固化于培养板上时，进行下列实验来研究对基因转移的效果。根据与实施例 2(9) 中所述的相同方法，用 32pmol/cm²（1.5μg/cm²）C-FGF•A, 32pmol/cm²（1μg/cm²）C-274 和 32pmol/cm²（0.5μg/cm²）FGF 的混合物或 32pmol/cm²（0.5μg/cm²）FGF（Becton Dickinson）将每一种多肽固化到培养板上。分别在培养板和 BSA 包被的对照培养板中于 37℃预先孵育 2ml 含 1,000 cfu PM5neo 病毒的病毒上清之后，用 PBS 彻底冲洗培养板。于每个培养板中加入 2ml 含 2,000 NIH/3T3 细胞的 DMEM 培养基并置于 37℃在无聚凝胺的情况下孵育 2 小时。通过倾析收集非粘附细胞，粘附到培养板上的细胞通过胰蛋白酶处理使之与培养板分离来收集。将这些细胞混合。所获得的细胞悬液分成两半。一半培养于 DMEM 中，另一半培养于含有终浓度为 0.75mg/ml 的 G418 的 DMEM 中。两部分均在 37℃孵育 10 天并对出现的集落进行计数。将 G418 抗性
（G418'）集落数与不含 G418 的培养基中所获得的集落数的比例看作基因转移效率。结果见图 1。在图 1 中，横坐标表示所用的功能材料，纵坐标表示基因转移效率。

如图 1 所示，逆转录病毒感染 2 小时的情况下，尽管 FGF 单独使用时的基因转移效率比 C-FGF·A 的转移效率低，但当使用 C-274 和 FGF 的混合物时，几乎以与 C-FGF·A 相同的基因转移效率获得 G418' 集落。

为了详细研究，将 C-274 和 FGF 单独固化的效果与它们的混合物进行固化的效果相比较。即，分别用 32pmol/cm²(1μg/cm²) C-274，32pmol/cm²(0.5μg/cm²) FGF 和 32pmol/cm² C-274 与 32pmol/cm² FGF 的混合物制备培养板，根据实施例 2(9)所述的相同方法对各培养板进行评估。结果示于图 2。在图 2 中，横坐标表示所用的功能材料，纵坐标表示基因转移效率。

如图 2 所示，当使用 C-274 和 FGF 的混合物进行固化的培养板时，其基因转移效率高于使用只有 FGF 固化的培养板时的转移效率。再者，在没有任何逆转录病毒结合区的 C-274 所固化的培养板上没有 G418' 集落出现。这表明，复合使用具有逆转录病毒结合区的 FGF 和具有细胞结合区的 C-274，与单独使用 FGF 时相比较可以获得更高的基因转移效率，并且不需要精心创造出这种多肽组合效果的多肽的共价偶联。

(2) 使用功能材料的混合物进行基因转移

除了用 CoIV 替换具有逆转录病毒结合区的多肽外，根据实施例 3(1)所述的相同方法进行评估。在该实验中，通过以各种不同摩尔比例混合 C-274 和 CoIV 来研究基因转移效果。即，根据实施例 2(9)所述的相同方法，分别用以下材料固化培养板：330pmol/cm²(6μg/cm²) CoIV，330pmol/cm²(10μg/cm²) C-274 与 330pmol/cm² CoIV 的混合物（C-274: CoIV 的摩尔比 = 10 : 1）、100pmol/cm²(3μg/cm²) C-274 和 330pmol/cm² CoIV 的混合物（3 : 10）、33pmol/cm²(1μg/cm²) C-274 与 330pmol/cm² CoIV 的混合物（1 : 10）、330pmol/cm²(16μg/cm²) C277- CoIV 与 330pmol/cm²(10μg/cm²) C-274。使用这样制备的培养板，根据上述相同的实验方法研究逆转录病毒感染的效果。结果见图 3。在图 3 中横坐标表示所用的功能材料，纵坐标表示基因转移效率。
如图 3 所示，在感染 2 小时的情况下，尽管 CoIV 和其 1/10 量（指分子数）C274 的混合物所进行固化的培养板的感染效率与 C277-CoIV 固化培养板的效率相同，但是 CoIV 固化培养板的感染效率不到 C277-CoIV 固化培养板感染效率的 1/2。这样，如同在 FGF 的情况下所观察到的，C-274 增强逆转录病毒感染的活性是确定的。在 C-274 分子的量相对于 CoIV 分子的量增加时，该效率有相当程度的下降。当含有相同量的 CoIV 和 C-274 的混合物被包被时，在混合物和单独使用 CoIV 之间没有明显的差异。

（3）用功能材料的混合物进行基因转移

进行以下实验以研究含有细胞结合区的材料与含有逆转录病毒结合区的材料的混合物进行固化时对基因转移效率的影响。首先，根据实施例 2(9)所述的相同方法，分别用以下材料固化培养板：32 pmol/cm² (1μg/cm²) C-274, 333 pmol/cm² (10μg/cm²) H-271 以及 32 pmol/cm² (1μg/cm²) C-274 和 333 pmol/cm² (10μg/cm²) H-271 的混合物。当在分别的培养板中预孵育 2ml 含 1,000 cfu PM5neo 病毒的病毒上清 30 分钟后，用 PBS 彻底冲洗培养板。每块培养板中加入 2ml 含 2,000 NIH/3T3 细胞的 DMEM 培养基并于 37℃ 孵育 2 小时。倾析收集非粘附细胞。胰蛋白酶处理粘附到培养板上的细胞使之与培养板分离，然后收集。将细胞混合。所得的细胞悬液分成两半。一半在 DMEM 中培养，另一半在含终浓度为 0.75mg/ml G418 的 DMEM 中培养。两部分均在 37℃ 孵育 10 天并计数出现的集落。将 G418g集落数与没有 G418 的培养基中所获得的集落数的比值看作基因转移效率，结果示于图 4。在图 4 中，横坐标表示所用的功能材料，纵坐标表示基因转移效率。

如图 4 所示。当使用 C-274 和 H-271（摩尔比 = 1：10）的混合物所固化的培养板时，感染效率明显增加。在 C-274 固化的培养板中未观察到基因转移。

（4）用 C277-CS1 进行基因转移

进行以下实验以研究使用 C277-CS1 作为具有细胞结合区的材料并且它与具有逆转录病毒结合区的材料的混合物进行固化时对感染效率的影响。使用聚赖氨酸[(Lys)n, 聚-L-赖氨酸氢溴化物，分子量 50,000-100,000, Wako Pure Chemical Co.,Ltd] 和 H-271 作为与逆转录病毒感染结合的材料。使用非粘附细胞，TF-1 细胞（ATCC CRL -2003）作为
细胞。首先，根据实施例 2(9)中所述的相同方法，分别用以下溶液对培养板进行固化：C-277-CS1（33pmol/cm²，1.1μg/cm²），聚赖氨酸（133pmol/cm²，10μg/cm²），C-277-CS1（33pmol/cm²）和聚赖氨酸（133pmol/cm²)的混合物，H-271（333pmol/cm², 10μg/cm²) 和 C-277-CS1(33pmol/cm²) 与 H-271（333pmol/cm²）的混合物以及 CH-296（33pmol/cm²，2.1μg/cm²）每块培养板中加入含 1×10⁵cfu TKNEO 病毒，1×10⁴TF-1 细胞的 RPMI 1640 培养基[含 5ng/ml GM-CSF （Petro Tech），50 单位/ml 青霉素素和 50μg/ml 链霉素]，并且于 37℃孵育 24 小时，孵育后，倾析收集非粘附细胞，胰蛋白酶处理粘附到培养板上的细胞使之与培养板分离，然后进行收集。将这些细胞混合，所获得细胞悬液的五分之一分别转化两个用 CH-296 包被的培养板并孵育 24 小时，然后一块培养板的培养基更换成上述培养基，另一块培养板的培养基更换成含终浓度为 0.75mg/ml G418 的上述培养基。两块板均于 37℃孵育 8 天并计数出现的集落，根据有和无 G418 的情况下所出现的集落数计算出 G418⁺ 集落的发生率（基因转移效率）。

结果见图 5。在图 5 中，横坐标表示所用的功能材料，纵坐标表示基因转移效率。在图 5 (a) 表示用聚赖氨酸作为逆转录病毒结合材料以及 (b) 表示使用 H-271。与只有逆转录病毒结合材料所固化的培养板相比，使用聚赖氨酸或同时使用 H-271 和具有细胞结合区的 C277-CS1 可以显著增加基因转移效率。

(5) 制备来源于红细胞生成素的多肽

为了用于具有红细胞生成素受体的细胞的基因转移，制备了红细胞生成素与谷胱甘肽-S-转移酶融合（GST-Epo）的多肽衍生物。氨基酸序列见序列中 SEQ.ID No.34。在该序列中，从 233 个氨基酸到第 398 个氨基酸之间的氨基酸序列与红细胞生成素相对应。

首先，按以下步骤构建质粒来表达 GSF-Epo。用来自人胎儿肝的 cDNA 文库（Clonetech）作为模板以及引物 EPF1 和 EPR1（引物 EPF1 和 EPR1 的核苷酸序列见于序列中 SEQ.ID No.35 和 36）来进行 PCR，取出一部分反应混合物，用它作为模板以及引物 EPF2 和 EPR2（引物 EPF2 和 EPR2 的核苷酸序列见序列中 SEQ.ID No.37 和 38）来进行另外的 PCR。从反应混合物中回收扩增的 DNA 片段，用 EcoRI 和 Bam HI（均购自 Takara Shuzo Co., Ltd）酶切，然后进行琼脂糖凝胶电泳以回
收含有红细胞生成素编码区的大约 520bp 的 DNA 片段。所获得的片段与已用 EcoRI(Takara Shuzo Co., Ltd.) 和 BamHI 酶切过的质粒载体 pTV118N(Takara Shuzo Co., Ltd.) 混合，将其连接到质粒上。然后，用该质粒转化大肠杆菌 JM109。从所获得的转化体中筛选出含有上述质粒的转化体以制备该质粒并称为质粒 pEPO。随后，这样获得的质粒 pEPO 用 EcoRI 和 SalI（Takara Shuzo Co., Ltd.）酶切并进行琼脂糖凝胶电泳以回收大约 0.5kb 的 DNA 片段。该片段与已用 EcoRI 和 SalI 酶切过的质粒载体 pGEX5X-3（Pharmacia）混合以将它们连接起来。用所获得的质粒转化大肠杆菌 JM109。从所获得的转化体中筛选出含有上述质粒的转化体以制备该质粒并称之为 pGSTEPO。该质粒编码 GST-EPO，其中红细胞生成素的氨基酸序列连接到载体的谷胱甘肽-S-转移酶的 C 末端。在质粒 pGSTEPO 中编码 GST-EPO 的核苷酸序列见序列表中的 SEQ. ID No. 39。

按如下步骤制备多肽 GST-Epo：提供 7 个培养管，每个加入 5ml 含有 100μg/ml 氨苄青霉素的 LB 肉汤培养基，用上述质粒 pGST-EPO 转化的大肠杆菌 JM109。大肠杆菌 JM109/pGST-EPO，接种至每个培养管中，随后 37°C 过夜培养。接着，提供 7 个 2 升的锥形烧瓶，每个含有 500ml 相同的肉汤培养基，将上述 5ml 培养基接种至烧瓶中，随后 37°C 培养。开始培养后 3.5 小时，加入 IPTG 至终浓度 1mM，继续培养另外的 3.5 小时。培养结束后，从培养基中离心收集培养菌，悬浮于含 1mM PMSF 和 1mM EDTA 的 100ml PBS 中，超声破碎。破碎液中加入 100ml 含 1mM PMSF、1mM EDTA 和 2% Triton X-100 的 PBS 中，将该混合物冰浴 30 分钟，然后离心收集上清。所获得的上清用 0.45μm 的滤膜（Millipore）过滤，然后上样至用 PBS 平衡的谷胱甘肽-Sephallose 4B 柱（Pharmacia，3ml）。用 PBS 冲洗柱子后，用 50mM 含 10mM 谷胱甘肽的 Tris-HCl(pH8.0)洗脱柱子。通过聚丙烯酰胺凝胶电泳分析洗脱液并收集含有分子量大约 44,000 的多肽的样品部分。该样品用 PBS 透析。将透析样品上样至 PBS 平衡的 Resource Q 柱（Pharmacia）。用 PBS 冲洗该柱后，用含有 0M-0.6M 梯度 NaCl 的 PBS 洗脱该柱。按照上述的相同方法，用 50mM 含有谷胱甘肽的 Tris-HCl (pH8.0) 洗脱该柱以收集含有分子量大约 44,000 的多肽的部分。将其用 Centricon 10 (Amicon) 超滤，使其浓缩至大约 50μl。进一步，它用 Ultrafree
C3GVSTRL (Millipore) 过滤并将滤液用 Superdex 200 柱（Pharmacia，PBS 平衡的）进行凝胶过滤浓缩。收集含有分子量大约 44,000 的多肽的洗脱样品并将其用作随后实验中的 GST-Epo 多肽溶液。在该 GST-EPO 溶液中，大约 50% 的总蛋白质为 GST-Epo。

(6) 基因转移进表达红细胞生成素受体的细胞

采用两类细胞，表达红细胞生成素受体的 TF-1 和不表达红细胞生成素受体的 HL-60 (ATCC-CCL-240) 来研究用红细胞生成素作为具有细胞结合活性的材料时对基因转移的影响。在该研究中，上述红细胞生成素的多肽衍生物（GST-Epo）被用作红细胞生成素，并且聚赖氨酸被用作结合逆转录病毒的材料。首先，根据实施 2(9) 中所述的相同方法，分别用 34pmol/cm²（1.5µg/cm²）的 GST-Epo，聚赖氨酸（133pmol/cm²，10µg/cm²），GST-Epo(34pmol/cm²)与聚赖氨酸（133pmol/cm²）的混合物对培养板进行固化。每块培养板中加入含 1×10⁴ cfu TKNEO 病毒和 1×10⁴ 个细胞的培养基，然后于 37℃ 约育 24 小时。RPMI 1640 培养基（含 5ng/ml GM-CFS，50 单位/ml 青霉素和 50µg/ml 链霉素）被用作 TF-1 的培养基，RPMI 1640 培养基（Nissui，含 10% FCS，50 单位/ml 青霉素，50µg/ml 链霉素）被用作 HL-60 的培养基。约育后，倾析收集非粘附细胞，胰蛋白酶处理粘附到培养板上的细胞使之与培养板分离，然后收集，将细胞混合，所获得细胞悬液的五分之一分别转入两个 CH-296 固化的培养板中并约育 24 小时。接着一个培养板的培养基换成上述培养基，另一培养板的培养基换成含终浓度为 0.75mg/ml 的 G418 的上述培养基。两者均在 37℃ 约育 8 天并计数出现的集落。根据有和无 G418 的情况下所出现的集落数计算出 G418 集落的发生率（基因转移效率）。

结果图 6 所示。在图 6 中，横坐标表示所用的功能材料，纵坐标表示基因转移效率。如图 6(a) 所示，在使用 TF-1 细胞的情况下，尽管在只有聚赖氨酸固化的培养板中在某种程度上有基因转移发生，但是在 GST-Epo 存在的情况下可获得更高的基因转移效率。另一方面，如图 6(b) 所示，在使用 HL-60 的情况下，存在 GST-Epo 时未观察到基因转移效率的增加。这些结果表明通过利用红细胞生成素使靶细胞特异的基因转移成为可能。

另外，用 H2-547 替换逆转录病毒结合材料来进行 TF-1 细胞的基
因转移实验。根据实施例2(9)中所述的相同方法，分别用H2-547(333pmol/cm²,20μg/cm²),34pmol/cm²(1.5μg/cm²)的GST-Epo和
GST-Epo(34pmol/cm²)与H2-547(333pmol/cm²,20μg/cm²)的混合物对培养板进行固化。同时，使用BSA固化的培养板进行对照实验。

结果见图7所示。在图7中，横坐标表示所用的功能材料，纵坐标表示基因转移效率。如图7所示，用H2-547的情况下，有GST-Epo
存在时可增加TF-1细胞的基因转移效率。(7)采用功能材料的混合物固化于其上的珠子进行基因转移
通过利用具有细胞结合区的材料和具有逆转录病毒结合区的材料
所固化的珠子或没有固化的珠子来研究逆转录病毒的感染效率是否得到提高。

根据下列步骤制备多肽固化于其上的珠子。使用直径为1.14μm的
聚苯乙烯珠子(Polybeads Polystrene Microsphere,由PolyScience制造)作为珠子，将80μl乙醇和2ml溶于PBS的各种多肽溶液加入到20μl2.5%
的上述珠子的悬液中，随后4℃静置过夜。该悬液中加入BSA和PBS
以制备4ml1%的BSA/PBS悬液，离心从悬液中收集珠子并再悬浮于
5ml1%的BSA/PBS中，然后该悬液于室温静置1小时以获得多肽固化的
珠子的悬液。100μg/ml的C-274,100μg/ml的H-271,100μg/ml的
CH-271,100μg/ml的CH-296和100μg/mlH-271与10μg/mlC-274的
混合物作为多肽溶液。根据相同的方法，制备2%BSA溶液包被的珠子
作为对照。

从上述悬液中收集十分之一这样制备的多肽固化的珠子并用37℃
分别与2,000个TF-1细胞和1,000cfuTKNEO病毒上清共育。回收细
胞并悬挂于含0.3%Bacto琼脂(Difco)的RPMI培养基[含10%FCS,
5ng/mlGM-CFS(Petrotech),50单位/ml青霉素和50μg/ml链霉素]，
然后接种于已加入含0.5%Bacto琼脂的上述培养基的35mm培养板
中。使用含0.75mg/mlG418和不含G418的两种培养基。培养板在5%
CO₂环境中于37℃培养14天。计数G418存在下和无G418存在下
所出现的集落数并计算出G418集落的出现比率(基因转移效率)。

