发明名称
包括至少一种抗癌药和至少一种聚合物的药物组合物

摘要
本发明涉及新型的和改进的抗癌药组合物，优选纳米级类，例如聚合物和多肽类，它们的衍生物或它们的类似物，制备这些组合物的方法和将粒子分级为处在特定的粒度范围内的方法，和使用这些组合物治疗癌症患者的方法，其提供了减少的化疗诱导的副作用，特别是减少的化疗诱导的脱发。组合物为使得在所述组合物中实质上不含游离的药物。
1. 具有减少的化学诱导的副作用和可脱的感染治疗用组合物，包括至少一种抗癌药和至少一种包封、吸附或缀合所述抗癌药至表面上的聚合物的粒子，其中所述至少一种抗癌药选自紫杉醇和多西他赛，和所述至少一种聚合物选自白蛋白和 d, 1- 乳酸 - 羟基乙酸共聚物，其中所述粒子的 \(D10 \geq 120 \text{nm} \), \(D50 \) 为 200 nm 和 \(D90 \leq 350 \text{nm} \)。

2. 权利要求 1 的癌症治疗用组合物，其中所述组合物不含游离药物，并且其中所述药物完全地与聚合物结合。

3. 权利要求 1 的癌症治疗用组合物，其中所述粒子的粒度分布比 \(D90/D10 \) 小于 4.0。

4. 权利要求 1 的癌症治疗用组合物，其中所述粒子的粒度分布比 \(D90/D10 \) 小于 3.0。

5. 权利要求 1 的癌症治疗用组合物，其中所述粒子的粒度分布比 \(D90/D10 \) 小于 2.0。

6. 权利要求 1 的癌症治疗用组合物，其中所述组合物包括 0.5 重量%到 99.5 重量%的所述抗癌药和 2.0 重量%到 99.0 重量%的所述聚合物。

7. 权利要求 1 的癌症治疗用组合物，其中所述抗癌药是紫杉醇并且聚物是白蛋白。

8. 权利要求 1 的癌症治疗用组合物，另外包括温度和 / 或 pH 敏感性聚合物，所述温度和 / 或 pH 敏感性聚合物选自聚 N- 乙酰基丙烯酰胺、聚 N- 异丙基丙烯酰胺、N- 异丙基丙烯酰胺 - 丙烯酰胺共聚物、聚丙烯酰胺、聚甲基丙烯酰胺。

9. 权利要求 8 的癌症治疗用组合物，其中所述温度和 / 或 pH 敏感性聚合物是聚 N- 异丙基丙烯酰胺。

10. 权利要求 6 的癌症治疗用组合物，另外包括第二聚合物，其量占所述组合物的 0.5 重量%到 99.0 重量%。

11. 权利要求 6 的癌症治疗用组合物，第二聚合物的量占所述组合物的 1.0 重量%到 95.0 重量%。

12. 权利要求 6 的癌症治疗用组合物，第二聚合物的量占所述组合物的 2.0 重量%到 90.0 重量%。

13. 权利要求 1 的癌症治疗用组合物，其中所述组合物为胶态递送系统。

14. 权利要求 13 的癌症治疗用组合物，其中胶态递送系统为冻干形式。

15. 权利要求 13 的癌症治疗用组合物，其中胶态递送系统为使得粒子悬浮在生物相容性水性液体中。

16. 权利要求 1 的癌症治疗用组合物，其中组合物包括占组合物的 0.5 重量%到 99.5 重量%的紫杉醇，占组合物的 2.0%到 99.0 重量%的 d, 1- 乳酸 - 羟基乙酸共聚物，和任选的占组合物的 2.0 重量%到 90.0 重量%的聚 N- 异丙基丙烯酰胺，和占组合物的 0.01 重量%到 99.9 重量%的一种或多种可药用的载体或其组合。

17. 具有减少的化学诱导的副作用和可脱的感染治疗用组合物，包括至少一种抗癌药和至少一种包封、吸附或缀合所述抗癌药至表面上的聚合物的粒子，其中所述至少一种抗癌药选自紫杉烷、5- 氟尿嘧啶、多柔比星、柔红霉素、顺铂、卡铂和奥沙利铂，和所述至少一种聚合物选自白蛋白、d, 1- 乳酸 - 羟基乙酸共聚物、聚 ε- 己内酯、聚 L- 羟基丁酸酯、聚羟基戊酸酯、L- 羟基丁酸酯 - 羟基戊酸酯共聚物、聚乳酸 - 聚氧化乙烯的丙性嵌段聚合物、聚原酸酯、聚氨基甲酸酯、聚氧化乙烯 - 聚氧化丙烯的嵌段共聚物和聚丙烯酸酯，其中所述粒子的 \(D10 \geq 120 \text{nm} \), \(D50 \) 为 200 nm 和 \(D90 \leq 350 \text{nm} \)。

18. 权利要求 17 的组合物，其中所述粒子的 \(D10 \geq 140 \text{nm} \), \(D50 \) 为 200 nm 和 \(D90 \leq 260 \text{nm} \)。
19. 权利要求 17 的组合物，其中所述抗癌药选自紫杉烷。
20. 权利要求 17 的组合物，其中所述紫杉烷选自紫杉醇和多西他赛。
21. 权利要求 17 的组合物，其中所述聚合物是白蛋白。
22. 权利要求 17 的组合物，其中所述紫杉烷是紫杉醇并且聚合物是白蛋白。
23. 权利要求 17 的组合物，其中组合物包括占组合物的 0.5 重量%到 99.5 重量%的紫杉醇、占组合物的 2.0%到 99.0 重量%的 d,l-乳酸-羟基乙酸共聚物，和任选的占组合物的 2.0 重量%到 90.0 重量%的聚 N-异丙基丙烯酰胺、和占组合物的 0.01 重量%到 99.9 重量%的一种或多种可药用的载体或其组合。
24. 制备权利要求 1 或 17 的癌症治疗用组合物的方法，包括以下步骤：(i) 在溶剂中将至少一种抗癌药与至少一种聚合物混合，(ii) 任选地在一种可药用载体的存在下进行步骤 (i)，(iii) 通过除去溶剂得到纳米粒子，以及 (iv) 使纳米粒子经过粒子筛分，使得所得粒子的 D10 ≥ 80nm，D50 为 200nm 和 D90 ≤ 450nm，并且不含游离药物；组合物为使得其提供减少的化疗诱导的副作用的副作用。
25. 权利要求 1 或 17 的组合物在制备用于治疗哺乳动物的癌症的药物中的应用，包括给予治疗有效量的所述组合物，其中所述组合物不含游离药物并且其中所述药物完全地与聚合物结合。
26. 用于权利要求 1 或 17 的组合物在制备用于在经历用抗癌药治疗的哺乳动物中减少癌症治疗的化疗诱导的副作用的药物中的应用，包括给予治疗有效量的所述组合物，其中所述组合物不含游离药物并且其中所述药物完全地与聚合物结合。
包括至少一种抗癌药和至少一种聚合物的药物组合物

[0001] 本发明涉及抗癌药组合物。本发明涉及癌症治疗用组合物，其具有实质上减少的化
疗诱导的副作用。

[0002] 本发明涉及抗癌药组合物，包括但不限于烷化剂、抗代谢物类药物、抗生素类抗癌
药、植物生物碱类药物、蒽二酮类药物（anthracenediones）、天然产物、激素、激素拮抗剂、
其它药物（miscellaneous agents）、放射增敏剂、铂配位复合物、肾上腺皮质抑制剂、免疫
抑制剂、功能性治疗剂、基因治疗剂、反义治疗剂、酪氨酸激酶抑制剂、单克隆抗体、免疫毒
素、放射性免疫缀合物、癌症疫苗、干扰素、白细胞介素、取代胺类、紫杉烷类和 COX-2 抑制
剂。

[0003] 本发明涉及抗癌药组合物，优选紫杉烷类，例如紫杉醇和多西他赛（docetaxel），
它们的衍生物或它们的类似物，制备这些制剂的方法和使用这些组合物治疗癌症患者的方法。

[0004] 本发明涉及抗癌药组合物，所述抗癌药优选紫杉烷类，例如紫杉醇和多西他赛，它
们的衍生物或它们的类似物，制备这些组合物的方法，和将在特定粒度范围内的粒子分级
的方法，和使用这些组合物治疗癌症患者的方法，其提供了减少的化疗诱导的副作用，特别
是减少的化疗诱导的脱发。组合物为使得在所述组合物中实质上不含游离的药物。

[0005] 所述抗癌药组合物，所述抗癌药优选紫杉烷类，例如紫杉醇和多西他赛，它们的衍
生物或它们的类似物，是用于癌症治疗的胶态递送系统，具有实质上减少的化疗诱导的脱
发；在特定的粒度范围内被制备，在组合物中实质上不含游离药物。

[0006] 发明背景

[0007] 至今已经开发了各式各样的抗癌剂用于治疗哺乳动物的各种癌症，并且正在开发
越来越新的药物作为化疗药物。其中所述研究的目的在于开发肿瘤特异性抗癌剂，同时增
加针对耐药性肿瘤的效能。进一步更新的临床规程涉及将抗癌药组合，以增加治疗的治疗
效能。这种更新的发现正在进行中，但是目前，化疗剂包括 5-氟脲嘧啶（5FU）、多柔比星和
紫杉烷类是用于患有各种癌症的患者的主要治疗手段，所述各种癌症包括卵巢癌、乳腺癌、肺
癌、结肠癌、前列腺癌、头颈癌、子宫颈癌和脑癌、及其它癌症。

