200470861777 A2 | IV OO0 000 O

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

7 October 2004 (07.10.2004)

AT Y0 OO0 R

(10) International Publication Number

WO 2004/086177 A2

(51) International Patent Classification’:

(21) International Application Number:

GO6F

PCT/US2004/008041

(22) International Filing Date: 16 March 2004 (16.03.2!
(25) Filing Language:
(26) Publication Language:

(30) Priority Data:

10/396,985 24 March 2003 (24.03.2003)

(71) Applicant (for all designated States except
EMULEX DESIGN & MANUFACTURING C

004)

English

English

Us

UsS):
OR-

PORATION [US/US]; 3333 Susan Street, Costa Mesa,

CA 92626 (US).

(72) Inventor: WILLIAMS, James, B.; c/o Emulex Corpora-

tion, 3333 Susan Street, Costa Mesa, CA 92626 (US).

(74) Agents: KUBOTA, Glenn, M. et al.; Morrison & Foe
LLP, 555 W. Fifth Street, Suite 3500, Los Angeles,
90013 (US).

Tster

CA

(81)

(84)

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro-
pean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,
GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: DIRECT DATA PLACEMENT

(57) Abstract: A system comprising a host and a network interface card or host bus adapter. The host is configured to perform
transport protocol processing. The network interface card is configured to directly place data from a network into a buffer memory

in the host.

WO 2004/086177 PCT/US2004/008041

DIRECT DATA PLACEMENT

BACKGROUND

[0001] Transmission Control Protocol (TCP)/Internet Protocol
(IP) is a networking protocol that provides communication across
interconnected networks, between computers with diverse hardware
architectures and various operating systems. The TCP/1IP family
of protocols track Internet addresses of nodes, routes outgoing
messages and recognizes incoming messages. TCP is a connection-
oriented, end-to-end transport layer protocol used to transfer
data in a network. IP addresses packets and is thé messenger
protocol of the TCP/IP family of protocols.

[0002] A conventiohal network interface card (NIC) receives
TCP/IP packets froﬁ a network and stores Athe packets in a
network interface card memory. A conventional host operating
system (08) copies packets from the network interface card
memory to a host memory. A host TCP/IP stack handles TCP/IP
protocol processing of the TCP/IP packets. Copying data from
the nethrk interface card memory to the host memory may consume
a large amount of the host’s processing power and is referred to
as “overhead.”

[0003] The host system may use TCP/IP headers to determine a

“connection” associated with each packet. If the TCP/IP packets

WO 2004/086177 PCT/US2004/008041

are received from the network out of order, the host system may
use TCP packet sequence numbers in TCP headers to put the TCP/IP
packets in a proper order. The host system may also reassemble
data (messages) that the network interface card receives in
pieces.

[0004] As an alternative to the conventional host system, the
host system may have a full TCP transport “offload,” where the
network interface card does all transport protocol processing
instead of the host. This may enable zero copying of received
data packets. The network interface card reassembles data
packets, replaces out-of-place data packets, identifies the
connection to which thé packet belongs, and places the data in
an appropriate buffer location in host memory. This full
transport offload network interface éard, however, may be fairly
expensive, especially if the network interface card needs to
handle a 1érge number of connections and maintain
context/connection state information for all connections. The
network interface card needs to have high memory bandwidth to
access context information to do transport processing. In
addition, a host TCP/IP stack needs to be modified to account
for the tranéport offload.

[o005] Direct Data Placement (DDP) is a developing protocol
described in the “DDP Protocol Specification,” published by an

Internet Engineering Task Force (IETF) working group on October
2

WO 2004/086177 PCT/US2004/008041

21, 2002 (hereinafter “DDP Specification”). DDP may en-able an
Upper Layer Protocol (ULP) to send data to a Data Sink without
requiring the Data Sink Eo place the data in an intexrrmediate
buffer. When data arrives at the Data Sink, a network imterface
can place the data directly into the ULP's receive buffers. This
may enable the Data Sink to consume substantially less memory
bandwidth than a buffered model because the Data Sink 1is not
required to move the data from an intermediate buffer to the
final destination. This can also enable the network protocol to
consume substantially fewer CPU cycles than if the CPU was used
to move data, and remove the bandwidth limitation of being only

able to move data as fast as the CPU can copy the data.