结果见图8。在图8中，横坐标表示所用的功能材料和BSA，纵坐
标表示基因转移效率。与只用H-271固化的珠子和用在同一分子上既
有逆转录病毒结合区又有细胞结合区的CH-271或CH-296分别固化的
珠子相比较，当用 H-271 和 C-274 的混合物所固化的珠子时，可以获得更高的基因转移效率。

实施例 4

(1) 用 FGF 和 C-FGF・A 的基因转移

利用 NIH/3T3 细胞的集落形成试验来研究 FGF(Becton Deckinson)和 SEQ.ID No.4 所表示的多肽（C-FGF・A）对逆转录病毒感染的影响。即，按照实施例 2(9)所述的相同方法，通过将 FGF
（132pmol/cm²,2.25μg/cm²）和 C-FGF・A（133pmol/cm²,6.3 μg/cm²）分别固化到培养板上，并将 BSA 固化到对照培养板上来进行评估实验。每块培养板中加入 2ml 含 1,000cfu PM5 neo 病毒的病毒上清并于
37℃预孵育 30 分钟，随后用 PBS 彻底冲洗。该培养板加入 2ml 含 2,000
NIH/3T3 细胞的 DMEM 培养基并于 37℃孵育 24 小时。随后，在含有
0.75mg/ml G418 的选择培养基中孵育 10 天，对集落进行染色并计数。结果见于图 9。在图 9 中，横坐标表示所用的功能材料，纵坐标表示出现的 G418' 集落数。

如图 9 所示，在 BSA 固化于其上的对照培养板中未长出集落。另一方面，当用 FGF 和 C-FGF・A 固化的培养板时，在两培养板中出现的 G418' 集落是相等的。该结果表明 FGF 和 C-FGF・A 均具有逆转录
病毒结合区以及纤维结合素的细胞结合区多肽所偶联的 C-FGF・A 表现出更高的基因转移。

(2) C-FGF・A 的浓度与基因转移效率的关系

利用不同浓度的 C-FGF・A 所包被的培养板来比较基因转移效率。除了按应用实施例 2(9)中所述的方法用 0.521pmol/cm²
（0.0247μg/cm²）-5.21pmol/cm²（0.247μg/cm²）的 C-FGF・A 制备的培
养板和 BSA 固化培养板（对照板）之外，根据与实施例 4(1) 中相同
的方法来进行逆转录病毒的感染。病毒感染后，倾析收集非粘附细胞，胰
酶处理粘附到培养板上的细胞使之与培养板分离，然后收集它们。随后
将这样收集的细胞混合。所获得的细胞悬浮分成两半，一半用 DMEM
培养，另一半用含终浓度为 0.75mg/ml 的 G418 的 DMEM 培养。两部分
均于 37℃孵育 10 天并计数出现的集落数。将 G418' 集落数与不含 G418
的培养基中所出现的集落数之间的比率作为基因转移效率。

结果见图 10。在图 10 中，横坐标表示用于固化培养板的 C-FGF・A
浓度。纵坐标表示基因转移效率。在多肽浓度为 0μmol/cm² 时也标明了对照培养板的实验结果。如图 10 所示，随着 C-FGF·A 固化浓度的增加，基因转移效率浓度依赖性地增加。

(3) HL-60 细胞的基因转移

关于非粘附细胞 HL-60 细胞（ATCC CCL-240）的逆转录病毒感染，根据如下步骤来研究各种不同多肽存在时的效果。即，根据实施例 2(9)中的方法用 100pmol/cm² C-FGF·A (48μg/cm²) 或者 C-FGF-CS1 (5.1μg/cm²) 制备培养板，用 BSA 固化对照培养板，每块培养板中加入 2ml 含 1×10⁴ cfu TKNEO 病毒和 2,000 个 HL-60 细胞的 RPMI 培养基（含 10% FCS, 50 单位/ml 青霉素和 50μg/ml 链霉素），随后于 37℃ 孵育 24 小时。孵育后，倾析收集非粘附细胞，吹打收集粘附到培养板上的细胞，然后将细胞混合，所获得细胞悬液的每 1/2 被转移至 CH-296 包被的培养板，孵育 24 小时并将培养基替换成含终浓度为 0.75mg/ml 的 G418 的 RPMI 培养基。于 37℃ 孵育 12 天后，计数出现的集落数。用每一种多肽所获得的 G418′集落数见图 11。在图 11 中，横坐标表示所用的功能材料，纵坐标表示 G418′集落数。

如图 11 所示，当使用 C-FGF·A 或者 C-FGF-CS1 固化的培养板时，G418′集落数明显增加，这表明这些多肽提高逆转录病毒对 HL-60 细胞的感染。

(4) 小鼠骨髓细胞的基因转移

进行如下的实验以研究 FGF、C-FGF·A 和 C-FGF-CS1 对小鼠骨髓细胞进行逆转录病毒感染的影响。

150mg/kg 5-氟尿嘧啶(5-FU，Amlesco)腹腔注入 6～8 周龄的小鼠 (C3H/HeJ)，用药后 2 天分离股骨和胫骨以收集骨髓，用 Ficoll-Hypaque（密度 1.0875g/ml，Pharmacia）对所得的骨髓进行密度梯度离心以获得用作小鼠骨髓细胞的低密度单核细胞。

按照 Luskey 等人的方法 (《血液》(Blood)80,396(1992)), 在逆转录病毒感染之前预先刺激小鼠骨髓细胞。即，小鼠骨髓细胞以 1×10⁶ 细胞/ml 的细胞密度加入到 α-EME(Gibco) 中，该 α-EME 含有 20%

FCS, 100 单位/ml 重组人白介素-6 (rh IL-6, Amgen), 100ng/ml 重组小鼠干细胞因子 (rmSCF, Amgen), 50 单位/ml 青霉素和 50μg/ml 链霉素，细胞加入后于 37℃在 5% CO₂ 中，孵育 48 小时。用吸管吹打来
收集包括粘附到容器壁的那些细胞在内的未刺激细胞。

每 2ml 含 1 × 10⁶ 预刺激细胞和 1 × 10⁴ cfu PM5neo 病毒的上述预刺激中所用的培养基分别加入到根据实施例 2(9) 中所述方法用
236pmol/cm²(4μg/cm²) FGF，169pmol/cm²(8μg/cm²)C-FGF·A 或
159pmol/cm²(8μg/cm²) C-FGF-CS1 所制备的培养板中，以及加入到
BSA 固化后的培养板（对照培养板）中，随后 37℃孵育。2 小时后，
含有相同量病毒的培养基（2ml）加入到每个培养板中，然后继续孵育
22 小时。孵育结束后，倾析收集非粘附细胞，粘附到培养板上的细胞
用细胞分离缓冲液（CDB，不含酶，Gibco）分离后进行收集，然后将
这些细胞混合起来，并用同一缓冲液冲洗两次。计数细胞。用所收集的
细胞进行 HPP-CFC（高增殖潜能-集落形成细胞）试验。

按照 Bradley 人所述的方法 P83 进行 HPP-CFC 试验
1.5mg/ml G418 的 1%/0.66%分层软琼脂培养基被用作培养基。已感染
的细胞以 1 × 10⁴ 细胞/孔的量加入到各培养孔中。随后于 37℃在 10% CO₂ 中孵育。孵育结束后，用倒置显微镜观察所出现的集落并计数从
HPP-CFC 中所获得的高密度集落（具有不小于 0.5mm 的 直径）数以
计算 G418'集落的发生率（基因转移效率）。结果见图 12。在图 12 中，
横坐标表示所用的功能材料和 BSA，纵坐标表示基因转移效率。

如图 12 所示，在 BSA 包被的作为对照的培养板中没有出现 G418'
集落，然而，当使用上述多肽分别固化的培养板时可以获得 G418'集
落。按 FGF、C-FGF·A 和 C-FGF-CS1 的顺序，基因转移效率依次增
加，这表明存在来自纤维结合素的细胞粘附区和具有细胞区结合活性
CS-1 多肽时能增加骨髓细胞的逆转录病毒感染。

(5) C277-ColIV 用于培养板固化的浓度与基因转移效率的关系

按如下步骤，通过各种不同 C277-ColIV 浓度所包被的培养板来比
较基因转移效率。根据实施例 2(9) 中所述的方法用 0.1pmol/cm²
(0.1μg/cm²)-416pmol/cm²(20μg/cm²)C277-ColIV 来制备培养板。2ml
含 1,000 cfu PM5neo 病毒的病毒上清加入到分别制备的培养板中并于
37℃进行预孵育 30 分钟，然后用 PBS 彻底冲洗。2ml 含 2,000 NIH/3T3
细胞的 DMEM 培养基加入到培养板中并于 37℃孵育 24 小时，倾析收
集非粘附细胞，胰蛋白酶处理粘附到培养板的细胞使它们与培养板分离
并收集，然后将细胞混合。所获得的细胞悬浮液分或两半，一半于 DMEM 中培养，另一半于含有终浓度为 0.75mg/ml G418 的 DMEM 中于 37℃ 孵育 10 天，然后计数出现的集落。将 G418' 集落数与不含 G418 的培养基中所出现的集落数之间的比率看作基因转移效率，结果见图 13。

在图 13 中，横坐标表示所用的功能材料，纵坐标表示基因转移效率。

如图 13 所示，当使用 C277-ColIV 固化的培养板时，基因转移效率增加依赖于 C277-ColIV 用于固化的浓度。

(6) 用聚赖氨酸的基因转移

如下步骤研究聚赖氨酸[(Lys)n]与逆转录病毒的结合。使用多聚 L-赖氨酸溴化物（分子量：50,000-100,000, Wako Pure Chemical）作
用聚赖氨酸，并根据实施例 2(9)中所述的方法，用溶于 PBS 的
133pmol/cm² (10μg/cm²) 聚赖氨酸溶液固化于培养板上。按照实施例
4(2)中所述的方法来评估该培养板和 BSA 固化的对照培养板的基
因转移效率。结果见图 14。在图 14 中，横坐标表示功能材料，纵坐标
表示基因转移效率。如图 14 所示，在 BSA 包被的对照培养板中没有出
现集落，而在聚赖氨酸固化的培养板中出现了 G418' 集落，这表明，洗
之后，逆转录病毒残留在培养板上，因为逆转录病毒与固化在培养板上
的聚赖氨酸相结合。

实施例 5

(1) 用多肽聚合物的基因转移

在没有多肽固化到培养板上的情况下，用多肽聚合物进行基因转
移。在根据实施例 2(9)所述的方法用 BSA 包被的培养板中加入 2ml
含 1,000 cfu PM5neo 病毒，2,000NIH/3T3 细胞以及终浓度为 0.63nmol/ml
的每种多肽（H-271，CH-271，H2-547 和 CH2-826），然后孵育 24 小
时。倾倒收集非粘性细胞，胰蛋白酶处理粘附到培养板上的细胞使之与
培养板分离并收集。然后，将这些细胞混合。按照相同的方法进行没有
任何多肽的相同基因转移实验作为对照。所得到的细胞悬浮液分成两半并
且一 半在 DMEM 中培养。另一半在含终浓度为 0.75mg/ml G418 的
DMEM 中培养。两部分均于 37℃ 孵育 10 天并计数出现的集落。将 G418' 集
落数与没有 G418 的培养基中所出现的集落数之间的比率看作基因转
移效率，结果见图 15。在图 15 中，横坐标表示所用的功能材料，纵坐标
表示基因转移效率。
从图 15 中可以看出，存在 H2-547 时的基因转移效率明显高于存 H-271 时的转移效率，并且，存在 CH2-826 时基因转移效率高于 CH-271 所获得的转移效率。

再者，除了 CH-271、CH-296 和 H2-547 均以 0.126nmol（终浓度 0.063nmol/ml）和 1.26nmol（终浓度 0.63nmol/ml）的量用作多肽来固化培养板之外，按上述的方法进行更详细的研究。结果见图 16。在图 16 中，横坐标表示所用的功能材料及其用量，纵坐标表示基因转移效率。

从图 16 中可以看出，当使用 H2-547 时，基因转移效率明显高于 CH-271 和 CH-296 以两种多肽量中任一量时的转移效率。

(2) 用 H2S-573 进行小鼠骨髓细胞的基因转移

为了研究 H2S-573 对骨髓细胞逆转录病毒感染的影响，根据实施例 4(4)中所述的方法进行小鼠骨髓细胞的基因转移实验。

按照上述实施例所述的相同方法制备小鼠骨髓细胞并且预先刺激细胞。

除 H2S-573（160pmol/cm², 10μg/cm²）固化的培养板之外，CH-296（132pmol/cm², 8.3μg/cm²）固化的培养板也用作逆转录病毒感染的培养板，另外，BSA 固化的培养板用作对照培养板。HPP-CFC 试验所获得的结果见图 17。在图 17 中，横坐标表示所用的功能材料，纵坐标表示基因转移效率。

如图 17 所示，在 BSA 包被的对照培养板中没有出现 G418 的高密度集落，尽管在 CH-296 固化的培养板中获得大约 50% 的基因转移效率，但是在使用 H2S-573 固化的培养板时可以更高的效率获得 G418 高密度集落。

实施例 6

(1) 使用非固化功能材料的基因转移

按下列步骤研究多肽不进行固化而存在于培养板中时对逆转录病毒感染效率的影响。即，按实施例 2(9) 中所述的方法用 BSA 预先包被的培养板中加入 2ml 含 100cfu PM5neo 病毒，2,000 个 NIH/3T3 细胞和终浓度为 10、40、250 μg/ml (每个浓度对应 0.158、0.632 和 3.950 nmol/ml) CH-296 的 DMEM 培养基，然后孵育 24 小时。倾析收集非粘附细胞，胰蛋白酶处理粘附到培养板上的细胞使之与培养板分离并收
集。将这些细胞混合。所得的细胞悬液转入 10cm 细胞培养板，随后孵育 24 小时。培养基换成含终浓度为 0.75mg/ml G418 的 DMEM 培养基，然后孵育另外的 10 天。分别制备没有 CH-296 的培养板，和 32pmol/cm² (2µg/cm²) 或 127pmol/cm² (8µg/cm²) CH-296 固化的培养板作为对照，并按上述步骤加入病毒上清和细胞。计数所获得的 G418'集落数，结果总结于表 1。

<table>
<thead>
<tr>
<th>培养板</th>
<th>CH-296</th>
<th>G418'集落数</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSA</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>BSA</td>
<td>10µg/ml</td>
<td>41</td>
</tr>
<tr>
<td>BSA</td>
<td>40µg/ml</td>
<td>66</td>
</tr>
<tr>
<td>BSA</td>
<td>250µg/ml</td>
<td>92</td>
</tr>
<tr>
<td>CH-296(32pmol/cm²)</td>
<td>-</td>
<td>55</td>
</tr>
<tr>
<td>CH-296(127pmol/cm²)</td>
<td>-</td>
<td>47</td>
</tr>
</tbody>
</table>

如表 1 所示，当细胞、病毒和 CH-296 同时存在于溶液中时，与缺乏 CH-296 的情况相比，G418'集落数明显增加。该数目等于或高于使用 CH-296 包被培养板时所获得的数目。此外，以上述各种浓度分别将 CH-296 溶液加入到 BSA 包被的培养板并静置片刻后，冲洗培养板并用于病毒感染实验，所获得的 G418'集落数与没有加入 CH-296 的情况下所获得的集落数相似，从上述结果可以看出 CH-296 不能与固化的 BSA 结合。因此，认为 CH-296 提高上述逆转录病毒感染的效率不是因为孵育时溶液中的 CH-296 粘附到培养板上所致。

(2) 使用非固化功能材料的基因转移

按下列步骤研究当多肽不进行固化存在于培养板时对逆转录病毒感染效率的影响。即，于按照实施例 2(9)中所述的方法用 BSA 预先包被的培养板中加入 2ml 含 1,000cfu PM5 neo 病毒，2,000 个 NIH/3T3 细胞和终浓度分别为 1.67nmol/ml C-FGF・A、CoIV 和 C277-ColIV 的 DMEM 培养基，然后于 37℃孵育 24 小时。倾析收集非粘附细胞，胰蛋白酶处理粘附细胞使之与培养板分离并收集。将这些细胞混合。所得的细胞悬液分成两半，一半于 DMEM 中培养，另一半于含终浓度为 0.75mg/ml G418 的 DMEM 中培养。两部分均于 37℃孵育 10 天并计数出现的集落数。G418'集落数与不含 G418 的培养基中所出现的集落数之间的比率
看作基因转移效率。结果见图18。在图18中，横坐标表示所用的功能材料，纵坐标表示基因转移效率。

如图18所示，当病毒感染于每一种多肽存在的情况下运行时，可以获得更高的基因转移效率。这样，很清楚地看出，即使当多肽不固化到培养板时，也可以提高逆转录病毒感染。

(3) 使用不固化的功能材料而进行非粘附细胞的基因转导

按下列步骤研究多肽不固化时对非粘附细胞基因转移效率的影响。即，根据实施例2(9)中所述的相同方法用333pmol/cm²(10μg/cm²)H-271制备的每一块培养板和BSA固化于其上的对照培养板中分别加入2ml含1×10⁴cfu TKNEO病毒和1×10⁴TF-1细胞的RPMI培养基(含5ng/ml GM-CSF，50单位/ml青霉素和50μg/ml链霉素)。对BSA固化的培养板进一步加入H-271至终浓度50μg/ml(1.67nmol/ml)。每块培养板均在37℃孵育24小时。孵育后，倾析收集非粘附细胞，胰蛋白酶处理粘附到培养板上的细胞并加以收集。将细胞混合，将所获得细胞悬液的每1/5转入CH-296包被的两块培养板中，孵育24小时。一块培养板的培养基换成上述培养基，另一块培养板的培养基换成上述含终浓度为0.75mg/ml G418的培养基。于37℃孵育8天后，计数出现的集落数。根据含或不含G418的培养基中所出现的集落数计算出发生率(基因转移效率)。结果见图19。在图19中，横坐标表示功能材料和所用的形式，纵坐标表示基因转移效率。

如图19所示，当使用没有固化的H-271时，所获得的基因转移效率高于使用固化的H-271时所获得的效率。这样，结果表明，当使用H-271用于TF-1细胞的基因转导时，优选非固化的形式。

