镁合金挤压变形的加工方法及模具

摘要

本发明公开了一种镁合金挤压变形加工方法及模具，采用单向挤压径向流动变径角成型的挤压模，挤压比为4～60，将模具加热后在模具挤压通道腔内均匀涂抹润滑剂，然后将经过均匀化处理的镁合金坯料加热后放入在已加热的模具的挤压腔内，通过挤压模向下运动的凸模，同时以0.5m/min～3m/min的挤压速度、3MPa～35MPa的挤压力，从镁合金坯料的上端进行等速挤压，使镁合金坯料由上部向模具挤压腔径向的变径型腔通道流动挤压变形。本发明采用单向挤压径向变径角流动挤压变形，既能够极大地提高镁合金晶粒的细化效果，使镁合金材料的综合力学性能得到提高，又能够实现在低温挤压状态下不降低挤压速度，不降低成型样品的质量，从而提高镁合金挤压变形加工的生产效率。
1. 一种镁合金挤压变形加工方法，其特征在于，包括以下步骤：
 将镁合金坯料进行均勻化处理；
 加热变通道角挤压成型的挤忊模，模具温度比镁合金坯料温度低10℃～30℃，模具加热后在模具挤压腔内均匀涂抹润滑剂；
 将经过均勻化处理的镁合金坯料加热至150℃～450℃，放入在已加热的变通道角挤压成型的挤忊模的挤压腔中，以0.5 m/min～3 m/min的挤忊速度，挤忊比4～60，从镁合金坯料的上端进行单向等速挤忊，使镁合金坯料由上部向模具挤忊腔径向的変径角型腔通道挤忊变形，所述変径角型腔通道于所述挤忊腔的转弯处沿水平方向延伸，所述挤忊腔的截面积大于所述変径角型腔通道的截面积。

2. 根据权利要求1所述的镁合金挤压变形加工方法，其特征在于：所述镁合金坯料加热至200℃～300℃，放入在已加热的变通道角挤压成型的挤忊模的挤忊腔中，以1.5 m/min～2.5 m/min的挤忊速度，20～40的挤忊比，从镁合金坯料的上端进行单向等速挤忊，使镁合金坯料由上部向模具挤忊腔径向的変径角型腔通道挤忊变形。

3. 根据权利要求1所述的镁合金挤压变形加工方法，其特征在于：所述镁合金坯料的均勻化处理是将镁合金坯料加热至400℃保温15小时。

4. 根据权利要求1所述的镁合金挤压变形加工方法，其特征在于：所述润滑剂为玻璃润滑剂。

5. 根据权利要求4所述的镁合金挤压变形加工方法，其特征在于：所述润滑剂的玻璃粉碎度为109-190μm。

6. 一种用于镁合金挤压变形加工方法的变通道角挤压成型的挤忊模具，所述模具内设置有一个挤忊通道，其特征在于：所述挤忊通道包括竖直的挤忊腔以及与挤忊腔相通的横向変径角型腔通道，挤忊腔于模具顶端向下轴向延伸，変径角型腔通道于挤忊腔的转弯处沿水平方向延伸，挤忊腔的截面积大于変径
角型腔通道的截面积。

7. 根据权利要求 6 所述的挤压模具，其特征在于：挤压腔与变径角型腔通道直径比为 2:1 ~ 7.7:1
镁合金挤压变形的加工方法及模具

技术领域

本发明属于镁合金的挤压变形领域，特别涉及一种镁合金的挤压变形加工方法及模具。

背景技术

镁合金具有密度小、比强度和比刚度高、电磁屏蔽性好以及易于再生等一系列的优点，是目前能被当作结构材料使用的最轻的金属。随着汽车、航空、电子及运输等工业轻量化的发展要求，镁合金的应用范围越来越广。但镁是密排六方结构的金属，在室温和低温下表现系少，塑性比较低，容易脆断，冷加工性能不好。对于应用较广的铸造镁合金，其铸造组织晶粒粗大，力学性能较低。为了提高其力学性能，细化组织是比较好的途径。通过热加工处理来细化镁合金晶粒不仅能提高其塑性，亦可提高其强度。晶粒细化一直是材料科学界研究的热点问题，根据著名的 Holl-Petch 公式多晶体屈服强度随晶粒尺寸的减小而增加，而延伸率也明显提高，是理想的材料强化方式。挤压变形就是其中一种比较理想的细化组织，提高其力学性能的变形方式。挤压法生产的零件其力学性能较压铸法生产的要高很多，而且表面光洁度高，可用于汽车承载件如坐架、底盘、轮毂和汽车窗框等。