[0008] 然而，这些和其它药物的应用已经受到相关毒性的限制，所述毒性包括恶心、骨髓
抑制（myelosuppression）、脱发、呕吐和口炎以及心脏毒性。

[0009] 在上述所有这些相关毒性中，由化疗引起的脱发（或毛发丧失）是癌症患者的最
苦恼和创伤性的副作用之一，因为其在所有年龄段的男性和女性患者中引起抑郁、自信受
损、和耻辱感。由于治疗相关的脱发所致的身体和情绪方面的担心，一些患者拒绝进行治
疗。毛发丧失对患者的心理状态具有显著影响，并且是影响患者生活质量的重要问题。因
此，迫切需要提供一种具有实质上减少的化疗诱导的脱发的癌症治疗。

[0010] 紫杉烷类是稳定细胞微管的抗癌细胞毒素。用于本文所述组合物和方法中的紫杉
烷类化合物包括紫杉醇和多西他赛，及其具有抗癌活性或抗血管生成活性的天然和合成的
类似物。紫杉醇和多西他赛具有实质的活性，并且这些药物之一或其二者被广泛地用作治
疗晚期乳癌、肺癌、和卵巢癌的组分。
[0011] 多西他赛是紫杉醇类家族 (taxoid family) 的抗肿瘤剂。其从提取自可再生的紫杉植物的针状生物质的前体开始通过半合成制备。Taxotere®是无黄的多西他赛注射浓缩物，其以含有多西他赛和聚山梨酯酸酯 80 的单剂量小瓶得到，用于在用稀释剂例如含乙醇的水稀释之后注射给药，以及用于在先前的化疗无效之后治疗患有局部晚期或转移性乳癌的患者的处方药。Taxotere®与多柔比星和环磷酰胺组合被提出用于可手术治疗的淋巴结阳性乳癌患者的辅助治疗。

[0012] 紫杉醇 (Taxol®) 作为在由 Cremophor® EL 组成的媒介物中的用于 i. v. 输入的溶液得到，Cremophor® EL 已经表现出引起毒性作用例如危及生命的过敏性反应。这种紫杉醇的聚氧乙烯蓖麻油 (cremophor) / 乙醇制剂在用输注液体稀释时沉淀，并且在一些组合物中在长时间储存过程中形成纤维状沉淀物。关于紫杉醇的聚氧乙烯蓖麻油制剂的另外的信息可以在 Agharkar 等人的美国专利 5,504,102 中找到。

[0013] 最近引进的 Abraxane® 是用于可注射悬浮液的蛋白质结合型紫杉醇粒子。其为紫杉醇的白蛋白结合形式，在肝脏中迅速裂解释放游离的药物，然后在血液中循环，产生最初的治疗应答。然而，其也表现出毒性副作用，例如完全的毛发丧失，低 WBC 计数所致的感染，疲劳，虚弱和炎症等。在使用紫杉醇的这些剂量型时，几乎总是发生完全的毛发丧失或脱发。这通常涉及眉毛，睫毛，和阴毛以及头发的丧失。

[0015] 有许多美国专利针对这种产品 Abraxane®, 包括美国专利 5,439,686, 5,498,421,5,560,933,5,665,382,6,096,331,6,506,405,6,537,579,6,749,868 和 6,753,006。

[0016] 根据在上述提及的专利中的发明，提供了可用于体内递送实质上水不溶性的药理学活性剂（例如抗癌药紫杉醇）的组合物和方法，其中活性剂与蛋白质（起到稳定剂的作用）结合或涂覆有蛋白质的悬浮粒子被递送。在这些发明中，已经进行了尝试以提供临时准备的药物蛋白微球体，用以在用于非肠道给药的水悬浮液中递送实质上水不溶性的活性剂，而不引起由于乳化剂和溶解剂（如用于 Taxol 中的聚氧乙烯蓖麻油）的存在所引起的过敏性反应。在美国专利 5,439,686 中，发明人发现实质上水不溶性的药理学活性剂可以以在水悬浮液中适合于非肠道给药的微粒形式递送。该发明的组合物包括包含在聚合物壳内的实质上水不溶性的活性剂（作为固体或液体），聚合物壳为通过二硫键的存在交联的生物相容性聚合物。

[0017] 美国专利 5,560,933 要求保护制备上述的其发明的组合物的方法，其要求保护“制备用于体内递送的实质上水不溶性的药理学活性剂的方法，所述方法包括使混合物经过声处理条件达到一段时间，所述混合物包在其中分散有所述药理学活性剂的分散剂和包含能够通过二硫键交联的生物相容性聚合物的水性介质，所述时间足以促进所述生物相容性聚合物通过二硫键交联以产生其中包含药理学活性剂的聚合物壳”。

[0018] 美国专利 6,506,405 要求保护紫杉醇的制剂，该制剂用于治疗受试者中的原发肿瘤，其实现了所述紫杉醇在肿瘤部位的高局部浓度，所述制剂基本上不含聚氧乙烯蓖麻油。
根据 6,506,405 的发明人，他们的包含白蛋白并且不含聚氧乙烯蓖麻油的制剂表现出与市售的包含聚氧乙烯蓖麻油的 Taxol 组合物相比的降低的脑毒性或神经毒性性。

【0009】美国专利 6,749,868 提供了药物递送系统，其中使药理学活性剂的分子的一部分与蛋白质（例如人血清白蛋白）结合并且因此在对哺乳动物施药之后立即为生物可用的，而药理学活性剂的另一部分包含在被蛋白质涂覆的纳米粒子内。被蛋白质涂覆的药物纳米粒子的制备如下进行：在没有常规的表面活性剂的存在下使用高剪切力，得到直径小于约 1 微米的粒子，然后将其无菌过滤，以提供可用于静脉内注射的无菌固体剂型。

【0020】在涉及 Abraxane®的上述专利中，提供了给予涂有蛋白质（如白蛋白）的紫杉醇的方法，其中所述蛋白质涂层在其中还具有结合的游离蛋白质，使得一部分活性剂被包含在蛋白质涂层和一部分活性剂与游离蛋白质结合以便在给予时立即为生物可用的。在所述的现有技术的发明中描述的所述粒子的平均直径不大于约 1 微米，其中组合物包括 10～200nm 的粒径范围的粒子，特别是这些小粒径粒子可以以通过 0.22 微米过滤器进行无菌过滤得到。基本上通过使用白蛋白结合型药物粒子（白蛋白为生物相容性物质），发明人提出，与已经可用的包括聚氧乙烯蓖麻油并且涉及过敏性反应和其它毒性的 Taxol 相比，药理学活性剂如紫杉醇的毒性如骨髓抑制和 / 或神经毒性减少。

【0021】但是上述专利中没有一个描述或提供制备紫杉醇组合物的方法，其中该组合物处在特定的窄粒度范围并且实质上不含游离药物，以便提供化疗诱导的脱发（其对于癌症患者来说是最具创伤性的副作用之一）实质上减少的癌症治疗。涉及市售产品 Abraxane®的上述专利通过避免乳化剂如聚氧乙烯蓖麻油提供了避免引起过敏反应的产品，并且提供了用于实质上不溶性的活性剂如紫杉醇的稳定的、经灭菌的微粒或纳米粒子递送系统，但是它们没有提供没有副作用如脱发或毛发丧失或所述副作用减少的紫杉醇制剂。

Abraxane®的产品广告在患者须知（PATIENT INFORMATION）中提及毛发丧失是在对服用 Abraxane®的患者的观察中观察到的重要副作用之一。其提及在使用 Abraxane®时几乎总是发生完全的毛发丧失或脱发。

【0022】由 Yang 等人，Front Biosci. 2005 Sep 1;10 :3058-67 公开了研究论文，是关于用于胞内递送紫杉醇的温度、ph 敏感性芯 - 壳纳米粒子的研究，其描述了用温度、ph 敏感性两性聚合物 N- 异丙基丙烯酰胺 - 丙烯酸 - 胆甾醇基丙烯酸酯共聚物（P(NIPAAm-Co-AA-Co-CIA)）包封紫杉醇，以形成纳米粒子。然而，该研究论文没有讨论或提及制备这些粒子组合物的方法和将粒子分级为特定的明确粒度范围并且实质上不含游离药物使得其适合于提供在癌症患者中具有化疗诱导的脱发实质上减少的组合物的方法。

【0023】美国专利 5,399,363 涉及表面改性剂的抗菌纳米粒子，其中粒子主要由具有表面改性剂的结晶抗癌剂组成，所述表面改性剂优选为吸附在表面上以保持低于约 1000nm 的有效平均粒径的非离子型和阴离子型表面活性剂，表面活性剂的应用本身促进组合物的毒性。在 5,399,363 发明中既没有证明又没有预测使用包含可生物降解聚合物的紫杉醇纳米粒子组合物的粒径的特定范围以实现特定化疗诱导的副作用减少如脱发减少。5,399,363 的具体发明在于在结晶抗癌药的表面上吸附非交联的表面改性剂。

【0024】美国专利 6,136,846 要求保护用于体内递送紫杉醇的组合物，该组合物包括紫杉醇、溶剂如乙醇或丙二醇和可与水混溶的增溶剂如酯化的 d-α- 生育酚酸丁二酸酯。由于在 6,136,846 发明之前的研究致力于使用 50% 聚氧乙烯蓖麻油和 50% 无水酒精配制不溶
性药物如紫杉醇，并且这些制剂在用输注液体稀释时沉淀、储存时不稳定并且引起不适当的有害反应，因此6,316,846发明致力于使用不同于聚氧乙烯蓖麻油的可与水混溶的增溶剂提供具有改进的长期稳定性和安全性的制剂，从而提供改进的紫杉醇制剂。