(4) 阐明多肽提高逆转录病毒感染的机制

进行以下实验以确定上述实施例中所示的多肽不进行固化时对逆转录病毒感染细胞的提高是来自细胞结合于多肽以及多肽与逆转录病毒结合。首先，按照实施例2(9)中所述的方法用BSA固化的培养板中加入2ml含1,000 NIH/3T3细胞的DMEM。随后于37℃孵育24小时。去除培养板的培养基，分别加入2ml 1.67nmol/ml的H-271，CH-271和C-FGF·A以及作为对照的PBS，然后于37℃孵育2.5小时。培养板用含25mM HEPES的Hank’s平衡盐溶液(HBSS，Gibco)冲洗。2ml含1,000 cfu PM5 neo病毒的病毒上清加入到培养板中，随后于37℃孵育
30 分钟。培养板用 PBS 冲洗。对这些培养板中加入 2ml DMEM，并于 37°C 孵育 24 小时。倾析收集非粘附细胞，胰蛋白酶处理粘附到培养板上的细胞使之分离并加以收集。分别将细胞混合。这样获得的每一种细胞悬液分成两半，一半用 DMEM 培养，另一半用含终浓度为 0.75mg/ml G418 的 DMEM 培养。两部分均于 37°C 孵育 10 天并计数出现的集落数，G418 集落数与不含 G418 的培养基中所获得的集落数之间的比率看作基因转移效率。结果见图 20。在图 20 中，横坐标表示所用的功能材料和对照，纵坐标表示基因转移效率。

如图 20 所示，当上述多肽溶液处理了培养板中的细胞后再进行病毒 感染时，可以观察到感染效率明显增加。结果提示通过多肽与细胞结合以及逆转录病毒与细胞上的多肽结合而增加感染效率。

除了加入的多肽分别换成 0.29nmol/ml C-FGF•A 和 0.79nmol/ml CH-296 之外，进行相同的实验，结果见图 21。在图 21 中，横坐标表示所用的功能材料和对照，纵坐标表示基因转移效率，如图 21 所示，在 C-FGF•A 和 CH-296 的情况下可以观察到基因转移效率增加。这样，证实了 C-FGF•A 的上述活性。同时，结果表明 CH-296 通过相同机制具有提高逆转录病毒感染的相同活性。

实施例 7

(1) 使用固化到珠子上的功能材料进行的基因转移

按如下步骤研究使用功能材料包被的或没有包被的珠子是否能够增加逆转录病毒感染的效率。直径 1.14μm 的聚苯乙烯珠子（Polybeads Polystyrene Microsphere, PolyScience 制造）用作珠子。将 80μl 乙醇加入到 20μl 2.5% 的上述珠子的悬液中，并加入 2ml 40μg/ml CH-296，然后 4°C 放置过夜。该悬液中加入 BSA 和 PBS 以制备 1% BSA/PBS 悬液（4ml），离心回收珠子，并再制备 5ml 1% BSA/PBS 悬液，使之于室温下放置 1 小时来获得 CH-296 固化的珠子悬液。除了用 2% BSA 而不是 CH-296 溶液来进行固化之外，按相同的方法制备珠子作为对照。

从上述悬液中取出 1/10（0.5ml）并离心收集珠子。加入含 1,000cfu PM5neo 病毒的 DMEM，然后于 37°C 孵育 30 分钟。用 1% BSA/PBS 冲洗珠子两次，悬浮于 2ml DMEM 中并将其中 1ml 转入培养板中。加入 1ml 含 3 × 10^5 NIH/3T3 细胞的 DMEM，并于 37°C 在 CO_2 中孵育 24 小时。之后，培养基换成含终浓度为 0.75mg/ml G418 的 DMEM，再孵
育 10 天，染色并计数出现的集落。结果见表 2。

表 2

<table>
<thead>
<tr>
<th>珠子</th>
<th>G418' 集落数</th>
</tr>
</thead>
<tbody>
<tr>
<td>固化 BSA（对照）</td>
<td>0</td>
</tr>
<tr>
<td>固化 CH-296</td>
<td>264</td>
</tr>
</tbody>
</table>

如表 2 所示，当使用 CH-296 包被的珠子时，出现 264 个 G418' 集落，而在使用 BSA 包被的对照珠子时却没有长出抗性集落。该结果提示 CH-296 固化在珠子上同样 CH-296 固化在培养板也有增加逆转录病毒感染效率的效果。

2. 使用功能材料固化于其上的珠子来进行小鼠骨髓细胞的基因转移

按如下步骤研究使用功能材料包被的珠子增加小鼠骨髓细胞逆转录病毒感染效率的可行性；

根据实施例 4(4) 中所述的相同方法制备小鼠骨髓细胞并预先刺激。

每 2ml 含 1×10^6 预先刺激的细胞和 1×10^6 cfu PM5 neo 病毒的用于上述预先刺激的培养基加入到根据实施例 2(9) 中所述的相同方法用 BSA 包被的培养板中以及用 BSA 相似包被的加入了 1/10 实施例 7(1) 中所制备的 CH-296 固化珠子的培养板中，于 37℃ 孵育。两小时后，每块培养板中重新加入含相同量病毒的培养基（2ml），继续孵育 22 小时。孵育后，倾倒收集非粘附细胞，用细胞分离缓冲液（CDB，不含酶，Gibco）收集粘附到培养板上细胞，将这些细胞混合并用同一种缓冲液冲洗。计数细胞数。根据实施例 4(4) 中所述的相同方法对所收集的细胞进行 HPP-CFC 试验。

结果见图 22。在图 22 中横坐标表示所用的功能材料和其形式，纵坐标表示基因转移效率。如结果所示，通过使用 CH-296 固化的珠子也可以增加小鼠骨髓细胞的逆转录病毒感染效率。

实施例 8

1. 使用 H-271 和 CH-271 的基因转移

通过将病毒上清在用已知能提高逆转录病毒感染的 H-271 和 CH-271 分别包被的培养板中预先孵育来评估 H-271 对逆转录病毒感染的效
果，彻底冲洗培养板后，通过 NIH/3T3 细胞集落形成试验测定病毒的剩余额并比较两个培养板的结果。即，根据实施例 2(9)中描述的相同方法，用各种浓度的 H-271 [67 pmol/cm²(2 ug/cm²)~ 333 pmol/cm²(10 ug/cm²)] 和 CH-271 [67 pmol/cm²(4 ug/cm²)~ 333 pmol/cm²(20 ug/cm²)] 分别制备培养板。每个培养板中加入 2 ml 含 1,000 cfu PM5neo 病毒的病毒上清并于 37 ℃预先孵育 30 分钟，然后用 PBS 彻底冲洗。每个培养板中加入 2 ml 含 2,000 个 NIH/3T3 细胞的 DMEM 培养基并予 37 ℃孵育 24 小时，随后在含 0.75 mg/ml G418 的选择培养基中孵育 10 天，染色并计数集落。结果见图 23。图 23 是说明功能材料与基因转移效率之间关系的图。图 23 中，横坐标表示所用的功能材料，纵坐标表示 G418' 集落的数目。

如图 23 所示，当使用 CH-271 固化的培养板时，不管多肽的浓度如何，所出现的 G418' 集落数几乎是相同的。另一方面，在 H-271 的情况下，随着固化中使用的多肽浓度增加，所出现的集落数依赖于浓度而增加，并且用 333 pmol/cm² H-271 制备培养板的情况下，所出现的集落数几乎与 CH-271 相同。该结果提示，当用足够的 H-271 固化培养板时，可以获得与 CH-271 相当的病毒感染效率。

（2）使用 C-FGF•A 的基因转移

通过 NIH/3T3 细胞集落形成试验来研究 C-FGF•A 对逆转录病毒感染的效果，即，除了使用根据实施例 2(9)中描述的相同方法用

127 pmol/cm²(6 μg/cm²)C-FGF•A，127 pmol/cm²(7.6 μg/cm²)CH-271 和 127 pmol/cm²(8 μg/cm²)CH-289 制备的培养板以及 BSA 固化的对照培养板之外，根据实施例 8(1)中描述的相同方法来进行评估。结果见图 24。图 24 是说明功能材料与基因转移效率之间关系的图。在图 24 中，横坐标表示所用的功能材料和 BSA，纵坐标表示基因转移效率。

如图 24 所示，在 BSA 固化的对照培养板中没有集落出现，另一方面，当使用 C-FGF•A 固化于其上的培养板时，证实有 G418' 集落出现并且集落数与 CH-271 和 CH-296 固化的培养板中的集落数相同。该结果提示，在 FGF 分子上存在与 CH-271 和 CH-296 的逆转录病毒感染结合区功能基本相当的逆转录病毒结合区。

（3）使用 C-FGF-CS1 的基因转移

根据如下步骤来研究 C-FGF-CS1 多肽对逆转录病毒感染的效果。即，根据实施例 2(9)中描述的相同方法用 133 pmol/cm² C-FGF-CS1
(6.7μg/cm²), C-FGF•A(6.3μg/cm²), CH-271(8μg/cm²) 和 CH-
296(8.4μg/cm²) 分别制备培养板，使用这些培养板，按着实施例 8(1) 中
描述的相同方法来进行 NIH/3T3 细胞集落形成试验。结果见图 25。图
25 是说明功能材料与基因转移效率之间关系的图。在图 25 中，横坐标
表示所用的功能材料，纵坐标表示 G418'集落数。

如图 25 所示，在四种多肽分别固化的培养板中出现几乎相同的集
落数，这表明 C-FGF-CS1 具有与其他多肽相当的逆转录病毒结合活性。

(4) 使用 C277-CoIV 的基因转移

通过使用 124pmol/cm²(6.4μg/cm²) C277-CoIV 制备的培养板以及
BSA 固化于其上的对照培养板，按着实施例 8(1) 中描述的相同方法来
评估 C277-CoIV 多肽对逆转录病毒感染的效果。结果见图 26。图 26
是说明功能材料与基因转移效率之间关系的图。在图 26 中，横坐标表
示所用的功能材料和 BSA，纵坐标表示 G418'集落数。

如图 26 所示，在 BSA 包被的对照培养板中没有集落出现，另一方面，
当使用 C277-CoIV 固化的培养板时，出现 G418'集落。该结果表明，
因为在 CoIV 分子上有逆转录病毒结合区，所以冲洗后逆转录病毒存留
在培养板上。

如上所述，本发明提供了用逆转录病毒有效将基因转入靶细胞的
方法，当选择适合靶细胞的细胞结合材料来进行本发明的方法时，不需
要任何特定的逆转录病毒载体，转化细胞即可以高效的基因转移方便地
获得。通过将转化的细胞移植入脊椎动物中，可以方便地制备转化的动
物，而且本发明在诸如医学、细胞技术、遗传工程和发育技术等各种技
术领域中是有用的。另外，本发明还提供了含有本发明的功能材料或其
混合物的培养基以及进行逆转录病毒介导的靶细胞基因转移的试剂
盒。应用这些培养基和试剂盒，将逆转录病毒定位，可以方便有效地进
行外源基因对靶细胞等的转导。

附图简述

图 1 说明使用成纤维细胞生长因子、含有成纤维细胞生长因子的
功能材料以及成纤维细胞生长因子与纤维结合素的细胞粘附区多肽的
混合物时，靶细胞的基因转移效率。

图 2 说明使用成纤维细胞生长因子、成纤维细胞生长因子与纤维
结合素的细胞粘附区多肽的混合物以及纤维结合素的细胞粘附区多肽时，靶细胞的基因转移效率。

图 3 说明使用胶原片段、纤维结合素的细胞粘附区多肽与胶原片段的混合物、含有胶原片段的功能材料以及纤维结合素的细胞粘附区多肽混合物时，靶细胞的基因转移效率。

图 4 说明使用纤维结合素片段以及纤维结合素片段与纤维结合素的细胞粘附区多肽的混合物时，靶细胞的基因转移效率。

图 5 说明使用纤维结合素的细胞粘附区多肽、聚赖氨酸、聚赖氨酸与纤维结合素的细胞粘附区多肽的混合物、纤维结合素片段以及纤维

结合素片段与纤维结合素的细胞粘附区多肽的混合物时，靶细胞的基因转移效率。

图 6 说明使用红细胞生成素衍生物、聚赖氨酸以及红细胞生成素衍生物与聚赖氨酸的混合物时，靶细胞的基因转移效率。

图 7 说明使用红细胞生成素衍生物、纤维结合素片段聚合物以及红细胞生成素衍生物与纤维结合素片段聚合物的混合物时，靶细胞的基因转移效率。

图 8 说明使用如下珠子时靶细胞的基因转移效率，纤维结合素片段固化于其上的珠子，纤维结合素的细胞粘附区多肽固化于其上的珠子

以及纤维结合素片段与纤维结合素的细胞粘附区多肽的混合物固化于其上的珠子。

图 9 说明使用成纤维细胞生长因子和含有成纤维细胞生长因子的功能材料时靶细胞的转化。

图 10 说明含有成纤维细胞生长因子的功能材料所用的量与基因转移效率之间的关系。

图 11 说明使用含有成纤维细胞生长因子的功能材料时靶细胞的转化。

图 12 是说明使用含有成纤维细胞生长因子的功能材料时靶细胞转化的另一副图。

图 13 说明含有胶原片段的功能材料所用的量与基因转移效率之间的关系。

图 14 说明使用聚赖氨酸的靶细胞基因转移效率。

图 15 说明使用纤维结合素片段和纤维结合素片段聚合物的靶细胞
转化。

图 16 是说明使用纤维结合素片段和纤维结合素片段聚合物时靶细胞转化的另一副图。

图 17 是说明使用纤维结合素片段和纤维结合素片段聚合物时靶细胞基因转移效率的另一副图。

图 18 说明使用含有成纤维细胞生长因子的功能材料、胶原片段和含有胶原片段的功能材料时，靶细胞的基因转移效率。

图 19 说明使用纤维结合素片段的靶细胞基因转移效率。

图 20 说明使用含纤维结合素片段和成纤维细胞生长因子的功能材料时，靶细胞的基因转移效率。

图 21 说明使用成纤维细胞生长因子和纤维结合素片段的功能材料时，靶细胞的基因转移效率。

图 22 说明使用纤维结合素片段固化的珠子的靶细胞基因转移效率。

图 23 说明纤维结合素片段的所用量与靶细胞基因转导之间的关系。

图 24 说明使用合成纤维细胞生长因子和纤维结合素片段的功能材料时，靶细胞的基因转导。

图 25 是说明使用合成纤维细胞生长因子和纤维结合素片段的功能材料时，靶细胞的基因转导的另一副图。

图 26 说明使用含有胶原片段的功能材料的靶细胞基因转导。
序列表

SEQ. ID NO. 1
长度: 271
类型: 氨基酸
链型: 单链
拓扑结构: 线性
分子类型: 蛋
序列:

<table>
<thead>
<tr>
<th>Ala</th>
<th>Ile</th>
<th>Pro</th>
<th>Ala</th>
<th>Pro</th>
<th>Thr</th>
<th>Asp</th>
<th>Leu</th>
<th>Lys</th>
<th>Phe</th>
<th>Thr</th>
<th>Gln</th>
<th>Val</th>
<th>Thr</th>
<th>Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Ser</td>
<td>Leu</td>
<td>Ser</td>
<td>Ala</td>
<td>Gln</td>
<td>Trp</td>
<td>Thr</td>
<td>Pro</td>
<td>Pro</td>
<td>Asn</td>
<td>Val</td>
<td>Gln</td>
<td>Leu</td>
<td>Thr</td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Tyr</td>
<td>Arg</td>
<td>Val</td>
<td>Arg</td>
<td>Val</td>
<td>Thr</td>
<td>Pro</td>
<td>Lys</td>
<td>Glu</td>
<td>Lys</td>
<td>Thr</td>
<td>Gly</td>
<td>Pro</td>
<td>Met</td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Glu</td>
<td>Ile</td>
<td>Asn</td>
<td>Leu</td>
<td>Ala</td>
<td>Pro</td>
<td>Asp</td>
<td>Ser</td>
<td>Ser</td>
<td>Ser</td>
<td>Ser</td>
<td>Val</td>
<td>Val</td>
<td>Val</td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Leu</td>
<td>Met</td>
<td>Val</td>
<td>Ala</td>
<td>Thr</td>
<td>Lys</td>
<td>Tyr</td>
<td>Glu</td>
<td>Val</td>
<td>Ser</td>
<td>Val</td>
<td>Tyr</td>
<td>Ala</td>
<td>Leu</td>
</tr>
<tr>
<td>65</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Asp</td>
<td>Thr</td>
<td>Leu</td>
<td>Thr</td>
<td>Ser</td>
<td>Arg</td>
<td>Pro</td>
<td>Ala</td>
<td>Gln</td>
<td>Gly</td>
<td>Val</td>
<td>Val</td>
<td>Thr</td>
<td>Thr</td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Glu</td>
<td>Asn</td>
<td>Val</td>
<td>Ser</td>
<td>Pro</td>
<td>Pro</td>
<td>Arg</td>
<td>Arg</td>
<td>Ala</td>
<td>Arg</td>
<td>Val</td>
<td>Thr</td>
<td>Asp</td>
<td>Ala</td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Glu</td>
<td>Thr</td>
<td>Thr</td>
<td>Ile</td>
<td>Thr</td>
<td>Ile</td>
<td>Ser</td>
<td>Thr</td>
<td>Trp</td>
<td>Arg</td>
<td>Thr</td>
<td>Lys</td>
<td>Thr</td>
<td>Glu</td>
</tr>
<tr>
<td>110</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>
Ile Thr Gly Phe Gln Val Asp Ala Val Pro Ala Asn Gly Gln Thr
 125 130 135
Pro Ile Gln Arg Thr Ile Lys Pro Asp Val Arg Ser Tyr Thr Ile
 140 145 150
Thr Gly Leu Gln Pro Gly Thr Asp Tyr Lys Ile Tyr Leu Tyr Thr
 155 160 165
Leu Asn Asp Asn Ala Arg Ser Ser Pro Val Val Ile Asp Ala Ser
 170 175 180
Thr Ala Ile Asp Ala Pro Ser Asn Leu Arg Phe Leu Ala Thr Thr
 185 190 195
Pro Asn Ser Leu Leu Val Ser Trp Gln Pro Pro Arg Ala Arg Ile
 200 205 210
Thr Gly Tyr Ile Ile Lys Tyr Glu Lys Pro Gly Ser Pro Pro Arg
 215 220 225
Glu Val Val Pro Arg Pro Arg Pro Gly Val Thr Glu Ala Thr Ile
 230 235 240
Thr Gly Leu Glu Pro Gly Thr Glu Tyr Thr Ile Tyr Val Ile Ala
 245 250 255
Leu Lys Asn Asn Gln Lys Ser Glu Pro Leu Ile Gly Arg Lys Lys
 260 265 270
Thr
SEQ. ID NO. 2