我国变形镁合金材料的研制与开发仍处于起步阶段，缺少高性能镁合金板、棒和型材，如今国防军工、航天航空用高性能镁合金材料仍依靠进口，民用产品尚未进行大力开发。因此，研究和开发性能优良、规格多样的变形镁合金材料显得十分重要。

目前，工业生产中镁合金的挤压变形工艺，其镁合金坯料的挤压温度通常为 300～450℃，比较狭窄，挤压比一般在 10 : 1 ～100 : 1 变化。为了防止与模具之间的温差而产生裂纹，常采用等温挤压。挤压速度通常为 0.5m/min ～2m/min，这种单向挤压方式的挤压力度与挤压速度成正比，挤压温度越低，挤压速度越慢，如果挤压温度降低而挤压速度不随之而减慢，镁合金的成型效果
将受影响，导致挤压出的材料出现裂纹，影响产品质量。目前采用的镁合金的较先进的单向挤压变形方式为等径角挤压（又称等通道角挤压）ECAE（Equal channel angular extrusion），图9为一种利用大剪切变形细化晶粒的塑性变形加工方法，即将被挤压的镁合金坯料，通过挤压模上弯曲成90度角的单向等径挤压通道进行挤压，使镁合金坯料在一个挤压杆的压力下，由单向等径挤压通道一端向另一端运动，使镁合金坯料在经过单向等径角挤压通道的90度转角时，受到剪切变形，将镁合金晶粒细化，提高被挤压的镁合金材料的力学性能，但是由于这种挤压方式仅仅是一个单向等径通道的挤压方式，挤压比为1，挤压温度为300～350℃，挤压速度为0.1～0.8m/min，其每挤压一道次后，镁合金晶粒尺寸细化程度一般只能达到2：1到6：1左右，需经过多道次挤压才能够将镁合金晶粒细化到较小尺寸，而且从已有的研究文献来看，该挤压工艺所用的坯料基本都是先进行过大挤压比的预挤压，以求先将坯料的晶粒尺寸降到很小的范围，一般在20～40μm左右。如将晶粒为20μm的镁合金坯料在250℃时采用ECAE技术挤压变形，需经过八道次的挤压，镁合金的晶粒尺寸才能达到2μm左右；如果原始晶粒大小为40μm左右，要经过四道次才能降到10μm左右。该方法虽然能够实现将镁合金晶粒细化到很小的程度，但是其有几点不足：第一，坯料需要进行预挤压变形，以初步细化晶粒，因此工序多，设备、能源耗费大，成本高；第二，采用多道次的挤压加工，同样工序多，生产效率低，生产成本高，并且由于ECAE技术的挤压速度为0.1～0.8m/min，每道次的挤压时间相对较长，生产效率低，若提高单向挤压速度，会使产品质量下降。因此，在工业化生产需要提高生产率的情况下，推广应用相当困难，ECAE技术显然存在不足。

发明内容

本发明的目的是提供一种镁合金挤压变形加工方法。本发明采用单向挤压径向变径角挤压变形，极大地提高镁合金晶粒的细化效果，使镁合金材料的综合力学性能得到提高，低温挤压状态下不降低挤压速度，提高镁合金挤压变形加工的生产效率。
本发明方法包括以下步骤：