[0025] PCT公开WO 2004/084871涉及乳酸-羟基乙酸聚合物和聚乳酸（PLA）纳米粒子，其包封低分子量的水溶性药物并且将该药物递送到目标位置，其中粒子在延长时间内逐渐释放药物。本质上，WO2004/084871发明涉及通过低分子量的水溶性药物和非肽类药物与金属离子的相互作用而将其转化为水溶性药物，然后将疏水性药物包封在PLGA或PLA纳米粒子中，并且在粒子的表面上吸附表面活性剂。该专利没有涉及或提及如紫杉醇和其它的抗癌药，并且没有提供化疗诱导的副作用得以减少的组合物。

[0026] 由Fonseca等人，在“Journal of Controlled Release 83（2002）273-286”中公布的研究涉及开发紫杉醇的聚合物药物递送系统，例如加载有紫杉醇的乳酸-羟基乙酸聚合物纳米粒子，其用于静脉内给药并且能够改善药物的治疗指数，并且没有由聚氧乙烯蓖麻油EL引起的副作用。在本文和前述大多数其它现有技术文献中，得到的粒子的粒径小于200nm。作者们没有提供本发明的发明人发现的不含游离药物并且处在特定的确定粒度范围内的组合物（其具有令人惊讶的优点）。

[0027] 美国申请20060041019要求保护用于抑制由抗肿瘤剂引起的毛发丧失的药物，其中所述药物为缩合度为3到20的环状和/或直链聚乳酸的混合物。优选地，美国申请20060041019的发明人所述的环状和/或直链聚乳酸的混合物是通过在式（3）的化合物存在下使丙交酯聚合物产生的聚乳酸混合物；式（3）为Me-N（R'）（R''），其中Me表示碱金属，R'和R''各自独立地表示脂肪族基团或芳香族基团。

[0028] 因此，可以看出，这些现有技术文献中都没有提供脱发相关副作用实质上减少的抗癌药如紫杉醇、多西他赛及其它抗癌药的组合物和制备这种组合物的方法。尽管先前已经进行了各种尝试以提供具有改善效力的抗癌组合物，但是这些组合物都没有表现出低的临床副作用，特别地，这些组合物都没有提供减少特别令人苦恼的脱发或毛发丧失副作用的方法。

[0029] 因此，需要包括抗癌药的组合物以及使用这些组合物以克服稳定性问题和减轻目前的上市的制剂的各种临床副作用的治疗方法，最重要的是减少治疗诱导的脱发或毛发丧失，以及这些组合物的制备方法。对于药物如5-氟尿嘧啶、多柔比星、多西他赛、紫杉醇、其衍生物和/或其类似物存在有需求。

[0030] 发明目的

[0031] 本发明的目的是：

[0032] 1. 提供癌症治疗用组合物，其具有实质上减少的化疗诱导的副作用如脱发。

[0033] 2. 提供癌症治疗用组合物，其包括至少一种抗癌药和至少一种聚合物的粒子，其中由于粒子以确定的粒度范围存在，该组合物产生实质上减少的化疗诱导的副作用如脱发。

[0034] 3. 提供如上所述的癌症治疗用组合物，其中另外地，组合物实质上不含游离药物；药物实质上完全地与聚合物结合。

[0035] 4. 提供癌症治疗用组合物，包括至少一种抗癌药和至少一种聚合物的粒子，其中粒子的D10 ≥ 80nm, D50 为约200nm, D90 ≤ 450nm，组合物为使得其提供减少的化疗诱导的
副作用如脱发。
[0036] 5. 提供如上面第 4 项中所述的癌症治疗用组合物，其中粒子的 D10 ≥ 120nm，D50 为约 200nm 和 D90 ≤ 350nm。
[0037] 6. 提供如上面第 5 项中所述的癌症治疗用组合物，其中粒子的 D10 ≥ 140nm，D5 为约 200nm 和 D90 ≤ 260nm。
[0038] 7. 提供如上所述癌症治疗用组合物，其中抗癌药选自烷化剂、抗代谢物类药物、抗生素类抗癌药、植物生物碱类药物、蒽醌类药物、天然产物、激素、激素拮抗剂、其它药物（miscellaneous agent）、放射增敏剂、铂配位复合物、肾上腺皮质抑制剂、免疫抑制剂、功能性治疗剂、基因治疗剂、反义治疗剂、酶磷酸激酶抑制剂、单克隆抗体、免疫毒素、放射免疫结合物、抗体疫苗、干扰素、白细胞介素、取代腺类、紫杉烷类和 COX-2 抑制剂。
[0039] 8. 提供如上面第 7 项中所述的癌症治疗用组合物，其中抗癌药优选选自紫杉烷的衍生物（如紫杉醇、多西他赛）、5-氟尿嘧啶和多柔比星。
[0040] 9. 提供如上所述的癌症治疗用组合物，其中抗癌药为以组合物的约 0.5 重量％到约 99.5 重量％的量存在的紫杉醇，并且包含约 2.0 重量％到约 99.0 重量％的聚合物。
[0041] 10. 提供如上所述的癌症治疗用组合物，其中聚合物为以组合物的约 2.0 重量％到约 99.0 重量％的量存在的可生物降解的聚合物，如人血清白蛋白、d, l-乳酸-羟基乙酸共聚物等。
[0042] 11. 另外提供上述的癌症治疗用组合物，其具有选自温度和 / 或 pH 敏感性聚合物的第二聚合物，如聚 N-乙酰基丙烯酰胺、聚 N-异丙基丙烯酰胺、聚 N-异丙基丙烯酰胺 - 羟基乙酸共聚物、聚乙烯醇、聚乙二醇、聚丙烯酰胺、聚甲基丙烯酰胺等及其衍生物。
[0043] 12. 提供如上面第 11 项所述的癌症治疗用组合物，其中第二聚合物是聚 N-异丙基丙烯酰胺，以选自以下的量使用：组合物的约 0.5 重量％到约 99.0 重量％、组合物的约 1.0 重量％到约 95.0 重量％、和组合物的约 2.0 重量％到约 90.0 重量％。
[0044] 13. 提供如上面第 11 项所述的癌症治疗用组合物，其中在第二聚合物的存在下，在对哺乳动物给药时，组合物的粒子的大小在血浆中增加到其原始大小的约两倍，并且在肿瘤部位增加到其原始大小的约十倍，从而提供靶向和实质上减少的化学诱导的副作用如脱发。
[0045] 14. 提供如上面第 1 项所述的癌症治疗用组合物，其中组合物包括占组合物的约 0.5 重量％到约 99.5 重量％的紫杉醇、占组合物的约 2.0 重量％到约 99.0 重量％的 d, l-乳酸-羟基乙酸共聚物，和占组合物的约 2.0 重量％到约 90.0 重量％的任选的聚 N-异丙基丙烯酰胺、和占组合物的约 0.01 重量％到约 99.9 重量％的一种或多种可药用赋形剂、载体或其组合。
[0046] 15. 提供如上面第 1 项所述的癌症治疗用组合物，其中组合物包括占组合物的约 0.5 重量％到约 99.5 重量％的紫杉醇、占组合物的约 2.0 重量％到约 99.0 重量％的白蛋白，和任选的占组合物的约 2.0 重量％到约 90.0 重量％的聚 N-异丙基丙烯酰胺、和占组合物的约 0.01 重量％到约 99.9 重量％的一种或多种可药用赋形剂、载体或其组合。
[0047] 16. 提供制备如上所述的组合物的方法，包括以下步骤：(i) 在溶剂中将至少一种抗癌药与至少一种聚合物混合，(ii) 任选地在一种或多种可药用载体的存在下进行步骤 (i)，(iii) 通过除去溶剂得到纳米粒子，和 (iii) 使纳米粒子经过粒子筛分，(iv) 从组合物
除去任何游离药物；该组合物为使得其提供实质上减少的化疗诱导的副作用如脱发。

[0048] 17. 提供治疗哺乳动物癌症的方法，包括对该哺乳动物给予治疗有效量的所述组合物的步骤，所述组合物包括至少一种抗癌药和至少一种聚合物的粒子，其中粒子的 D10 ≥ 80nm，D50 为约 200nm 和 D90 ≤ 450nm，并且该组合物为使得其实质上不含游离药物并且提供实质上减少的化疗诱导的副作用如脱发。

[0049] 18. 提供在经历用抗癌药治疗的哺乳动物中减少癌症治疗的化疗诱导的副作用如脱发的方法，所述方法包括给予治疗有效量的所述组合物，所述组合物包括至少一种抗癌药和至少一种聚合物的粒子，其中粒子的 D10 ≥ 80nm，D50 为约 200nm 和 D90 ≤ 450nm，并且该组合物为使得其实质上不含游离药物。

发明内容

[0050] 本发明涉及癌症治疗用组合物，其具有实质上减少的化疗诱导的副作用。

[0051] 本发明涉及抗癌药物组合物，抗癌药物优选是溶解性差的抗癌药物，所述组合物的制备方法和使用这些组合物治疗癌症患者的方法。所述组合物具有减少的化疗诱导的副作用如脱发。

[0052] 本发明的重要方面致力于提供抗癌药物如紫杉烷类（例如紫杉醇或多西他赛）和至少一种可生物降解的聚合物的胶态传递系统如纳米粒子组合物，使得该组合物具有确定的粒度范围，其中粒子的 D10 大于或等于 80nm，D50 为约 200nm 和 D90 小于或等于 450nm。这种确定的粒度范围保证了这样的组合物，在将该组合物给予患者用于治疗癌症时，具有实质上减少的化疗诱导的副作用如脱发。该组合物优选为使得其实质上不含游离药物，药物实质上完全地与聚合物结合。