长度: 25
类型: 氨基酸
链型: 单链
拓扑结构: 线性
分子类型: 肽
序列:

Asp Glu Leu Pro Gln Leu Val Thr Leu Pro His Pro Asn Leu His
1 5 10 15
Gly Pro Glu Ile Leu Asp Val Pro Ser Thr
20 25

SEQ. ID NO. 3

长度: 155
类型: 氨基酸
链型: 单链
拓扑结构: 线性
分子类型: 肽
序列:

Met Ala Ala Gly Ser Ile Thr Thr Leu Pro Ala Leu Pro Glu Asp
1 5 10 15
Gly Gly Ser Gly Ala Phe Pro Pro Gly His Phe Lys Asp Pro Lys
20 25 30
Arg Leu Tyr Cys Lys Asn Gly Gly Phe Phe Leu Arg Ile His Pro
35 40 45
Asp Gly Arg Val Asp Gly Val Arg Glu Lys Ser Asp Pro His Ile
50 55 60
Lys Leu Gln Leu Gln Ala Glu Glu Arg Gly Val Val Ser Ile Lys
57
<table>
<thead>
<tr>
<th>65</th>
<th>70</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly Val Cys Ala Asn Arg Tyr Leu Ala Met Lys Glu Asp Gly Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>Leu Leu Ala Ser Lys Cys Val Thr Asp Glu Cys Phe Phe Phe Glu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>100</td>
<td>105</td>
</tr>
<tr>
<td>Arg Leu Glu Ser Asn Asn Tyr Asn Thr Tyr Arg Ser Arg Lys Tyr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>115</td>
<td>120</td>
</tr>
<tr>
<td>Thr Ser Trp Tyr Val Ala Leu Lys Arg Thr Gly Gln Tyr Lys Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>130</td>
<td>135</td>
</tr>
<tr>
<td>Gly Ser Lys Thr Gly Pro Gly Gln Lys Ala Ile Leu Phe Leu Pro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>145</td>
<td>150</td>
</tr>
<tr>
<td>Met Ser Ala Lys Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEQ. ID NO. 4

长度: 432
类型: 氨基酸
链型: 单链
拓扑结构: 线性
分子类型: 肽
序列:

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro Thr Asp Leu Arg Phe Thr Asn Ile Gly Pro Asp Thr Met Arg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Val Thr Trp Ala Pro Pro Pro Ser Ile Asp Leu Thr Asn Phe Leu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Val Arg Tyr Ser Pro Val Lys Asn Glu Glu Asp Val Ala Glu Leu
 35 40 45
Ser Ile Ser Pro Ser Asp Asn Ala Val Val Leu Thr Asn Leu Leu
 50 55 60
Pro Gly Thr Glu Tyr Val Val Ser Val Ser Val Ser Tyr Glu Gln
 65 70 75
His Glu Ser Thr Pro Leu Arg Gly Arg Gln Lys Thr Gly Leu Asp
 80 85 90
Ser Pro Thr Gly Ile Asp Phe Ser Asp Ile Thr Ala Asn Ser Phe
 95 100 105
Thr Val His Trp Ile Ala Pro Arg Ala Thr Ile Thr Gly Tyr Arg
 110 115 120
Ile Arg His His Pro Glu His Phe Ser Gly Arg Pro Arg Glu Asp
 125 130 135
Arg Val Pro His Ser Arg Asn Ser Ile Thr Leu Thr Asn Leu Thr
 140 145 150
Pro Gly Thr Glu Tyr Val Val Ser Ile Val Ala Leu Asn Gly Arg
 155 160 165
Glu Glu Ser Pro Leu Leu Ile Gly Gln Gln Ser Thr Val Ser Asp
 170 175 180
Val Pro Arg Asp Leu Glu Val Val Ala Ala Thr Pro Thr Ser Leu
 185 190 195
Leu Ile Ser Trp Asp Ala Pro Ala Val Thr Val Arg Tyr Tyr Arg
 200 205 210
Ile Thr Tyr Gly Glu Thr Gly Gly Asn Ser Pro Val Gln Glu Phe
215 Thr Val Pro Gly Ser Lys Ser Thr Ala Thr Ile Ser Gly Leu Lys
230 Pro Gly Val Asp Tyr Thr Ile Thr Val Tyr Ala Val Thr Gly Arg
245 Gly Asp Ser Pro Ala Ser Ser Lys Pro Ile Ser Ile Asn Tyr Arg
260 Thr Glu Ile Asp Lys Pro Ser Met Ala Ala Gly Ser Ile Thr Thr
275 Leu Pro Ala Leu Pro Glu Asp Gly Gly Ser Gly Ala Phe Pro Pro
290 Gly His Phe Lys Asp Pro Lys Arg Leu Tyr Cys Lys Asn Gly Gly
305 Phe Phe Leu Arg Ile His Pro Asp Gly Arg Val Asp Gly Val Arg
320 Glu Lys Ser Asp Pro His Ile Lys Leu Gln Leu Gln Ala Glu Glu
335 Arg Gly Val Val Ser Ile Lys Gly Val Cys Ala Asn Arg Tyr Leu
350 Ala Met Lys Glu Asp Gly Arg Leu Leu Ala Ser Lys Cys Val Thr
365 Asp Glu Cys Phe Phe Phe Glu Arg Leu Glu Ser Asn Tyr Asn
380 Thr Tyr Arg Ser Arg Lys Tyr Thr Ser Trp Tyr Val Ala Leu Lys
395 400 405
Arg Thr Gly Gln Tyr Lys Leu Gly Ser Lys Thr Gly Pro Gly Gln
410 415 420
Lys Ala Ile Leu Phe Leu Pro Met Ser Ala Lys Ser
425 430

SEQ. ID NO. 5

长度: 457
类型: 氨基酸
链型: 单链
拓扑结构: 线性
分子类型: 肽
序列:

Pro Thr Asp Leu Arg Phe Thr Asn Ile Gly Pro Asp Thr Met Arg
1 5 10 15
Val Thr Trp Ala Pro Pro Pro Ser Ile Asp Leu Thr Asn Phe Leu
20 25 30
Val Arg Tyr Ser Pro Val Lys Asn Glu Glu Asp Val Ala Glu Leu
35 40 45
Ser Ile Ser Pro Ser Asp Asn Ala Val Val Leu Thr Asn Leu Leu
50 55 60
Pro Gly Thr Glu Tyr Val Val Ser Val Ser Ser Val Tyr Glu Gln
65 70 75
His Glu Ser Thr Pro Leu Arg Gly Arg Gln Lys Thr Gly Leu Asp
80 85 90
Ser Pro Thr Gly Ile Asp Phe Ser Asp Ile Thr Ala Asn Ser Phe
Thr Val His Trp Ile Ala Pro Arg Ala Thr Ile Thr Gly Tyr Arg
110 100 105
Ile Arg His His Pro Glu His Phe Ser Gly Arg Pro Arg Glu Asp
125 115 120
Arg Val Pro His Ser Arg Asn Ser Ile Thr Leu Thr Asn Leu Thr
140 130 135
Pro Gly Thr Glu Tyr Val Val Ser Ile Val Ala Leu Asn Gly Arg
155 145 150
Glu Glu Ser Pro Leu Leu Ile Gly Gln Gln Ser Thr Val Ser Asp
170 160 165
Val Pro Arg Asp Leu Glu Val Val Ala Ala Thr Pro Thr Ser Leu
185 175 180
Leu Ile Ser Trp Asp Ala Pro Ala Val Thr Val Arg Tyr Tyr Arg
200 190 195
Ile Thr Tyr Gly Glu Thr Gly Gly Asn Ser Pro Val Gln Glu Phe
215 205 210
Thr Val Pro Gly Ser Lys Ser Thr Ala Thr Ile Ser Gly Leu Lys
230 220 225
20
Pro Gly Val Asp Tyr Thr Ile Thr Val Tyr Ala Val Thr Gly Arg
245 235 240
Gly Asp Ser Pro Ala Ser Ser Lys Pro Ile Ser Ile Asn Tyr Arg
260 250 255
Thr Glu Ile Asp Lys Pro Ser Met Ala Ala Gly Ser Ile Thr Thr
275 265 270
25
280 285
<table>
<thead>
<tr>
<th>Residue</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>290</td>
<td>Leu Pro Ala Leu Pro Glu Asp Gly Gly Ser Gly Ala Phe Pro Pro</td>
</tr>
<tr>
<td>295</td>
<td>Gly His Phe Lys Asp Pro Lys Arg Leu Tyr Cys Lys Asn Gly Gly</td>
</tr>
<tr>
<td>300</td>
<td>Phe Phe Leu Arg Ile His Pro Asp Gly Arg Val Asp Gly Val Arg</td>
</tr>
<tr>
<td>305</td>
<td>Glu Lys Ser Asp Pro His Ile Lys Leu Gln Leu Gln Ala Glu Glu</td>
</tr>
<tr>
<td>310</td>
<td>Arg Gly Val Val Ser Ile Lys Gly Val Cys Ala Asn Arg Tyr Leu</td>
</tr>
<tr>
<td>315</td>
<td>Ala Met Lys Glu Asp Gly Arg Leu Leu Ala Ser Lys Cys Val Thr</td>
</tr>
<tr>
<td>320</td>
<td>Asp Glu Cys Phe Phe Phe Glu Arg Leu Glu Ser Asn Asn Tyr Asn</td>
</tr>
<tr>
<td>325</td>
<td>Thr Tyr Arg Ser Arg Lys Tyr Thr Ser Trp Tyr Val Ala Leu Lys</td>
</tr>
<tr>
<td>330</td>
<td>Arg Thr Gly Gln Tyr Lys Leu Gly Ser Lys Thr Gly Pro Gly Gln</td>
</tr>
<tr>
<td>335</td>
<td>Lys Ala Ile Leu Phe Leu Pro Met Ser Ala Ala Ser Asp Glu Leu</td>
</tr>
<tr>
<td>340</td>
<td>Pro Gln Leu Val Thr Leu Pro His Pro Asn Leu His Gly Pro Glu</td>
</tr>
<tr>
<td>345</td>
<td>Ile Leu Asp Val Pro Ser Thr</td>
</tr>
<tr>
<td>350</td>
<td>400</td>
</tr>
<tr>
<td>355</td>
<td>405</td>
</tr>
<tr>
<td>360</td>
<td>410</td>
</tr>
<tr>
<td>365</td>
<td>415</td>
</tr>
<tr>
<td>370</td>
<td>420</td>
</tr>
<tr>
<td>375</td>
<td>425</td>
</tr>
<tr>
<td>380</td>
<td>430</td>
</tr>
<tr>
<td>385</td>
<td>435</td>
</tr>
<tr>
<td>390</td>
<td>440</td>
</tr>
<tr>
<td>395</td>
<td>445</td>
</tr>
<tr>
<td>400</td>
<td>450</td>
</tr>
<tr>
<td>405</td>
<td>455</td>
</tr>
</tbody>
</table>
SEQ. ID NO. 6
长度: 186
类型: 肽
链型: 单链
拓扑结构: 线性
分子类型: 肽
序列:

Gly Ile Arg Gly Leu Lys Gly Thr Lys Gly Glu Lys Gly Glu Asp
1 5 10 15
Gly Phe Pro Gly Phe Lys Gly Asp Met Gly Ile Lys Gly Asp Arg
20 25 30
Gly Glu Ile Gly Pro Pro Gly Pro Arg Gly Glu Asp Gly Pro Glu
35 40 45
Gly Pro Lys Gly Arg Gly Pro Asn Gly Asp Pro Gly Pro Leu
50 55 60
Gly Pro Pro Gly Glu Lys Gly Lys Leu Gly Val Pro Gly Leu Pro
65 70 75
Gly Tyr Pro Gly Arg Gln Gly Pro Lys Gly Ser Ile Gly Phe Pro
80 85 90
Gly Phe Pro Gly Ala Asn Gly Glu Lys Gly Gly Arg Gly Thr Pro
95 100 105
Gly Lys Pro Gly Pro Arg Gly Gln Arg Gly Pro Thr Gly Pro Arg
110 115 120
Gly Glu Arg Gly Pro Arg Gly Ile Thr Gly Lys Pro Gly Pro Lys
125 130 135
Gly Asn Ser Gly Gly Asp Gly Pro Ala Gly Pro Pro Gly Glu Arg
 140 145 150
Gly Pro Asn Gly Pro Gln Gly Pro Thr Gly Phe Pro Gly Pro Lys
 155 160 165
Gly Pro Pro Gly Pro Pro Gly Lys Asp Gly Leu Pro Gly His Pro
 170 175 180
Gly Gln Arg Gly Glu Thr
 185

SEQ. ID NO. 7

序列表:

Pro Thr Asp Leu Arg Phe Thr Asn Ile Gly Pro Asp Thr Met Arg
 1 5 10 15
Val Thr Trp Ala Pro Pro Pro Ser Ile Asp Leu Thr Asn Phe Leu
 20 25 30
Val Arg Tyr Ser Pro Val Lys Asn Glu Glu Asp Val Ala Glu Leu
 35 40 45
Ser Ile Ser Pro Ser Asp Asn Ala Val Val Leu Thr Asn Leu Leu
 50 55 60
Pro Gly Thr Glu Tyr Val Val Ser Val Ser Ser Val Tyr Glu Gln
<table>
<thead>
<tr>
<th></th>
<th>65</th>
<th>70</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>His Glu Ser Thr Pro Leu Arg Gly Arg Gln Lys Thr Gly Leu Asp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Ser Pro Thr Gly Ile Asp Phe Ser Asp Ile Thr Ala Asn Ser Phe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>95</td>
<td>100</td>
<td>105</td>
</tr>
<tr>
<td>5</td>
<td>Thr Val His Trp Ile Ala Pro Arg Ala Thr Ile Thr Gly Tyr Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>110</td>
<td>115</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Ile Arg His His Pro Glu His Phe Ser Gly Arg Pro Arg Glu Asp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
<td>130</td>
<td>135</td>
</tr>
<tr>
<td>10</td>
<td>Arg Val Pro His Ser Arg Asn Ser Ile Thr Leu Thr Asn Leu Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>145</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>Pro Gly Thr Glu Tyr Val Val Ser Ile Val Ala Leu Asn Gly Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>155</td>
<td>160</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td>Glu Glu Ser Pro Leu Leu Ile Gly Gln Gln Ser Thr Val Ser Asp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>170</td>
<td>175</td>
<td>180</td>
</tr>
<tr>
<td>15</td>
<td>Val Pro Arg Asp Leu Glu Val Val Ala Ala Thr Pro Thr Ser Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>185</td>
<td>190</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>Leu Ile Ser Trp Asp Ala Pro Ala Val Thr Val Arg Tyr Tyr Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>205</td>
<td>210</td>
</tr>
<tr>
<td>20</td>
<td>Ile Thr Tyr Gly Glu Thr Gly Gly Asn Ser Pro Val Gln Glu Phe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>215</td>
<td>220</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Thr Val Pro Gly Ser Lys Ser Thr Ala Thr Ile Ser Gly Leu Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>235</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>Pro Gly Val Asp Tyr Thr Ile Thr Val Tyr Ala Val Thr Gly Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>245</td>
<td>250</td>
<td>255</td>
</tr>
<tr>
<td>45</td>
<td>Gly Asp Ser Pro Ala Ser Ser Lys Pro Ile Ser Ile Asn Tyr Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>260 265 270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Thr Glu Ile Asp Lys Pro Ser Met Gly Ile Arg Gly Leu Lys Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>275 280 285</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Thr Lys Gly Glu Lys Gly Glu Asp Gly Phe Pro Gly Phe Lys Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>290 295 300</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asp Met Gly Ile Lys Gly Asp Arg Gly Glu Ile Gly Pro Pro Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>305 310 315</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Pro Arg Gly Glu Asp Gly Pro Glu Gly Pro Lys Gly Arg Gly Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>320 325 330</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pro Asn Gly Asp Pro Gly Pro Leu Gly Pro Pro Gly Glu Lys Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>335 340 345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Lys Leu Gly Val Pro Gly Leu Pro Gly Tyr Pro Gly Arg Gln Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>350 355 360</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pro Lys Gly Ser Ile Gly Phe Pro Gly Phe Pro Gly Ala Asn Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>365 370 375</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glu Lys Gly Gly Arg Gly Thr Pro Gly Lys Pro Gly Pro Arg Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>380 385 390</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gln Arg Gly Pro Thr Gly Pro Arg Gly Glu Arg Gly Pro Arg Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>395 400 405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Ile Thr Gly Lys Pro Gly Pro Lys Gly Asn Ser Gly Gly Asp Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>410 415 420</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pro Ala Gly Pro Pro Gly Glu Arg Gly Pro Asn Gly Pro Gln Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>425 430 435</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pro Thr Gly Phe Pro Gly Pro Lys Gly Pro Pro Gly Pro Gly</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SEQ. ID NO. 8

Lys Asp Gly Leu Pro Gly His Pro Gly Gln Arg Gly Glu Thr

SEQ. ID NO. 8

长度: 489
类型: 氨基酸
链型: 单链

拓扑结构: 线性
分子类型: 肽
序列:

Pro Thr Asp Leu Arg Phe Thr Asn Ile Gly Pro Asp Thr Met Arg
 1 5 10 15
Val Thr Trp Ala Pro Pro Pro Ser Ile Asp Leu Thr Asn Phe Leu
 20 25 30
Val Arg Tyr Ser Pro Val Lys Asn Glu Glu Asp Val Ala Glu Leu
 35 40 45
Ser Ile Ser Pro Ser Asp Asn Ala Val Val Leu Thr Asn Leu Leu
 50 55 60
Pro Gly Thr Glu Tyr Val Val Ser Val Ser Ser Val Tyr Glu Gln
 65 70 75
His Glu Ser Thr Pro Leu Arg Gly Arg Gln Lys Thr Gly Leu Asp
 80 85 90
Ser Pro Thr Gly Ile Asp Phe Ser Asp Ile Thr Ala Asn Ser Phe
 95 100 105
Thr Val His Trp Ile Ala Pro Arg Ala Thr Ile Thr Gly Tyr Arg
110 115 120
Ile Arg His His Pro Glu His Phe Ser Gly Arg Pro Arg Glu Asp
125 130 135
Arg Val Pro His Ser Arg Asn Ser Ile Thr Leu Thr Asn Leu Thr
140 145 150
Pro Gly Thr Glu Tyr Val Val Ser Ile Val Ala Leu Asn Gly Arg
155 160 165
Glu Glu Ser Pro Leu Leu Ile Gly Gln Gln Ser Thr Val Ser Asp
170 175 180
Val Pro Arg Asp Leu Glu Val Val Ala Ala Thr Pro Thr Ser Leu
185 190 195
Leu Ile Ser Trp Asp Ala Pro Ala Val Thr Val Arg Tyr Tyr Arg
200 205 210
Ile Thr Tyr Gly Glu Thr Gly Gly Gly Asn Ser Pro Val Gln Glu Phe
215 220 225
Thr Val Pro Gly Ser Lys Ser Thr Ala Thr Ile Ser Gly Leu Lys
230 235 240
Pro Gly Val Asp Tyr Thr Ile Thr Val Tyr Ala Val Thr Gly Arg
245 250 255
Gly Asp Ser Pro Ala Ser Ser Lys Pro Ile Ser Ile Asn Tyr Arg
260 265 270
Thr Glu Ile Asp Lys Pro Ser Met Gly Ile Arg Gly Leu Lys Gly
275 280 285
Thr Lys Gly Glu Lys Gly Glu Asp Gly Phe Pro Gly Phe Lys Gly
290 295 300
290 295 300
Asp Met Gly Ile Lys Gly Asp Arg Gly Glu Ile Gly Pro Pro Gly
305 310 315
Pro Arg Gly Glu Asp Gly Pro Glu Gly Pro Lys Gly Arg Gly Gly
320 325 330
Pro Asn Gly Asp Pro Gly Pro Leu Gly Pro Pro Gly Glu Lys Gly
335 340 345
Lys Leu Gly Val Pro Gly Leu Pro Gly Tyr Pro Gly Arg Gln Gly
350 355 360
10
Pro Lys Gly Ser Ile Gly Phe Pro Gly Phe Pro Gly Ala Asn Gly
365 370 375
Glu Lys Gly Gly Arg Gly Thr Pro Gly Lys Pro Gly Pro Arg Gly
380 385 390
Gln Arg Gly Pro Thr Gly Pro Arg Gly Glu Arg Gly Pro Arg Gly
395 400 405
15
Ile Thr Gly Lys Pro Gly Pro Lys Gly Asn Ser Gly Gly Asp Gly
410 415 420
Pro Ala Gly Pro Pro Gly Glu Arg Gly Pro Asn Gly Pro Gln Gly
425 430 435
20
Pro Thr Gly Phe Pro Gly Pro Lys Gly Pro Pro Gly Pro Pro Gly
440 445 450
Lys Asp Gly Leu Pro Gly His Pro Gly Gln Arg Gly Ala Ser Asp
455 460 465
Glu Leu Pro Gln Leu Val Thr Leu Pro His Pro Asn Leu His Gly
25
470 475 480
Pro Glu Ile Leu Asp Val Pro Ser Thr

SEQ. ID NO. 9
5 长度：36
类型：核酸
链型：单链
拓扑结构：线性
分子类型：其它核酸（合成 DNA）
10 序列：
AAACCATGGC AGTCAGCGAC GAGCTCCCC AACTGG

SEQ. ID NO. 10
15 长度：20
类型：核酸
链型：单链
拓扑结构：线性
分子类型：其它核酸（合成 DNA）
20 序列：
AATGACAAAA CCATCCATGG

SEQ. ID NO. 11
25 长度：33
类型：核酸
链型：单链
拓扑结构：线性
分子类型：其它核酸（合成 DNA）
30 序列：
CCATTAAAAT CAGCTAGCAG CAGACATTGG AAG
SEQ. ID NO. 12
长度: 36
类型: 核酸
链型: 单链
拓扑结构: 线性
分子类型: 其它核酸（合成 DNA）
序列:
TCTAGAGGAT CCTAGCTAG CGCCTCTCTG TCCAGG

SEQ. ID NO. 13
长度: 547
类型: 氨基酸
链型: 单链
拓扑结构: 线性
分子类型: 肽
序列:
Ala Ala Ser Ala Ile Pro Ala Pro Thr Asp Leu Lys Phe Thr Gln
5 10 15
Val Thr Pro Thr Ser Leu Ser Ala Gln Trp Thr Pro Pro Asn Val
20 25 30
Gln Leu Thr Gly Tyr Arg Val Arg Val Thr Pro Lys Glu Lys Thr
35 40 45
Gly Pro Met Lys Glu Ile Asn Leu Ala Pro Asp Ser Ser Ser Val
50 55 60
Val Val Ser Gly Leu Met Val Ala Thr Lys Tyr Glu Val Ser Val
65 70 75
Tyr Ala Leu Lys Asp Thr Leu Thr Ser Arg Pro Ala Gln Gly Val
80 85 90
Val Thr Thr Leu Glu Asn Val Ser Pro Pro Arg Arg Ala Arg Val
95 100 105
Thr Asp Ala Thr Glu Thr Thr Ile Thr Ile Ser Trp Arg Thr Lys
110 115 120
Thr Glu Thr Ile Thr Gly Phe Gln Val Asp Ala Val Pro Ala Asn
125 130 135
Gly Gln Thr Pro Ile Gln Arg Thr Ile Lys Pro Asp Val Arg Ser
140 145 150
Tyr Thr Ile Thr Gly Leu Gln Pro Gly Thr Asp Tyr Lys Ile Tyr
155 160 165
Leu Tyr Thr Leu Asn Asn Ala Arg Ser Ser Pro Val Val Ile
170 175 180
Asp Ala Ser Thr Ala Ile Asp Ala Pro Ser Asn Leu Arg Phe Leu
185 190 195
Ala Thr Thr Pro Asn Ser Leu Leu Val Ser Trp Gln Pro Pro Arg
200 205 210
Ala Arg Ile Thr Gly Tyr Ile Ile Lys Tyr Glu Lys Pro Gly Ser
215 Pro Pro Arg Glu Val Val Pro Arg Pro Arg Pro Gly Val Thr Glu
230 235 240
Ala Thr Ile Thr Gly Leu Glu Pro Gly Thr Glu Tyr Thr Ile Tyr
245 250 255
Val Ile Ala Leu Lys Asn Asn Gln Lys Ser Glu Pro Leu Ile Gly
260 265 270
Arg Lys Lys Thr Ser Ala Ile Pro Ala Pro Thr Asp Leu Lys Phe
275 280 285
Thr Gln Val Thr Pro Thr Ser Leu Ser Ala Gln Trp Thr Pro Pro
290 295 300
Asn Val Gln Leu Thr Gly Tyr Arg Val Arg Val Thr Pro Lys Glu
305 310 315
Lys Thr Gly Pro Met Lys Glu Ile Asn Leu Ala Pro Asp Ser Ser
320 325 330
Ser Val Val Val Ser Gly Leu Met Val Ala Thr Lys Tyr Glu Val
335 340 345
Ser Val Tyr Ala Leu Lys Asp Thr Leu Thr Ser Arg Pro Ala Gln
350 355 360
Gly Val Val Thr Thr Leu Glu Asn Val Ser Pro Pro Arg Arg Ala
365 370 375
Arg Val Thr Asp Ala Thr Glu Thr Thr Ile Thr Ile Ser Trp Arg
380 385 390
Thr Lys Thr Glu Thr Ile Thr Gly Phe Gln Val Asp Ala Val Pro
395 400 405
Ala Asn Gly Gln Thr Pro Ile Gln Arg Thr Ile Lys Pro Asp Val
410 415 420
Arg Ser Tyr Thr Ile Thr Gly Leu Gln Pro Gly Thr Asp Tyr Lys
425 430 435
Ile Tyr Leu Tyr Thr Leu Asn Asp Asn Ala Arg Ser Ser Pro Val
440 445 450
Val Ile Asp Ala Ser Thr Ala Ile Asp Ala Pro Ser Asn Leu Arg
455 460 465
Phe Leu Ala Thr Thr Pro Asn Ser Leu Leu Val Ser Trp Gln Pro
470 475 480
Pro Arg Ala Arg Ile Thr Gly Tyr Ile Ile Lys Tyr Glu Lys Pro
485 490 495
Gly Ser Pro Pro Arg Glu Val Val Pro Arg Pro Arg Pro Gly Val
500 505 510
Thr Glu Ala Thr Ile Thr Gly Leu Glu Pro Gly Thr Glu Tyr Thr
515 520 525
Ile Tyr Val Ile Ala Leu Lys Asn Asn Gln Lys Ser Glu Pro Leu
530 535 540
Ile Gly Arg Lys Lys Thr Ser
545

75
SEQ. ID NO. 14
长度： 826
类型： 氨基酸
链型： 单链
拓扑结构： 线性
分子类型： 蛋
序列：
Ala Ala Ser Pro Thr Asp Leu Arg Phe Thr Asn Ile Gly Pro Asp
 5 10 15
Thr Met Arg Val Thr Trp Ala Pro Pro Pro Ser Ile Asp Leu Thr
 20 25 30
Asn Phe Leu Val Arg Tyr Ser Pro Val Lys Asn Glu Glu Asp Val
 35 40 45
Ala Glu Leu Ser Ile Ser Pro Ser Asp Asn Ala Val Val Leu Thr
 50 55 60
Asn Leu Leu Pro Gly Thr Glu Tyr Val Val Ser Val Ser Ser Val
 65 70 75
Tyr Glu Gln His Glu Ser Thr Pro Leu Arg Gly Arg Gln Lys Thr
 80 85 90
Gly Leu Asp Ser Pro Thr Gly Ile Asp Phe Ser Asp Ile Thr Ala
 95 100 105
Asn Ser Phe THR Val His Trp Ile Ala Pro Arg Ala Thr Ile Thr
 110 115 120
Gly Tyr Arg Ile Arg His His Pro Glu His Phe Ser Gly Arg Pro
 125 130 135
Arg Glu Asp Arg Val Pro His Ser Arg Asn Ser Ile Thr Leu Thr
 140 145 150
Asn Leu Thr Pro Gly Thr Glu Tyr Val Val Ser Ile Val Ala Leu
 155 160 165
Asn Gly Arg Glu Glu Ser Pro Leu Leu Ile Gly Gln Gln Ser Thr
170 175 180
Val Ser Asp Val Pro Arg Asp Leu Glu Val Val Ala Ala Thr Pro
185 190 195
Thr Ser Leu Leu Ile Ser Trp Asp Ala Pro Ala Val Thr Val Arg
200 205 210
Tyr Tyr Arg Ile Thr Tyr Gly Glu Thr Gly Gly Asn Ser Pro Val
215 220 225
Gln Glu Phe Thr Val Pro Gly Ser Lys Ser Thr Ala Thr Ile Ser
230 235 240
Gly Leu Lys Pro Gly Val Asp Tyr Thr Ile Thr Val Tyr Ala Val
245 250 255
Thr Gly Arg Gly Asp Ser Pro Ala Ser Ser Lys Pro Ile Ser Ile
260 265 270
15
Asn Tyr Arg Thr Glu Ile Asp Lys Pro Ser Thr Ser Ala Ile Pro
275 280 285
Ala Pro Thr Asp Leu Lys Phe Thr Gln Val Thr Pro Thr Ser Leu
290 295 300
Ser Ala Gln Trp Thr Pro Pro Asn Val Gln Leu Thr Gly Tyr Arg
305 310 315
Val Arg Val Thr Pro Lys Glu Lys Thr Gly Pro Met Lys Glu Ile
320 325 330
Asn Leu Ala Pro Asp Ser Ser Ser Val Val Val Ser Gly Leu Met
335 340 345
25
Val Ala Thr Lys Tyr Glu Val Ser Val Tyr Ala Leu Lys Asp Thr
350 355 360
Leu Thr Ser Arg Pro Ala Gln Gly Val Val Thr Thr Leu Glu Asn
365 370 375
Val Ser Pro Pro Arg Arg Ala Arg Val Thr Asp Ala Thr Glu Thr
380 385 390
Thr Ile Thr Ile Ser Trp Arg Thr Lys Thr Glu Thr Ile Thr Gly
395 400 405
Phe Gln Val Asp Ala Val Pro Ala Asn Gly Gln Thr Pro Ile Gln
410 415 420
Arg Thr Ile Lys Pro Asp Val Arg Ser Tyr Thr Ile Thr Gly Leu
425 430 435
Gln Pro Gly Thr Asp Tyr Lys Ile Tyr Leu Tyr Thr Leu Asn Asp
440 445 450
Asn Ala Arg Ser Ser Pro Val Val Ile Asp Ala Ser Thr Ala Ile
455 460 465
Asp Ala Pro Ser Asn Leu Arg Phe Leu Ala Thr Thr Pro Asn Ser
470 475 480
Leu Leu Val Ser Trp Gln Pro Pro Arg Ala Arg Ile Thr Gly Tyr
485 490 495
Ile Ile Lys Tyr Glu Lys Pro Gly Ser Pro Pro Arg Glu Val Val
500 505 510
Pro Arg Pro Arg Pro Gly Val Thr Glu Ala Thr Ile Thr Gly Leu
515 520 525
Glu Pro Gly Thr Glu Tyr Thr Ile Tyr Val Ile Ala Leu Lys Asn
530 535 540

78
Asn Glu Lys Ser Glu Pro Leu Ile Gly Arg Lys Lys Thr Ser Ala
545 550 555
Ile Pro Ala Pro Thr Asp Leu Lys Phe Thr Gln Val Thr Pro Thr
560 565 570
Ser Leu Ser Ala Gln Trp Thr Pro Pro Asn Val Gln Leu Thr Gly
575 580 585
Tyr Arg Val Arg Val Thr Pro Lys Glu Lys Thr Gly Pro Met Lys
590 595 600
Glu Ile Asn Leu Ala Pro Asp Ser Ser Ser Val Val Val Ser Gly
605 610 615
Leu Met Val Ala Thr Lys Tyr Glu Val Ser Val Tyr Ala Leu Lys
620 625 630
Asp Thr Leu Thr Ser Arg Pro Ala Gln Gly Val Val Thr Thr Leu
635 640 645
Glu Asn Val Ser Pro Pro Arg Arg Ala Arg Val Thr Asp Ala Thr
650 655 660
Glu Thr Thr Ile Thr Ile Ser Trp Arg Thr Lys Thr Glu Thr Ile
665 670 675
Thr Gly Phe Glu Val Asp Ala Val Pro Ala Asn Gly Gln Thr Pro
680 685 690
Ile Gln Arg Thr Ile Lys Pro Asp Val Arg Ser Tyr Thr Ile Thr
695 700 705
Gly Leu Gln Pro Gly Thr Asp Tyr Lys Ile Tyr Leu Tyr Thr Leu
710 715 720
Asn Asp Asn Ala Arg Ser Ser Pro Val Val Ile Asp Ala Ser Thr
79
SEQ. ID NO. 15

长度： 38
类型：核酸
链型：单链
拓扑结构：线性
分子类型：其它核酸（合成 DNA）
序列：
AATTCATGGC AGCTAGCGCT ATTTGCTGAC CCACTGAC

SEQ. ID NO. 16

长度： 36
类型：核酸
链型：单链
拓扑结构：线性
分子类型：其它核酸（合成 DNA）
序列：
AAAGGATCCC TAACTAGCTT TTTTCCCTTCC AATCAG
SEQ. ID NO. 17