将镁合金坯料进行均匀化处理，以改善铸锭化学成分和组织的不均匀性，提高其成形性。

加热变通道角挤压成形的挤压模，模具温度比镁合金坯料温度低 10℃～30℃，模具加热后在模具挤压通道内均匀涂抹润滑剂；

将经过均匀化处理的镁合金坯料加热 150℃～450℃放入在已加热的变通道角挤压成形的挤压模的挤压腔中，从镁合金坯料的上端进行单向等速挤压，使镁合金坯料由上部向模具挤压腔径向的变径型腔通道流动挤压变形。其中挤压速度为 0.5m/min～3m/min，挤压比为 4～60，挤压力受到金属坯料（金属的变形抗力，坯料状态，坯料长度），工艺参数（变形程度，变形温度，变形速度），外摩擦条件，模子形状与尺寸，制品断面形状，挤压方法，挤压操作等影响。

本发明较好的技术方案是：所述镁合金坯料加热至 200℃～300℃，放入在已加热的变通道角挤压成形的挤压模的挤压腔中，以 1.5m/min～2.5m/min 的挤压速度，20～40 的挤压比，从镁合金坯料的上端进行单向等速挤压，使镁合金坯料由上部向模具挤压腔径向的变径型腔通道流动挤压变形。

本发明的另一个目的，是提供一种用于镁合金挤压变形加工方法的变通道角挤压成形的挤压模。它结合了等通道角挤压和大挤压比变形的优点，挤压得到的镁合金晶粒细小，模具结构简单，工艺简单，生产效率高，在工业应用上有良好的前景。

实现本发明的另一个目的的技术方案是：

包括模具，所述模具内设置有一个挤压通道，所述挤压通道包括竖直的挤压腔以及与挤压腔相通的横向变径角型腔通道，挤压腔于模具顶端向下轴向延伸，变径角型腔通道于挤压腔的转弯处沿水平方向延伸，挤压腔的截面积大于变径角型腔通道的截面积。

由于采用了上述方案，采用变径角挤压成形的挤压模，通过挤压模的凸模的向下等速运动，使镁合金坯料向模具挤压腔径向的变径角挤压型腔通道流动
挤压变形，工件在压力作用下在两个横截面积不同的通道相交处产生近似理想的剪切变形。首先，粗大晶粒被粉碎成一系列具有小角度晶界的亚晶，亚晶被沿着一定方向拉长形成带状组织；然后亚晶被继续破坏，开始出现部分具有大角度界面的等轴晶组织；最后，亚晶带消失，显微组织为具有大角度晶界的亚晶。晶粒位相差随剪切变形量的增大而增大。同时随着流线区域发生了晶粒破碎现象，在挤压过程中发生动态再结晶。在进入变径通道时处于剧烈的三向压应力状态，可以充分发挥其塑性，提高其变形能力从而使其再次获得大变形量，沿挤压方向的晶粒被拉长。但是由于在挤压过程中发生了动态再结晶，所以挤压组织表现为等轴状晶粒，在某些情况下动态再结晶是不充分的，在微观组织上表现为典型的混晶组织。坯料使用该方法挤压时，在进行了一系列的连续深度变形之后，晶内位错密度急剧增加，晶格畸变加剧，从而使新晶粒形核数目增多而显著的细化晶粒，所以只需一次挤压变形，就能使被加工的镁合金起到极其显著的晶粒细化效果。

镁合金在铸造过程中，非平衡结晶所带来的各种偏析和存在于晶界及枝晶网络上的金属间化合物，使得铸坯的化学成分和组织很不均匀（如图 2 所示），造成热塑性的降低和加工性能的削弱。挤压前经均匀化处理，可以改善铸锭化学成分和组织的不均匀性，提高其成型性。

以铸造 AZ31 镁合金挤压变形为例，挤压前经均匀化处理的平均晶粒尺寸大小为 500 μm 左右，在挤压比为 4 的小挤压比（通道直径比为 2:1）的情况下，在 250℃时只经过一道次挤压，平均晶粒尺寸就能细化到 20 μm 左右，晶粒细化的比率达到 25:1，且成形组织均匀。而对等通道挤压，在同样温度下对于原始晶粒平均尺寸为 20um 的挤压坯料一道次挤压后其晶粒大小为 10um 左右，四道次后为 5um 左右，八道次为 2um 左右，其晶粒细化比率大约为 2:1，变通道角挤压技术的首道次挤压细化晶粒比相对于等通道角挤压技术首道次挤压细化晶粒比提高了近 10 倍左右，参见下表 1：