[0053] 本发明的另一个方面致力于提供这样的纳米粒子组合物，该纳米粒子组合物另外包括温度和 pH 敏感性的第二聚合物，和任选的其他可药用载体以及任何其它期望的赋形剂。这种组合物提供这样的粒子，在对哺乳动物给予该粒子时，粒子的大小在血浆中增加到其原始大小的约两倍，并且在肿瘤部位增加到其原始大小的约十倍，从而提供肿瘤部位的靶向和实质上减少的化疗诱导的副作用如脱发。

[0054] 本发明另外公开了制备这种纳米粒子组合物的方法，包括以下步骤：在溶剂的存在下将至少一种抗癌药物与至少一种聚合物混合，所述溶剂任选地具有一种或多种药用载体以及任何期望的赋形剂，除去溶剂并且经过粒子分选以得到确定粒度的粒子，如 D10 ≥ 80nm，D50 为约 200nm 和 D90 ≤ 450nm。如此得到的具有确定粒度范围的纳米粒子进一步经过除去任何游离药物。在给予患者时，这种组合物提供实质上减少的化疗诱导的副作用如脱发。

[0055] 因此，本发明涉及提供治疗方法，包括对有需要的哺乳动物给予治疗有效量的本发明的纳米粒子组合物，该组合物提供实质上减少的化疗诱导的副作用如脱发。本发明提供通过给予所述治疗有效的本发明的纳米粒子组合物在经历用抗癌药物治疗的哺乳动物中减少癌症治疗的化疗诱导的副作用如脱发的方法。

[0056] 前述的一般说明和以下的详细说明只是示例性的和说明性的，并且意在对要求保护的本发明提供进一步说明。通过以下的发明的详细说明，其它的目的、优点和新颖的特征对于本领域技术人员来说是显而易见的。
发明的详细说明

本发明提供癌症治疗用组合物。

正在开发许多更新的抗癌剂用于治疗哺乳动物的肿瘤。但是抗癌剂或抗肿瘤药的主要缺点在于它们不能特异性和选择性地影响肿瘤细胞；它们也影响正常细胞并且由此产生副作用。

在药物递送领域中正在努力以使越来越多的这些抗癌药靶向作用部位以改善疗效，并且正在努力以提供多药物疗法以提高抗癌药的有效性。然而，副作用的问题仍然是主要的忧虑，其还没有被完全解决，化疗的这些主要副作用之一是脱发或毛发丧失。

毛发丧失或脱发对于进行化疗的个体来说是令人苦恼的副作用。化疗患者中大多数经历了很大程度的脱发。化疗之后的毛发再生需要3到6个月，并且有一定百分比的患者没能完全恢复。化疗诱导的脱发具有特别的破坏性，因为它是以其它方式隐藏的疾病的外在标志，导致一些患者拒绝全身化疗。

因此，根据本发明优选的方面，提供具有实质上减少的副作用的抗癌治疗用组合物。所述副作用优选是化疗诱导的副作用如脱发。本发明的组合物包括至少一种抗癌药和至少一种聚合物。

可在本发明中使用的癌症治疗用抗癌药选自烷化剂、抗代谢物类药物、抗生素类抗癌药、植物生物碱类药物、蒽二酮类药物、天然产物、激素、激素结合剂、其它药物、放射敏感剂、钯配位复合物、肾上腺皮质抑制剂、免疫抑制剂、功能性治疗剂、基因治疗剂、反义治疗剂、酶磷酸酶抑制剂、单克隆抗体、免疫毒素、放射免疫结合物、癌症疫苗、干扰素、白细胞介素、取代肽类、紫杉烷类和COX-2抑制剂。

上组包括：烷化剂，包括：烷基磷酸酯类例如白消安，乙撑亚胺衍生物例如塞替派，氮芥类例如苯丁酸氮芥、环磷酰胺、雌莫司汀、环磷酰胺、氮芥、美法仑和乌拉莫司汀，亚硝基脲类例如卡莫司汀、洛莫司汀、顺铂、硫氮三嗪、和铂化合物例如顺铂、卡铂、奥沙利铂、赛特铂和（SP-4-3）（顺式）- 胍二氯- [2- 甲基吡啶] 铂（II）；抗代谢物类药物，包括，抗叶酸物例如甲氨喋呤、permetrexed、雷替曲塞和三甲曲沙，嘌呤类似物例如克拉屈滨、氯脱氧胞苷、克罗拉滨、氟达拉滨、巯嘌呤、嘧啶他丁、和硫鸟嘌呤，嘧啶类似物例如阿扎胞苷、卡培他滨、阿糖胞苷、依达曲沙、氟尿嘧啶、吉西他滨、和曲沙他滨，天然产物，包括，抗肿瘤抗生素例如博来霉素、放线菌素D、光辉霉素、丝裂霉素、米托蒽醌、泊非霉素，和蛋白类例如柔红霉素（包括脂质体柔红霉素）、多柔比星（包括脂质体柔多比星）、表柔比星、伊达比星和柔柔比星，酶类例如L-天冬酰胺酶和PEG-L- 天冬酰胺酶，微管聚合物稳定剂例如紫杉烷类、紫杉醇和多西他赛，有丝分裂抑制剂例如长春花生物碱长春碱、长春新碱、长春地辛和长春瑞滨，拓扑异构酶I 抑制剂例如喜树碱、伊立替康和拓扑替康，和拓扑异构酶 II 抑制剂例如安吖啶、依托泊苷和替尼泊苷；激素和激素拮抗剂，包括，雄激素例如氟甲睾酮和睾内酯，抗雄激素例如比卡鲁胺，环丙孕酮，氯他酮，和尼鲁米特，芳香酶抑制剂例如阿那曲唑、依西美坦、福美坦，和来曲唑，皮质类固醇例如地塞米松和泼尼松，雌激素例如己烯雌酚，抗雌激素药例如氟维司群、雷洛昔芬、他莫昔芬、和托瑞米芬，LHRH 激动剂和拮抗剂例如布舍瑞林、戈舍瑞林、亮丙瑞林、和曲普瑞林，孕激素类例如醋酸甲羟孕酮和醋酸甲地孕酮，和甲状腺激素例如左甲状腺素和碘甲罗宁；和其它药物，包括，六甲蜜胺、三氧化二砷、硝酸镓、羟基脲、左旋咪唑、
米托坦、曲马多、丙卡巴肼、苏拉明、新斯的明、光动力学化合物例如甲氨蝶呤和叶酸酶，和蛋白酶抑制剂例如赛佐米。分子靶向治疗剂包括：功能治疗剂包括：基因治疗剂，反义治疗剂，酪氨酸激酶抑制剂例如盐酸埃克替尼、吉非替尼、伊马替尼、赛马尼（semaxanib），和基因表达调节剂例如维A酸类和维黄素类（rexinoids），例如达帕林、苍山罗林、反式维甲酸、9-顺式维甲酸、和N-（4-羟基苯）维甲酸；表位引导的治疗剂，包括：单克隆抗体例如阿来组单抗（alemuzumab）、贝伐单抗、西妥昔单抗、替伊莫单抗（ibrutinomab）；利妥昔单抗、和曲妥珠单抗，免疫毒素例如吉妥珠单抗奥唑米星，放射免疫结合物例如^{131}I- 吉妥珠单抗奥唑米星，和癌症疫苗。生物学治疗剂包括：干扰素例如干扰素-α2a和干扰素-α2b，和白介素例如阿地白介素、白喉毒素/IL-2 基因重组融合蛋白（denileukin diftitox）；和奥普瑞白介素（oprelvekin）。除了针对癌细胞起作用的这些药物之外，癌症治疗包括利用保护性或辅助性药物，包括：细胞保护剂例如氨磷汀、右雷佐珍（dexrazoxane）和塞司弗，磷酸酯类例如帕米磷酸盐和唑来磷酸，和刺激因子例如依泊汀、达贝汀（darbeopetin）、非格司亭、PEG-非格司亭、和沙格司亭。优选地，抗癌药是溶解性差的抗癌药。

用于本发明的抗癌药是紫杉烷类及其衍生物（例如，紫杉醇、多西他赛、及其衍生物等），但是不排除其他抗癌药如（例如多柔比星、甲氨蝶呤、顺铂、柔红霉素、多柔比星、环磷酰胺、放线菌素、博来霉素、柔红霉素、丝裂霉素、甲氨蝶呤、5-氟尿嘧啶、卡铂、卡莫司汀（BCNU）、甲基-CCNU、顺铂、依托泊苷、干扰素、长春碱、苯乙酸氮芥、他莫昔芬、哌泊舒凡、及其衍生物等）。优选的抗癌剂是选自紫杉烷类、5-氟尿嘧啶和多柔比星的药物，最优选为紫杉烷类。

本文中使用的术语“紫杉烷类”包括化疗剂Taxol（通用名：紫杉醇；化学名称5β, 20-环氧-1,2a,4,7β,10,13α-六氢紫杉-11-烯-9-酮,4,10-二乙酰酯2-苯甲酸13-酯与(2R,3S)-N-苯甲酰基-3-苯基丝氨酸）和Taxotere（通用名：多西他赛）、第二代紫杉烷类如Otextaxel 和紫杉烷类的其它半合成衍生物。紫杉酚，在背景技术中也有所描述的抗癌药，通用名为“紫杉醇（paclitaxel）”，由Bristol-Myers Squibb Company 登记的商品名“Taxol®”，是起初从太平洋紫杉树（短叶紫杉）的树皮分离的复杂的多益代的双萜（complex polyoxygenated diterpene）。 其由FDA批准用于治疗乳腺癌、卵巢癌、和肺癌以及AIDS 相关的卡波西肉瘤。Taxotere®（多西他赛）与紫杉醇相似，也是得自紫杉树针叶的物质，由FDA批准用于治疗对其他抗癌药不能应答的晚期乳腺和非小细胞肺癌。紫杉醇和多西他赛静脉内给药。但是紫杉醇和多西他赛二者都具有比较严重的副作用。紫杉醇不溶于水，使用为赋形剂的Cremophor EL（聚乙二醇聚氧乙烯）和乙醇将紫杉醇配制为 Taxol；其引起严重的副作用。报道了在使用Taxol 时的过敏反应和其它超敏反应的高发生率。最近，提出了新的蛋白质结合型纳米粒子紫杉醇注射悬浮液，商标名称为Abraxane®，其避免使用了聚氧乙烯聚氧乙烯并且不含溶剂，因此没有与聚氧乙烯聚氧乙烯和溶剂相关的副作用。但是即使这种组合物，也表现出另一种化学诱导的副作用，其中包括具有良好临床疗效并且其出现是肿瘤学药物领域最大的进步，但是对于具有在患者中的更好的安全性和药代动力学特征，避免最具创伤性的副作用如脱发的紫杉醇组合物仍有越来越大的需要。

