087121553 A1 |0 00 Y00 O 0

—
o

O

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

International Bureau

(43) International Publication Date
9 October 2008 (09.10.2008)

) IO T OO0 O

(10) International Publication Number

WO 2008/121553 Al

(51) International Patent Classification:
G11C 16/34 (2006.01) GOG6F 11/10 (2006.01)
G11C 16/26 (2006.01)

(21) International Application Number:
PCT/US2008/057380

(22) International Filing Date: 18 March 2008 (18.03.2008)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
11/693,672
11/693,649

Us
Us

29 March 2007 (29.03.2007)
29 March 2007 (29.03.2007)

(71) Applicant (for all designated States except US): SAN-
DISK CORPORATION [US/US]; 601 Mccarthy Boule-
vard, Milpitas, CA 95035 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MOKHLESI, Nima
[US/US]; 601 Mccarthy Boulevard, Milpitas, CA 95035
(US). CHIN, Henry [US/US]; 601 Mccarthy Boulevard,
Milpitas, CA 95035 (US). ZHAO, Dengtao [CN/US]; 601
Mccarthy Boulevard, Milpitas, CA 95035 (US).

(74) Agent: MAGEN, Burt; Vierra Magen Marcus & Deniro,
Llp, 575 Market Street, Suite 2500, San Francisco, CA
94105 (US).

(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,

CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,

EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,

1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC,

LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,

MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,

PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,

SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,

ZA, 7M, 7ZW.

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,

NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,

CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

(54) Title: NON-VOLATILE STORAGE WITH DECODING OF DATA USING RELIABILITY METRICS BASED ON MUL-

TIPLE READS

Fig. 11a

1100

1114

Begin first read operation]

1102
Sense whether Vry, of storage element
is above or below compare points;
store result

1104
| Determine programming state |

Assign initial probability metric to each

bit in code words indicating a reliability

of the bit based on the first and second
read results

l 1116

Perform iterative decoding using initial
probability metrics; adjust probability
metrics in subsequent iterations

1106
Assign code words based on
programming states

1108
[Begin second read operation |

1110

Sense whether Vq of storage
elements is above or below compare
points; store result

l 1112

| Determine programming states |—

1118
Decoding converges?
no

yes

R, 1120
Store decoded code words as final
read result

112,
Declare error or perform additional
read operation

(57) Abstract: In a non-volatile storage system, data is decoded using iterative probabilistic decoding and multiple read operations
to achieve greater reliability. An error correcting code such as a low density parity check code may be used. In one approach, initial
reliability metrics, such as logarithmic likelihood ratios, are used in decoding read data of a set of non-volatile storage element.
The decoding attempts to converge by adjusting the reliability metrics for bits in code words which represent the sensed state. If
convergence does not occur, e.g., within a set time period, the state of the non-volatile storage element is sensed again, current values
of the reliability metrics in the decoder are adjusted, and the decoding again attempts to converge. In another approach, the initial
reliability metrics are based on multiple reads. Tables which store the reliability metrics and adjustments based on the sensed states
can be prepared before decoding occurs.

WO 2008/121553 PCT/US2008/057380

NON-VOLATILE STORAGE WITH DECODING OF DATA USING
RELIABILITY METRICS BASED ON MULTIPLE READS

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to non-volatile memory.

Description of the Related Art

[0002] Semiconductor memory has become increasingly popular for use in
various electronic devices. For example, non-volatile semiconductor memory is
used in cellular telephones, digital cameras, personal digital assistants, mobile
computing devices, non-mobile computing devices and other devices.
Electrically Erasable Programmable Read Only Memory (EEPROM) and flash
memory are among the most popular non-volatile semiconductor memories.
With flash memory, also a type of EEPROM, the contents of the whole memory
array, or of a portion of the memory, can be erased in one step, in contrast to the

traditional, full-featured EEPROM.

[0003] Both the traditional EEPROM and the flash memory utilize a floating
gate that is positioned above and insulated from a channel region in a
semiconductor substrate. The floating gate is positioned between the source and
drain regions. A control gate is provided over and insulated from the floating
gate. The threshold voltage (Vi) of the transistor thus formed is controlled by
the amount of charge that is retained on the floating gate. That is, the minimum
amount of voltage that must be applied to the control gate before the transistor
is turned on to permit conduction between its source and drain is controlled by

the level of charge on the floating gate.

[0004] Some EEPROM and flash memory devices have a floating gate that
is used to store two ranges of charges and, therefore, the memory element can
be programmed/erased between two states, e.g., an erased state and a

programmed state. Such a flash memory device is sometimes referred to as a

WO 2008/121553 PCT/US2008/057380

binary flash memory device because each memory element can store one bit of

data.

[0005] A multi-state (also called multi-level) flash memory device is
implemented by identifying multiple distinct allowed/valid programmed
threshold voltage ranges. Each distinct threshold voltage range corresponds to a
predetermined value for the set of data bits encoded in the memory device. For
example, each memory element can store two bits of data when the element can
be placed in one of four discrete charge bands corresponding to four distinct

threshold voltage ranges.

[0006] Typically, a program voltage Vpgm applied to the control gate during
a program operation is applied as a series of pulses that increase in magnitude
over time. In one possible approach, the magnitude of the pulses is increased
with each successive pulse by a predetermined step size, e.g., 0.2-0.4 V. Vpgm
can be applied to the control gates of flash memory elements. In the periods
between the program pulses, verify operations are carried out. That is, the
programming level of each element of a group of elements being programmed
in parallel is read between successive programming pulses to determine whether
it is equal to or greater than a verify level to which the element is being
programmed. For arrays of multi-state flash memory elements, a verification
step may be performed for each state of an element to determine whether the
element has reached its data-associated verify level. For example, a multi-state
memory element capable of storing data in four states may need to perform

verify operations for three compare points.

[0007] Moreover, when programming an EEPROM or flash memory device,
such as a NAND flash memory device in a NAND string, typically Vpgy is
applied to the control gate and the bit line is grounded, causing electrons from
the channel of a cell or memory element, e.g., storage element, to be injected
into the floating gate. When electrons accumulate in the floating gate, the

floating gate becomes negatively charged and the threshold voltage of the

WO 2008/121553 PCT/US2008/057380

memory element is raised so that the memory element is considered to be in a
programmed state. More information about such programming can be found in
U.S. Patent 6,859,397, titled “Source Side Self Boosting Technique For Non-
Volatile Memory,” and in U.S. Patent App. Pub. 2005/0024939, titled
“Detecting Over Programmed Memory,” published February 3, 2005; both of

which are incorporated herein by reference in their entirety.

[0008] Once a non-volatile storage element has been programmed, it is
important that its programming state can be read back with a high degree of
reliability. However, the sensed programming state can sometimes vary from
the intended programming state due to trap site noise and other factors. Perhaps
the most important source of noise is 1/f noise (including random telegraph
signal noise) which is a result of electron trapping and de-trapping into trap sites

located in the tunnel oxide or elsewhere.

SUMMARY OF THE INVENTION

[0009] The present invention addresses the above and other issues by
providing non-volatile storage in which data is decoded using multiple read

operations.

[0010] In one embodiment, a non-volatile storage system includes a set of
non-volatile storage eclements, and one or more control circuits in
communication with the set of non-volatile storage elements. The one or more
control circuits perform multiple sense operations on at least one non-volatile
storage element of the set and determine a programming state of the at least one
non-volatile storage element using iterative probabilistic decoding, where the
iterative probabilistic decoding uses reliability metrics which are based on the
multiple sense operations. For example, the reliability metrics can include

logarithmic likelihood ratios.

[0011] The one or more control circuits can determine an initial set of

reliability metrics to use in the iterative probabilistic decoding based on the

WO 2008/121553 PCT/US2008/057380

multiple sense operations. Or, the iterative probabilistic decoding can iterate
initially using first reliability metrics which are based on a first sense operation.
The first reliability metrics are adjusted to obtain adjusted reliability metrics as
the probabilistic decoding iterates further. The adjusted reliability metrics are
then adjusted further as the probabilistic decoding iterates still further, based on

a subsequent sense operation.

[0012] In another embodiment, a non-volatile storage system includes a set
of non-volatile storage elements, and one or more control circuits in
communication with the set of non-volatile storage elements. The one or more
control circuits perform a first sense operation on at least one non-volatile
storage element of the set, provide a first code word based on the first sense
operation, perform a decoding process for the first code word using a first set of
reliability metrics which is based on the first code word, and if the decoding
process does not meet a first condition, perform a second sense operation on the
at least one non-volatile storage element and adjust the decoding process based

on the second sense operation.

[0013] In another embodiment, a non-volatile storage system includes a set
of non-volatile storage elements, and one or more control circuits in
communication with the set of non-volatile storage elements. The one or more
control circuits perform a first sense operation on at least one non-volatile
storage element of the set, provide first data based the first sense operation
which represents a sensed programming state of the at least one non-volatile
storage element, start an iterative decoding process for the first data using
probability metrics which are based on the first data, perform a second sense
operation on the at least one non-volatile storage element, provide second data
based on the second sense operation which represents a sensed programming
state of the at least one non-volatile storage element, and continue the iterative
decoding process by adjusting most recently used values of the probability

metrics based on the second data.

WO 2008/121553 PCT/US2008/057380

[0014] In another embodiment, a non-volatile storage system includes a set
of non-volatile storage elements, and one or more control circuits in
communication with the set of non-volatile storage elements, the one or more
control circuits perform a first sense operation on at least one non-volatile
storage element, provide first data based the first sense operation which
represents a sensed programming state of the at least one non-volatile storage
element, start an iterative decoding process for the first data using probability
metrics which are based on the first data, provide a metric which indicates a
progress of the iterative decoding process, and if the metric indicates the
progress is unsatisfactory, provide second data based on a second sense
operation which represents a sensed programming state of the at least one non-
volatile storage eclement, and restart the iterative decoding process using

probability metrics which are based on the first and second data.

[0015] In another embodiment, a non-volatile storage system includes a set
of non-volatile storage elements, and one or more control circuits in
communication with the set of non-volatile storage elements, the one or more
control circuits perform a plurality of sense operations on a set of non-volatile
storage elements, provide a set of reliability metrics based on the sense
operations, and store the set of reliability metrics for use by an iterative
probabilistic decoding process in determining a programming state of at least
one non-volatile storage element in the set of non-volatile storage elements

based on at least first and second subsequent sense operations.
BRIEF DESCRIPTION OF THE DRAWINGS
[0016] FIG. 1 is atop view of a NAND string.
[0017] FIG. 2 is an equivalent circuit diagram of the NAND string of FIG. 1.

[0018] FIG. 3 is a block diagram of an array of NAND flash storage

elements.

WO 2008/121553 PCT/US2008/057380

[0019] FIG. 4 depicts a system for encoding and decoding of data for non-

volatile storage.

[0020] FIG. 5a is a flowchart of a process for obtaining a first probability

density function f1 for a set of non-volatile storage elements.

[0021] FIG. 5b is a flowchart of a process for obtaining a second probability

density function f2 for a set of non-volatile storage elements.
[0022] FIG. 6a depicts a distribution of voltage threshold readings.
[0023] FIG. 6b depicts noise-free voltage threshold readings.

[0024] FIG. 6¢ depicts a distribution of noise-free voltage threshold

readings.

[0025] FIG. 6d depicts probability distributions of voltage threshold for

different states of a set of non-volatile storage elements.

[0026] FIG. 7a depicts a distribution of voltage threshold deviations for an

example state of a non-volatile storage element.

[0027] FIG. 7b depicts a distribution of voltage threshold deviations for an

example state of a set of non-volatile storage elements.

[0028] FIG. 7c depicts a probability distribution of voltage threshold

deviations for State O for a set of non-volatile storage elements.

[0029] FIG. 7d depicts a probability distribution of voltage threshold

deviations for State 1 for a set of non-volatile storage elements.

[0030] FIG. 7e depicts a probability distribution of voltage threshold

deviations for State 15 for a set of non-volatile storage elements.

[0031] FIG. 8 is a flowchart of a process for obtaining logarithmic likelihood

ratios (LLRs) for use in decoding read data from a non-volatile storage element.

[0032] FIG. 9a depicts a table which provides multi-bit code words for

different programmed states of a non-volatile storage element.

WO 2008/121553 PCT/US2008/057380

[0033] FIG. 9b depicts a table which provides initial values of LLRs for each

bit of a code word based on a first read result.

[0034] FIG. 9c depicts a table which provides adjustments to current values
of LLRs used by a decoder for each bit of a code word based on a second read

result.