长度：1644
类型：核酸
链型：双链

拓扑结构：线性
分子类型：其它核酸（编码人工多肽的DNA）

序列：
ATGGCAGCTA GCGCTATTCG TGCACCAACT GACCTGAAGT TCACCTACGGT CACACCACAC 60
AGCCTAGCCG CCCAGTGGAAC ACCACCCAGT GTTGAGCTCA CTGGGATATCG AGTGCAGGCTG 120
ACCCCAGGG AAGAGACCAGG ACCATCGGAA AAGAATGAGGA TGGTGCTTAAG TGCTAAGTGCTA 180
GTGGTGTAT CAGACCTTTAT GGTTGCCCACC AAATATGAAATG AGATGGCTCTA TGCTCTAAATG 240
GACACTTTGA CAAAGCAGACC AGTCAGGGGT GTTTGTCACA CTCTGGAGAA TGTCAGCAGCCA 300
CCAGAGAGG CCGGCTCGGT GAGTGCCTACT GAGACCAGCAA TCACCATTAGG CTGGAGAACCC 360
AAGACTGAGA CGATCATGGTT CTTCAGAAGTT GATGGCGTCC GACCAATAGG CCAGACTCCCA 420
ATCCAGAAGAA CCATCAAGGA AGATGTCAGA AGCTACACCA TCACGGTTTACA CAAACCGAGCC 480
ACTGCTACAA AGATCTACCT GTACACCTTG AATGACAATG CTCGGAGCTC CCCCTGCTGTGCT 540
ATCGACGCTT CCAAATGCTGCA TCCACGACCA TACCACTTGCC GTTCCTGGCC CACCACACCC 600
AATTCTTTTC TGCTATCAGTG CAGGCGCCCA GTGCCAGGTA AATGCCGTA CAACTCAGAATG 660
TATGAGAGAG GCTGGAGTCC TCACAGAGAA GTGTTGACCTC GCCCGCCCCC TGTCGACTACA 720
GAAGCCCTCTA TTACCTGGCT GGAACGCGGA ACCGAATAATA AATTTTATGTC GATTGGCCTG 780
AAGAATAATCG AGAAGACCCCA CCCCCTGATT GAAAGAAAA AAGACTAAGGC TATTTCTGCA 840
CCAACGTGACC TGAGGTCCAC TCACCGTGACCC CCAACGGGC TACGACACCC TAAGACCAACA 900
CCCAATGTCC AGCTCACTGGC ATATCGGATG CCGGTCAGCC CCAAAGACGA AAACGCGACC 960
ATGAGAGGAAC TCAACCTTGTC TCTGACAGGC TACATCGCTGTTGATCGAAG GCTCTATGGG 1020
GCAACCCAAAT AGAAGTCTGGA TGCTATCGCT CTTAAGGACA TTTGACAAAG CACACCCAGCT 1080
CAGGCTGGTG TCACCACTCT GGAAGATGGTC AGGCCCACCA GAGGGGCTCG TGTGACAGAT 1140
GCTACTGAGA CCACCACAACT CATTAGGCGG AAGAACAAGA GTGAGACGGC TACGTGGCTCC 1200
CAAGTGGATG CGGTCCAGCC AAAATGCCGCG ACTCACAATCC AGAGACATC AAGACCAGAT 1260
GTCAGGAAGCT ACAACCATCAG AGGTTTACAA CCAGGCCACG ACTACAAGAT GTACCTGCTAC 1320
ACCTGATAGG AAGATGTCTG GACCGCTCCCT GTGGTGATCC AGGCTGTCAC CCACATGATGT 1380
GCACCACGCT ACCTCGGTTT CCTGGCCACC ACAAAGAAAT CTTGGCTGCT AGATGCGAGC 1440
SEQ. ID NO. 18
长度：37
类型：核酸
链型：单链
拓扑结构：线性
分子类型：其它核酸（合成 DNA）
序列：
AAACCCATGGC AGCTAGCCC ACTGACCTGC GATTCAC

SEQ. ID NO. 19
长度：38
类型：核酸
链型：单链
拓扑结构：线性
分子类型：其它核酸（合成 DNA）
序列：
AAAAGATCTC TAACTAGTGG ATGTTTTGTC AATTTCCTG

SEQ. ID NO. 20
长度：2481
类型：核酸
链型：双链
拓扑结构：线性
分子类型：其它核酸（编码人工多肽的 DNA）
序列：
ATGGCAGCTA GCCCCCACCTGA CCTGGGATTC ACCAACATTG GTCCAGACAC CATGCGTGTG 60
ACCTGGGGCTC CACCACCTAC CATTGAATT ACAAACCTCC TGTTGCCTTA CTCACCTCTG 120
AAAAAATGGAGG AAGATGTGTC AGAATGTTCA ATTTCTCTTT CAGACAATGC AGTGGCTTTA	180
ACAAATCTCC TGCTCTGTAC AGAATATGTA GTGAGTGTCT CCAGTGTCTA CGAACACACAT	240
GAGGGACACG CTCTTACAGGG AGAGACAGAAA ACAGGGTCTG ATCCCACCAAC TGGGCATATG	300
TTTTCTGATA TTAAGTGCCTA CCCTTTACT GTGCACGTGGA TTGCTCTTTG AGCCACCACATC	360
ACTGAGCTACA GGATCGGCCA CATCCTCCGGA CACTTGTAGT GGAGACCTTCG AGAAAGATCGG	420
GTGCCCAACT CTGGAAATTC CATCACCCTC ACCACAGCTA CTCCACGACA ACAGGATGG	480
GTCAGCATCG TGCTCTTTAA TGGCAAGAGG GAAAGTCTCT TATGGATTTG CCAAGCAATCA	540
ACAGTTTCTG AGTGCCGAGG AGACCCGGAAG ATGTTGGCTG CGGCCACCCAC CAGGCTACTG	600
ATCAGCTCGG AGACCTGCTC TGGTACAGTG AGATATTACA GGATACACTTA CCGGAAACAAC	660
GGAAGAAAATA GGCACTGTCCA GGAGTTGCAG GTGCTCTGGGA GCAAGTCTAC AGCTACCACATC	720
AGGCAACCTTA AACCCTGGAG TGATATATAC ACCACGTGAT ATGCTGTACG TGGGCGGTGGA	780
GACAGCCCCC GAACGACGAA GCAACATTCC ATTTAACCA ACCAAAGAAAT TGACAAACCA	840
TCCACTAGCG CTATTTCTGC ACCAAGCTAC CTGAGATTCG CTCAGGCTAC ACCACAAACG	900
CTGAGCGCCC AGTGGACACC ACCAAATGTT CAGCTCCTTG GATATGGAT GGGGTGGACC	960
CCAAGGAGA AGACCGGACC AATGAAGAAA ATCAACCTTG CTCCCTGACAG CTCATCCGTG	1020
GTGTATAGAG GACTATATAGT GGCACCAAGA TATGAAGTGA GTGTCTATGC TCTTAAGGAC	1080
ACTTTCAGAA GCAGAGCCAC TCAGGGTGAT GCCACGACTC TGGGAAGATG CAGCCCAACCA	1140
AGAAGGGCTC GTGTCAGAGA TGCTACGAG ACCACACATCA CCATATTGCTG GAGAAAACAG	1200
ACTGAGACGA TCACCTGGCTT CCAAGTGAT GCCGTTCCAG CCAATGGCCA GACTCCACATC	1260
CAGAAGACCA TCAAGCGGCA TCTGCAAGAAC TACACCATCA CAGTTTACG ACCAGCACACT	1320
GACTACAGAA TCTACCTGTA CACCTTTGAA GACAAGTCG GAGAGCTCCC TGTTGCTATC	1380
GAGGCGCTCCA CGGCAATGGA TGCCACATCC ACCCTGGCTT TCTTGCCACG CAAACCAACAT	1440
TCTTCTTGGG TATCAGGGCA GCCGCCAGGT GCCAGGATTA CGGGTCATAC CATCAAGTAT	1500
GAGAAGCCCTG GTCTCCTCC CAGAGAGAGT GCCTCTGGGC CCCCGGTCTG TGTACAGAG	1560
GCTACTTATTA GTGCGCTGGA ACCGGGAACC GAATATACAA TTTATGCTAT TGCCCTGAAG	1620
AATAATCAGA AGAGCGGACC CTTGATGGGA AGGAAGAAAG CTAGGGCTAT TCTTGCAACCA	1680
ACTGACCGGA AGTCTGCTCA GTGTACACCC ACAAGGCTGG GCCGCCAGTGG GACACCAACC	1740
AAGTTTCAGC TCACCTGGATA TGAGTGGCGG GTCACCCCTCA AAGGAGAGAC CGGACCAATG	1800
AAAGAAATCA ACCTTGCTCC TGACAGCTCA TCCGTGGTTG TATCAGGACT TATGGTG GCC 1960
ACCAAAATAG AAGTGAAGT GCTATGCTTT AAGGACACTT TGACAAGCAG ACCAGCTCAG 1920
GGTGTGCTCA CCACTCTGGA GAATGTCAGC CCACCAAGAA GGGCTCGTGT GACAGATGCT 1980
ACTGAGACCA CCATCACCAT TAGCTGGAGA ACCAAGACTG AGACGATCAC TGGCCTTCCAA 2040
GTTGATGCGG TTCCAGCCAA TGGCCAGACT CCAATCCAGA GAACCATCAA GCCAGATGTC 2100
AGGAAGCTACA CCATCAAGGG TTTACAACCA GGCACGACT ACAAGATCTA CCTGTAACCC 2160
TTGAATGACA ATGCTCGGAG CTCCCCTCTG GTCATCGACG CCTCCAAGTC CATGGATGCA 2220
CCATCCACCC TGGGTTCCTG GGCCACCA AGCAATTCC TTGCTGGTATC ATGCCAGCGG 2280
CCACGTCGCA GGATTACCGG CTACATCATC AAGTATGAGA AGCCTGGGTC TCTTCCCAGA 2340
GAAGTGGTCC CTCGCGCCCG CCCTGGTTGC ACAGAGGCTA CTATTACTGG CCTGGAACCG 2400
GGAACCGAAT ATACAAATTTA TGTCATTGCC CTGAAGAATA ATCAGAAGAG CGAGCCCTTG 2460
ATTGGAAGGA AAAAGACCTAG T 2481

SEQ. ID NO. 21
长度：472
类型：氨基酸
链型：单链
拓扑结构：线性
分子类型：肽
序列：

Pro Thr Asp Leu Arg Phe Thr Asn Ile Gly Pro Asp Thr Met Arg 1 5 10 15
Val Thr Trp Ala Pro Pro Pro Ser Ile Asp Leu Thr Asn Phe Leu 20 25 30
Val Arg Tyr Ser Pro Val Lys Asn Glu Glu Asp Val Ala Glu Leu
Ser Ile Ser Pro Ser Asp Asn Ala Val Val Leu Thr Asn Leu Leu
Pro Gly Thr Glu Tyr Val Val Ser Val Ser Ser Val Tyr Glu Gln
His Glu Ser Thr Pro Leu Arg Gly Arg Gln Lys Thr Gly Leu Asp
Ser Pro Thr Gly Ile Asp Phe Ser Asp Ile Thr Ala Asn Ser Phe
Thr Val His Trp Ile Ala Pro Arg Ala Thr Ile Thr Gly Tyr Arg
Ile Arg His His Pro Glu His Phe Ser Gly Arg Pro Arg Glu Asp
Arg Val Pro His Ser Arg Asn Ser Ile Thr Leu Thr Asn Leu Thr
Pro Gly Thr Glu Tyr Val Val Ser Ile Val Ala Leu Asn Gly Arg
Glu Glu Ser Pro Leu Leu Ile Gly Gln Gln Ser Thr Val Ser Asp
Val Pro Arg Asp Leu Glu Val Val Ala Ala Thr Pro Thr Ser Leu
Leu Ile Ser Trp Asp Ala Pro Ala Val Thr Val Arg Tyr Tyr Arg
Ile Thr Tyr Gly Glu Thr Gly Gly Asn Ser Pro Val Gln Glu Phe
Thr Val Pro Gly Ser Lys Ser Thr Ala Thr Ile Ser Gly Leu Lys
230 235 240
Pro Gly Val Asp Tyr Thr Ile Thr Val Tyr Ala Val Thr Gly Arg
245 250 255
Gly Asp Ser Pro Ala Ser Ser Lys Pro Ile Ser Ile Asn Tyr Arg
260 265 270
Thr Glu Ile Asp Lys Pro Ser Met Ala Ile Pro Ala Pro Thr Asp
275 280 285
Leu Lys Phe Thr Gln Val Thr Pro Thr Ser Leu Ser Ala Gln Trp
290 295 300
Thr Pro Pro Asn Val Gln Leu Thr Gly Tyr Arg Val Arg Val Thr
305 310 315
Pro Lys Glu Lys Thr Gly Pro Met Lys Glu Ile Asn Leu Ala Pro
320 325 330
Asp Ser Ser Ser Val Val Val Ser Gly Leu Met Val Ala Thr Lys
335 340 345
Tyr Glu Val Ser Val Tyr Ala Leu Lys Asp Thr Leu Thr Ser Arg
350 355 360
Pro Ala Gln Gly Val Val Thr Thr Leu Glu Asn Val Ser Pro Pro
365 370 375
Arg Arg Ala Arg Val Thr Asp Ala Thr Glu Thr Thr Ile Thr Ile
380 385 390
Ser Trp Arg Thr Lys Thr Glu Thr Ile Thr Gly Phe Gln Val Asp
395 400 405
Ala Val Pro Ala Asn Gly Gln Thr Pro Ile Gln Arg Thr Ile Lys

86
SEQ. ID NO. 22

Pro Asp Val Arg Ser Tyr Thr Ile Thr Gly Leu Gln Pro Gly Thr
410 415 420
Asp Tyr Lys Ile Tyr Leu Tyr Thr Leu Asn Asp Asn Ala Arg Ser
425 430 435
Ser Pro Val Val Ile Asp Ala Ser Thr Ala Ile Asp Ala Pro Ser
440 445 450
Asn Leu Arg Phe Leu Ala Thr
455 460 465
470

10

15

15
Pro Gly Thr Glu Tyr Val Val Ser Val Ser Ser Val Tyr Glu Gln
65 70 75
His Glu Ser Thr Pro Leu Arg Gly Arg Gln Lys Thr Gly Leu Asp
80 85 90
Ser Pro Thr Gly Ile Asp Phe Ser Asp Ile Thr Ala Asn Ser Phe
95 100 105
Thr Val His Trp Ile Ala Pro Arg Ala Thr Ile Thr Gly Tyr Arg
110 115 120
Ile Arg His His Pro Glu His Phe Ser Gly Arg Pro Arg Glu Asp
125 130 135
Arg Val Pro His Ser Arg Asn Ser Ile Thr Leu Thr Asn Leu Thr
140 145 150
Pro Gly Thr Glu Tyr Val Val Ser Ile Val Ala Leu Asn Gly Arg
155 160 165
Glu Glu Ser Pro Leu Leu Ile Gly Gln Gln Ser Thr Val Ser Asp
170 175 180
Val Pro Arg Asp Leu Glu Val Val Ala Ala Thr Pro Thr Ser Leu
185 190 195
Leu Ile Ser Trp Asp Ala Pro Ala Val Thr Val Arg Tyr Tyr Arg
200 205 210
Ile Thr Tyr Gly Glu Thr Gly Gly Asn Ser Pro Val Gln Glu Phe
215 220 225
Thr Val Pro Gly Ser Lys Ser Thr Ala Thr Ile Ser Gly Leu Lys
230 235 240
Pro Gly Val Asp Tyr Thr Ile Thr Val Tyr Ala Val Thr Gly Arg
245 250 255
Gly Asp Ser Pro Ala Ser Ser Lys Pro Ile Ser Ile Asn Tyr Arg
260 265 270
Thr Glu Ile Asp Lys Pro Ser Met Asn Val Ser Pro Pro Arg Arg
275 280 285
Ala Arg Val Thr Asp Ala Thr Glu Thr Thr Ile Thr Ile Ser Trp
290 295 300
Arg Thr Lys Thr Glu Thr Ile Thr Gly Phe Gln Val Asp Ala Val
305 310 315
10 Pro Ala Asn Gly Gln Thr Pro Ile Gln Arg Thr Ile Lys Pro Asp
320 325 330
Val Arg Ser Tyr Thr Ile Thr Gly Leu Gln Pro Gly Thr Asp Tyr
335 340 345
Lys Ile Tyr Leu Tyr Thr Leu Asn Asp Asn Ala Arg Ser Ser Pro
350 355 360
15 Val Val Ile Asp Ala Ser Thr Ala Ile Asp Ala Pro Ser Asn Leu
365 370 375
Arg Phe Leu Ala Thr Thr Pro Asn Ser Leu Leu Val Ser Trp Gln
380 385 390
20 Pro Pro Arg Ala Arg Ile Thr Gly Tyr Ile Ile Lys Tyr Glu Lys
395 400 405
Pro Gly Ser Pro Pro Arg Glu Val Val Pro Arg Pro Arg Pro Gly
410 415 420
Val Thr Glu Ala Thr Ile Thr Gly Leu Glu Pro Gly Thr Glu Tyr
25 425 430 435
Thr Ile Tyr Val Ile Ala Leu Lys Asn Asn Gln Lys Ser Glu Pro
440
Leu Ile Gly Arg Lys Lys Thr
455

SEQ. ID NO. 23

长度: 549
类型: 氨基酸

链型: 单链
拓扑结构: 线性
分子类型: 蛋白
序列:

Pro Thr Asp Leu Arg Phe Thr Asn Ile Gly Pro Asp Thr Met Arg
1
5
10
15
Val Thr Trp Ala Pro Pro Pro Ser Ile Asp Leu Thr Asn Phe Leu
20
25
30
Val Arg Tyr Ser Pro Val Lys Asn Glu Glu Asp Val Ala Glu Leu
35
40
45
Ser Ile Ser Pro Ser Asp Asn Ala Val Val Leu Thr Asn Leu Leu
50
55
60
Pro Gly Thr Glu Tyr Val Val Ser Val Ser Ser Val Tyr Glu Gln
65
70
75
His Glu Ser Thr Pro Leu Arg Gly Arg Gln Lys Thr Gly Leu Asp
80
85
90
Ser Pro Thr Gly Ile Asp Phe Ser Asp Ile Thr Ala Asn Ser Phe
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>100</th>
<th>105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thr</td>
<td>Val</td>
<td>His</td>
<td>Trp</td>
</tr>
<tr>
<td>Ile</td>
<td>Ala</td>
<td>Pro</td>
<td>Arg</td>
</tr>
<tr>
<td>Ala</td>
<td>Thr</td>
<td>Ile</td>
<td>Thr</td>
</tr>
<tr>
<td>Thr</td>
<td>Gly</td>
<td>Tyr</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>His</td>
<td>Trp</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Arg</td>
<td>His</td>
<td>Pro</td>
</tr>
<tr>
<td>Glu</td>
<td>His</td>
<td>Phe</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Gly</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Pro</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Asp</td>
<td>110</td>
<td>115</td>
</tr>
<tr>
<td>Ile</td>
<td>Arg</td>
<td>His</td>
<td>Pro</td>
</tr>
<tr>
<td>Glu</td>
<td>His</td>
<td>Phe</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Gly</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Pro</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Asp</td>
<td>125</td>
<td>130</td>
</tr>
<tr>
<td>Arg</td>
<td>Val</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td>His</td>
<td>Ser</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Ser</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Leu</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Asn</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>140</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Gly</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>Val</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Ile</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Leu</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Gly</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>160</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Glu</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Leu</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Ile</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>Gln</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Val</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>170</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Pro</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Leu</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Val</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Thr</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>185</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Ile</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>Asp</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Ala</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Val</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>Tyr</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Thr</td>
<td>Tyr</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Glu</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Gly</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Ser</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Gln</td>
<td>Gln</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Phe</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Val</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Ser</td>
<td>Lys</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Thr</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Ile</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Leu</td>
<td>Lys</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>235</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Gly</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Tyr</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Thr</td>
<td>Val</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>Val</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Thr</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>245</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Asp</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Ala</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Lys</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Ser</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Tyr</td>
<td>Arg</td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>265</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Glu</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Lys</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Met</td>
<td>Ala</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Ile</td>
<td>Pro</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>275</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>285</td>
<td></td>
</tr>
</tbody>
</table>
Leu Lys Phe Thr Gln Val Thr Pro Thr Ser Leu Ser Ala Gln Trp
 290 295 300
Thr Pro Pro Asn Val Gln Leu Thr Gly Tyr Arg Val Arg Val Thr
 305 310 315
Pro Lys Glu Lys Thr Gly Pro Met Lys Glu Ile Asn Leu Ala Pro
 320 325 330
Asp Ser Ser Ser Val Val Val Ser Gly Leu Met Val Ala Thr Lys
 335 340 345
Tyr Glu Val Ser Val Tyr Ala Leu Lys Asp Thr Leu Thr Ser Arg
 350 355 360
Pro Ala Gln Gly Val Val Thr Leu Glu Asn Val Ser Pro Pro
 365 370 375
Arg Arg Ala Arg Val Thr Asp Ala Thr Glu Thr Thr Ile Thr Ile
 380 385 390
Ser Trp Arg Thr Lys Thr Thr Ile Thr Gly Phe Gln Val Asp
 395 400 405
Ala Val Pro Ala Asn Gly Gln Thr Pro Ile Gln Arg Thr Ile Lys
 410 415 420
Pro Asp Val Arg Ser Tyr Thr Ile Thr Gly Leu Gln Pro Gly Thr
 425 430 435
Asp Tyr Lys Ile Tyr Leu Tyr Thr Leu Asn Asn Ala Arg Ser
 440 445 450
Ser Pro Val Val Ile Asp Ala Ser Thr Ala Ile Asp Ala Pro Ser
 455 460 465
Asn Leu Arg Phe Leu Ala Thr Thr Pro Asn Ser Leu Leu Val Ser
| 470 | 475 | 480 |
| Trp Gln Pro Pro Arg Ala Arg Ile Thr Gly Tyr Ile Ile Lys Tyr |
| 485 | 490 | 495 |
| Glu Lys Pro Gly Ser Pro Pro Arg Glu Val Val Pro Arg Pro Arg |
| 500 | 505 | 510 |
| Pro Gly Val Thr Glu Ala Thr Ile Thr Gly Leu Glu Pro Gly Thr |
| 515 | 520 | 525 |
| Glu Tyr Thr Ile Tyr Val Ile Ala Leu Lys Asn Asn Gln Lys Ser |
| 530 | 535 | 540 |
| Glu Pro Leu Ile Gly Arg Lys Lys Thr |
| 545 |

SEQ. ID NO. 24

| 序列: |
|---|---|---|---|---|
| Pro Thr Asp Leu Arg Phe Thr Asn Ile Gly Pro Asp Thr Met Arg |
| 1 | 5 | 10 | 15 |
| Val Thr Trp Ala Pro Pro Pro Ser Ile Asp Leu Thr Asn Phe Leu |
| 20 | 25 | 30 |
| Val Arg Tyr Ser Pro Val Lys Asn Glu Glu Asp Val Ala Glu Leu |
| 25 | 35 | 40 | 45 |
Ser Ile Ser Pro Ser Asp Asn Ala Val Val Leu Thr Asn Leu Leu
50 55 60
Pro Gly Thr Glu Tyr Val Val Ser Val Ser Ser Tyr Glu Gln
65 70 75
His Glu Ser Thr Pro Leu Arg Gly Arg Gln Lys Thr Gly Leu Asp
80 85 90
Ser Pro Thr Gly Ile Asp Phe Ser Asp Ile Thr Ala Asn Ser Phe
95 100 105
Thr Val His Trp Ile Ala Pro Arg Ala Thr Ile Thr Gly Tyr Arg
110 115 120
Ile Arg His His Pro Glu His Phe Ser Gly Arg Pro Arg Glu Asp
125 130 135
Arg Val Pro His Ser Arg Asn Ser Ile Thr Leu Thr Asn Leu Thr
140 145 150
Pro Gly Thr Glu Tyr Val Val Ser Ile Val Ala Leu Asn Gly Arg
155 160 165
Glu Glu Ser Pro Leu Leu Ile Gly Gln Gln Ser Thr Val Ser Asp
170 175 180
Val Pro Arg Asp Leu Glu Val Val Ala Ala Thr Pro Thr Ser Leu
185 190 195
Leu Ile Ser Trp Asp Ala Pro Ala Val Thr Val Arg Tyr Tyr Arg
200 205 210
Ile Thr Tyr Gly Glu Thr Gly Gly Asn Ser Pro Val Gln Glu Phe
215 220 225
Thr Val Pro Gly Ser Lys Ser Thr Ala Thr Ile Ser Gly Leu Lys

94
<table>
<thead>
<tr>
<th>230</th>
<th>235</th>
<th>240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pro Gly Val Asp Tyr Thr Ile Thr Val Tyr Ala Val Thr Gly Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>250</td>
<td>255</td>
</tr>
<tr>
<td>Gly Asp Ser Pro Ala Ser Ser Lys Pro Ile Ser Ile Asn Tyr Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>260</td>
<td>265</td>
</tr>
<tr>
<td>Thr Glu Ile Asp Lys Pro Ser Met Ala Ile Pro Ala Pro Thr Asp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>280</td>
<td>285</td>
</tr>
<tr>
<td>Leu Lys Phe Thr Gln Val Thr Pro Thr Ser Leu Ser Ala Gln Trp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>295</td>
<td>300</td>
</tr>
<tr>
<td>10</td>
<td>Thr Pro Pro Asn Val Gln Leu Thr Gly Tyr Arg Val Arg Val Thr</td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>310</td>
<td>315</td>
</tr>
<tr>
<td>Pro Lys Glu Lys Thr Gly Pro Met Lys Glu Ile Asn Leu Ala Pro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>325</td>
<td>330</td>
</tr>
<tr>
<td>Asp Ser Ser Ser Val Val Ser Gly Leu Met Val Ala Thr Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>335</td>
<td>340</td>
</tr>
<tr>
<td>Tyr Glu Val Ser Val Tyr Ala Leu Lys Asp Thr Leu Thr Ser Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>355</td>
<td>360</td>
</tr>
<tr>
<td>Pro Ala Gln Gly Val Val Thr Leu Glu Asn Val Ser Pro Pro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365</td>
<td>370</td>
<td>375</td>
</tr>
<tr>
<td>20</td>
<td>Arg Arg Ala Arg Val Thr Asp Ala Thr Glu Thr Thr Ile Thr Ile</td>
<td></td>
</tr>
<tr>
<td>380</td>
<td>385</td>
<td>390</td>
</tr>
<tr>
<td>Ser Trp Arg Thr Lys Thr Glu Thr Ile Thr Gly Phe Gln Val Asp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>395</td>
<td>400</td>
<td>405</td>
</tr>
<tr>
<td>Ala Val Pro Ala Asn Gly Gln Thr Pro Ile Gln Arg Thr Ile Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>410</td>
<td>415</td>
</tr>
<tr>
<td>Amino Acids</td>
<td>Sequence</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Pro Asp Val Arg Ser Tyr Thr Ile Thr Gly Leu Gln Pro Gly Thr</td>
<td>425 430 435</td>
<td></td>
</tr>
<tr>
<td>Asp Tyr Lys Ile Tyr Leu Tyr Thr Leu Asn Asp Asn Ala Arg Ser</td>
<td>440 445 450</td>
<td></td>
</tr>
<tr>
<td>Ser Pro Val Val Ile Asp Ala Ser Thr Ala Ile Asp Ala Pro Ser</td>
<td>455 460 465</td>
<td></td>
</tr>
<tr>
<td>Asn Leu Arg Phe Leu Ala Thr Thr Pro Asn Ser Leu Leu Val Ser</td>
<td>470 475 480</td>
<td></td>
</tr>
<tr>
<td>Trp Gln Pro Pro Arg Ala Arg Ile Thr Gly Tyr Ile Ile Lys Tyr</td>
<td>485 490 495</td>
<td></td>
</tr>
<tr>
<td>Glu Lys Pro Gly Ser Pro Pro Arg Glu Val Val Pro Arg Pro Arg</td>
<td>500 505 510</td>
<td></td>
</tr>
<tr>
<td>Pro Gly Val Thr Glu Ala Thr Ile Thr Gly Leu Gln Pro Gly Thr</td>
<td>515 520 525</td>
<td></td>
</tr>
<tr>
<td>Glu Tyr Thr Ile Tyr Val Ile Ala Leu Lys Asn Asn Gln Lys Ser</td>
<td>530 535 540</td>
<td></td>
</tr>
<tr>
<td>Glu Pro Leu Ile Gly Arg Lys Thr Asp Glu Leu Pro Gln Leu</td>
<td>545 550 555</td>
<td></td>
</tr>
<tr>
<td>Val Thr Leu Pro His Pro Asn Leu His Gly Pro Glu Ile Leu Asp</td>
<td>560 565 570</td>
<td></td>
</tr>
</tbody>
</table>

SEQ. ID NO. 25

- **长度:** 274
- **类型:** 氨基酸
- **链型:** 单链
- **拓扑结构:** 线性
- **分子类型:** 肽

序列:
<table>
<thead>
<tr>
<th>Position</th>
<th>Pro</th>
<th>Thr</th>
<th>Asp</th>
<th>Leu</th>
<th>Arg</th>
<th>Phe</th>
<th>Thr</th>
<th>Asn</th>
<th>Ile</th>
<th>Gly</th>
<th>Pro</th>
<th>Asp</th>
<th>Thr</th>
<th>Met</th>
<th>Arg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td></td>
</tr>
</tbody>
</table>
Ile Thr Tyr Gly Glu Thr Gly Gly Asn Ser Pro Val Gln Glu Phe
215 220 225
Thr Val Pro Gly Ser Lys Ser Thr Ala Thr Ile Ser Gly Leu Lys
230 235 240
Pro Gly Val Asp Tyr Thr Ile Thr Val Tyr Ala Val Thr Gly Arg
245 250 255
Gly Asp Ser Pro Ala Ser Ser Lys Pro Ile Ser Ile Asn Tyr Arg
260 265 270
Thr Glu Ile Asp

SEQ. ID NO. 26

15 长度: 1374
类型: 核酸
链型: 双链
拓扑结构: 线性
分子类型: 其它核酸（编码人工多肽的 DNA）

序列:
ATGCCACTG ACCTGCGATT CACCAACATT GGTCCAGACA CCATGCGTGT CACCTGGGCT 60
CCACCCCCAT CCATGATTT AACAAACTTC CTGGTGCGTT ACTCACCTGT GAAAAATGAG 120
GAAGATGTTG CAGAGTTGTC AATTTCTCCT TCAGACAATT CAGTGCTTTT ACAAAATCTC 180
CTG CCTGTTTA CAGGATATGT AGTGAATGTC TCCAGTGCTCT ACGAACAACA TGACAGCACA 240
CCTTTAGAG GAAGACAGAA AACAGGCTTT GATTCCCCAA CTGGCATTTGA CTTTCTGAT 300
ATTACTCCA ACTCTTTTAC TGTGCACCTG ATTTGACTCTG GAGCCACCAT CACTGGCTAC 360
AGGATCCGCG ATCATCCCCG GCACTTCAGT GGGAGACCTC GAGAAAGATCG GGTGCCCCAC 420
TCTGGAATT CCATCACCCT CACCAACCTC ACTCCAGGCA CAGAGTATGT GGTCACTTC 480
GTTGCTTTTA ATGGCAGAGA GGGAGGTCGC TTATAGTATG GCCAACAATC AACAGTTTCT 540
GATGCTCCTT TGGCAGCAGT GAGATATTAC AGATCACATT ACGGAGAAAC AGGAGAAAT 600
AGCGGTAAC GAGGATCCTC GGGCTCTGCT AGGAGGCTA CAGCTACCAT CAGCCGACCT 720
SEQ. ID NO. 27

长度: 1416

类型: 核酸

链型: 双链

拓扑结构: 线性

分子类型: 其它核酸（编码人工多肽的 DNA）

序列:

```
CCCACGTACC TGGGATTCAC CAACATGGTG CACACACCA TGCGTGTCAC CTGGGCTCCA 60
CCCCCATCCA TGGATTACA CAACACTCTG CTGGTCTACT CACCTGCTGAA AAATGAGGAA 120
GATGGTTCAG AGTGTGCAAT TTCTCCTCTA GAGAACATCG GTGGTCTTAA ACATCTCCTG 180
CTTGGTACG AATATGGTG AGTGTGCTCC AGTGTCTACG AACAACATGA GAGCAGCACCT 240
CTTAGAGAA GACAGAAGAG AGTCTTTTGT TCCCAACATG GCATGACTTT TCTGATATT 300
ACTGCCAACCT CTTTTACTGT GCACCTGATT GCTCCTCGAC CCAACATCAC TGSCCTACGG 360
ATCCGCCATC ATCCCCAGCA CTTCAGTGGA AGACCTTCA GAGATCGGTG GCCCCTACT 420
CGGAATTCCA TCACCCCTAC CAACCTCTAC CACCAGCAGG AGTATCTGTG CAGCATCTGG 480
GCTCCTAATG GCAGAGAGGA AAGCTTCTTA TTGATGGGCA AACAATCAAC AGTTCTGTAT 540
GTCCCAGGG ACCTGGAATG TGTTGCTGCG ACCCACCACA GCTCATTGAT CAGCTGGGAT 600
GCTCCTGTCT TGACAGTGAT ATTTACAGG ATCACCCTACG GAGAAACAGG AGGAAATAGC 660
CGTGTCAGG AGTCTTCTGG CCGCGAGGAC AAGTCTAGC CTACCATGAC CGGCTTTAAA 720
CCTTGGAATG ATTATACCAT CACTGCTGT GCTGTCACTG GCGGTGGAGA CAGCCCGCA 780
AGCAGCAAGC CAATTGCCAT TAATCCCGA ACGAAATGG ACAAGCTATC CAGGCTATT 840
```
SEQ. ID NO. 28
长度: 35
类型: 氨基酸
链型: 单链
拓扑结构: 线性
分子类型: 肽
序列:
20 Gly Gly Arg Gly Thr Pro Gly Lys Pro Gly Pro Arg Gly Gln Arg
1 5 10 15
Gly Pro Thr Gly Pro Arg Gly Glu Arg Gly Pro Arg Gly Ile Thr
20 25 30
Gly Lys Pro Gly Pro
35

SEQ. ID NO. 29
长度: 302
类型: 氨基酸
链型: 单链
拓扑结构: 线性
分子类型: 肽
序列:
Pro Thr Asp Leu Arg Phe Thr Asn Ile Gly Pro Asp Thr Met Arg
1 5 10 15
Val Thr Trp Ala Pro Pro Pro Ser Ile Asp Leu Thr Asn Phe Leu
20 25 30
Val Arg Tyr Ser Pro Val Lys Asn Glu Glu Asp Val Ala Glu Leu
35 40 45
Ser Ile Ser Pro Ser Asp Asn Ala Val Val Leu Thr Asn Leu Leu
50 55 60
Pro Gly Thr Glu Tyr Val Val Ser Val Ser Ser Val Tyr Glu Gln
65 70 75
His Glu Ser Thr Pro Leu Arg Gly Arg Gln Lys Thr Gly Leu Asp
80 85 90
Ser Pro Thr Gly Ile Asp Phe Ser Asp Ile Thr Ala Asn Ser Phe
95 100 105
Thr Val His Trp Ile Ala Pro Arg Ala Thr Ile Thr Gly Tyr Arg
110 115 120
Ile Arg His His Pro Glu His Phe Ser Gly Arg Pro Arg Glu Asp
125 130 135
Arg Val Pro His Ser Arg Asn Ser Ile Thr Leu Thr Asn Leu Thr
140 145 150
Pro Gly Thr Glu Tyr Val Val Ser Ile Val Ala Leu Asn Gly Arg
155 160 165
Glu Glu Ser Pro Leu Leu Ile Gly Gin Gln Ser Thr Val Ser Asp
170 175 180
Val Pro Arg Asp Leu Glu Val Val Ala Ala Thr Pro Thr Ser Leu
185 190 195
Leu Ile Ser Trp Asp Ala Pro Ala Val Thr Val Arg Tyr Tyr Arg
200 205 210
Ile Thr Tyr Gly Glu Thr Gly Gly Asn Ser Pro Val Gln Glu Phe
215 220 225
Thr Val Pro Gly Ser Lys Ser Thr Ala Thr Ile Ser Gly Leu Lys
230 235 240
Pro Gly Val Asp Tyr Thr Ile Thr Val Tyr Ala Val Thr Gly Arg
245 250 255
Gly Asp Ser Pro Ala Ser Ser Lys Pro Ile Ser Ile Asn Tyr Arg
260 265 270
Thr Glu Ile Asp Lys Pro Ser Asp Glu Leu Pro Gln Leu Val Thr
275 280 285
Leu Pro His Pro Asn Leu His Gly Pro Glu Ile Leu Asp Val Pro
290 295 300
Ser Thr