| 表 1 晶粒细化效果对照表 |

7
由于本挤压方法是结合了等通道角挤压变形和大挤压比挤压变形的优点，并且由于本挤压方法是使镁合金坯料向模具挤压腔的横向变径角型腔通道流动挤压变形，在挤压过程中金属流动过程中内部组织呈现出一定的方向性且晶粒细小，使晶粒被拉长甚至发生破碎，增加了再结晶形核率，细化了晶粒，即使在挤压温度低于 300℃的状态下，其挤压速度不降低，仍以 2m/min～3m/min 的挤压速度进行挤压，镁合金发生了动态再结晶，通过这种动态再结晶过程，镁合金的组织得到细化，晶粒平均直径大大下降。（如图 4、图 5、图 6 和图 7 所示）

同时，还因为本挤压方法能够实现低温挤压成型的工业化生产，在提高工业生产效率的前提下，挤压后的镁合金材料具有抗压强度高、屈服强度高、延伸性好的力学性能，可以用于对金属材料的综合力学性能要求高的领域，如航空航天、军工等领域。根据国标 GB228-2002 的标准，将 AZ31 镁合金采用本发明挤压方法挤压后的挤压件和采用传统挤压方法挤压后的挤压件，加工成 10mm×10mm×20mm 的压缩试样进行压缩试验，试验结果参见表 2、3，由此可见采用本发明挤压方法挤压的 AZ31 棒材的综合力学性能优于传统挤压方法挤压的 AZ31 棒材的综合力学性能：

由表 2 得知，挤压时，坯料温度控制在 250℃，其机械性能好。

表 2 采用本发明挤压方法 AZ31 棒材的力学性能

<table>
<thead>
<tr>
<th>挤压速度</th>
<th>坯料温度</th>
<th>抗压强度/Mpa</th>
<th>屈服强度/Mpa</th>
<th>压缩率 (%)</th>
<th>硬度/HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5～3m/min</td>
<td>250℃</td>
<td>386</td>
<td>128</td>
<td>14.6</td>
<td>65</td>
</tr>
<tr>
<td>0.5～3m/min</td>
<td>300℃</td>
<td>350</td>
<td>115</td>
<td>12.7</td>
<td>64.1</td>
</tr>
<tr>
<td>0.5～3m/min</td>
<td>350℃</td>
<td>374</td>
<td>102</td>
<td>12.4</td>
<td>63.8</td>
</tr>
<tr>
<td>挤压速度</td>
<td>坯料温度</td>
<td>抗压强度 /Mpa</td>
<td>屈服强度 /Mpa</td>
<td>压缩率 (%)</td>
<td>硬度/HV</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>0.5 ~ 3m/min</td>
<td>400℃</td>
<td>354</td>
<td>87</td>
<td>13.1</td>
<td>62</td>
</tr>
<tr>
<td>0.5 ~ 3m/min</td>
<td>450℃</td>
<td>359</td>
<td>70</td>
<td>13.5</td>
<td>55</td>
</tr>
</tbody>
</table>

表 3 采用传统挤压方法 AZ31 棒材力学性能

下面结合附图和实例对本发明作进一步说明。这些实施例是用于说明本发明，而不是对本发明的限制。在本发明的构思前提下对本发明挤压方法的简单改进，都属于本发明要求保护的范围。

附图说明：

图 1 为本发明挤压方法的一种实施例示意图；
图 2 为 AZ31 镁合金铸态微观组织照片；
图 3 为 AZ31 镁合金均匀化处理后的微观组织照片；
图 4 为 AZ31 镁合金坯料温度 250℃用本发明挤压产生的晶粒细化效果图；
图 5 为 AZ31 镁合金坯料温度 300℃用本发明挤压产生的晶粒细化效果图；
图 6 为 AZ31 镁合金坯料温度 350℃用本发明挤压产生的晶粒细化效果图；
图 7 为 AZ31 镁合金坯料温度 400℃用本发明挤压产生的晶粒细化效果图；
图 8 为 AZ31 镁合金坯料温度 450℃用本发明挤压产生的晶粒细化效果图；
图 9 为单向等径挤压的示意图。