[0035] FIG. 10a-d depict tables which provide initial values of LLRs for

each bit of a code word based on first and second read results.

[0036] FIG. 11ais a flowchart of a process for decoding a code word which
represents a state of a non-volatile storage element, where initial probability

metrics are obtained based on first and second read operations.

[0037] FIG. 11b is a flowchart of a process for decoding a code word which
represents a state of a non-volatile storage element, where initial probability
metrics are obtained based on a first read operation, then adjusted probability

metrics are adjusted further based on a second read operation.

[0038] FIG. 11c is a flowchart of a process for decoding a code word which
represents a state of a non-volatile storage element, where initial probability
metrics are obtained based on a first read operation, then new initial probability
metrics are obtained based on the first read operation and a second read

operation.
[0039] FIG. 12 depicts a sparse parity check matrix.

[0040] FIG. 13 depicts a sparse bipartite graph which corresponds to the
sparse parity check matrix of FIG. 12.

[0041] FIG. 14a is a timing diagram that explains the behavior of certain
waveforms during read/verify operations, where a pre-conditioning waveform is

applied to a selected word line before an associated read pulse.

WO 2008/121553 PCT/US2008/057380

[0042] FIG. 14b is a timing diagram that explains the behavior of certain
waveforms during read/verify operations, where one or more pre-conditioning

waveforms are applied to a selected word line before associated read pulses.

[0043] FIG. 14c is a timing diagram that depicts different pre-conditioning

waveforms.

[0044] FIG. 14d is a timing diagram that explains the behavior of certain
waveforms during read/verify operations, where a pre-conditioning waveform is
applied to a drain of a selected storage element via a selected bit line before an

associated read pulse.

[0045] FIG. 14e is a timing diagram that explains the behavior of certain
waveforms during read/verify operations, where a pre-conditioning waveform is
applied to a source of a sclected storage clement via a source line before an

associated read pulse.

[0046] FIG. 14f is a timing diagram that explains the behavior of certain
waveforms during read/verify operations, where a pre-conditioning waveform is
applied to a selected storage element via a body bias before an associated read

pulse.

[0047] FIG. 14g is a flowchart of a process for performing a read operation
on a storage element, where pre-conditioning waveforms are applied to a

storage element before associated read pulses.

[0048] FIG. 14h is a flowchart of a process for performing a read operation
on a storage element, where a pre-conditioning waveform is applied to a storage

clement before a series of read pulses.

[0049] FIG. 14i is a flowchart of a process for obtaining reliability metrics

using pre-conditioning waveforms for subsequent use in decoding.

[0050] FIG. 15 is a block diagram of an array of NAND flash storage

elements.

WO 2008/121553 PCT/US2008/057380

[0051] FIG. 16 is a block diagram of a non-volatile memory system using

single row/column decoders and read/write circuits.

[0052] FIG. 17 is a block diagram of a non-volatile memory system using

dual row/column decoders and read/write circuits.

[0053] FIG. 18 is a block diagram depicting one embodiment of a sense
block.

[0054] FIG. 19 illustrates an example of an organization of a memory array
into blocks for an all bit line memory architecture or for an odd-even memory

architecture.
[0055] FIG. 20 depicts an example set of threshold voltage distributions.
[0056] FIG. 21 depicts an example set of threshold voltage distributions.

[0057] FIGs. 22a-c show various threshold voltage distributions and describe

a process for programming non-volatile memory.

[0058] FIG. 23 is a flow chart describing one embodiment of a process for

programming non-volatile memory.

[0059] FIG. 24 depicts an example pulse train applied to the control gates of

non-volatile storage elements during programming.

DETAILED DESCRIPTION

[0060] The present invention provides a non-volatile storage in which data is

decoded using multiple read operations.

[0061] One example of a memory system suitable for implementing the
present invention uses the NAND flash memory structure, which includes
arranging multiple transistors in series between two select gates. The transistors
in series and the select gates are referred to as a NAND string. FIG. 1 is a top
view showing one NAND string. FIG. 2 is an equivalent circuit thereof. The

NAND string depicted in FIGs. 1 and 2 includes four transistors, 100, 102, 104

WO 2008/121553 PCT/US2008/057380

-10-

and 106, in series and sandwiched between a first select gate 120 and a second
select gate 122. Select gate 120 gates the NAND string connection to bit line
126. Select gate 122 gates the NAND string connection to source line 128.
Select gate 120 is controlled by applying the appropriate voltages to control gate
120CG. Select gate 122 is controlled by applying the appropriate voltages to
control gate 122CG. Each of the transistors 100, 102, 104 and 106 has a control
gate and a floating gate. Transistor 100 has control gate 100CG and floating
gate 100FG. Transistor 102 includes control gate 102CG and floating gate
102FG. Transistor 104 includes control gate 104CG and floating gate 104FG.
Transistor 106 includes a control gate 106CG and floating gate 106FG. Control
gate 100CG is connected to word line WL3, control gate 102CG is connected to
word line WL2, control gate 104CG is connected to word line WL1, and control
gate 106CG is connected to word line WLO. The control gates can also be
provided as portions of the word lines. In one embodiment, transistors 100,
102, 104 and 106 are each storage elements, also referred to as memory cells.
In other embodiments, the storage elements may include multiple transistors or
may be different than that depicted in FIGs. 1 and 2. Select gate 120 is
connected to select line SGD (drain select gate). Select gate 122 is connected to

select line SGS (source select gate).

[0062] FIG. 3 is a circuit diagram depicting three NAND strings. A typical
architecture for a flash memory system using a NAND structure will include
several NAND strings. For example, three NAND strings 320, 340 and 360 are
shown in a memory array having many more NAND strings. Each of the
NAND strings includes two select gates and four storage elements. While four
storage elements are illustrated for simplicity, modern NAND strings can have

up to thirty-two or sixty-four storage elements, for instance.

[0063] For example, NAND string 320 includes select gates 322 and 327,
and storage elements 323-326, NAND string 340 includes select gates 342 and
347, and storage elements 343-346, NAND string 360 includes sclect gates 362

WO 2008/121553 PCT/US2008/057380

-11-

and 367, and storage elements 363-366. Each NAND string is connected to the
source line by its select gates (e.g., select gates 327, 347 or 367). A selection
line SGS is used to control the source side select gates. The various NAND
strings 320, 340 and 360 are connected to respective bit lines 321, 341 and 361,
by select transistors in the select gates 322, 342, 362, etc. These sclect
transistors are controlled by a drain select line SGD. In other embodiments, the
select lines do not necessarily need to be in common among the NAND strings;
that is, different select lines can be provided for different NAND strings. Word
line WL3 is connected to the control gates for storage elements 323, 343 and
363. Word line WL2 is connected to the control gates for storage elements 324,
344 and 364. Word line WL1 is connected to the control gates for storage
elements 325, 345 and 365. Word line WLO is connected to the control gates
for storage elements 326, 346 and 366. As can be seen, each bit line and the
respective NAND string comprise the columns of the array or set of storage
clements. The word lines (WL3, WL2, WLI1 and WL0) comprise the rows of
the array or set. Each word line connects the control gates of each storage
clement in the row. Or, the control gates may be provided by the word lines
themselves. For example, word line WL2 provides the control gates for storage
elements 324, 344 and 364. In practice, there can be thousands of storage

elements on a word line.

[0064] Each storage element can store data. For example, when storing one
bit of digital data, the range of possible threshold voltages (V) of the storage
element is divided into two ranges which are assigned logical data “1” and “0.”
In one example of a NAND type flash memory, the Vry is negative after the
storage element is erased, and defined as logic “1.” The Vyy after a program
operation is positive and defined as logic “0.” When the Vg is negative and a
read is attempted, the storage element will turn on to indicate logic “1” is being
stored. When the Vg is positive and a read operation is attempted, the storage
clement will not turn on, which indicates that logic “0” is stored. A storage

clement can also store multiple levels of information, for example, multiple bits

WO 2008/121553 PCT/US2008/057380

-12-

of digital data. In this case, the range of Vry value is divided into the number of
levels of data. For example, if four levels of information are stored, there will
be four Vg ranges assigned to the data values “117, “10”, “01”, and “00.” In
one example of a NAND type memory, the Vg after an erase operation is
negative and defined as “11”. Positive Vg values are used for the states of
“10”, “01”, and “00.” The specific relationship between the data programmed
into the storage element and the threshold voltage ranges of the element
depends upon the data encoding scheme adopted for the storage elements. For
example, U.S. Patent No. 6,222,762 and U.S. Patent Application Pub.
2004/0255090, both of which are incorporated herein by reference in their
entirety, describe various data encoding schemes for multi-state flash storage

elements.

[0065] Relevant examples of NAND type flash memories and their operation
are provided in U.S. Patent Nos. 5,386,422, 5,522,580, 5,570,315, 5,774,397,
6,046,935, 6,456,528 and 6,522,580, cach of which is incorporated herein by

reference.

[0066) When programming a flash storage element, a program voltage is
applied to the control gate of the storage element and the bit line associated with
the storage element is grounded. Electrons from the channel are injected into
the floating gate. When electrons accumulate in the floating gate, the floating
gate becomes negatively charged and the Vpy of the storage element is raised.
To apply the program voltage to the control gate of the storage element being
programmed, that program voltage is applied on the appropriate word line. As
discussed above, one storage element in each of the NAND strings share the
same word line. For example, when programming storage element 324 of FIG.
3, the program voltage will also be applied to the control gates of storage

elements 344 and 364.

[0067] FIG. 4 depicts a system for encoding and decoding of data for non-

volatile storage. Data which is stored in non-volatile storage can be encoded

WO 2008/121553 PCT/US2008/057380

13-

and decoded in a way which mitigates the effects of noise. Perhaps the most
important source of noise is the 1/f noise (including random telegraph signal
noise) which is a result of electrons trapping and de-trapping into trap sites
located in the tunnel oxide or elsewhere. The noise is not so much a result of
the loss of the channel electron going into a trap site as it is due to the fact that
the electron/hole in the charged trap site affects the flow of other electrons in
the channel by the electric field that the charged trap site exerts on a region of
the channel in its vicinity. Moreover, the region of the channel that is under the
influence of a single trap site will form a larger portion of the channel as the

storage elements are scaled down.

[0068] Many noisy storage clements suffer from a single trap site, and this
conclusion is based on the binary nature of their current values, that is, a storage
element has one current/Vry value if the trap is occupied and another distinct
current/Vry value if the trap is unoccupied. Thus, when storage elements are
biased under DC conditions equivalent to the read condition, many storage
elements exhibit a bimodal distribution of current values with two narrow
distributions having peaks that are substantially separated from each other.
However, some storage elements suffer from more than a single noisy trap site.
Moreover, not every trap site can lead to noisy behavior, as there may exist trap
sites that are consistently empty or consistently occupied during read
conditions. Also, trap sites which are in easy communication with some
electrode, and as a result make a large number of transitions between being
empty and being occupied during any single integration time (e.g., read period),
will manifest little or no noise as their average effect is more or less the same
for any integration time/measurement operation. This can be explained by the
averaging concept or, more precisely, by the Central Limit Theorem. Also, the
occupation probability of trap sites can be modulated by the electric field that
the trap sites find themselves immersed in. Further, those trap sites that are
more detrimental to read operations are those with longer

occupation/inoccupation life times. Such trap sites can be thought of as

WO 2008/121553 PCT/US2008/057380

-14-

parasitic memory devices that interfere with the normal operations of the
memory. Write/erase cycles can and do create additional trap sites, and lead to

more noise.

[0069] As a result, read operations can be impacted by noise in a storage
clement. Although error correction coding and decoding schemes can address
some errors cause by noise and other factors, additional advantages can be
achieved by performing multiple read operations as explained herein. An
example approach is depicted in the encoding/decoding system of FIG. 4, which
includes an encoder 402, non-volatile storage 404, LLR (log likelihood ratio)
tables 406 and a decoder 408. The encoder 402 receives information bits, also
referred to as user data, which is to be stored in the non-volatile storage 404.
The information bits are represented by the matrix i=[1 0]. The encoder 402
implements an error correction coding process in which parity bits are added to
the information bits to provide data represented by the matrix or code word
v=[1 0 1 0], indicating that two parity bits have been appended to the data bits.
This is a simplified example which results in a high parity bit overhead cost. In
practice, codes with lower overhead can be used. For example, low density
parity check (LDPC) codes, also referred to as Gallager codes, may be used.
Such codes are typically applied to multiple code words which are encoded
across a number of storage elements so that the parity bits are distributed among
the storage elements. Further information regarding LDPCs can be found in D.
MacKay, Information Theory, Inference and Learning Algorithms, Cambridge
University Press 2003, chapter 47. The data bits can be mapped to a logical
page and stored in the non-volatile storage 404 by programming a non-volatile
storage element to a programming state, e.g., X=6, which corresponds to v (see
FIG. 9a). With a four-bit data matrix v, sixteen programming states can be

used.