SEQ. ID NO. 30
长度: 573
类型: 肽
链型: 单链
拓扑结构: 线性
分子类型: 肽
序列:
<table>
<thead>
<tr>
<th>Residues</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>Met Ala Ala Ser Ala Ile Pro Ala Pro Thr Asp Leu Lys Phe Thr</td>
</tr>
<tr>
<td>6-10</td>
<td>Gln Val Thr Pro Thr Ser Leu Ser Ala Gln Trp Thr Pro Pro Asn</td>
</tr>
<tr>
<td>11-15</td>
<td>Val Gln Leu Thr Gly Tyr Arg Val Arg Val Thr Pro Lys Glu Lys</td>
</tr>
<tr>
<td>16-20</td>
<td>Thr Gly Pro Met Lys Glu Ile Asn Leu Ala Pro Asp Ser Ser Ser</td>
</tr>
<tr>
<td>21-25</td>
<td>Val Val Val Ser Gly Leu Met Val Ala Thr Lys Tyr Glu Val Ser</td>
</tr>
<tr>
<td>26-30</td>
<td>Val Tyr Ala Leu Lys Asp Thr Leu Thr Ser Arg Pro Ala Gln Gly</td>
</tr>
<tr>
<td>31-35</td>
<td>Val Val Thr Thr Leu Glu Asn Val Ser Pro Pro Arg Arg Ala Arg</td>
</tr>
<tr>
<td>36-40</td>
<td>Val Thr Asp Ala Thr Glu Thr Thr Ile Thr Ile Ser Trp Arg Thr</td>
</tr>
<tr>
<td>41-45</td>
<td>Lys Thr Glu Thr Ile Thr Gly Phe Gln Val Asp Ala Val Pro Ala</td>
</tr>
<tr>
<td>46-50</td>
<td>Asn Gly Gln Thr Pro Ile Gln Arg Thr Ile Lys Pro Asp Val Arg</td>
</tr>
<tr>
<td>51-55</td>
<td>Ser Tyr Thr Ile Thr Gly Leu Gln Pro Gly Thr Asp Tyr Lys Ile</td>
</tr>
<tr>
<td>56-60</td>
<td>Tyr Leu Tyr Thr Leu Asn Asp Asn Ala Arg Ser Ser Pro Val Val</td>
</tr>
<tr>
<td></td>
<td>170</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>Ile Asp Ala Ser Thr Ala Ile Asp Ala Pro Ser Asn Leu Arg Phe</td>
</tr>
<tr>
<td>185</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>Leu Ala Thr Thr Pro Asn Ser Leu Leu Val Ser Trp Gln Pro Pro</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Arg Ala Arg Ile Thr Gly Tyr Ile Ile Lys Tyr Glu Lys Pro Gly</td>
</tr>
<tr>
<td>215</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>Ser Pro Pro Arg Glu Val Val Pro Arg Pro Arg Pro Gly Val Thr</td>
</tr>
<tr>
<td>230</td>
<td>235</td>
</tr>
<tr>
<td>10</td>
<td>Glu Ala Thr Ile Thr Gly Leu Glu Pro Gly Thr Glu Tyr Thr Ile</td>
</tr>
<tr>
<td>245</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>Tyr Val Ile Ala Leu Lys Asn Asn Gln Lys Ser Glu Pro Leu Ile</td>
</tr>
<tr>
<td>260</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>Gly Arg Lys Thr Ala Ile Pro Ala Pro Thr Asp Leu Lys Phe</td>
</tr>
<tr>
<td>275</td>
<td>280</td>
</tr>
<tr>
<td>15</td>
<td>Thr Gln Val Thr Pro Thr Ser Leu Ser Ala Gln Trp Thr Pro Pro</td>
</tr>
<tr>
<td>290</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>Asn Val Gln Leu Thr Gly Tyr Arg Val Arg Val Thr Pro Lys Glu</td>
</tr>
<tr>
<td>305</td>
<td>310</td>
</tr>
<tr>
<td>20</td>
<td>Lys Thr Gly Pro Met Lys Glu Ile Asn Leu Ala Pro Asp Ser Ser</td>
</tr>
<tr>
<td>320</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>Ser Val Val Val Ser Gly Leu Met Val Ala Thr Lys Tyr Glu Val</td>
</tr>
<tr>
<td>335</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>Ser Val Tyr Ala Leu Lys Asp Thr Leu Thr Ser Arg Pro Ala Gln</td>
</tr>
<tr>
<td>350</td>
<td>355</td>
</tr>
<tr>
<td>Position</td>
<td>Amino Acid Sequence</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>365</td>
<td>Gly Val Val Thr Thr Leu Glu Asn Val Ser Pro Pro Arg Arg Ala</td>
</tr>
<tr>
<td>370</td>
<td>Arg Val Thr Asp Ala Thr Glu Thr Thr Ile Thr Ile Ser Trp Arg</td>
</tr>
<tr>
<td>380</td>
<td>Thr Lys Thr Glu Thr Ile Thr Gly Phe Gln Val Asp Ala Val Pro</td>
</tr>
<tr>
<td>385</td>
<td>Ala Asn Gly Gln Thr Pro Ile Gln Arg Thr Ile Lys Pro Asp Val</td>
</tr>
<tr>
<td>390</td>
<td>Arg Ser Tyr Thr Ile Thr Gly Leu Gln Pro Gly Thr Asp Tyr Lys</td>
</tr>
<tr>
<td>395</td>
<td>Ile Tyr Leu Tyr Thr Leu Asn Asp Asn Ala Arg Ser Ser Pro Val</td>
</tr>
<tr>
<td>400</td>
<td>Val Ile Asp Ala Ser Thr Ala Ile Asp Ala Pro Ser Asn Leu Arg</td>
</tr>
<tr>
<td>405</td>
<td>Phe Leu Ala Thr Thr Pro Asn Ser Leu Leu Val Ser Trp Gln Pro</td>
</tr>
<tr>
<td>410</td>
<td>415</td>
</tr>
<tr>
<td>425</td>
<td>430</td>
</tr>
<tr>
<td>440</td>
<td>445</td>
</tr>
<tr>
<td>450</td>
<td>460</td>
</tr>
<tr>
<td>470</td>
<td>475</td>
</tr>
<tr>
<td>485</td>
<td>490</td>
</tr>
<tr>
<td>500</td>
<td>505</td>
</tr>
<tr>
<td>515</td>
<td>520</td>
</tr>
<tr>
<td>530</td>
<td>535</td>
</tr>
</tbody>
</table>
SEQ. ID NO. 31

长度: 37
类型: 核酸
链型: 单链
拓扑结构: 线性
分子类型: 其它核酸（合成 DNA）
序列:
AAACCATGGC AGCTAGCAAT GTCAGCAGC CAAGAAG

SEQ. ID NO. 32

长度: 37
类型: 核酸
链型: 单链
拓扑结构: 线性
分子类型: 其它核酸（合成 DNA）
序列:
AAAGGATCCC TAACTAGTGGAAGAACATC CAAGATC

SEQ. ID NO. 33

长度: 1722
类型: 核酸
链型: 双链
拓扑结构: 线性
分子类型: 其它核酸（编码人工多肽的 DNA）
序列:
ATGGCAGCTA GGGCTATTCC TGCAACCAAAT GACCTGAAAGT TCACCTCAGGT CACACCCACA 60
AGCCCTGAGG CCCCAGTGAC ACCACCAAAAT GTTTCAGCTCA CTGGATATCG AGTGCGGGTG 120
ACCCCCAAGG AGAAGACCGG ACCAAATGAAA GAAATCAACC TTGCTCCTGA CAGCTCATCC 180
GTCAGTGTAT CAGGACTTAT GGGTGGCCACC AAATATGAAAG TGAAGTGTCTA TGCTCCTTAA 240
GACACTTTGA CAAGCAGACC AGCTCAGGAT GTTGTCAACCA CTCTGAGAAA TGTACGCCCCA 300
CCAAAGAGGG CTTGTTGTGC AGATGCTACT GAGACCCACA TACACATTGAG CTGGAGAACC 360
AAGACTGAGA CGATCAGCTGTT CTTCAAGGTG GATGCGGTTC CAGCCTAAGCC CCAGACTCCA 420
ATCCAGAGAA CCATCAAGCC AGATGTCCAG AGCTACACCA TCACAGGTTC ACAACACCGG 480
ACTGACTACA AGATCTACTT GTACACCTGTT AATGACAATG CTCGGAGCTC CCGCTGTTGG 540
ATCGAGCCCT CCACTGCACCA TGATGCACCA TCCAACCTGC GTTTCTTGGC CACCACCCAC 600
AATTCCTTGC TGTTATCAGT GCAGCCGCCA GTGTCGCCGA TTACCCGCTA CATCATCAAG 660
TATGAGAAGGC CTGGGCTCTCC TCCCAGAGAA GTGGTCCTTC GCACCCGCCA TTGTCGCCA 720
GAGGCCTACTA TTACTGCGCT GGAACCCGGA ACCGAATATA CAATTATATG CATGCGCCTG 780
AAGAATAATC AGAAGAGCAGA GCCCCGTGAT TGAAGGAAAA AGACTAGCGC TATTCCCTCA 840
CCAAGCTGCC CCGAGTTCAC TCAGGTCACA CCCCAAGGCC TGAGCAGCCA GTGGACACCA 900
CCCAAGTCTG AGCTCAGCTG ATATCGAGTG CGGGTGACCC CCAAGGAGAA GACCGGCCA 960
ATGAAAGAAA TCAACCTTGC TCTGACAGC TCATCCGGTG TTGTATCAGG ACGTATGTTG 1020
GCCACCAATA ATGAAGGTAG TGTCATATGC CTTAAGGACA CTTTGAACAG CAGACCCAGCT 1080
CAGGTTGTGC TCACACACCTG GGAAGATGTC AGCCCAACCA GAAGGGCTCG TGTGACGAGAT 1140
GCTACTGAGA CCACCATCAC CATTAGCTGG AGAACCAAAGA CTGAGGGCTTC CACTGGGCTTC 1200
CAAAGTGTG AGCTTCCAGC CAATGGCCAG ACTCCCATGC AGAAGACCAT CAACGCCAGAT 1260
GTCGAAGACT ACACCATCAC AGGTTTACAA CCCAGCAGCTG ACTACAAGAT CTACCTGATAC 1320
ACCTTGATAG ACAATGCTCG GAGTCCCTGT GGTGTACGCG ACGCCTCCAC TGCCATTGAT 1380
GCCACCATCA ACCTGGCGTTT CTTGGCCACC ACACCCAAAT CTTTGCTGTT ATCATGCGCAG 1440
CCGCCACGGTGCAGGATTACCGGTACATCATCATCAAGTTATGAGAAGCTGGGTCTCTCTCCC 1500
AGAGAAGTGGGCTCTCGGCCCGCCCTGGTGTGCAAGAGGCTACTATTACCGGCTGGAA 1560
CGGGAAACCGATATACATTTATGTACATTGCCTGAAGATAATCAGAGAGCGGAGCCTCC 1620
CTGATTGGAAAGGAAAGACAGAGACGCTTCGCCAACCCTGGTAACCTTCCACCCCCCC 1680
AATCTTCATGACCCAGAGATCTGGATGTTCTTCCACTATG 1722

SEQ. ID NO. 34
长度: 412
类型: 氨基酸
链型: 单链
拓扑结构: 线性
分子类型: 肽
序列:

Met Ser Pro Ile Leu Gly Tyr Trp Lys Ile Lys Gly Leu Val Gln
 5 10 15
Pro Thr Arg Leu Leu Leu Glu Tyr Leu Glu Lys Tyr Glu Glu
 20 25 30
His Leu Tyr Glu Arg Asp Glu Gly Asp Lys Trp Arg Asn Lys Lys
 35 40 45
Phe Glu Leu Gly Leu Glu Phe Pro Asn Leu Pro Tyr Tyr Ile Asp
<table>
<thead>
<tr>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly Asp Val Lys Leu Thr Gln Ser Met Ala Ile Ile Arg Tyr Ile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>75</td>
</tr>
<tr>
<td>Ala Asp Lys His Asn Met Leu Gly Gly Cys Pro Lys Glu Arg Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>85</td>
<td>90</td>
</tr>
<tr>
<td>Glu Ile Ser Met Leu Glu Gly Ala Val Leu Asp Ile Arg Tyr Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>100</td>
<td>105</td>
</tr>
<tr>
<td>Val Ser Arg Ile Ala Tyr Ser Lys Asp Phe Glu Thr Leu Lys Val</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>115</td>
<td>120</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp Phe Leu Ser Lys Leu Pro Glu Met Leu Lys Met Phe Glu Asp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>130</td>
<td>135</td>
</tr>
<tr>
<td>Arg Leu Cys His Lys Thr Tyr Leu Asn Gly Asp His Val Thr His</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>145</td>
<td>150</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro Asp Phe Met Leu Tyr Asp Ala Leu Asp Val Val Leu Tyr Met</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>160</td>
<td>165</td>
</tr>
<tr>
<td>Asp Pro Met Cys Leu Asp Ala Phe Pro Lys Leu Val Cys Phe Lys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>175</td>
<td>180</td>
</tr>
<tr>
<td>Lys Arg Ile Glu Ala Ile Pro Gln Ile Asp Lys Tyr Leu Lys Ser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>190</td>
<td>195</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser Lys Tyr Ile Ala Trp Pro Leu Glu Gly Trp Gln Ala Thr Phe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>205</td>
<td>210</td>
</tr>
<tr>
<td>Gly Gly Gly Asp His Pro Pro Lys Ser Asp Leu Ile Glu Gly Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>220</td>
<td>225</td>
</tr>
<tr>
<td>Gly Ile Pro Arg Asn Ser Gly Ala Pro Pro Arg Leu Ile Cys Asp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>235</td>
<td>240</td>
</tr>
</tbody>
</table>
Ser Arg Val Leu Gln Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu
245 250 255
Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn
260 265 270
5 Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg
275 280 285
Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala
290 295 300
Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn
305 310 315
10 Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala
320 325 330
Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly
335 340 345
15 Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala
350 355 360
Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg
365 370 375
Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly
380 385 390
20 Glu Ala Cys Arg Thr Gly Asp Arg Leu Ala Met Asp Pro Leu Glu
395 400 405
Ser Thr Arg Ala Ala Ala Ala Ser
410
SEQ. ID NO. 35
长度：24
类型：核酸
链型：单链
拓扑结构：线性
分子类型：其它核酸（合成 DNA）
序列：
GCTCCCTCTG GGCCTCCCAG TCCT

SEQ. ID NO. 36
长度：24
类型：核酸
链型：单链
拓扑结构：线性
分子类型：其它核酸（合成 DNA）
序列：
GTTGGTGAGG GAGGTGGTG ATAT

SEQ. ID NO. 37
长度：33
类型：核酸
链型：单链
拓扑结构：线性
分子类型：其它核酸（合成 DNA）
序列：
GGCCTCCCGA ATTCGGGTGC CCCACCACGC CTC

SEQ. ID NO. 38
长度：33
类型：核酸
链型：单链
拓扑结构：线性
分子类型：其它核酸（合成 DNA）
序列:
CCCACGTGGA TCCATGGCTA ATCTGCCCC TGT

SEQ. ID NO. 39
长度: 1239

类型：核酸
链型：双链
拓扑结构：线性
分子类型：其它核酸（编码人工多肽的DNA）

序列:
ATGTTCCCTTA TACTAGGTGA TGGAAAAATT AAGGGGCTTTG TGCAACCCAC TCGACTTCTT 60
TTGGAATATTC TTGAAGAAAA ATATGAAAGAG CATTGTATTG AGCCGATGA AGGTGATAAAA 120
TGGCGAAGAC AAAAGGTTGGA ATTTGGTTTG GAGTTTCCCC ATCTTCTAAT TATATATGAT 180
GGTGATGTGA AATTAACACAA GTCTATGGCC ATCATAGGTT ATATAGGTGA CAAGCACAAC 240
ATGTGGGTTG GTTGTCCAAA AGAGCTGCAA GAGATTTCAA TGGTTGAAGG AGCGGTTTTG 300
GATATTAGAT ACGGTGTTTC GAGAATTGCA TATAGTAAAG ACTTTGAACA CTCTAAAGTT 360
GATTTTCTTA GCAAGCTACC TGAATGCGTT AAAATGTGGC AAGATCGCTT ATGTGATAAA 420
ACATAATTAA ATGTTGATCA TGTAACCCAT CCTGACCTCA TGGTGATAG CGCTCTTGTGAT 480
GTTGTTTTAT ACATGGACCC AATGTGCTTG GATGGGTTCC CAAATATTGT TTGTGTTAAA 540
AAACGTATTTG AAGCTATCCC ACAAAATTTG AAGTACTTGA AATCCGGAA ATATATAGCA 600
TGGCGCTTTGC AGGCTGCGCA AGCGACGGT GGTGGTGCCG ACCATCTTCC AAAATCGGGT 660
CTGATCGGAA GTGCTGGGAT CCCAGGAAT TCCGGTGCCC CACCCAGCCT CATCTGGTAC 720
AGCCGAGTCC TGGAGAGTTA CCTCTTGGAG GCCAAGGAGG CCGAAAATAT CAGCGAGGC 780
TGTTGCTGAAAC ACTGACAGCTT GAATGAAAT ATCAGCTGCC CAGACACCAA AGCTAAATTTC 840
TATGCTCGGA AGAGGATGGA GTCCGGCGAG CACGCGGTAG AAGTGCGCAA GGGCTTGCCC 900
CTGGTGCTGG AAGCTGTCTT GGGGGCCAG GCCCTGTGTTG TCAACCTTCC CCGCCCTGG 960
GAGCGCGCTGC AGCTGCATGG GTGAAAGGCA GTCAAGTGGCC TGGGAGCTGGT CACCACCTCTG 1020
CTCTGGGCTC TGGAGCGCCA GAAGAGGCC ATGTCCTGGCC CATGTCCTCC TTCGAAGCTG 1080
CCACTCAGAA CAATCTGCTG TGACACTTTC CGCAAAACTCT TCGGAGCTCTA CTCCAATTTC 1140
CTCCGGGGAA AGCTGAAGCT GTACACAGGG GAGGCTGCGA GGACAGGGGA CAGATTAGCC 1200
ATGGATCCTTC TAGAGTCGAC TCGAGCCGGG GCATCGTGA 1239
图 1
图 2
图 3
图 4

多肽

转化效率 (%)
图 5
图 6
图 7
图 8
图 9
图 10
图 11
图 13

基因转移效率 (%) 与 多肽浓度 (pmol/cm²) 之间的关系图。
图 14
图 15
图 16
图 17
图 19
图 20
图 21
图 22
图 23
图 24
图 25
图 26