SUMMARY

[0006] The present application relates to a network interface
card (NIC) or host bust adapter (HBA) and a method for direct
data placement (DDP) without transport protocol processing
offload. The system may have a number of advantages, such as
reducing host overhead for copying data, reducing the cost of a
network interface card and improving host and network interface
card performance.

[0007] The system and methods described herein may modify the
host network stack with practical modifications that do not

break any fundamental assumptions. In contrast, host stack

WO 2004/086177 PCT/US2004/008041

modifications that would support full, clean, and seamless TCP
offload, i.e., for a network interface card to handle TCP/IP
processing and data placement, may be significantly harder and
more expensive to implement. - A direct data placement-only
network interface card may be considerably less expensive than a
full TCP offload because context memory size and bandwidth is
minimized for a direct data placement-only network interface
card. Payload buffering is not required for a direct data
placement-only network interface card or a full TCP offload
network interface card.

[0008] The system and methods described above may also enqble
a desired usage mode, which would otherwise be difficult with a
full TCP offload. The usage mode éllows an initial connection
of legacy protocol (such as Small Computer Systém Interface
(SCSI), Small Computer System Interface over Internet Protocol
(iSCSI) or Network File System (NFS)) to be established to an
associated well-known port number. Then in-band negotiation is
performed to upgrade the connection to use direct data
placement. After successful negotiation of direct data
placement, the connection may transition to DDP mode. Backward
compatibility may be difficult to maintain without this
capability.

[0009] An aspect of the application relates to a system

comprising a host system and a network interface card (NIC).
4

WO 2004/086177 PCT/US2004/008041

The host system comprises a host transport protocol processing
stack and a memory. The network interface card is configured to
receive packets from a network, send a header of each packet to
the host transport protocol processing stack, and diréctly place
a payload of each packet in the host memory.

[0010] Another aspect relates to a network interface card
comprising a direct data placement engine and a memory storing
connection state information. The direct data placement enéine
is configured to read a header of a paéket received from a
network, access the connection state information, determine
whether a payload of the packet can be directly placed in a host
memory, send the header to a host protocol processing stack, and
directly place the payload in the host memory.

[0011] Another aspect relates to a method comprising: reading
a header of a packet received from a network; determining
whether packet data is authorized to be directly placed in a
host memory; if the packet data is authorized to be directly
placed in the host memory, placing the packet data directly in
the host memory and sending a packet header to a host transport
protocol processing stack; and if the packet data 1is not
authorized to be directly placed in the host memory, sending the
packet to the host transport protocol processing stack.

[0012] The details of one or more embodiments are set forth

in the accompanying drawings and the description below. Other
s

WO 2004/086177 PCT/US2004/008041

features and advantages will be apparent from the description

and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

[0013] Fig. 1 illustrates a host system and a network
interface card (NIC), a bus and a network connection.

[0014] Fig. 2 illustrates a packet that the network interface
card of Fig. 1 may receive from the Ethernet connection.

[0015] Fig. 3 illustrates a method of direct data placement
with the system of Fig. 1.

[0016] Fig. 4 illustrates a method of determining whether
packets are in order, handling out-of-order packets ‘and

recovering after packets are back in order.

DETAILED DESCRIPTION

[0017] Fig. 1 illustrates a host system 100 and a network
interface card (NIC) or host bus adapter (HBA) 102, a bus 104
and a network connection 106. The bus 104 may be a Peripheral
Component Interface (PCI) bus, a PCI-X bus, a Small Computer
System Interface (SCSI) bus or some other type of bus. The
network connection 106 may be coupled to an Ethernet network
with servers, user computers, storage devices, network attached
storage (NAS), storage area networks (SANs), routers and other

devices.