[0070] Subsequently, when it is desired to retrieve the stored data, the non-

volatile storage is read. However, due to noise, as mentioned, the read state can

WO 2008/121553 PCT/US2008/057380

-15-

sometimes be errored. In one example approach, a first read Y1 yields the
programming state 7 which is represented by the code word y1=[1 0 1 1], and a
second read Y2 yields the programming state 6 which is represented by the code
word y2=[1 0 1 0]. In one possible implementation, an iterative probabilistic
decoding process is used which implements error correction decoding
corresponding to the error correction encoding at the encoder 402. Further
details regarding iterative probabilistic decoding can be found in the above-
mentioned D. MacKay text. The iterative probabilistic decoding attempts to
decode a code word by assigning initial probability metrics to each bit in the
code word. The probability metrics indicate a reliability of each bit, that is, how
likely it is that the bit is not errored. In one approach, the probability metrics
are logarithmic likelihood ratios (LLRs) which are obtained from LLR tables
406. LLR values are measures of the reliability with which we know the values
of various binary bits read from storage elements.

P(v=0|Y)

0071 The LLR for a bit is given b =log, ——8 —
[| g y O 129 POr=1|Y)

, where P(v=0[Y)

is the probability that a bit is a 0 given the condition that the read state is Y, and
P(v=1]Y) is the probability that a bit is a 1 given the condition that the read state
is Y. Thus, an LLR>0 indicates a bit is more likely a 0 than a 1, while an
LLR<O0 indicates a bit is more likely a 1 than a 0, based on one or more parity
checks of the error correction code. Further, a greater magnitude indicates a
greater probability or reliability. Thus, a bit with an LLR=20 is more likely to
be a 0 than a bit with an LLR=10, and a bit with an LLR=-20 is more likely to
be a 1 than a bit with an LLR=-10. LLR=0 indicates the bit is equally likely to

bealOoral.

[0072] An LLR table 406 can be provided for each of the four bit positions
in the codeword Y1 so that an LLR is assigned to each bit 1, 0, 1 and 1,
respectively, of y1. Further, the LLR tables can account for the multiple read
results so that an LLR of greater magnitude is used when the bit value is

consistent in the different code words. Thus, an LLR with a greater magnitude

WO 2008/121553 PCT/US2008/057380

-16-

can be assigned to the first bit in yl than if only one read operation was
performed. To illustrate, the first bit in y2 is 1, which is consistent with the first
bit in yl. Likewise, an LLR of lesser magnitude is used when the bit value is
inconsistent in the different code words. For example, the fourth bit in y2 is O,
which is inconsistent with the fourth bit in y1. Thus, an LLR with a lesser
magnitude can be assigned to the fourth bit in y1 than if only one read operation
was performed. Since more information is obtained from the additional read
operations, the decoding process can be improved, e.g., so that it converges
more quickly or converges in cases in which it would otherwise not converge if
only one read operation was made. In another approach, the second read
operation, or other additional read operations, are not performed unless the
decoding process does not successfully converge, e.g., within a given amount of

time or number of iterations.

[0073] The decoder 408 receives the code word y1 and the initial LLRs. As
explained additionally further below (see also FIGs. 12 and 13), the decoder 408
iterates in successive iterations in which it determines if parity checks of the
error encoding process have been satisfied. If all parity checks are satisfied
initially, the decoding process has converged and the code word is not errored.
If one or more parity checks have not been satisfied, the decoder will perform
error correction by adjusting the LLRs of one or more of the bits which are
inconsistent with a parity check and then reapply the parity check to determine
if it has been satisfied. For example, the magnitude and/or polarity of the LLRs
can be adjusted. If the parity check in question is still not satisfied, the LLR can
be adjusted again in another iteration. Adjusting the LLRs can result in flipping
a bit (e.g., from 0 to 1 or from I to 0) in some, but not all, cases. Once the
parity check in question has been satisfied, the next parity check, if applicable,
is applied to the code word. The process continues in an attempt to satisfy all
parity checks. Thus, the decoding process of yl is completed to obtain the

decoded information and parity bits v and the decoded information bits 1i.

WO 2008/121553 PCT/US2008/057380

-17-

[0074] Note that, in the example discussed, the code word y1 from the first
read operation is decoded with assistance from one or more subsequent read
operations. However, other approaches are possible. For example, the code
word from a given read operation can be decoded with assistance from one or
more prior read operations. Or, three read operations can be taken which
determine two consistent results (e.g., both read state Y1) and one inconsistent
result (e.g., state Y2), and the code word for the consistent result can be
decoded with assistance from the inconsistent result. The LLR tables can be set

accordingly.

[0075] In another option, the code word for the consistent result is decoded

directly without assistance from the inconsistent result.

[0076] The examples discussed therefore include performing two or more
reads in order to mitigate the effect of noise, and combining the results of these
reads to modify the LLR numbers pertaining to the state of each storage
element. When the iteration process of the ECC decoder takes too long to reach
convergence, another read operation can be performed. The decoding can
continue or can be paused while the additional read is performed. Or, the
additional read can be performed automatically regardless of the progress of the
decoding. After the second read operation is complete, the LLR signed
magnitudes from the first read operation can be updated based on the second
read operation. In one approach, LLR values be added or otherwise combined
from different read operations. For instance, consider a noisy storage element
whose LLR values are 10 and -10 for a given bit for the first and second read
operations. Such a table receives the read state as an input and outputs an LLR
value for each bit in the code word which represents the read state. After these
two contradictory results are obtained, an LLR of 0, for instance, may be used
for the decoding. The decoding engine will set this bit high or low in order to

attain convergence.

WO 2008/121553 PCT/US2008/057380

18-

[0077] Performing more than two read operations is also possible. One
approach is to add or to take the average or mean of LLR results from all reads.
For example, LLR values may be 20, 10 and -10 for a given bit for the first,
second and third read operations, respectively, in which case the average is 6.6.
This is a simplified approach which is expedient. Other approaches can take
into account the fact that an LLR of 20 indicates more that twice the probability
of a given result than an LLR of 10 so that, e.g., LLRs of 10 and 20 are
combined to an LLR closer to 20 than 10. Another approach constructs LLR
values based on the probability density functions f1(u|X) and f2(v), described
further below.

[0078] Also, by the time the results of the second read operation have
become available, the iteration process may have advanced, and many LLR
values may have been updated in the attempt to converge. The results of the
second read can therefore be combined with the real time iterated results of the
first read that are currently available or with original results of the first read, or

a hybrid approach can be used.

[0079] Further, if every one of the read operations yields the same result, for
a given bit, we can assign a higher magnitude LLR for the bit. This peak LLR
(LLRpeak) could be slightly higher than the LLR that would be gained from
only a single read (LLRsingle). If the series of reads yields differing results,
then a lower final LLR could result. One method of aggregating a series of
reads is to take the average of the single-read LLRs and multiplying it by a
normalization factor such as LLRpeak/LLRsingle, so that Final LLR =
Averaged LLR of multiple reads x |LLRpeak/LLRsingle|

[0080] In an actual implementation, iteration for convergence based on the
first read result can begin before the second read results are obtained. Once the
second read result and, in general, all subsequent read results are obtained, one
strategy for incorporating the subsequent read results into the iteration process

is to presume that all the raw results as read from the storage elements are still

WO 2008/121553 PCT/US2008/057380

-19-

available. In this case, we may simply interrupt the current iteration and begin
anew with Final LLR as calculated above. Another strategy for aggregating
LLR values is to combine newly acquired read results with the current iterated
LLR values. This could be done, e.g., by weighting the nth read result by 1/(n —

1) relative to the previous results, so that all read results are weighted equally.

[0081] Which strategy is more appropriate could be determined by how well
the current iteration is proceeding. The “goodness” of the iteration can be
measured by a quality metric, such as whether or not the iterative decoding
process approaches convergence within a given time period and/or a given
number of iterations, and/or a specific number of parity checks have been
satisfied. Further, the metric can be used in a real-time adaptive decision
process during the decoding, e.g., by choosing to continue the current decoding
process, without performing an additional read, continue the decoding while
adjusting the most recently used LLRs based on an additional read, or restarting

the decoding with new initial LLRs based on an additional read.

[0082] LLRs or other probabilistic metrics can be developed, e.g., by
obtaining probability density functions of the programmed states of a set of non-

volatile storage elements, as follows.

[0083] FIG. 5a is a flowchart of a process for obtaining a first probability
density function f1 for a set of non-volatile storage elements. Step 500 includes
programming random data to all storage elements in a set of M storage
elements. That is, assuming the storage elements are multi-level storage
elements with n levels or programming states, after the programming, about
M/n of the storage elements are programmed to a first state, M/n are
programmed to a second state, and so forth. For instance, n=16 states in one
possible approach, where each state is represented by a four-bit code word. At
step 502, index k, which represents a kth programming state, is initialized to
zero. Step 506 includes making N repeated measurements of the Vg for each

storage element written to state k, where N is a large number such as one

WO 2008/121553 PCT/US2008/057380

20-

hundred. These are measurements which are made in a test environment to a
higher degree of accuracy than is used during production use of the storage

device.

[0084] Step 508 includes obtaining a noise-free Vg for each storage
elements by averaging the N measurements for each storage element. A noise-
free Vg refers to a threshold voltage which is essentially free of noise incurred
specifically during the read operation. This results in about M/n noise-free Vg
values over the set of storage elements. For example, FIG. 6a depicts a
distribution of voltage threshold readings. For state 0, for instance, the
histogram 600 shows the number of readings which fell into different ranges or
buckets of Vi for an example first storage element Histogram 602 is for state 1
for an example second storage clement and histogram 604 is for state 15 for an
example third storage element. Histograms for the intermediate states are not
depicted. FIG. 6b depicts noise-free voltage threshold readings. For example,
VruNro, VTHNFL ..., YTHNFIS Tepresent the noise-free voltage threshold readings
for states 0, 1, ..., 15, respectively, for the example first, second and third
storage element. Note that the raw Vry readings can be averaged as well
instead of using the histograms of FIG. 6a. Further, statistical techniques other

than averaging can be used.

[0085] Step 510 (FIG. 5a) includes constructing a histogram of the
distribution of the noise-free Vry across all storage elements in the set which
were programmed to state k, using the noise-free Vg from each storage
element. For example, FIG. 6¢ depicts a distribution of noise-free voltage
threshold readings, e.g., readings which are free from read noise. Other noise
may still be present. For state 0 for the example first storage element, for
instance, the histogram 650 shows the number of readings which fell into
different ranges or buckets of V. Histogram 652 is for state 1 for the example
second storage element and histogram 654 is for state 15 for the example third

storage element. Histograms for the intermediate states are not depicted. These

WO 2008/121553 PCT/US2008/057380

21-

histograms are bar charts indicating how many of the M storage element cells
have a Vry in the designated ranges. Step 512 includes normalizing and curve
fitting the histogram to obtain fl(u|X=state k), a probability density function
(pdf) indicating the probability that a storage element will have a Vig=u, when
the storage clement was programmed to state k. For example, with k=0, the
function f1(u/X=0) is the probability that if we randomly selected a storage
element from the memory chip, where the storage element had been
programmed (written) to state 0, its noise-free Vg will be u. Normalizing the
histogram (e.g., one of the histograms 650, 650, ..., 654) can including dividing
the height of the bar chart by M so that the sum of the heights of every bar for a

given state is one.

[0086] At step 514, the results are stored, e.g., including data defining the
function fl(u|X=state k). If a next state is to be analyzed at decision step 516,
the state index is incremented at step 504 and processing proceeds again at steps
506-514. This processing is repeated for all memory states. The process ends
at step 518 at which time the pdfs fl1(u|X=0), fl1(u/X=1), fl(u|X=2), f1(u|X=3),
... f1(u]X=n) have been obtained, where n+1 is the number of states. FIG. 6d
depicts probability distributions of voltage threshold for different states of a set
of non-volatile storage elements. Here, example distributions 660 for
fl1(u|X=0), 662 for f1(u|X=0), ... and 664 for f1(uX=15) are depicted, where
there are sixteen states. Distributions for the intermediate states are not

depicted.