选择用于本研究的最优选的紫杉烷类是紫杉醇，但是应该理解，这种研究也可以
扩展至其它抗癌药，其细节在本文中提供，紫杉醇以组合物的约 0.5 重量％到约 99.5 重量％的量存在于本发明的组合物中。优选为约 2.0 重量％到约 95.0 重量％的量，最优选为约 5.0 重量％到约 90.0 重量％。

[0068] 抗癌剂可单独使用，或者与本发明的一种或多种其它药物组合使用。它们可为无定形的、结晶、或其混合物，优选药物为实质上无定形的。

[0069] 如此处所述的并且贯穿本申请，本文中使用几个定义描述本发明。

[0070] 如本文中使用的“可药用的”是指那些化合物、材料、组合物和/或剂型，它们在合理的医学判断范围内适合接触人类和动物的组织而没有过多的毒性、刺激性、变态反应，或其它问题或并发症，与合理的利益/风险比相称。

[0071] “治疗有效量”是指有效实现期望的治疗结果的量。

[0072] 如本文中使用的术语“聚合物”是指包含多个共价连接的单体单元的分子，包括支链、树枝状，和星形聚合物以及交联聚合物。该术语还包括均聚物和共聚物，例如，无规共聚物、嵌段共聚物和接枝共聚物，以及未交联的聚合物和稍微交联到适度交联到显著交联的聚合物。

[0073] 术语“可生物降解的聚合物”是指该聚合物通过身体各过程降解为可容易被身体处理并且不会在体内积累的产物，而术语“生物相容的”描述了该物质不以任何不利的方式可感知地改变或影响其中引入所述物质的生物系统。

[0074] 如本文中使用的，“溶解性差”是指活性剂在室温下在水中具有低于约 100mg/ml 的溶解度，并且优选地低于 1mg/ml。

[0075] 如本文中使用的，“粒度”用于表示组合物中粒子的大小，其通过本领域技术人员公知的常规的粒度分析器测量，例如沉降场流分级法、光子相关光谱法、激光散射或动力光学光散射技术和通过使用透射电子显微镜(TEM)或扫描电子显微镜(SEM)测量。方便的自动光散射技术采用Horiba LA激光散射粒度分析器或类似的装置。这种分析典型地提供粒子的离散大小的体积分数（频率归一化），包括一级粒子、团聚体 (aggregates) 和聚集物。在本说明书中，粒度特征经常是指Dn型的表示法，其中n为1到99的数字;这种表示法表示粒度的累积分布，即n%（以体积计）的粒子小于或等于所述大小。典型地，粒度表示为以nm为单位的D10、D50（中值）和D90值。D90/D10的比值是鉴定粒度分布曲线宽度的适宜特征。在本发明的各个方面中，粒度分布窄，优选D90/D10的比值小于4，更优选小于3，甚至更优选小于2。0。

[0076] 如本文中使用的，术语“nm”是指纳米，比1微米更小的单位，微米是千分之一毫米的测量单位。

[0077] 如本文中使用的，“约”应该是本领域技术人员能够理解的，其在某种程度上随其使用的环境改变。如果有关术语的使用使本领域技术人员在已知其使用环境的情况下仍不清楚的话，则“约”意味着特定术语加上和减去最多10%。这个含义适用于术语“约”用于本申请中描述抗癌药、载体、赋形剂和除在本发明粒度之外的其它情况中的百分数或量的情况。在描述本发明粒度时，术语“约”表示特定术语加上或减去最多25%的值，这意味着D50为约200nm是指150nm到250nm的粒度范围。

[0078] 如本文中使用的术语“化疗诱导的副作用”是指由于给予抗癌药在哺乳动物中产生的不利症状。其实例包括毛发丧失、骨髓抑制、呕吐、消化道病症、肝毒性、肾毒性、脑毒
性、心脏毒性、肺毒性、口炎、皮肤病和神经毒性。优选提供本发明的组合物用于抑制或减少上述副作用之一的毛发丧失（或脱发）。

[00079] “脱发”或毛发丧失在本文中是指优选与药物诱发的脱发有关，其损伤身体的毛囊。应该理解，头上的毛囊具有最快的生长速率并且其生长期长，由于与在身体中其它位置的毛发器官相比在头皮上的毛发器官具有更高的生物活性，头皮上的毛发器官更容易受到抗癌药的影响，导致对毛囊中毛基质细胞的损害。因此，毛发基质细胞功能的生长受到影响或毛发器官迅速发展到静止期并且毛发以萎缩性毛发的形式脱落。

[00080] 用于抑制化疗引起的毛发丧失的先前的努力包括将抗癌药与抗炎剂组合给予、阻断血流向头皮、动脉内给予和其它方式，但是这些方法至今都没有提供任何显著的效果。本发明中已经进行了尝试，通过安全的、有效的、简单的和新型的技术实现这个任务。

[00081] 对于各种包括抗癌药和至少一种聚合物的粒子形式的组合物的系统的和详细的研究揭示了令人惊讶的和非常有用的发现，物理化学因素如粒子的几何结构在提供具有减少的副作用如脱发的癌症治疗用组合物方面起到非常重要的作用。所述因素包括粒度、形状、质地、表面特征如表面电荷、表面疏水性、重量、分子量、体积、级分、任何形态学等，其中作为最重要的因素之一的直径表示的粒度已经在本文中进行了详细研究。当给予包括具有确定粒度范围的粒子的组合物作为治疗哺乳动物的癌症治疗方法时，所述组合物经历选择性的生物分布，使其提供了更加靶向于作用部位并且实质上减少副作用如脱发。

[00082] 报道纳米粒度范围的粒子在给予时在血液中循环并且由于渗漏的脉管系统到达肿瘤细胞而在肿瘤上皮细胞中保持，但是文献中还报道大于200nm直径的粒子优先被细胞的网状内皮系统（RES）识别并且由此靶向于器官如肝、肺、脾、淋巴循环等，并且从血液循环中离开。静脉内注入的纳米系统的大部分（90％）通常在血液中存在的蛋白质的调理作用之后损失到网状内皮系统，主要是肝和脾中的固定巨噬细胞中。因此，调理作用或通过单核吞噬细胞系统（MPS，又称为网状内皮系统（RES））从身体除去纳米粒子药物载体被认为药物靶向的主要障碍。在一篇论文（Current Nanoscience, 2005, 1, 47-64）中，提及具有亲水性表面的≤100nm的粒子发生相对较少的调理作用和通过RES摄取的清除。因此，制备更好的和有效抗癌组合物的前述努力大多数集中在使组合物的小于1微米，优选小于200nm或100nm，以保持粒子处在循环中，避免被RES吸收并且靶向肿瘤部位。但是这些现有技术的组合物中大多数保持为低于1微米的任何大小，优选低于200nm直径，其可能还包括直径低于约70nm的粒子。在这些先前努力中任何一个都没有认识到小于约70nm的粒子通过正常血液毛细管渗透到皮肤和毛根，并且因此包含粒子的这种抗癌药在用于治疗哺乳动物时会引起化疗诱导的副作用如脱发。肿瘤微脉管系统是不连续的并且具有高度渗透性，并且平均来说，肿瘤的内皮孔的内径为108±32nm，因此在大小上明显地大于内径为58±9nm的毛细血管凹陷并且更加不均匀。因此，大于70nm的粒子不能通过正常微血管渗透并且会实质上减少毛发丧失。

[00083] 在本发明中，已经成功地进行了尝试，以提供癌症治疗用组合物，其包括至少一种抗癌药和至少一种聚合物的粒子；其中粒子的直径小于1微米。优选地，粒子的D10 ≥ 80nm、D50为约200nm和D90 ≤ 450nm，即，粒子处在这样的粒度范围，使得90％的粒子粒度小于450nm并且只有10％的粒子粒度小于80nm和更小，50％的粒子为约200nm大小。更优选地，粒子的D10 ≥ 120nm、D50为约200nm和D90 ≤ 350nm，并且最优选地，粒子的
D10 ≥ 140nm、D50 为约 200nm 和 D90 ≤ 260nm。意外地观察到最大为约 220nm 的粒子不被网状内皮系统吸收并且用于循环时向肿瘤部位，粒子不处于低于 70nm 的大小，从而防止它们渗透进入毛囊，产生实质上减少的化药诱导的副作用如脱发。意外地发现本发明的粒子以显著更大的水平在不同于包含 RES 的组织中积聚，所述组织例如前列腺、胰腺、睾丸、乳房、细精管、骨等，并且提供脱发减少，因此表明在如皮肤和毛囊部位的积聚减少。