具体实施方式

实施例 1：
参见图 1，本实施例采用单向挤压径向流动变径角成型的挤压模，在立式挤压机上对 AZ31 镁合金棒材进行挤压变形加工。首先将镁合金坯料加热至 400℃保温 15 小时进行均匀化处理，经过均匀化处理的铸锭，粗大的枝晶消失，使铸锭的化学成分和组织更加均匀（如图 3 所示）。挤压前，把模具加热至 220℃~430℃后，在模具挤压通道腔内均匀涂抹润滑剂，所述润滑剂为玻璃粉粒度为；
109μm ～ 190μm 的玻璃润滑剂，然后将模具 3 固定在立式挤压机的工作台上，将
经过均匀化处理的镁合金坯料加热至 250℃ ～ 450℃，挤压比为 4 ～ 60，放入在
已加热的模具的挤压腔 4 中，立式挤压机的压杆 1 带动上凸模 2 以 0.5 ～ 3 m/min
的速度，从镁合金坯料的上端进行等速挤压，即挤压机的压杆 1 带动上凸模 2
向下施与压力运动，使镁合金坯料向模具挤压腔的变径角型腔通道 5 流动而挤
压变形，其挤压比为挤压腔的截面积与变径型腔通道的截面积之比。为使 AZ31
镁合金挤压加工后的棒材的综合力学性能达到高标准要求，可将镁合金坯料温
度加热至 250℃，放入温度加热至 230℃的挤压模中，通过挤压模向下运动的凸
模，以 3 m/min 的挤压速度、4.5 Mpa ～ 5 Mpa 的挤压力，挤压比为 4，从镁合金坯
料的上端进行等速挤压，使镁合金坯料向模具挤压腔的横向变径型腔通道流动
挤压变形，其效果最佳。采用上述挤压方法在挤压机上挤压成棒材后，用吹风
机快速冷却，防止晶粒长大，即可加工出各种镁合金棒料产品。随着挤压温度
的提高，挤压速度也应提高。

实施例 2

参照图 1，本实施例采用与上面实施例相同类型的变通道角挤压模具，挤压
比为 20，亦即横向变径型腔与竖直型腔通道的直径比是：1: 4.5，挤压前首先
要对坯料在 400℃保温 15h 进行均匀化处理以消除铸造时留下的各种枝晶和金属
间化合物。模具加热温度范围为 180℃，所使用的润滑剂为玻璃粉末度为：109μm
的玻璃润滑剂，挤压温度为：200℃，挤压速度为：2 m/min，挤压压力范围在 10～
12 Mpa 之间，具体的实施过程为：将均匀化处理后的坯料放入挤压腔 4 中，由挤
压机的压杆施加压力带动凸模 2 向下运动，由凸模 2 挤压坯料使镁合金坯料向
模具挤压腔的变径角型腔通道 5 流动挤压变形，得到挤压成形制品。采用上述
挤压方法挤压出的制品应迅速冷却，防止晶粒长大。

实施例 3

参照图 1，挤压比为 60，亦即横向变径型腔通道与坚直型腔通道的直径比
约为 1: 8，挤压温度 250℃。挤压速度变为：1 m/min，挤压压力范围为：20 ～ 25 Mpa，
其它各项的条件和实施过程皆同于前面的两个实施例。温度越低挤压速度越小，
如在 150℃时，挤压速度应控制在 0.5～1m/min 左右。

本发明的模具型腔的转角以及圆角半径可以修改，其中圆角半径应该在恰
当范围内为 2mm～5mm 效果较好。

本发明不仅仅局限于加工各种镁合金棒料，还可以根据模具设置的径向的
变径型腔通道的结构，采用适当的模具结构，还可以挤压出多种形态的镁合金
特殊型材（如扁材，管材等）。

本发明不仅仅局限于上述的立式挤压机，也可以用在卧式挤压机进行挤压。
采用卧式挤压机进行挤压，只需稍微改动模具结构便可实现。
图 1