[0087] FIG. 5b is a flowchart of a process for obtaining a second probability
density function f2 for a set of non-volatile storage elements. Steps 520, 522
and 526 correspond to steps 500, 502 and 506 of FIG. 5a. Further, these steps
can be repeated relative to the corresponding steps of FIG. Sa, or the results
from steps 500, 502 and 506 of FIG. 5a can be used starting at step 528 of FIG.
5b. Step 528 includes subtracting the noise-free Vry from each measurement to

obtain shifted measurements. For example, FIG. 7a depicts a histogram of such

WO 2008/121553 PCT/US2008/057380

22

shifted measurements or deviations from the noise-free V. Step 530 includes
constructing a histogram of the distribution of the shifted measurements across
all storage elements which were programmed to state k. FIG. 7b depicts an
example of such a histogram. Step 532 includes normalizing and curve fitting
the histogram to obtain a function f2(v), which is the pdf indicating the
probability that a storage element will have a read Vg which deviates from the
noise-free Vry by v when the storage element was programmed to state k. The
function f2(v) is the probability that if we randomly selected a storage element
from the memory chip and made a single measurement, the resultant Vg is a
distance “v” away from the “true” or “noise-less” Viy. Figs. 7c-7¢ depicts
examples of f2(v) for different states. Specifically, FIG. 7c¢ depicts a probability
distribution of voltage threshold deviations for State 0, FIG. 7d depicts a
probability distribution of voltage threshold deviations for State 1, and FIG. 7e
depicts a probability distribution of voltage threshold deviations for State 15.
Note that the figures indicate that it is possible for the distributions to differ

somewhat. The distributions of fl can similarly differ.

[0088] At step 534, the results are stored, e.g., including data defining the
function f2(v). If a next state is to be analyzed at decision step 536, the state
index is incremented at step 524 and processing proceeds again at steps 526-
534. This processing is repeated for all memory states. The process ends at

step 538, at which time the pdf f2(v) has been obtained for all states.

[0089] Note that the pdfs can vary with the age/cycling of the memory
device as the noise free Vg distribution can change. The measurements of Vg
which are used to obtain the pdfs can be performed at different device ages and
averaged, for instance, to obtain pdfs, and resulting LLRs, which are

representative of an average device age.

[0090] FIG. 8 is a flowchart of a process for obtaining logarithmic likelihood
ratios (LLRs) for use in decoding read data from a non-volatile storage element.

At step 800, based on fl(u) and f2(v), we calculate the conditional probability

WO 2008/121553 PCT/US2008/057380

03

P(Yi, Y2[X). This is the probability that, given that state X as written to a
storage element, the first read yields Y, the second read yields Y, and so forth.
The probability can be expressed in the form P(Y,Y,/X) when there are two
read operations, or generally P(Y,Y, ..., YnJX) when there are N read
operations. The probability can be determined for measurements in a test
environment. At step 810, based on these probabilities and Bayes rule, we
calculate P(X|Y1,Y2) when there are two read operations, or generally
P(X|Y1,Y2,Y3,Y4... Yxn) when there are N read operations. P(X|Y1,Y2) is the
probability that, give a first read result Y1 and a second read result Y2, the
programmed state is X. Step 820 includes calculating an LLR for each bit given
all possible y values for N reads, and step 830 includes storing the results, ¢.g.,
in one or more tables. That is, an LLR is assigned to each bit in each code word
used to represent a programmed state. During operation of the memory device,
the tables that are provided can be used to find initial LLR numbers for
decoding, given the results of the multiple read operations, in one possible

approach.

[0091] Note that the technique outlined here assumes independence between
read-noise and the “noise-less” Vrg. The technique can be extended to
encompass cases where the read-noise values and the “noise-less” Vg are not
independent. This essentially involves constructing a joint pdf f(u, vq, v, ... vy)

from experimental data.

[0092] FIG. 9a depicts a table which provides multi-bit code words for
different programmed states of a non-volatile storage element. As mentioned
previously, each programming state of a storage element can be represented by
a code word. For example, with sixteen states, a four bit code word can be
used. Further, an LLR or other reliability metric is associated with each bit
indicating the probability that the bit is not errored (a higher magnitude LLR
indicates a higher probability that the bit is not errored). Fig. 9a depicts bit

values or code words in columns beneath the programmed states 0 through 15.

WO 2008/121553 PCT/US2008/057380

24

The bits positions are depicted as top, higher, upper and lower. The lower bit is
the most significant bit and the top bit is the least significant bit. Thus, the
codeword for state 0 is 1111, the code word for state 1 is 1110 and so forth. An
LLR is associated with each bit as indicated in FIG. 9b.

[0093] FIG. 9b depicts a table which provides initial values of LLRs for each
bit of a code word based on a first read result. The LLRs are denoted by values
M1, M2 and M3, where M1<M2<M3. As mentioned previously, a positive
LLR indicates a 0 bit, a negative LLR indicates a 1 bit, and a greater magnitude
indicates a greater reliability or probability of correctness. For example, for the
lower bits in states O through 5, the LLR=-M3, indicating these bits have a high
probability of being a 1. This can be seen intuitively, since the probability that
the read state Y1 is far away from the programmed state, e.g., several states
away, is small. Thus, the LLR for the lower bit for state 5 is -M3 (higher
probability of correctness) since the read state would have to be off by three
states from the programmed state, e.g., state 8 (where the lower bit is 0, not 1).
However, the LLR for the lower bit for state 6 is -M2 (intermediate probability
of correctness) since the read state would have to be off by two states for the bit
to be errored. Similarly, the LLR for the lower bit for state 7 is -M1 (lower
probability of correctness) since the read state would have to be off by only one
state for the bit to be errored. Similar reasoning applies to the other bit
positions. For example, the LLRs for the top bits indicate a relatively low
probability of correctness since an error of only one state would result in the bit

being incorrect.

[0094] FIG. 9c depicts a table which provides adjustments to current values
of LLRs used by a decoder for each bit of a code word based on a second read
result. When a second or other additional read operation is performed, the LLR
values can be adjusted. In one possible approach, adjustments are made to the
LLR values which are currently used by the decoder after having started

decoding a first read result. As explained further in connection, e.g., with FIGs.

WO 2008/121553 PCT/US2008/057380

25

12 and 13, iterative probabilistic decoding involves applying parity checks of an
error correction code to the read codeword. If a parity check fails, the decoder
adjusts the LLR values in a direction toward satisfying the parity check. This
process can be repeated in successive iterations. Sometimes the adjustments
end up in an incorrect bit being flipped and the parity check being satisfied. In
this case, the next parity check is performed, if applicable. An adjustment can
thus be made to the current (most recently used) values of the LLRs while

decoding is taking place.

[0095] Generally, if the second read value is consistent with the first read
value, on a per bit basis, the current LLR can be increased in magnitude to
indicate that the bit has a greater reliability. For example, if the first read is
Yl=state 7 (code word 1011) and the second read is Y2=state 6 (code word
1010) the LLR can be adjusted for the top bit to indicate a greater probability
that the bit is 1. Note that the initial LLR for the bit was -M1 based on the first
read (FIG. 9b), but the decoding process may have changed this value to
another negative or even positive value. The adjustment is applied to the
current value, in this implementation. For example, the LLR may currently be —
M2 in which is case it might be adjusted to a negative value greater in
magnitude than M2. Or, the LLR may currently be +4 in which is case it might
be adjusted to +1.

[0096] Note that the adjustment can be expressed in different ways, e.g., by a
constant added or subtracted, or by a function. A table need not be used. For
example, the adjustment can be made based on the magnitude of the LLR. It
may not be necessary to adjust an LLR with a higher magnitude, or a relatively
smaller adjustment may be made in such as case. Conversely, a relatively larger
adjustment may be made when the LLR has a smaller magnitude. Generally,
the adjustment can be based on factors such as how close the decoding process
is to converging (e.g., based on the number of iterations and/or number of parity

checks satisfied), the present values of the LLRs and/or the second or other

WO 2008/121553 PCT/US2008/057380

06-

additional read state. Testing of different adjustments can also be performed to
determine satisfactory adjustments. The specific adjustments used can be

tailored to the specific memory device implementation.

[0097] FIG. 10a-d depict tables which provide initial values of LLRs for
each bit of a code word based on first and second read results. In one approach,
the initial values of the LLRs which are used in the decoding process can be set
based on the results of multiple read operations. A separate table can be
provided for each bit position of the code words. For example, FIGs. 10a, 10b,
10 and 10d provide LLR values for a top bit, higher bit, upper bit and lower bit,
respectively. Each table can be read based on two read results Y1 and Y2, for
instance. After reading each table, an initial LLR for each bit is provided to the
decoding process. Note that the tables can have three or more dimensions if

three or more read operations are used.

[0098] FIG. 11ais a flowchart of a process for decoding a code word which
represents a state of a non-volatile storage element, where initial probability
metrics are obtained based on first and second read operations. Step 1100
includes beginning a first read operation. A read operation can include sensing
whether the Vg of a storage element is above or below a number of compare
points (step 1102). Some of the comparison points can result in hard bits, e.g.,
for comparison points that separate Vry ranges of programming states, and
some of the comparison points can result in soft bits, e.g., for comparison points
that bisect a Vg range of a programming state. In one approach, the read
operation can use a first set of compare points followed by a second set of

compare points which bisect the first set.

[0099] Each compare point determination can be considered to be a sense
operation as can the read operation as a whole. In practice, a number of storage
elements may be read during the read operation. For example, the error
correction coding may be applied over a number of storage elements, in which

case read results are obtained from those storage elements for use in the

WO 2008/121553 PCT/US2008/057380

27

decoding. Based on the sensing, the programming states of the storage elements
are determined (step 1104) and code words are assigned based on the
programming states (step 1106). For example, the code words or bit
assignments of FIG. 9a may be used when there are sixteen states. A second
read operation begins at step 1108 such as by again sensing whether the Vry of
a storage clement is above or below the compare points (step 1110). Based on
the sensing, the programming states of the storage eclements are again

determined (step 1112).

[00100] Step 1114 includes assigning initial probability metrics to each bit in
the code words, where the metrics indicate a reliability of the bit based on the
first and second read results. For example, this step can involve reading the
tables of FIGs. 10a-10d to obtain LLRs, although other probabilistic metrics can
be used as well. Step 1116 includes performing iterative decoding using the
initial probability metrics, and adjusting the probability metrics in successive
iterations. After the iterations of step 1116, if the decoding converges, e.g., all
parity checks of the error correction code are satisfied, at decision step 1118, the
decoded code words are stored as the final read result (step 1120). Note that the
code words which are associated with the error correction process can be
decoded at the same time when the parity checks extend over the code words.
Alternatively, it is possible for a single code word to be decoded by itself when
one or more parity checks involve only that code word. If the decoding does
not converge, an error is declared or an additional read operation can be

performed, for instance, at step 1122.

[00101] FIG. 11b is a flowchart of a process for decoding a code word which
represents a state of a non-volatile storage element, where initial probability
metrics are obtained based on a first read operation, then adjusted probability
metrics are adjusted further based on a second read operation. As discussed, in
one implementation, the decoding process can be temporarily paused so that the

current LLR values, which are adjusted relative to the initial LLR values, are

WO 2008/121553 PCT/US2008/057380

8-

adjusted further based on one or more additional read results. Steps 1130, 1132,
1134 and 1136 correspond to steps 1100, 1102, 1104 and 1106, respectively, of
FIG. 11a. Step 1138 includes assigning initial probability metrics to each bit in
the code words, where the metrics indicate a reliability of the bit based on the
first read results. For example, this step can involve reading the table of FIG.
9b to obtain LLRs, although other probabilistic metrics can be used as well.
Step 1140 includes performing iterative decoding using the initial probability
metrics, and adjusting the probability metrics in successive iterations. If the
decoding converges within a given time period, e.g., elapsed time, and/or a
given number of iterations, at decision step 1142, the decoded code words are
stored as the final read result (step 1144). If the decoding progresses toward
converging, such as by satisfying a specified number of parity checks, the
decoding continues. Appropriate software, hardware and/or firmware can be

provided in the decoder to enforce this provision.