[0084] 应该理解，每个毛囊连续地经过多个阶段：毛发生长初期（生长）、毛发生长中期（衰退）和毛发生长末期（静止）。毛发生长初期继之以毛发生长中期并且最终当毛干成熟为杆状毛时毛囊进入毛发生长末期阶段，最终从毛囊脱落。在任何给定的时间点，发现毛囊的大多数处于毛发生长初期阶段，只有极少数处于毛发生长末期阶段并且只有少数处于毛发生长中期阶段。抗癌药破坏毛发生长初期阶段过程中的这种迅速增殖的球状基质细胞。结果，毛发生长停止并且毛干变得更细，并且随后毛发断开并且脱落。在本发明中，抗癌药组合物为使得药物被阻断渗透进入毛囊，由此防止毛发丧失。

[0085] 在本发明的优选方面，包括抗癌药和至少一种聚合物的组合物为胶态递送系统，该体系包括脂质体、微乳剂、胶体、聚合物—药物缀合物、纳米胶囊、纳米球体、微粒和纳米粒子，固体—脂质纳米粒子。这些递送系统提供以下优点：靶向的、分布调节的、灵活的制剂并且具有聚合物结构，其可以以适宜的EV目的的方式被设计和生产。组合物可以通过本文中所述的任何给药途径递送，如口服、静脉内、皮下、腹膜内、鞘内、鼻内、吸入、局部、透皮、直肠、阴道、黏膜内等，并且可以立即释放药物或通过各种已知的方法通过调节、维持、脉冲、延迟或控制药物从递送系统释放而在一段时间内释放药物，其都包括在本发明范围内。胶态递送系统可以整体的，其中聚合物与药物一起被分散，或者其可为涂层的，其中聚合物涂覆在药物上或聚合物包封药物。优选的系统包括纳米粒子的纳米系统，以及正在开发的较新的纳米系统，包括纳米笼（nanocages）、纳米凝胶（nanogels）、纳米纤维（nanofibers）、纳米壳（nanoshells）、纳米棒（nanorods）、纳米容器（nanocontainers）等。

[0086] 抗癌药抗癌的递送系统是纳米粒子组合物，其可以提供许多优点，包括：适合于非肠道给药、可以配制为容易再分散的干燥形式，为存在于纳米粒子组合物中的活性剂粒子提供高的再分散性，改善在作用部位的靶向、添加生物利用度、降低给药剂量、改善药代动力学特性和减少副作用。优选的纳米粒子是包封在聚合物基质内或吸附或缔合到表面上的抗癌药的亚微米大小的聚合物胶体粒子，其其允许通过适当地选择聚合物材料控制药物的释放特征和长时间维持药水平。

[0087] 根据本发明的实施方案，提供了改进的抗癌药组合物，其中组合物为抗癌药和聚合物的纳米粒子组合物，为具有如本文中限定的特定粒度范围的胶态递送系统，该粒子可用于治疗原发瘤和转移瘤，包括前列腺、睾丸、乳房、肺、肾、胰腺、骨、脾、肝、脑等的癌症以及其它癌症，具有实质上减少的副作用，特别是化疗诱导的脱发。优选地，组合物包括占组合物的约 0.5 重量%到约 99.5 重量%的至少一种抗癌药和占组合物的约 2.0 重量%到约 99.0 重量%的至少一种聚合物。在优选的实施方案中，抗癌药为紫杉醇，其作为包括占组合物的约 2.0 重量%到约 99.0 重量%的至少一种聚合物的纳米粒子组合物形式被提供。

[0088] 用于本发明的可生物降解的聚合物包括天然的、合成的和半合成的材料。

[0089] 天然聚合物的实例包括蛋白质、肽、多肽、寡肽、聚核酸、聚糖（例如，淀粉、纤维素、右旋糖酐、藻酸钠、脱乙酰壳多糖、果胶、透明质酸等）、脂肪酸、脂肪酸酯、甘油酯、脂肪、
脂质、磷脂、蛋白多糖、脂蛋白等，和它们的变体。蛋白质包括白蛋白、免疫球蛋白、酶蛋白、胰岛素、血色素、溶菌酶、a-2巨球蛋白、纤连蛋白、玻连蛋白、纤维蛋白原、脂肪酶等。如果需要，蛋白质、肽、酶、抗体及其组合还可以在本发明中作为稳定剂，以改善稳定性。优选的蛋白质是白蛋白，优选以组合物的约2.0重量％到99.0重量％的量使用，更优选组合物的5.0重量％到95.0重量％，并且最优选组合物的约10.0重量％到约90.0重量％。

【0090】合成的聚合物包括聚氨基酸如明胶、聚乙烯醇、聚丙烯酸、聚乙酸乙烯酯、聚氯乙烯、聚乙烯基吡咯烷酮、polyethoxylate、聚丙烯酰胺、聚乙烯基吡咯烷酮、聚亚烷基二醇、聚交酯、聚乙交酯、聚己酸内酯、聚乳酸内酯等，任何两种或多种的适当组合，特别是ω-羟基羧酸、ω-羟基乙酸甲基丙烯酸酯、聚羟基酯、羟基乙烯酯酸酯和β-羟基丁酸酯、羟基乙酸酯化聚合物、聚羟基酯、聚乳酸、聚乳酸乙酸酯、乳酸-羟基甲基乙酸共聚物、聚乳酸、聚乳氧乙酸酯的两性嵌段聚合物、聚亚烷基二醇、聚氧化乙烯、聚氧化丙烯的嵌段共聚物、聚醚醇、聚丙烯酸酯、聚磷脂、普鲁兰支链淀粉（pullulan）。

【0091】优选地，本发明的递送系统使用可生物降解的/生物相容的聚合物包封抗癌药。这些可生物降解的第一聚合物可为在给予时立即释放抗癌活性剂的那些或延迟抗癌活性剂的释放并且保持纳米粒子组合物在目标位置更长时间以利于疗效的那些。优选的第一聚合物为d,1-乳酸-羟基乙酸共聚物或PLGA，其为可生物降解的聚合物，被允许用于配制改变释放的控释制剂。PLGA是疏水性共聚物，其由水解反应引起的降解产生两种通常的生物学底物，乳酸和羟基乙酸，二者在有氧糖酵解结束时代谢为CO2和H2O。PLGA的生物降解速度取决于乳酸和羟基乙酸各自的比例，50:50的比例是优选的。PLGA具有完全的生物相容性并且引起中度的异物反应。用于本发明的PLGA优选选组合物的约2.0重量％到99.0重量％的量，更优选选组合物的5.0重量％到95.0重量％，并且最优选组合物的约10.0重量％到约90.0重量％。

【0092】根据本发明的另一个方面，其包括通过各种技术使抗癌药靶向于作用部位，这包括将靶向配体与药物或包含药物的纳米粒子组合物缀合以引导它们到它们的目标位置，或者用温度和/或pH敏感性聚合物涂覆/组合物或与其结合，以及其它技术。

【0093】根据这个上述的方面，为了实现活性成分在肿瘤部位的靶向释放，通过对封抗癌药如紫杉醇的纳米粒子施加对温度敏感的共聚物配合物制备温度敏感的和外表面改性的纳米粒子，所述对温度敏感的共聚物配合物能够在水溶液中表现出热应答，如聚N-乙烯酰基丙烯酸酯、聚N-异丙基丙烯酰胺、N-异丙基丙烯酰胺-丙烯酰胺共聚物、聚乙烯醇、聚乙二醇、聚丙烯酰胺、聚丙基丙烯酰胺。这种具有亲水性表面的纳米粒子会在血液中循环达更长的时间并且由于粒子的热敏性（即，在水溶液中表现出上临界节点溶解温度（UCST）或下临界节点溶解温度（LCST）），在37°C体内注射时，粒度增加；由于肿瘤微环境中生理情况的差异粒子累积在肿瘤中时，粒度进一步增加数倍并且包封的活性药物在肿瘤部位释放。可使用的pH敏感性聚合物包括聚乙烯酰胺、酪肽纤维素等。

【0094】本发明的包封药物的纳米粒子是经过设计的，使得在体外条件下在室温下粒子的D10 ≥ 80nm，D50为约200nm和D90 ≤ 450nm，优选D10 ≥ 120nm，D50为约200nm和D90 ≤ 350nm，更优选D10 ≥ 140nm，D50为约200nm和D90 ≤ 260nm；但是有趣的是，由于粒子的温度敏感性，当这些粒子注入体内时，粒度在血浆中增加到其原始大小的两倍。因此，即使在规模扩大和工业生产过程中，包括药物和聚合物的组合物粒子中没有几个不能落入限
定的粒度范围，在体内，粒子总是处在粒度范围内，其防止从正常血液毛细管渗透到皮肤，并且由此渗透到毛根，而是长时间保持在血液循环中，最终靶向于作用部位。当这些粒子到达肿瘤时，它们在肿瘤部位增加到其原始大小的约十倍并且还渗透通过渗漏性和高度渗透性的肿瘤微血管系统，在其中粒子被保持（即，提高渗透性和滞留效应）并且释放药物。在给予这种组合物治疗各种癌症时这最终导致脱靶减少。组合物在其中几乎没有游离药物，其在减少脱靶相关副作用方面具有增加的优点。用于本发明的组合物的优选的第二聚合物为温度和/或 pH 敏感的聚合物如聚 N- 异丙基丙烯酰胺，以所述组合物的约 0.5 重量%到约 99.0 重量%使用，优选约 1.0 重量%到约 95.0 重量%，最优选约 2.0 重量%到约 90.0 重量%。

【0095】 因此，根据本发明的优选实施方式，提供了制备这种温度敏感的和外表面经改性的纳米粒子的方法，所述纳米粒子包封抗癌药如紫杉醇，用于在肿瘤部位立即递送或控制递送和部位特异性递送，从而提供药物的最大治疗效果，在更低剂量下的活性成分产生最小副作用。