WO 2004/086177 PCT/US2004/008041

{0018] The host system 100 may include a direct data
placement (DDP) stack 110, a Transmission Control
Protocol/Internet Protocol (TCP/1P) stack 112, an offload
detection module 116 and a memory 118. A host CPU or processor
may execute the direct data placement (DDP) stack 110, TCP/IP
stack 112, and offload detection module 116. The DDP stack 110
and offload detection module 116 may be separate from the TCP/IP
stack 112 or may be combined with thé TCP/IP stack 112.

[0019] The host memory 118 has a context storage 114 that
stores context or connection state information, which is
described below. The context storage 114 may be a part of the
memory 118 or separate from the memory 118.

[0020] The host memory 118 may have a buffer 119 that stores
packet data payloads 200 (Fig. 2 described below) that are
associated with a particular host application or connection,
i.e., source and destination Internet Protocol (IP) addresses
and port numbers. The memory 118 may have a set of buffers for
a set of connections.

[0021] The network interface card 102 may include a direct
data placement (DDP) engine 120, a memory 124 and a network
(e.g., Ethernet) connection 106. The DDP engine 120 may include
firmware and/or hardware, such as a processor. The network
interface card memory 124 may include a context cache or storage

122, tables, and buffer lists.

WO 2004/086177 PCT/US2004/008041

[{0022] Packet

[0023] Fig. 2 illustrates a packet 200 that the network
interface card 102 may réceive from the network connection 106.
The packet 200 may include an IP header 202, a TCP header 204, a
DDP header 206 and payload data 208. The IP header 202 may
include a source IP address and a destination IP address. The
TCP header 204 may include a source port ID/number, a
destination port ID/number, a checksum, a packet sequence number
and other control information. The IP and TCP headers 202 and
204 provide sufficient information on where the packet payload
208 is supposed to be stored in the host buffer 119.

[0024] The DDP header 206 may indicate permission or
authorization for the network interface card 102 to directly
write data payloads 208 associated with é connection to the
buffer 119. The packet 200 shows a Direct Data Placement (DDP)
protocol run over a TCP/IP network.

[0025] NIC Receives Packets In Order

[0026] Fig. 3 illustrates a method of direct data placement
with the system of Fig. 1. When the network interface card 102
receives packets in order via the Ethernet connection 106, the
network interface card 102 has sufficient context information in
storage 122 to directly place the packet payloads 208 in the
host buffer 119. The network interface card 102 may transfer

two types of packets from the network connection 106 to the host
: 8

WO 2004/086177 PCT/US2004/008041

TCP/IP stack 112: header-only packets; and header and payload
packets.

{0027] The DDP engine 120 reads the DDP header 206 in 300 of
Fig. 3 and determines whether the DDP engine 120 has permission
to directly place the payload 208 (associated with a particular
connection) into the host’s buffer 119 via a bus or line 105.
If not, the DDP engine 120 may pass the whole packet 200 to the
host TCP/IP stack 112 in 302.

[0028] If direct placement is permitted, the DDP engine 120
of the network interface card 102 passes the IP header 202, TCP
header 204 and some DDP header information to the host network
TCP/IP stack 112 for processing. The DDP engine 120 separates
payload data 208 from headers 202, 204, 206. The DDP engine 120
places the payload data 208 directly into the buffer 119 in the
memory 118 of the host system 100 according to information in
the IP header 202, TCP header 204 and DDP header 206. Thus, the
network interface card 102 may do direct data placement (DDP) in
the host buffer 119, but not transport (e.g., TCP) offload.