[00102] If the decoding does not converge or progress toward convergence,
the decoding is adjusted. The current values of the probability metrics are
stored at step 1146, and a second read operation is begun at step 1148. Steps
1150 and 1152 correspond to steps 1132 and 1134, respectively. Step 1154
includes adjusting the current values of the probability metrics based on the
second read. For example, this can include applying the LLR adjustments
depicted by the table of FIG. 9c. At step 1156, the iterative decoding continues
using the adjusted values of the probability metrics, which can be adjusted
further in subsequent iterations. The decoding process is improved due to the
information provided by the second read. For example, the decoding process
may converge sooner than if only results from a single read were used, or the
decoding process may converge where the singe read case would not converge.
At decision step 1158, the decoding status is again checked, similar to the check
of decision step 1142. If the decoding converges within a given time period,
e.g., elapsed time, and/or a given number of iterations, at decision step 1158, the

decoded code words are stored as the final read result (step 1160). Note that the

WO 2008/121553 PCT/US2008/057380

29

metric for progression toward converging in step 1158 can be more lax than at
step 1142. If the decoding progresses toward converging, such as by satisfying
a specified number of parity checks, the decoding continues. If the decoding
does not meet the second condition, an error can be declared or an additional
read operation can be performed (step 1162), and the results of that read

operation used to adjust the decoding process again.

[00103] Note that, instead of beginning an additional read operation in
response to the decoding not meeting a certain condition, it is possible to
perform the additional read operation automatically after the decoding process
has started based on the first read operation. In this case, the decoding process
can be paused to update the LLRs when the second read operation has been
completed, regardless of whether the decoding meets a certain condition, or the
results of the second operation can be stored for subsequent use in the decoding

process, if necessary.

[00104] FIG. 11c is a flowchart of a process for decoding a code word which
represents a state of a non-volatile storage element, where initial probability
metrics are obtained based on a first read operation, then new initial probability
metrics are obtained based on the first read operation and a second read
operation. In this approach, the decoding is essentially restarted from the
beginning when it does not meet a certain condition based on initial LLRs
obtained from a first read. However, the new initial LLRs are based on both the
first and second read operations, or other additional read operations. Steps
1170, 1172, 1174, 1176, 1178, 1180, 1182 and 1184 correspond to steps 1130,
1132, 1134, 1136, 1138, 1140, 1142 and 1144, respectively, of FIG. 11b. At
step 1186, when the decoding does not meet the first condition at decision step
1182, an error can be declared or an additional read can be performed. If a
second read operation is to be used (step 1188), the current values of the
probability metrics, e.g., LLRs, which are used by the decoder are discarded at
step 1190. Steps 1192 and 1194 correspond to steps 1150 and 1152,

WO 2008/121553 PCT/US2008/057380

-30-

respectively, of FIG. 11b. At step 1196, new initial probability metrics are
assigned to each bit in the code words, e.g., the code words assigned in step
1176. These new probability metrics indicate the reliability of the bits based on

the first and second read operations.

[00105] FIG. 12 depicts a sparse parity check matrix. As mentioned
previously, the storage elements store data which represents information bits
and parity bits, where the parity bits are provided according to an error
correction coding process. Such a process involves adding parity bits to
information bits. In one possible approach, a low density parity check (LDPC)
code is used. In practice, such codes are typically applied to multiple code
words which are encoded across a number of storage elements. LDPC codes
are desirable because they incur a relatively low overhead cost. Moreover,
LDPC codes exhibit a performance near the Shannon limit under iterative
message-passing decoding algorithms. However, this is an example
implementation only, as any type of error correction code can be used. For

example, other linear block codes may be used.

[00106] An LDPC code is a linear block code which is characterized by a
sparse parity check matrix, e.g., as depicted by the matrix H 1200. The matrix
includes K information bits and M parity bits, and the code length is N=K+M.
Further, the parity bits are defined such that M parity check equations are
satisfied, where each row of the matrix represents a parity check equation. In
particular, the rows of the matrix are identified by check nodes cnl through
cnl0 and the columns are identified by variables v1 through v13, which indicate
the data that is stored in the storage elements, ¢.g., the code word bits. This data

includes information bits i and parity bits p, based on the equation:

Hc;:H{;}zo,
p

WO 2008/121553 PCT/US2008/057380

31-

where H is the sparse parity check matrix, v is the data matrix, i is the
information bit matrix and p is the parity bit matrix. The information bits can
be taken from different bit positions of different code words, in one approach.
The data matrix v can be determined by solving the above equation. Further,
this can be done efficiently using a Gaussian elimination procedure if the matrix

H is lower triangular.

[00107] FIG. 13 depicts a sparse bipartite graph which corresponds to the
sparse parity check matrix of FIG. 12. The graph 1300 indicates in further
detail how the LDPC code works. The variable nodes v1 through v13 represent
the code word bits and the check nodes cnl through cnl0 represent the parity

check constraints on the bits.

[00108] During decoding, the decoder attempts to satisfy the parity checks. In
this example, there are ten parity checks as indicated by the check nodes cnl
through cn10. The first parity check at cnl determines if v2®v4&®v11®v13=0,
where ® denotes the exclusive-or (XOR) logical operation. This check is
satisfied if there is an even number of “1” bits in v2, v4, v11 and v13. This
check is denoted by the fact that arrows from nodes v2, v4, v11 and v13 point to
node cnl in the graph 1300. The second parity check at cn2 determines if
v1®v7®v12=0, which is satisfied if there is an odd number of “1” bits. The
third parity check at cn3 determines if v3®v5&v6®vI®V10=0, which is
satisfied if there is an odd number of “1” bits. Similarly, the fourth parity check
at cn4 determines if v2®v8&®v11=0, the fifth parity check at cn5 determines if
v4®v7®v12=0, the sixth parity check at cn6 determines if vI®v5&v6&v9I=0,
the seventh parity check at cn7 determines if v2®v8&®v10&®v13=0, the eighth
parity check at cn8 determines if v4®v7®v11&®v12=0, the ninth parity check at
cn9 determines if vi®v3®vS5®v13=0 and the tenth parity check at cn0O1
determines if v7®v8®vI®v10=0.

WO 2008/121553 PCT/US2008/057380

230

[00109] The decoding process for LDPC is an iterative probabilistic
decoding process known as iterative message passing decoding. The iterating
involves serially traversing the check nodes and updating the LLR values of the
bits involved based on each parity check. In one approach, an attempt is made
to satisfy the first parity check of cnl. Once that parity check is satisfied, an
attempt is made to satisfy the first parity check of cn2 and so forth. The LLR
values are adjusted, if necessary, for each iteration in a manner known to those

skilled in the art. This iterative algorithm is a form of belief propagation.

Use of Pre-Conditioning Waveforms

[00110] The sensed programming state of a storage element can vary over
different read operations based on the history of the storage element. For
example, the state of a storage element will sometimes change between two
read operations, and the number of storage elements changing their states can
depend on the history of the control gate voltages. The tendency for a read state
to change is based on a variety of factors including the Vg width for each state,

the spacing between states, trap site noise and other factors.

[00111] It can be useful, therefore, to intentionally create different short terms
histories when two or more sensing operations are performed. In one approach,
the different short terms histories are used at the same voltage level, or at
neighboring voltage levels. For example, just prior to a first read operation, the
selected word line can be grounded. To make a second read operation’s short
term history different, we can apply a pre-conditioning waveform in the form of
a read pass voltage, e.g., Vreap=5.5 V, for instance, to the selected word line
just before the onset of the second read operation. Vggap is the voltage which is
typically applied to unselected word lines when storage elements on a selected
word line are being read. However, this is one example among many possible
implementations. For example, the amplitude, duration and shape, in addition
to the time interval between the end of the pre-conditioning waveform and the

onset of the integration time of sensing, are all parameters that can be

WO 2008/121553 PCT/US2008/057380

233

optimized, e.g., with the RC time constants of the word lines and other lines in

mind.

[00112] To the extent that the Vg of some noisy storage elements depends on
the short term history of the biases applied to their various terminals, such as the
control gate and the C-P-well, the differing short term histories should increase
the noisy behavior, and this increase will help us identify more suspect bits.
This additional information should improve the iterative decoding process by
identifying noisy storage elements and acknowledging the uncertainty about the
value of certain bits. This acknowledgment of ignorance can be used to help
focus the attention of the decoding process on the more troublesome bits where
more attention is needed. In short, it is better to know that we do not know the

value of some bits than to pretend that we do.

[00113] The use of a pre-conditioning waveform prior to the sense operation
allows the history of the read operation to more closely resemble the history of
the verify operation performed during programming, as the short term history of
the verify operation included a program (Vpgm) pulse. Example Vpgu pulses,
whose amplitude varies between, e.g., 13-20 V, are depicted in FIG. 24. The
amplitude of the pre-conditioning waveform need not be as high as the
amplitude of the program pulse, but it can still duplicate the short term history
that a storage element undergoes when a verify operating is performed as part of
the programming operation. Thus, the effect that a program pulse has on a
storage element prior to a verify operation is replicated in part by the effect that
a pre-conditioning pulse has on a storage element prior to a read operation. For
implementations where additional read operations are performed only when
necessary, e.g., when the decoding process based on one read operation is not
converging, the first read can use the pre-conditioning waveform prior to the

sense operation, in one possible approach.

[00114] Further, the probability metrics, such as LLRs, which are used in the

decoding process can account for the effects of pre-conditioning waveforms.

WO 2008/121553 PCT/US2008/057380

-34-

Thus, the initial LLR assigned to a bit can vary based on the history of the
associated storage element. For example, if the same bit value in a codeword is
obtained from read operations with and without pre-conditioning waveforms,
the magnitude of the LLR for the bit should be higher to indicate a more
confident measure of the bit’s value than if the bit value was obtained from read
operations both without pre-conditioning waveforms, or even both with pre-

conditioning waveforms.

[00115] In particular, the pre-conditioning waveforms can affect the
probability distribution functions (pdfs) of the various programming states.
This effect is measurable by comparing the pdf of the Vry distribution of a set
of storage elements with and without pre-conditioning waveforms. Generally,
with the use of pre-conditioning waveforms, a mathematical method for
aggregating the LLR results from multiple reads can be provided based on the
behavior of the storage elements for a particular technology. For example, if
every one of the reads yields the same result, then we can assign a high-
magnitude LLR for the bits of the code word which represent the state. This
peak LLR (LLRpeak) would be higher than the LLR that is used for only a
single read (LLRsingle). On the other hand, if the series of reads yields
differing results, then a lower final LLR would result. One method of
aggregating a series of reads is to take the average of the single-read LLRs, and
then multiplying the average by a normalization factor such as

LLRpeak/LLRsingle.

[00116] Examples below depict one or more pre-conditioning pulses
occurring before the sensing operations of a read operation, but, in general, any
pre-conditioning waveform can be used. Further, a pre-conditioning waveform
can be applied to a terminal of a storage element, e.g., control gate, source
and/or drain, and/or to a substrate on which the storage element is formed. For
instance, a first pre-conditioning waveform can be applied to a non-volatile

storage clement via a body of a substrate on which the non-volatile storage

WO 2008/121553 PCT/US2008/057380

-35-

element is formed, and a second pre-conditioning waveform can be applied to a
control gate, a source and a drain of the storage element. Or, the second pre-
conditioning waveform can be applied to a non-volatile storage element via the
body, and the first pre-conditioning waveform applied to the control gate,
source and/or the drain of the storage element. Further, pre-conditioning
waveforms with different characteristics can be applied during one read

operation or during different read operations.

[00117] Moreover, the pre-conditioning waveform can be used in a single
read approach as well as a multiple read approach. Further, the pre-
conditioning waveform can be used with any type of error correction decoding,

or without error correction decoding.

[00118] FIG. 14a is a timing diagram that explains the behavior of certain
waveforms during read/verify operations, where a pre-conditioning waveform is
applied to a selected word line before an associated read pulse. The waveforms

in this and the other timing diagrams are not necessarily to scale.

[00119] As mentioned, a pre-conditioning waveform can be applied to a
storage element as part of the read operation. This can involve applying a pre-
conditioning waveform such as a pulse to the control gates of the storage
clements being read via the associated selected word line, for instance, prior to
applying a sensing voltage to the word line for comparing the Vg of the storage
elements to a compare point. Moreover, a preconditioning waveform can be
applied just prior to any read or just prior to some of the read operations. It can
be combined with various levels of soft reads. It can also be combined with the

multiple reads at the same voltage level.

[00120] In general, during read and verify operations, the selected word line
or other control line is connected to a voltage, a level of which is specified for
cach read and verify operation, in order to determine whether a threshold
voltage of the concerned storage element has reached such level. After

applying the word line voltage, the conduction current of the storage element is

WO 2008/121553 PCT/US2008/057380

-36-

measured to determine whether the storage element turned on. If the
conduction current is measured to be greater than a certain value, then it is
assumed that the storage element turned on and the voltage applied to the word
line is greater than the threshold voltage of the storage element. If the
conduction current is not measured to be greater than the certain value, then it is
assumed that the storage element did not turn on and the voltage applied to the

word line is not greater than the threshold voltage of the storage element.