【0096】 本发明的抗癌药的药物组合物包括上述描述的纳米粒子组合物，其包括药物及其可药用载体。适合的可药用载体是本领域技术人员公知的。这些包括无毒的生理学可接受的载体、赋形剂或助剂或媒介物，用于非肠道注射、以固体或液体形式用于口服给药、用于直肠给药、经鼻给药、肌肉内给药、皮下给药等。优选地，组合物是作为静脉内快速浓注或通过皮下或肌肉内途径给药的非肠道注射组合物。

【0097】 适合于非肠道注射的组合物可包括生理学可接受的无菌的水性或非水性分散体、悬浮液、或乳剂和用于重构为无菌可注射分散体或悬浮液的无菌粉剂。适当的水性和非水性载体、稀释剂、溶剂或媒介物的实例包括水、脂肪族或芳香族醇如无水乙醇、丙醇；烷基卤化物如芳基卤化物如二氯甲烷；酮如丙酮；脂肪族或环脂肪族或芳香族烃如已烷、环己烷、甲苯、苯；和多元醇（丙二醇、聚乙二醇、甘油等）；N- 羟基琥珀酰亚胺、碳二亚胺、其适合的混合物、植物油（例如大豆油、矿物油、玉米油、麦油、棕榈油、橄榄油、红花油、棕榈油等）和可注射的有机酯如油酸乙酯；烷基、芳基或环状的醚如乙醚、四氢呋喃；乙腈和含水的缓冲溶液、氯仿等。可以通过例如使用涂层例如卵磷脂、通过保持分散体或悬浮液中的期望的粒度，和通过利用表面活性剂保持适当的流动性。

【0098】 纳米粒子药物组合物除活性剂和溶剂之外还可以包含赋形剂或助剂，例如防腐剂、润湿剂、乳化剂、表面活性剂、表面活性剂和分散剂，所有实例为本领域已知的并且包括在本发明范围内。在任何合适的情况下可以通过各种抗菌剂和抗真菌药防止微生物生长，例如对羟基苯甲酸酯类、三氯叔丁醇、苯酚、山梨酸等。还可能希望包括等渗剂，如糖、氯化钠等，缓冲剂如磷酸盐、苯二酸盐、乙酸盐、柠檬酸盐和硼酸盐等。

【0099】 本发明的纳米粒子组合物可以在制备的每个阶段经过无菌过滤或在无菌条件下制备。这避免了对热力灭菌法的需要，所述热力灭菌法可损害或降解活性剂，以及导致活性剂的晶体生长和粒子聚集。作为胶态递送系统的组合物最后作为冻干粉末或悬浮在生物相容性水性液体中的悬浮液形式被提供。生物相容性液体可选自水、缓冲的含水介质，盐水，缓冲盐水，氨基酸、蛋白质、糖、碳水化合物、维生素或合成聚合物的缓冲溶液，脂质乳液等。

【0100】 在本发明的一个重要方面中，提供了包封抗癌药如紫杉醇、其衍生物或其类似物的纳米粒子，以及制备包封抗癌药如紫杉醇、其衍生物或其类似物的纳米粒子以实现最大
包封效率的方法，使得纳米粒子组合物在其中实质上不含游离药物。因此，本发明的目的是
提供将包封紫杉醇、其衍生物或类似物的纳米粒子分级为特定的限定粒度范围的方法和提
供使纳米粒子经过除去组合物中的任何游离药物的过程的方法，几乎所有药物与聚合物结
合，使得组合物在给予哺乳动物用于治疗时产生实质上减少的副作用如脱发或毛发丧失。

【0011】本发明的组合物（其包括微粒、脂质体、纳米胶囊、纳米球体、和纳米粒子和前述
的其它组合物）通过本领域的标准常规方法生产，但是具有根据需要将粒子分级为限定粒
度范围和使粒子经过处理以除去全部未被聚合物包封或与聚合物结合的游离药物的另外
的步骤，其已经在本文中所述的实施方案中详细举例说明。用于制备本发明的纳米粒子药
物组合物的方法包括制备微粒/纳米粒子组合物的所有技术。在本发明的优选方案中，该
方法包括以下步骤：将药物和聚合物溶解和/或分散在水溶液和/或溶剂或溶剂混合物
中，在搅拌下将两种溶液混合以形成乳液或沉淀，任选地在另外的可药用载体或赋形剂的
存在下混合，在低压或高压下将其均化以得到具有期望粒度的纳米粒子，通过任何技术除
去溶剂，所述技术之一是利用减压，如果需要，使纳米粒子通过粒子筛分以得到本发明的限
定粒度范围，将纳米悬浮液超滤通过30千道尔顿膜以除去所有的游离药物，并且最后在小
瓶中冻干并且储存，直到进一步研究。

【0012】本发明的治疗哺乳动物的方法包括对需要治疗的哺乳动物给予有效量的所述上
述抗癌药和聚合物的组合物，该组合物提供实质上减少的化疗诱导的脱发。

【0013】因此，根据本发明的特别优选的方面，提供了在经历用抗癌剂治疗癌症治疗的哺
乳动物中减少化疗诱导的副作用如脱发的方法，所述方法包括给予治疗有效量的所述组合
物，该组合物包括本文中所述的至少一种抗癌药和至少一种聚合物的粒子。组合物为使得
其具有在本文所述的限定粒度范围内的粒子，并且其中实质上不含游离药物。

实施例

【0014】实施例1：包封紫杉醇的PLGA纳米粒子的合成：

【0015】通过w/o/w双重乳化使用双重乳化过程从d-l-乳酸-羟基乙酸共聚物（PLGA）合
成纳米粒子。在典型的实验中，将100mg的PLGA溶解于2mL二氯甲烷并且将10mg紫杉醇
溶解于1.0mL的无水乙醇。在搅拌下将两种溶液混合在一起。通过将500μL磷酸盐
缓冲液和水在上述溶液中乳化制备第一油包水（w/o）乳化液。然后将第一油包水乳化液进
一步在聚N-乙酰基丙烯酰胺溶液中乳化以形成水包油包水（w/o/w乳化液）。将如此制备的
w/o/w乳化液均化，在蒸发溶剂之后形成加载了紫杉醇的纳米粒子。然后将溶液离心并
选择性地分离处在期望粒度范围内的纳米粒子。然后将纳米粒子分散在无菌水中并且立即
冻干以便将来之用。

【0016】实施例2：PLGA共价结合于普鲁兰支链淀粉胶束纳米团聚体和紫杉醇的加载：

【0017】通过用N-羟基琥珀酰亚胺活化PLGA将PLGA共价结合于普鲁兰支链淀粉。普鲁兰
支链淀粉-PLGA复合物通过凝胶过滤进行纯化并且通过FTIR、H-NMR和质谱进行表征。将
经热水处理的普鲁兰支链淀粉溶液冻干并且保持为深冷冻以备将来之用。

【0018】将100mg的硫水化普鲁兰支链淀粉溶解于10mL水并将溶液涡旋以形成胶束。将
在乙醇中制备的紫杉醇溶液缓慢加入到胶束溶液中并且溶解，直到溶液澄清，表明药物包
封在胶束制剂中。优先分离处在期望范围内的加载了药物的粒子并将溶液冻干。
使用 HPLC 通过标准技术测定包封效率或加载能力和紫杉醇从纳米粒子的释放行为，并且使用常规的粒度分析器测定粒度。

用热敏性聚合物涂覆纳米粒子；

将加载了药物的纳米粒子悬浮在含水缓冲液 \((pH \ 4-5)\) 中。向该溶液中加入磷酸二氢胺的溶液并将得到的溶液涡旋并让在室温下连续搅拌 4 小时。然后通过离心（或通过过滤或透析）分离纳米粒子。向纳米粒子悬浮液滴加聚合物聚 N-乙酰基丙烯酰胺的水溶液并将混合物涡旋。然后将溶液进一步搅拌，将粒子纯化并且冻干以备将来之用。

处在特定粒度范围内的纳米粒子的分级；

在声处理的帮助下将 10.0 mg 的加载了紫杉醇的纳米粒子的冻干粉末悬浮在含水缓冲液中。将溶液过滤通过 0.2 μm Millipore 过滤单元并使用生产商的用于使用这种技术对粒子分级的标准规程使滤液经过不对称流场 - 流动分级。收集不同级分并且使用标准技术进行粒度分析，以测定粒度和粒度分布。

实施例 3 : 紫杉醇 - 人血清白蛋白纳米粒子的制备；

将 1800 mg 人血清白蛋白溶解于无菌注射用水。将 200 mg 紫杉醇单独地溶解于乙醇。在高速搅拌下将醇溶液缓慢加入到人血清白蛋白的水溶液中。使形成的乳液通过高压匀浆器，其时间足以得到期望的纳米粒子大小。从纳米粒子减压除去乙醇，其后将其经过粒子筛分，首先通过 0.2 微米过滤器，随后通过 0.1 微米过滤器。将分级后的纳米粒子无菌过滤通过 0.2 微米过滤器，超滤，并且在小瓶中冻干。测量粒子的各种参数。

<table>
<thead>
<tr>
<th>试验编号</th>
<th>试验项目</th>
<th>结果</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>紫杉醇含量</td>
<td>1 mg/10 mg 的冻干粉末</td>
</tr>
<tr>
<td>2</td>
<td>悬浮液的 pH</td>
<td>6.8</td>
</tr>
<tr>
<td>3</td>
<td>游离药物含量</td>
<td>无</td>
</tr>
<tr>
<td>4</td>
<td>纳米粒子的累积体积分布</td>
<td>D10-70.8 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D50-97.9 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D90-99.8 nm</td>
</tr>
</tbody>
</table>