[0029] The network intefface card DDP engine 120 may set a
flag bit in the DDP header 206 sent to the host TCP/IP stack
112. The host’s offload détection module 116 may detect the
flag bit for a header-only packet transferred from the network

interface card 102 to the host system 100 and acknowledge that

WO 2004/086177 PCT/US2004/008041

the network interface card 102 directly placed data in the host
memory buffer 119.

[0030] The network interface card DDP engine 120 may check
the TCP sequence number in the TCP header 204 to determine if
the packet 200 is a “valid” packet, which means the packet is
“in sequence” (in order). If the packet 200 is a retransmission
of an old packet, the packet may be invalid and invalid packets
will be dropped. If the packet 200 is out of sequence, the DDP
engine 120 sends the entire packet to the host TCP/IP stack 112.

[0031] Context Information stored in Network Interface Card

[0032] The DDP engine 120 may identify a connection to which
the packet is associated by accessing minimal TCP context
information stored in the network interface card context storage
122. ' The context storage 122 may maintain a total of, for
example, 16 to 32 bytes of context information (described below)
per connection, in contrast to 256 to 512 bytes of context
information per connection for full TCP offload (if TCP
processing is handled by a network interface card) .

[0033] The minimal TCP “context” or ‘“connection state”
information may include for each DDP connection: (a) a local IP
address and port number; (b) a remote IP address and port
number; (c) a sequence number of the next TCP packet expected by
the connection; and (d) a protection ID (e.g., PTa3j). The

protection ID is a mechanism for protecting the host memory
10

WO 2004/086177 PCT/US2004/008041

buffer 119 and checking all accesses to the host memory buffer
119 for permission. The protection ID indicates whether the
network interface card 102 has permission to write data directly
to the host buffer 119.

[0034] The DDP Specification describes a PTag (protection
tag), which is an example of a protection ID for protecting the
memory buffer 119 from unauthorized writes. There is a PTag
associated with each buffer il9 in the host memory 118, and
another PTag associated with the connection. If the two PTags
match, then the connection is associated with that buffer 119.
[0035] The context information may include a STag (steering
tags) for each buffer in the memory 118. STags are deécribed in
the DDP Specification. The DDP header 206 (Fig. 2) may include
a STag. The STag identifies a Data Sink’s tagged ULP buffer,
such as the host buffer 119. The STag directs the DDP engine
120 to write data to the buffer 119 referenced by the STag.

[(0036] The conte#t information may further include ‘a
next expected sequence, a recovery_point and an in-order flag,
as described below with Fig. 4.

[0037] The memory 124 may store a source IP address, a
destination IP address, a source port number, and a destination
port number (collectively called a “four-tuple”) for éach
_connection for which the network interface card 102 is doing

direct data placement. Four-tuples are used to identify
11

WO 2004/086177 PCT/US2004/008041

incoming packets and associate each packet with a connection.
An implementation has a plurality of four-tuples stored in a
hash table 126 or other associative lookup strucﬁure in the
network interface card memory 124, instead of the network
interface card context cache 122. The output of the hash table
126 may be a pointer or other means to access the context in the
context cache 122 for the identified connection. Thus, the
four-tuple is stored in the network interface card memory 124
and is part of the “context” associated with a connection. But
a different mechanism, such as hash tables 126, is used to store
the four-tuple, so the four-tuple is not part of what is
referred to as the “connection context.”

[0038] The network interface card’s context storage 122 may
also maintain a small amount of DDP context information for each
connection, including a current buffer (start address of a host
buffer 119), é current offset (memory address offset from the
buffer start address), and bytes remaining to be transferred to
the buffer 119, since DDP “blocks” may span multiple TCP
“segments.”

[0039] Host Stacks

[0040] The host network stack 112 may continue to do all
TCP/IP protocol processing, other than copying payloads 208 of
connections authorized for network interface card 102 to handle

DDP to destination buffers 119. Copying, however, may be a
12

WO 2004/086177 PCT/US2004/008041

majority of the host network stack’s work if the host does not
have a network interface card 102 that does direct data
placement. As an example) 50% host CPU offload may be achieved
by having the network interface card 102 do direct data
placement.