[00121] There are many ways to measure the conduction current of a storage
element during a read or verify operation. In one example, the conduction
current of a storage element is measured by the rate it allows (or fails to allow)
the NAND string that included the storage element to discharge the bit line.
The charge on the bit line is measured after a period of time to see whether it
has been discharged or not. In another embodiment, the conduction of the
selected storage element allows current to flow or not flow on a bit line, which
is measured by whether a capacitor in the sense amplifier is charged due to the

flow of current. Both examples are discussed.

[00122] In particular, waveform 1400 depicts a drain side select gate voltage
(SGD), waveform 1402 depicts an unselected word line voltage, waveform
1404 depicts a selected word line voltage (of the word line selected for
reading/verification), waveform 1410 depicts a source side select gate (SGS)
voltage (option 1), waveform 1412 depicts a SGS voltage (option 2), waveform
1414 depicts a selected bit line (BL) voltage (option 1) (of the bit line selected
for reading/verification), waveform 1418 depicts a selected BL voltage (option
2) and waveform 1419 depicts a source voltage. Additionally, time points t0-t4

extend in the horizontal direction.

[00123] Note that there are two versions of SGS and Selected BL depicted.
Option depicts a read/verify operation for an array of storage elements that
measure the conduction current of a storage element by determining whether the

bit line has discharged. Option 2 depicts a read/verify operation for an array of

WO 2008/121553 PCT/US2008/057380

-37-

storage elements that measure the conduction current of a storage element by

the rate it discharges a dedicated capacitor in the sense amplifier.

[00124] First, the behavior of the sensing circuits and the array of storage
elements that are involved in measuring the conduction current of a storage
element by determining whether the bit line has discharged will be discussed

with respect to option 1.

[00125] Prior to t0, the voltages start at a steady state voltage, Vss, of
approximately 0 V. Between t0 and tl, a pre-conditioning waveform 1406 is
applied to the selected word line prior to the read pulse 1408. Note that, in
another approach, the pre-conditioning waveform or waveforms can overlap
with the sense operation (read pulse 1408). At t2, SGD and SGS (option 2) are
raised to Vggp and Vggs, respectively (e.g., 3.5 V). The unselected word lines
are raised to Vrpap (€.g., 6 V), which acts as an overdrive voltage because it
causes the unselected storage elements to turn on and act as pass gates. The
pre-conditioning waveform 1406 can have an amplitude comparable to Vrgap,
for instance, which is greater than Vegr. Vrpap is generally the highest voltage
which can be applied without causing disturbs. The selected word line is raised
to Vegr (control gate read voltage) for a read operation or to a verify level for a
verify operation. The waveform on the selected word line between 2 and t4 is
considered to be a read pulse 1408 which is used during a sense operation. The

selected BL (option 1) is pre-charged to approximately 0.7 V, in one approach.

[00126] The process depicted in FIG. 14a can then be repeated at the next
read or verify level, in which a different Vcgr is applied to sense whether the
Vr of the storage elements associated with the selected word line is above or
below a corresponding compare point. In one approach, the pre-condition pulse

is provided before each sense operation.

[00127] At t3, the NAND string can control the bit line. Also at t3, the source
side select gate is turned on by raising SGS (option 1) to Vsgs. This provides a
path to dissipate the charge on the bit line. If the Vy of the storage element

WO 2008/121553 PCT/US2008/057380

-38-

selected for reading is greater than Vcgr or the verify level applied to the
selected word line, then the selected storage element will not turn on and the bit
line will not discharge, as depicted by line 1415. If the threshold voltage in the
storage element selected for reading is below Vegr or below the verify level
applied to the selected word line, then the storage element selected for reading
will turn on (conduct) and the bit line voltage will dissipate, as depicted by
curve 1416. At some point after time t3 and prior to time t4 (as determined by
the particular implementation), the sense amplifier will determine whether the
bit line has dissipated a sufficient amount. In between t3 and t4, the sense
amplifier measures the evaluated BL voltage. At time t4, the depicted

waveforms will be lowered to Vss (or another value for standby or recovery).

[00128] Discussed next, with respect to option 2, is the behavior of the
sensing circuits and the array of storage elements that measure the conduction
current of a storage element by the rate at which it charges a dedicated capacitor
in the sense amplifier. The pre-conditioning waveform 1406 is applied between
t0 and t1 as before. Attime t2, SGD is raised to Vsgp, the unselected word lines
are raised to Vgeap, and the sclected word line is raised to Vegr for a read
operation or to a verify level for a verify operation. In this case, the sense
amplifier holds the bit line voltage constant regardless of what the NAND sting
is doing, so the sense amplifier measures the current flowing with the bit line
"clamped" to that voltage. At some point after t2 and prior to t4 (as determined
by the particular implementation), the sense amplifier will determine whether
the capacitor in the sense amplifier has dissipated a sufficient amount. At t4,
the depicted waveforms will be lowered to Vss (or another value for standby or
recovery). Note that in other embodiments, the timing of some of the

waveforms can be changed.

[00129] FIG. 14b is a timing diagram that explains the behavior of certain
waveforms during read/verify operations, where one or more pre-conditioning

waveforms are applied to a selected word line before associated read pulses.

WO 2008/121553 PCT/US2008/057380

-39-

Here, three sense operations which make up part of a read operation are
depicted. For example, with sixteen states, there would be fifteen sense
operations. Waveforms 1420, 1422, 1424, 1435, 1436, 1437, 1438 and 1439
represent the waveforms 1400, 1402, 1404, 1410, 1412, 1414, 1418 and 1419,
respectively, of FIG. 14a over three sense operations. Waveform 1432 is
analogous to waveform 1424 but includes the pre-conditioning waveform 1426
only before the first read pulse 1427 in the series of read pulses which make up
a read operation. In waveform 1424, pre-conditioning waveforms 1426, 1428
and 1430 are applied to the selected word line prior to read pulses 1427, 1429
and 1431, respectively, which are associated with different Vg compare points.
The read pulse amplitude increases in each sense operation, e.g., from Vcgr.1 to
Vegra t0 Vegrs and so forth. The amplitude of the pre-conditioning
waveforms can be the same for each sense operation or can vary, e.g., with the
amplitude of the associated read pulse. Regarding waveform 1432, note that,
generally, the pre-conditioning waveform can be provided before one or more
selected read pulses in a read operation. Moreover, the read pulses which have

associated pre-conditioning waveforms can be selected randomly.

[00130] FIG. 14c¢ is a timing diagram that depicts different pre-conditioning
waveforms. As mentioned, the pre-conditioning waveform can have a variety
of characteristics. Waveform 1404 (discussed also in FIG. 14a) includes a
baseline pre-conditioning waveform 1406 as a pulse which is provided before a
read pulse 1408. Note that the waveform 1406 and the pulse 1408 show a rise
time and a decay time which will vary for different memory devices. In one
option, waveform 1440 includes a pre-conditioning waveform 1441 as a pulse
with a longer duration compared to pulse 1406. Waveform 1442 includes a pre-
conditioning waveform 1443 which is closer to the read pulse 1408 compared to
pulse 1406. The time period at issue extends from the end of the pre-
conditioning waveform to the start of the read pulse. Waveform 1444 includes
a pre-conditioning waveform 1445 as a pulse with a lower amplitude, compared

to pulse 1406. Waveform 1446 includes a pre-conditioning waveform 1447

WO 2008/121553 PCT/US2008/057380

-40-

with a different shape, compared to pulse 1406. Here, an oscillating waveform
is used. While this waveform does not replicate a programming pulse, and even
includes negative voltages, it can still provide useful, e.g., in causing trap site
activity. Other waveforms including ramps, steps and so forth can also be used.
It is also possible to provide multiple pre-conditioning waveforms before a read

pulse.

[00131] FIG. 14d is a timing diagram that explains the behavior of certain
waveforms during read/verify operations, where a pre-conditioning waveform is
applied to a drain of a selected storage element via a selected bit line before an
associated read pulse. Generally, instead of applying a voltage waveform to the
control gate of the storage clements via the selected word line, a voltage
waveform can be applied to any other terminal, such as a source or drain, or via
a body bias. In this approach, the drain terminal is accessed via the bit line
associated with a NAND chain. As depicted by waveform 1450, the drain side
select gate is opened by raising Vsgp between t0 and t1, at which time the pre-
conditioning waveform 1456 or 1460 is applied (waveforms 1454 and 1458,
respectively) to the bit line. The drain side select gate can be opened just before
t0 until just after t1 to envelope the pre-conditioning waveform 1460. The read
pulse 1408 occurs between t2 and t4, as discussed previously. The drain side
select gate is also opened between t2 and t4 during the read pulse. Note that the

drain side select gate can be kept open between t0 and t4 continuously as well.

[00132] FIG. 14e is a timing diagram that explains the behavior of certain
waveforms during read/verify operations, where a pre-conditioning waveform is
applied to a source of a sclected storage element via a source line before an
associated read pulse. In this approach, the source terminal is accessed via the
source line associated with a NAND chain. As depicted by waveforms 1462 or
1464, the source side select gate is opened by raising Vsgs between t0 and t1, at
which time the pre-conditioning waveform 1468 in waveform 1466 is applied

on the source line. The source side select gate can be opened just before t0 until

WO 2008/121553 PCT/US2008/057380

41-

just after tl to envelope the pre-conditioning waveform 1468. The read pulse
1408 occurs between t2 and t4, as discussed previously. The source side select
gate is also opened between t2 and t4 during the read pulse. Note that the

source side select gate can be kept open between t0 and t4 continuously as well.

[00133] FIG. 14f is a timing diagram that explains the behavior of certain
waveforms during read/verify operations, where a pre-conditioning waveform is
applied to a selected storage element via a body bias before an associated read
pulse. In this approach, the substrate which the storage elements are formed on
is biased with a body bias voltage V. For example, a p-well of the substrate
can be biased with V<0 to increase the control gate to body voltage. As
depicted by waveform 1470, the pre-conditioning waveform 1472 can be
applied to the body between t0 and t1. The read pulse 1408 occurs between t2

and t4, as discussed previously.

[00134] FIG. 14g is a flowchart of a process for performing a read operation
on a storage element, where pre-conditioning waveforms are applied to a
storage element before associated read pulses. The read operation begins at step
1474. An index k, representing a programmed state, is initialized to zero at step
1475. A pre-conditioning waveform is applied at step 1476 and a read pulse is
applied at step 1477. Step 1478 includes sensing whether the Vg is above or
below a read compare point. If there is a next compare point, at decision step
1479, the index is incremented at step 1480, and steps 1476-1478 are repeated.
If there is no further compare point, the read operation has completed and the

results are stored at step 1481.

[00135] FIG. 14h is a flowchart of a process for performing a read operation
on a storage element, where a pre-conditioning waveform is applied to a storage
element before a series of read pulses. The read operation begins at step 1482.
An index k, representing a programmed state, is initialized to zero at step 1483.
A pre-conditioning waveform is applied at step 1484 and a read pulse is applied

at step 1485. Step 1486 includes sensing whether the Vry is above or below a

WO 2008/121553 PCT/US2008/057380

42

read compare point. If there is a next compare point, at decision step 1487, the
index is incremented at step 1488, and steps 1485 and 1486 are repeated. If
there is no further compare point, the read operation has completed and the
results are stored at step 1489. In this case, the pre-conditioning pulse is not

used again for the read operation.

[00136] FIG. 14i is a flowchart of a process for obtaining reliability metrics
using pre-conditioning waveforms for subsequent use in decoding. See also
FIGs. 5a, 5b and 8. Step 1490 includes programming random data to storage
elements, and step 1491 initializes an index k to state 0. State 1492 includes
performing measurements of Vg for each storage element written to state k,
sometimes with the pre-conditioning waveform and sometimes without, and/or
with different waveform characteristics (e.g., amplitude, duration and timing).
In this manner, electrons in the storage elements are influenced to enter and exit
trap sites, for instance, to provide a more accurate Vry distribution. Step 1493
includes obtaining reliability metrics (e.g., LLRs) for state k based on the
measurements and step 1494 includes storing the results. If there is a next state
at decision step 1495, k is incremented at step 1496 and steps 1492 and 1493 are

repeated. If there is no next state, the process ends at step 1497.