实施例 4 : 紫杉醇 - 人血清白蛋白纳米粒子的制备；

将 675 mg 人血清白蛋白溶解于无菌注射用水。将 75 mg 紫杉醇单独地溶解于乙醇。在搅拌下将醇溶液缓慢加入到人血清白蛋白的水溶液中。使形成的乳液以低压力通过匀浆器，其时间足以得到期望的纳米粒子大小。从纳米粒子减压除去乙醇，其后将其经过 30 于道尔顿膜超滤以除去游离药物，然后在小瓶中冻干。测量得到的粒子的各种参数。
<table>
<thead>
<tr>
<th>试验编号</th>
<th>试验项目</th>
<th>结果</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>紫杉醇含量</td>
<td>1 mg/10 mg 的冻干粉末</td>
</tr>
<tr>
<td>2</td>
<td>悬浮液的 pH</td>
<td>6.8</td>
</tr>
<tr>
<td>3</td>
<td>游离药物含量</td>
<td>无</td>
</tr>
<tr>
<td>4</td>
<td>纳米粒子的累积体积分布</td>
<td>D10-143.4 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D50-178.5 nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D90-285.9 nm</td>
</tr>
</tbody>
</table>

【0123】实施例 5：具有 LCST 聚合物的紫杉醇—人血清白蛋白纳米粒子的制备：
【0124】将 1800mg 人血清白蛋白和 200mg 聚 N- 异丙基丙烯酰胺 (LCST 聚合物) 溶解于无菌注射用水。将 200mg 紫杉醇单独地溶解于乙醇。随后的进一步的步骤与上述实施例 3 中给出的相似。
【0125】在使用 LCST 聚合物的实验中得到的粒子经过分级，以得到在期望范围内的粒子。在一个这种实验中，研究得到的粒子在各种温度条件下的粒度改变，其结果在以下表 3 中给出，将其作为证明粒度随着温度的增加而增加的实例。
【0126】表 3：

<table>
<thead>
<tr>
<th>温度</th>
<th>25℃</th>
<th>30℃</th>
<th>35℃</th>
<th>37℃</th>
<th>38℃</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均粒径</td>
<td>90.0 μm</td>
<td>92.8 μm</td>
<td>98 μm</td>
<td>130 μm</td>
<td>< 10000 μm</td>
</tr>
</tbody>
</table>

【0128】结果表明，在第二聚物如 LCST 聚合物的存在下，包括紫杉醇和白蛋白的粒子在经历各种温度条件时表现出粒度增加，在 37℃（例如血浆温度），粒子增加到其原始大小的约两倍，在 38℃（例如肿瘤温度），粒子增加到其原始大小的约十倍。
【0129】实施例 6：PLGA—紫杉醇—LCST 聚合物纳米粒子的制备：
【0130】将紫杉醇和 d, l- 乳酸 - 羟基乙酸共聚物 (PLGA) 溶解于丙酮。将聚 N- 异丙基丙烯酰胺溶于注射用水，随后向该水相加入聚乙烯醇。在搅拌下将紫杉醇 -PLGA 溶液缓慢加入到水相中。从该乳液减压除去丙酮。如此得到的纳米粒子经过粒子筛分，分别地进行除去游离药物的处理和冷冻干燥。
【0131】实施例 7：紫杉醇—PLGA—人血清白蛋白纳米粒子的制备：
【0132】将 900mg 人血清白蛋白溶解于无菌注射用水。将给自为 100mg 的紫杉醇和 PLGA 单独地溶解于氯仿。在高速混合搅拌下将紫杉醇—PLGA 溶液加入到人血清白蛋白水溶液中，以形成水包油 (O/W) 乳化液。使形成的乳液以低压力通过匀浆器，其时间足以得到期望的纳米粒子大小。从纳米粒子减压除去残余的乙醇，其后将其经过 30 千道尔顿膜超滤以除去游离药物，并且冻干。测量得到的粒子的各种参数。
【0133】表 2:
<table>
<thead>
<tr>
<th>试验编号</th>
<th>试验项目</th>
<th>结果</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>紫杉醇含量</td>
<td>1 mg/10 mg 的冻干粉末</td>
</tr>
<tr>
<td>2</td>
<td>悬浮液的 pH</td>
<td>6.9</td>
</tr>
<tr>
<td>3</td>
<td>游离药物含量</td>
<td>无</td>
</tr>
</tbody>
</table>
| 4 | 纳米粒子的累积体积分布 | D10-176.6 nm
| | | D50-233.8 nm
| | | D90-318.4 nm |

[0134] 实施例 8：化疗对小鼠毛发生长模式的影响

[0135] 将用于研究的七周龄的雄性 BALB/c 小鼠养在笼中并且允许自由进食和进水。将它们保持在标准条件（25℃室温，12 小时照明和 12 小时黑暗循环）下。

[0136] 注射用于研究的样品为：参考样（市售的白蛋白结合型紫杉醇可注射悬浮液），试验样（得自实施例 3 的样品），和对照样：盐水（媒介物）。

[0137] 形成鼠模型以研究化疗诱导的脱发。在麻醉下，通过使毛发生长周期毛干脱毛将经历经历几次出生后毛发周期的毛发生长周期小鼠诱导进入毛发生长初期，这是通过使用电动理发推子随后将市售的脱毛剂施用于背部皮肤进行。通过使用这种技术，所有被脱毛的毛发生长周期毛囊立即开始转变为毛发生长初期毛囊（阶段 I 到 I）（参考 Paus 等人，American Journal of Pathology, 144, 719-734（1994）。进行上述步骤是用于在小鼠中诱导与自发的毛发生长初期发育阶段相比为高度同步的毛发生长初期发育阶段。毛发生长初期 VI 阶段（脱毛之后的第 9 天），对每组四只小鼠的三个组静脉内给予试验样和参考样（20mg/kg）和等量的对照样，进行研究。

[0138] 在处理之后，视觉观察所有动物的毛发生长和脱发的迹象并且进行数码拍摄记录。在化疗和媒介物处理之后的不同时间间隔，如下所述，基于毛发生长指数进行毛发生长模式的得分。

[0139] 毛发生长指数得分：

[0140] 0 = 没有毛发生长

[0141] 1 = 适度的毛发生长

[0142] 2 = 中等的毛发生长

[0143] 3 = 良好和均匀的毛发生长，没有脱发迹象

[0144] 每个处理组的毛发生长得分指数在以下表 4 中给出。

[0145] 表 4：
组别 | 毛发生长得分指数(平均值±SEM)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>第 1 天</td>
<td>第 10 天</td>
</tr>
<tr>
<td>对照组(盐水 i.v.)</td>
<td>0.00</td>
<td>3.00 ± 0.00</td>
</tr>
<tr>
<td>试验组(20 mg/kg i.v.)</td>
<td>0.00</td>
<td>2.66 ± 0.33</td>
</tr>
<tr>
<td>参考组(20 mg/kg i.v.)</td>
<td>0.00</td>
<td>2.0 ± 0.57</td>
</tr>
</tbody>
</table>

更高的毛发生长得分指数表示更好的毛发生长。

上述数据显示，用试验样处理的小鼠表现出比参考样更好的毛发生长并且具有更接近对照样的数值。

实施例 9: 化疗对小鼠毛发生长模式的影响

使用抗实施例 4 的另一个试验样品进行与上述相同的试验。

注射用于研究的样品为：(a) 参考样：(市售的白蛋白结合型紫杉醇可注射悬浮液)，
(b) 试验样 I：(得自实施例 4 的样品)，和 (c) 试验样 II：(得自实施例 5 的样品)。

在这个研究中得到的每个处理组的毛发生长得分指数在以下表 5 中给出。

表 5：

| 组别 | 毛发生长得分指数(平均值±SEM)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>第 1 天</td>
<td>第 10 天</td>
</tr>
<tr>
<td>对照组(盐水 i.v.)</td>
<td>0.00</td>
<td>2.25 ± 0.25</td>
</tr>
<tr>
<td>试验组(20 mg/kg i.v.)</td>
<td>0.00</td>
<td>2.00 ± 0.00</td>
</tr>
<tr>
<td>参考组(20 mg/kg i.v.)</td>
<td>0.00</td>
<td>1.50 ± 0.28</td>
</tr>
</tbody>
</table>

这个数据进一步表明试验样表现出减少的化疗诱导的副作用如脱发。

实施例 10: 在带有肿瘤的小鼠中的研究

用于研究的样品为：(a) 参考样：(市售的白蛋白结合型紫杉醇可注射悬浮液)，
(b) 试验样 I：(得自实施例 4 的样品)，和 (c) 试验样 II：(得自实施例 5 的样品)。

这个实验的目的是研究与参考样相比本发明的纳米粒子 (试验样) 的肿瘤保持力(retentiveness) 和泄漏 (leakiness) 行为。取带有肿瘤的 1CRC 小鼠 (带有自发性乳房肿瘤)，基于平均肿瘤大小将小鼠分成三组 (n = 5) 并且通过肿瘤内路径用参考样和试验样剂量给药 (0.06mg/100mm³)。在 8 小时的固定时间间隔之后，将小鼠处死，收获肿瘤和血浆并且分析紫杉醇。

计算试验样和参考样中紫杉醇的肿瘤血浆比，发现实施例 4 为 71.61，实施例 5 为 355.7，参考样为 19.96。这个数据显示，与参考样相比，实施例 4 的试验样保持的紫杉醇为 3.58 倍，实施例 5 的试验样保持的紫杉醇为 17.80 倍。这进一步显示试验样与参考样相比发生更多的泄漏并且有助于减少副作用如脱发，如实施例 4 的试验样所示。由于粒子膨胀
到本发明限定的粒度并且由此具有少得多的泄漏。如实施例 5 中举例说明的在组合物中试验样与另外的温度敏感性聚合物提供了好得多的保持力，其可以产生实质上减少的副作用如脱发。