[0041] If the network interface card DDP engine 120 stops
doing DDP because of an invalid packet, the host TCP/IP stack
112 may send a signal to instruct the network interface card DDP
engine 120 to resume DDP.

[0042] The host DDP stack 110 may process information in the
DDP header 206 and handles DDP protocol functions, as described
in the DDP Specification.

[0043] Dropped Packet

[0044] If the network drops a packet, the network interface
card 102 may (a) stop DDP and note where in a sequence a packet
is missing or (b) resume direct placement on a subsequent
packet. When the missing packet is retransmitted across the
Ethernet network and reaches the network interface card 102, the
network interface card 102 may send the retransmitted packet to
the host stack 112, which would copy the retransmitted packet to
its intended destination in the memory 118.

[0045] Alternatively, the network interface card 102 maf be
able to process and transport the retransmitted packet if the

network interface card 102 has context information devoted to
13

WO 2004/086177 PCT/US2004/008041

tracking gaps in a packet sequence and TCP acknowledgements
(ACKs) for packets. A TCP ACK notifies the network interface
card 102 that everything in a sequence up to a particular packet
has been received by a destination buffer 119. The network
interface card 102 may watch the TCP ACKs to determine when DDP
may be resumed.

[0046] NIC Receives Packets Out of Orderx

[0047] The network interface card context storage 122 may

maintain the following state information for each connection:

[0048] next expected_sequence 32 bit sequence number
[0049] recovery_point 32 bit sequence number
[0050] in_order flag: TRUE or FALSE

[0051]

[0052] Fig. 4 illustrates a method of determining whether
packets are in order, handling out-of-order packets and
recovering after packets are back in order. The following
algorithm may be used on each received packet 200. Each

incoming TCP packet 200 contains a sequence number SEQ and a
length LEN. Next_expectéd_sequence represents the sequence
number the network interface card 102 expects to see in the next
packet and indicates if the next packet 1is in order. The
next expected sequence may always be set to the sequence number
of the last packet received on a connection plus the length of

that packet in 400.
14

WO 2004/086177 PCT/US2004/008041

[0053] next_expected_sequence = SEQ + LEN;

[0054]

[0055] The network interface card 102 compares the sequence
number of each packet with next_expected sequence in 402. if

the sequence number of the next packet is not equal to
next expected_sequence, the packet is out of order in 404. The
recovery point is set to the sequence number of the last
incoming packet that was out of order, and is not changed when
subsequent packets are received in ofder. The in_order flag is

set to false in 404.

[0056] if (SEQ != next expected_sequence)

[0057] // this is an out-of-order packet

[0058] recovery point = SEQ

[0059] in order = FALSE

[0060] On each packet transmitted to the host 100 by the

network interface card 102, the network interface card 102
checks an ACK field to determine if the network interface card
102 can restart “in order” processing in 406. When the network
interface card 102 sees an outgoing paéket containing an ACK
greater than or equal to the recovery point in 410, the network
interface card 102 knows that all packets up to that sequence
number have been received. The network interface card 102 also
knows that it has seen ali packets since that point in oxder.

Therefore, if the network interface card 102 had stopped direct
15

WO 2004/086177 PCT/US2004/008041

placement due to out of order packets being received, the

network interface card 102 may now resume direct placement in

410.

[0061] if (ACK >= recovery point)
[0062] in_order = TRUE

[0063] if (in_order is TRUE).

{0064] do direct placement

[0065] else

[0066] pass full packet to host for processing in 408.
[0067] A numbexr of embodiments have been described.
Nevertheless, it will be understood that Various modifications
may be made without departing from the spirit and scope of the
application. For example, the description above assumes an
underlying TCP/IP network, but other types of protocols,
standards, packet types and networks may be used. For example,
the systems and methods described herein may be applied to
Simple Computer Telephony Protocol (SCTP), Virtual Interface
(VI) over TCP/IP, Fibre Channel or iSCSI.