[00137] Thus, the pre-conditioning waveform can be used in a test
environment when reliability metrics are being developed for a non-volatile
storage and/or in a production environment when the non-volatile storage is
being read. In one approach, tables similar to those discussed in connection
with FIGs. 9b-10d can be developed with and without the use of pre-
conditioning pulses, and/or with the use of different pre-conditioning pulses.
These tables are then accessed during the production environment when the

non-volatile storage is being read, as discussed previously.

[00138] FIG. 15 illustrates an example of an array 1500 of NAND storage
elements, such as those shown in FIGs. 1 and 2. Along each column, a bit line

1506 is coupled to the drain terminal 1526 of the drain select gate for the

WO 2008/121553 PCT/US2008/057380

-43-

NAND string 1550. Along each row of NAND strings, a source line 1504 may
connect all the source terminals 1528 of the source select gates of the NAND
strings. The NAND strings and storage elements are formed on a p-well 1505
which can receive a body bias Vg in some implementations. An example of a
NAND architecture array and its operation as part of a memory system is found

in U.S. Patents Nos. 5,570,315; 5,774,397; and 6,046,935.

[00139] The array of storage elements is divided into a large number of
blocks of storage elements. As is common for flash EEPROM systems, the
block is the unit of erase. That is, each block contains the minimum number of
storage elements that are erased together. Each block is typically divided into a
number of pages. A page is a unit of programming. In one embodiment, the
individual pages may be divided into segments and the segments may contain
the fewest number of storage elements that are written at one time as a basic
programming operation. One or more pages of data are typically stored in one
row of storage elements. A page can store one or more sectors. A sector
includes user data and overhead data. Overhead data typically includes an Error
Correction Code (ECC) that has been calculated from the user data of the sector.
A portion of the controller (described below) calculates the ECC when data is
being programmed into the array, and also checks it when data is being read
from the array. Alternatively, the ECCs and/or other overhead data are stored in
different pages, or even different blocks, than the user data to which they

pertain.

[00140] A sector of user data is typically 512 bytes, corresponding to the size
of a sector in magnetic disk drives. Overhead data is typically an additional 16—
20 bytes. A large number of pages form a block, anywhere from 8 pages, for
example, up to 32, 64, 128 or more pages. In some embodiments, a row of

NAND strings comprises a block.

[00141] Memory storage elements are erased in one embodiment by raising

the p-well 1505 on which the NAND strings and storage elements are formed to

WO 2008/121553 PCT/US2008/057380

-44-

an erase voltage (e.g., 20 V) for a sufficient period of time and grounding the
word lines of a selected block while the source and bit lines are floating. Due to
capacitive coupling, the unselected word lines, bit lines, select lines, and c-
source are also raised to a significant fraction of the erase voltage. A strong
electric field is thus applied to the tunnel oxide layers of selected storage
clements and the data of the selected storage elements are erased as electrons of
the floating gates are emitted to the substrate side, typically by Fowler-
Nordheim tunneling mechanism. As electrons are transferred from the floating
gate to the p-well region, the threshold voltage of a selected storage element is
lowered. Erasing can be performed on the entire memory array, separate

blocks, or another unit of storage elements.

[00142] FIG. 16 is a block diagram of a non-volatile memory system using
single row/column decoders and read/write circuits. The diagram illustrates a
memory device 1696 having read/write circuits for reading and programming a
page of storage clements in parallel, according to one embodiment of the
present invention. Memory device 1696 may include one or more memory die
1698. Memory die 1698 includes a two-dimensional array of storage elements
1500, control circuitry 1610, and read/write circuits 1665. In some
embodiments, the array of storage elements can be three dimensional. The
memory array 1500 is addressable by word lines via a row decoder 1630 and by
bit lines via a column decoder 1660. The read/write circuits 1665 include
multiple sense blocks 1600 and allow a page of storage elements to be read or
programmed in parallel. Typically a controller 1650 is included in the same
memory device 1696 (e.g., a removable storage card) as the one or more
memory die 1698. The controller 1650 may include the ECC decoding
capability discussed herein. Commands and Data are transferred between the
host and controller 1650 via lines 1620 and between the controller and the one

or more memory die 1698 via lines 1618.

WO 2008/121553 PCT/US2008/057380

45-

[00143] The control circuitry 1610 cooperates with the read/write circuits
1665 to perform memory operations on the memory array 1500. The control
circuitry 1610 includes a state machine 1612, an on-chip address decoder 1614,
a boost control 1615 and a power control module 1616. The state machine 1612
provides chip-level control of memory operations. The on-chip address decoder
1614 provides an address interface between that used by the host or a memory
controller to the hardware address used by the decoders 1630 and 1660. The
boost control 1615 can be used for setting a boost mode, including determining
a timing for initiating source side and drain side boosting, as discussed herein.
The power control module 1616 controls the power and voltages supplied to the

word lines and bit lines during memory operations.

[00144] In some implementations, some of the components of FIG. 16 can be
combined. In various designs, one or more of the components (alone or in
combination), other than storage element array 1500, can be thought of as a
managing circuit. For example, one or more managing circuits may include any
one of or a combination of control circuitry 1610, state machine 1612, decoders
1614/1660, power control 1616, sense blocks 1600, read/write circuits 1665,

controller 1650, etc.

[00145] FIG. 17 is a block diagram of a non-volatile memory system using
dual row/column decoders and read/write circuits. Here, another arrangement
of the memory device 1696 shown in FIG. 16 is provided. Access to the
memory array 1500 by the various peripheral circuits is implemented in a
symmetric fashion, on opposite sides of the array, so that the densities of access
lines and circuitry on each side are reduced by half. Thus, the row decoder is
split into row decoders 1630A and 1630B and the column decoder into column
decoders 1660A and 1660B. Similarly, the read/write circuits are split into
read/write circuits 1665A connecting to bit lines from the bottom and read/write
circuits 1665B connecting to bit lines from the top of the array 1500. In this

way, the density of the read/write modules is essentially reduced by one half.

WO 2008/121553 PCT/US2008/057380

-46-

The device of FIG. 17 can also include a controller, as described above for the

device of FIG. 16.

[00146] FIG. 18 is a block diagram depicting one embodiment of a sense
block. An individual sense block 1600 is partitioned into a core portion,
referred to as a sense module 1680, and a common portion 1690. In one
embodiment, there will be a separate sense module 1680 for each bit line and
one common portion 1690 for a set of multiple sense modules 1680. In one
example, a sense block will include one common portion 1690 and eight sense
modules 1680. Each of the sense modules in a group will communicate with
the associated common portion via a data bus 1672. For further details refer to
U.S. Patent Application Pub No. 2006/0140007, titled "Non-Volatile Memory
and Method with Shared Processing for an Aggregate of Sense Amplifiers”

published June 29, 2006, and incorporated herein by reference in its entirety.

[00147] Sense module 1680 comprises sense circuitry 1670 that determines
whether a conduction current in a connected bit line is above or below a
predetermined threshold level. Sense module 1680 also includes a bit line latch
1682 that is used to set a voltage condition on the connected bit line. For
example, a predetermined state latched in bit line latch 1682 will result in the

connected bit line being pulled to a state designating program inhibit (e.g., V4q).

[00148] Common portion 1690 comprises a processor 1692, a set of data
latches 1694 and an I/O Interface 1696 coupled between the set of data latches
1694 and data bus 1620. Processor 1692 performs computations. For example,
one of its functions is to determine the data stored in the sensed storage element
and store the determined data in the set of data latches. The set of data latches
1694 is used to store data bits determined by processor 1692 during a read
operation. It is also used to store data bits imported from the data bus 1620
during a program operation. The imported data bits represent write data meant
to be programmed into the memory. I/O interface 1696 provides an interface

between data latches 1694 and the data bus 1620.

WO 2008/121553 PCT/US2008/057380

47-

[00149] During read or sensing, the operation of the system is under the
control of state machine 1612 that controls the supply of different control gate
voltages to the addressed storage element. As it steps through the various
predefined control gate voltages corresponding to the various memory states
supported by the memory, the sense module 1680 may trip at one of these
voltages and an output will be provided from sense module 1680 to processor
1692 via bus 1672. At that point, processor 1692 determines the resultant
memory state by consideration of the tripping event(s) of the sense module and
the information about the applied control gate voltage from the state machine
via input lines 1693. It then computes a binary encoding (code word) for the
memory state and stores the resultant data bits into data latches 1694. In
another embodiment of the core portion, bit line latch 1682 serves double duty,
both as a latch for latching the output of the sense module 1680 and also as a bit

line latch as described above.

[00150] It is anticipated that some implementations will include multiple
processors 1692. In one embodiment, each processor 1692 will include an
output line (not depicted) such that each of the output lines is wired-OR’d
together. In some embodiments, the output lines are inverted prior to being
connected to the wired-OR line. This configuration enables a quick
determination during the program verification process of when the
programming process has completed because the state machine receiving the
wired-OR can determine when all bits being programmed have reached the
desired level. For example, when each bit has reached its desired level, a logic
zero for that bit will be sent to the wired-OR line (or a data one is inverted).
When all bits output a data O (or a data one inverted), then the state machine
knows to terminate the programming process. Because each processor
communicates with eight sense modules, the state machine needs to read the
wired-OR line eight times, or logic is added to processor 1692 to accumulate the
results of the associated bit lines such that the state machine need only read the

wired-OR line one time. Similarly, by choosing the logic levels correctly, the

WO 2008/121553 PCT/US2008/057380

-48-

global state machine can detect when the first bit changes its state and change

the algorithms accordingly.

[00151] During program or verify, the data to be programmed is stored in the
set of data latches 1694 from the data bus 1620. The program operation, under
the control of the state machine, comprises a series of programming voltage
pulses applied to the control gates of the addressed storage clements. FEach
programming pulse is followed by a read back (verify) to determine if the
storage element has been programmed to the desired memory state. Processor
1692 monitors the read back memory state relative to the desired memory state.
When the two are in agreement, the processor 1692 sets the bit line latch 1682
so as to cause the bit line to be pulled to a state designating program inhibit.
This inhibits the storage element coupled to the bit line from further
programming even if programming pulses appear on its control gate. In other
embodiments the processor initially loads the bit line latch 1682 and the sense

circuitry sets it to an inhibit value during the verify process.

[00152] Data latch stack 1694 contains a stack of data latches corresponding
to the sense module. In one embodiment, there are three data latches per sense
module 1680. In some implementations (but not required), the data latches are
implemented as a shift register so that the parallel data stored therein is
converted to serial data for data bus 1620, and vice versa. In the preferred
embodiment, all the data latches corresponding to the read/write block of m
storage elements can be linked together to form a block shift register so that a
block of data can be input or output by serial transfer. In particular, the bank of
r read/write modules is adapted so that each of its set of data latches will shift
data in to or out of the data bus in sequence as if they are part of a shift register

for the entire read/write block.

[00153] Additional information about the structure and/or operations of
various embodiments of non-volatile storage devices can be found in (1) U.S.

Patent Application Pub. No. 2004/0057287, ‘“Non-Volatile Memory And

WO 2008/121553 PCT/US2008/057380

-49-

Method With Reduced Source Line Bias Errors,” published on March 25, 2004;
(2) U.S. Patent Application Pub No. 2004/0109357, “Non-Volatile Memory
And Method with Improved Sensing,” published on June 10, 2004; (3) U.S.
Patent Application No. 11/015,199 titled “Improved Memory Sensing Circuit
And Method For Low Voltage Operation,” filed on December 16, 2004; (4)
U.S. Patent Application 11/099,133, titled “Compensating for Coupling During
Read Operations of Non-Volatile Memory,” filed on April 5, 2005; and (5) U.S.
Patent Application No. 11/321,953, titled “Reference Sense Amplifier For Non-
Volatile Memory, filed on December 28, 2005. All five of the immediately
above-listed patent documents are incorporated herein by reference in their

entirety.

[00154] FIG. 19 illustrates an example of an organization of a memory array
into blocks for an all bit line memory architecture or for an odd-even memory
architecture. Exemplary structures of memory array 1500 are described. As
one example, a NAND flash EEPROM is described that is partitioned into 1,024
blocks. The data stored in each block can be simultancously erased. In one
embodiment, the block is the minimum unit of storage elements that are
simultaneously erased. In each block, in this example, there are 8,512 columns
corresponding to bit lines BLO, BL1, ... BL8511. In one embodiment referred
to as an all bit line (ABL) architecture (architecture 1910), all the bit lines of a
block can be simultaneously selected during read and program operations.
Storage eclements along a common word line and connected to any bit line can

be programmed at the same time.