[0068] In addition, although DDP from the ™“DDP Specification”
is described herein, the host and network interface card may use
other information in a packet to enable the network interface
card vvo directly place packet payloads into appropriate
locations in a host buffer and reduce the amount of copying by

the host of data from a network interface card intermediate
16

WO 2004/086177 PCT/US2004/008041

buffer. Accordingly, other embodiments are within the scope of

the following claims.

17

WO 2004/086177 PCT/US2004/008041

WHAT IS CLAIMED IS:

1. A system comprising:

a host system compriéing a host tranéport protocol
processing stack and a memory; and

a network interface card configured to receive packets
from a network, send a header of each packet to the host
transport protocol processing stack, and directly place a

payload of each packet in the host memory.

2. The system of Claim 1, wherein the transport
protocol processing stack is a Transmission Control

Protocol/Internet Protocol processing stack.

3. The system of Claim 1, wherein the host system
memory stores connection state information accessible to the

transport protocol processing stack.

4. The system of Claim 1, wherein the host system
further comprises a direct data placement stack configured to

process direct data placement headers sent by the network

interface card.

18

WO 2004/086177 PCT/US2004/008041

5. The system of Claim 1, wherein the host system
further comprises an offload detection module configured to
detect whether the network interface card directly placed a

packet payload in the host memory.

6. The system of Claim 1, wherein the host memory
comprises a plurality of buffers, each buffer being associated

with an Internet Protocol address and port connection.

7. The system of Claim 1, wherein the network interface
card is configured to send an entire packet to the host
transport protocol proceséing stack if the network interface
card is not authorized to directly place a payload of the

packet in the host memory.

8. The system of Claim 1, wherein the network interface
card is configured to send an entire packet to the host
transport protocol processing stack if the network interface

card determines that the packet is out of order.

9. The system of Claim 1, further comprising a network

coupled to the network interface card.

10. A network interface card comprising:
19

WO 2004/086177 PCT/US2004/008041

a memory storing connection state information; and

a direct data placement engine capable of receiving a
packet from a network, reading a header of a packet
received from the network, accessing the connection state
information, determining whether a payload of the packet
can be directly placed in a host memory, sending the header
to a host protocol processing stack, and directly placing

the payload in the host memory.

11. The network interface card of Claim 10, wherein the
packet comprises a Transmission Control Protocol header, an

Internet Protocol header and a direct data placement header.

12. The network interface card of Claim 10, wherein the
connection state information comprises:

a local Internet Protocol address and port number;

a remote Internet Protocol address and port number;

a sequence number of the next packet expected by the

connection; and

a protection identification that authorizes the network

interface card to directly place the payload in the host

memory .

20

WO 2004/086177 PCT/US2004/008041

13. The network interface card of Claim 12, wherein the
connection state information further comprises an steering

tag.

14. The network interface card of Claim 10, wherein the
memory further stores a source.Internet Protocol address, a
destination Internet Protocol address, a source port number,
and a destination port number for each connection for which
the network interface card directly places data into the host

memory .

15. The network interface card of Claim 14, further
comprising a hash table storing the source Internet Protocol
address, destination Internet Protocol address, source port

number, and destination port number.

16. A host bus adapter comprising firmware and a memory
configured to store connection state information, the firmware
being configured to read a header of a packet from a network,
access the connection state information, determine whether a
payload of the packet can be directly placed in a host memory,
send the header to a host transport processing stack, and

directly place the payload in the host memory.

21

WO 2004/086177 PCT/US2004/008041

17. A host system comprising:

a memory configured to store packet payloads; and

a Transmission Control Protocol/Internet Protocol stack
configured to process Transmission Control
Protocol/Internet Protocol headers and detect whether a
network interface card has directly placed packet payloads.

in the memory.

18. The host system of Claim 17, wherein the memory

further stores connection state information.

19. A method comprising:

reading a header of a packet received from a network;

determining whether packet data is authorized to be
directly placed in a host memory;

if the packeﬁ data is authorized to be directly placed in
the host memory, placing the packet data directly in the host
memory and sending a packet header to a host transport
protocol processing stack; and

if the packet data is not authorized to be directly placed
in the host memory, sending the packet to the host transport

protocol processing stack.

22

WO 2004/086177 PCT/US2004/008041

20. The method of Claim 19, further comprising

identifying a connection associated with a packet.

21. The method of Claim 19, further comprising accessing
connection state information to determine whether packet data

is authorized to be directly placed in a host memory.

22. The method of Claim 19, further comprising accessing
connection state information to find a location for directly

placing packet data in the host memory.

23. The method of Claim 19, further comprising:

determining whether the packet is in sequence by
comparing a sequence number of the packet with an expected
sequence number;

if the packet is out of sequence, sending the packet to
the host transport processing stack; and

if the packet payload is in sequence, placing the payload
directly in the host memory and sending a packet header to

a host transport processing stack.

24. The method of Claim 19, further comprising:
checking an acknowledgement field of a packet sent to the

host transport processing stack;
23

WO 2004/086177 PCT/US2004/008041

if the acknowledgement field is greéter than or equal to
a recovery sequence number, then begin placing payloads
directly in the host memory and sending packeg headers to
the host transport processing stack; and

if the acknowledgement field is less than a recovery
sequence number, then send the packet to the host transport

processing stack.
25. The method of Claim 19, further comprising

maintaining a next expected sequence variable, a recovery

sequence number an in order flag.

24

WO 2004/086177 PCT/US2004/008041
1/3
100
HOST ' 118 '
MEMORY
110 114
N Dppp STACK C
o CONTEXT
| N TCP/IP STACK
108~ 11N m—m— DATA BUFFER
PROCESSOR D%ﬂ%"’ 719
1/05
104 102
‘ness T/ F12d
120 e DDP ENGINE MEMORY 122
CONTEXT
TABLES
i
BUFFER LISTS
\-128

ETHERNET

FIG. 1

WO 2004/086177 PCT/US2004/008041

2/3
P] /202
_— 17204\, HEADER
DDP I
/208
PAYLOAD
\
packer =200
FIG. 2

OF PACKET AND
DETERMINE WHETHER DDP
ENGINE HAS PERMISSION TO
DIRECTLY PLACE THE
PAYLOAD INTO THE
HOST B?UFFER

| 302

SEND ENTIRE PACKET T0

YES HOST TCP/IP STACK

304~

PASS TCP/IP HEADERS AND SOME DDP HEADER
INFORMATION TO THE HOST NETWORK STACK AND
DIRECTLY PLACE THE PAYLOAD IN THE HOST BUFFER

FIG. 3

WO 2004/086177

400~ 3/3

—

DO DIRECT PLACEMENT,; SET NEXT_EXPECTED _SEQUENCE EOUALA
TO THE SEQUENCE NUMBER OF THE LAST PACKET RECEIVED ON

PCT/US2004/008041

A

A CONNECTION PLUS THE LENGTH OF THAT PACKET

402

SEQUENCE

YES NUMBER OF NEXT

404~

' PACKET EQUAL TO
NEXT EXPECTED
SEQUENCE

SET RECOVERY_POINT TO THE SEQUENCE NUMBER OF THE LAST
INCOMING PACKET THAT WAS OUT OF ORDER; SET IN-ORDER
FLAG TO FALSE

CHECK
ACK FIELD; IS
ACK FIELD GREATER
THAN OR EQUAL TO
RECOVERY _

POINT
?

406

NO f408

SEND FULL PACKET TO HOST
FOR PROCESSING

410\ y

SET IN_ORDER FLAG TO TRUE AND RESUME DIRECT PLACEMENT

FIG. 4

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