[00155] In the example provided, 64 storage elements and two dummy
storage elements are connected in series to form a NAND string. There are
sixty four data word lines and two dummy word lines, WL-d0 and WL-d1,
where each NAND string includes sixty four data storage elements and two
dummy storage elements. In other embodiments, the NAND strings can have

more or less than 64 data storage elements and two dummy storage elements.

WO 2008/121553 PCT/US2008/057380

-50-

Data memory cells can store user or system data. Dummy memory cells are

typically not used to store user or system data.

[00156] One terminal of the NAND string is connected to a corresponding bit
line via a drain select gate (connected to select gate drain lines SGD), and
another terminal is connected to c-source via a source select gate (connected to

select gate source line SGS).

[00157] In one embodiment, referred to as an odd-even architecture
(architecture 1900), the bit lines are divided into even bit lines (BLe) and odd
bit lines (BLo). In this case, storage elements along a common word line and
connected to the odd bit lines are programmed at one time, while storage
elements along a common word line and connected to even bit lines are
programmed at another time. Data can be programmed into different blocks
and read from different blocks concurrently. In each block, in this example,

there are 8,512 columns that are divided into even columns and odd columns.

[00158] During one configuration of read and programming operations, 4,256
storage elements are simultancously selected. The storage elements selected
have the same word line and the same kind of bit line (e.g., even or odd).
Therefore, 532 bytes of data, which form a logical page, can be read or
programmed simultaneously, and one block of the memory can store at least
cight logical pages (four word lines, each with odd and even pages). For multi-
state storage elements, when each storage element stores two bits of data, where
each of these two bits are stored in a different page, one block stores sixteen

logical pages. Other sized blocks and pages can also be used.

[00159] For cither the ABL or the odd-even architecture, storage elements can
be erased by raising the p-well to an erase voltage (e.g., 20 V) and grounding
the word lines of a selected block. The source and bit lines are floating.
Erasing can be performed on the entire memory array, separate blocks, or

another unit of the storage clements which is a portion of the memory device.

WO 2008/121553 PCT/US2008/057380

-51-

Electrons are transferred from the floating gates of the storage elements to the

p-well region so that the Vy of the storage elements becomes negative.

[00160] In the read and verify operations, the select gates (SGD and SGS) are
connected to a voltage in a range of 2.5 to 4.5 V and the unselected word lines
(e.g., WLO, WL1 and WL3, when WL2 is the selected word line) are raised to a
read pass voltage, Vreap, (typically a voltage in the range of 4.5 to 6 V) to
make the transistors operate as pass gates. The selected word line WL2 is
connected to a voltage, a level of which is specified for each read and verify
operation in order to determine whether a Vry of the concerned storage element
is above or below such level. For example, in a read operation for a two-level
storage element, the selected word line WL2 may be grounded, so that it is
detected whether the Vry is higher than 0 V. In a verify operation for a two
level storage element, the selected word line WL2 is connected to 0.8 V, for
example, so that it is verified whether or not the Vry has reached at least 0.8 V.
The source and p-well are at 0 V. The selected bit lines, assumed to be the even
bit lines (BLe), are pre-charged to a level of, for example, 0.7 V. If the Vg is
higher than the read or verify level on the word line, the potential level of the bit
line (BLe) associated with the storage element of interest maintains the high
level because of the non-conductive storage element. On the other hand, if the
Vru is lower than the read or verify level, the potential level of the concerned
bit line (BLe) decreases to a low level, for example, less than 0.5 V, because the
conductive storage element discharges the bit line. The state of the storage
element can thereby be detected by a voltage comparator sense amplifier that is

connected to the bit line.

[00161] The erase, read and verify operations described above are performed
according to techniques known in the art. Thus, many of the details explained
can be varied by one skilled in the art. Other erase, read and verify techniques

known in the art can also be used.

WO 2008/121553 PCT/US2008/057380

-50-

[00162] FIG. 20 depicts an example set of threshold voltage distributions.
Example Vg distributions for the storage element array are provided for a case
where each storage element stores two bits of data. A first threshold voltage
distribution E is provided for erased storage elements. Three threshold voltage
distributions, A, B and C for programmed storage elements, are also depicted.
In one embodiment, the threshold voltages in the E distribution are negative and
the threshold voltages in the A, B and C distributions are positive. Note that
this simplified example refers to four states. However, additional states, e.g.,

16, 32, 64 or more can be used.

[00163] Each distinct threshold voltage range corresponds to predetermined
values for the set of data bits. The specific relationship between the data
programmed into the storage element and the threshold voltage levels of the
storage element depends upon the data encoding scheme adopted for the storage
elements. For example, U.S. Patent No. 6,222,762 and U.S. Patent Application
Publication No. 2004/0255090, published December 16, 2004, both of which
are incorporated herein by reference in their entirety, describe various data
encoding schemes for multi-state flash storage elements. In one embodiment,
data values are assigned to the threshold voltage ranges using a Gray code
assignment so that if the threshold voltage of a floating gate erroneously shifts
to its neighboring physical state, only one bit will be affected. One example
assigns “11” to threshold voltage range E (state E), “10” to threshold voltage
range A (state A), “00” to threshold voltage range B (state B) and “01” to
threshold voltage range C (state C). However, in other embodiments, Gray
code is not used. Although four states are shown, the present invention can also
be used with other multi-state structures including those that include more or

less than four states.

[00164] Three read reference voltages, Vra, Vrb and Vrc, are also provided
for reading data from storage elements. By testing whether the threshold

voltage of a given storage clement is above or below Vra, Vrb and Vrc, the

WO 2008/121553 PCT/US2008/057380

-53-

system can determine the state, e.g., programming condition, the storage
clement is in. With four states, three read reference voltages or compare points
are used. With sixteen states, fifteen compare points are used, and so on. These
are compare points of the type referred to at steps 1102, 1110, 1132, 1150,
1172, 1192, 1478 and 1486, discussed previously.

[00165] Further, three verify reference voltages, Vva, Vvb and Vvc, are
provided. Additional verify points can be used for storage elements which store
data indicative of additional programming states. When programming storage
elements to state A, the system will test whether those storage elements have a
threshold voltage greater than or equal to Vva. When programming storage
elements to state B, the system will test whether the storage elements have
threshold voltages greater than or equal to Vvb. When programming storage
elements to state C, the system will determine whether storage elements have

their threshold voltage greater than or equal to Vve.

[00166] In one embodiment, known as full sequence programming, storage
elements can be programmed from the erase state E directly to any of the
programmed states A, B or C. For example, a population of storage elements to
be programmed may first be erased so that all storage elements in the
population are in erased state E. A series of programming pulses such as
depicted by the control gate voltage sequence of FIG. 24 will then be used to
program storage elements directly into states A, B or C. While some storage
clements are being programmed from state E to state A, other storage elements
are being programmed from state E to state B and/or from state E to state C.
When programming from state E to state C on WLn, the amount of parasitic
coupling to the adjacent floating gate under WLn-1 is a maximized since the
change in amount of charge on the floating gate under WLn is largest as
compared to the change in voltage when programming from state E to state A or
state E to state B. When programming from state E to state B the amount of

coupling to the adjacent floating gate is reduced but still significant. When

WO 2008/121553 PCT/US2008/057380

-54-

programming from state E to state A the amount of coupling is reduced even
further. Consequently the amount of correction required to subsequently read
each state of WLn-1 will vary depending on the state of the adjacent storage
clement on WLn. The process shown can be extended to additional states as

well.

[00167] FIG. 21 illustrates an example of a two-pass technique of
programming a multi-state storage element that stores data for two different
pages: a lower page and an upper page. Four states are depicted: state E (11),
state A (10), state B (00) and state C (01). The process shown can be extended
to additional states as well. For state E, both pages store a “1.” For state A, the
lower page stores a “0” and the upper page stores a “1.” For state B, both pages
store “0.” For state C, the lower page stores “1” and the upper page stores “0.”
Note that although specific bit patterns have been assigned to each of the states,

different bit patterns may also be assigned.

[00168] In a first programming pass, the storage element’s threshold voltage
level is set according to the bit to be programmed into the lower logical page. If
that bit is a logic “1,” the threshold voltage is not changed since it is in the
appropriate state as a result of having been earlier erased. However, if the bit to
be programmed is a logic “0,” the threshold level of the storage element is
increased to be state A, as shown by arrow 2100. That concludes the first

programming pass.

[00169] In a second programming pass, the storage element’s threshold
voltage level is set according to the bit being programmed into the upper logical
page. If the upper logical page bit is to store a logic “1,” then no programming
occurs since the storage element is in one of the states E or A, depending upon
the programming of the lower page bit, both of which carry an upper page bit of
“1.” If the upper page bit is to be a logic “0,” then the threshold voltage is
shifted. If the first pass resulted in the storage element remaining in the erased

state E, then in the second phase the storage element is programmed so that the

WO 2008/121553 PCT/US2008/057380

-55-

threshold voltage is increased to be within state C, as depicted by arrow 2120.
If the storage element had been programmed into state A as a result of the first
programming pass, then the storage element is further programmed in the
second pass so that the threshold voltage is increased to be within state B, as
depicted by arrow 2110. The result of the second pass is to program the storage
clement into the state designated to store a logic “0” for the upper page without
changing the data for the lower page. In both FIG. 20 and FIG. 21, the amount
of coupling to the floating gate on the adjacent word line depends on the final

state.

[00170] In one embodiment, a system can be set up to perform full sequence
writing if enough data is written to fill up an entire page. If not enough data is
written for a full page, then the programming process can program the lower
page programming with the data received. When subsequent data is received,
the system will then program the upper page. In yet another embodiment, the
system can start writing in the mode that programs the lower page and convert
to full sequence programming mode if enough data is subsequently received to
fill up an entire (or most of a) word line’s storage elements. More details of
such an embodiment are disclosed in U.S. Patent Application Pub. No.
2006/0126390, titled “Pipelined Programming of Non-Volatile Memories Using
Early Data,” published June 15, 2006, incorporated herein by reference in its

entirety.

[00171] FIGs. 22a-c disclose another process for programming non-volatile
memory that reduces the effect of floating gate to floating gate coupling by, for
any particular storage element, writing to that particular storage element with
respect to a particular page subsequent to writing to adjacent storage elements
for previous pages. In one example implementation, the non-volatile storage
elements store two bits of data per storage element, using four data states. The
process shown can be extended to additional states as well. For example,

assume that state E is the erased state and states A, B and C are the programmed

WO 2008/121553 PCT/US2008/057380

-56-

states. State E stores data 11. State A stores data 01. State B stores data 10.
State C stores data 00. This is an example of non-Gray coding because both bits
change between adjacent states A and B. Other encodings of data to physical
data states can also be used. Each storage element stores two pages of data. For
reference purposes, these pages of data will be called upper page and lower
page; however, they can be given other labels. With reference to state A, the
upper page stores bit 0 and the lower page stores bit 1. With reference to state
B, the upper page stores bit 1 and the lower page stores bit 0. With reference to
state C, both pages store bit data 0.

[00172] The programming process is a two-step process. In the first step, the
lower page is programmed. If the lower page is to remain data 1, then the
storage element state remains at state E. If the data is to be programmed to 0,
then the threshold of voltage of the storage element is raised such that the
storage element is programmed to state B'. FIG. 22a therefore shows the
programming of storage elements from state E to state B'. State B' is an interim

state B; therefore, the verify point is depicted as Vvb', which is lower than Vvb.

[00173] In one embodiment, after a storage element is programmed from state
E to state B', its neighbor storage element (WLn+1) in the NAND string will
then be programmed with respect to its lower page. For example, referring to
FIG. 2, after the lower page for storage element 106 is programmed, the lower
page for storage element 104 would be programmed. After programming
storage element 104, the floating gate to floating gate coupling effect will raise
the apparent threshold voltage of storage element 106 if storage element 104
had a threshold voltage raised from state E to state B'. This will have the effect
of widening the threshold voltage distribution for state B' to that depicted as
threshold voltage distribution 2250 of FIG. 22b. This apparent widening of the

threshold voltage distribution will be remedied when programming the upper

page.

WO 2008/121553 PCT/US2008/057380

-57-

[00174] FIG. 22c depicts the process of programming the upper page. If the
storage element is in erased state E and the upper page is to remain at 1, then the
storage element will remain in state E. If the storage element is in state E and
its upper page data is to be programmed to 0, then the threshold voltage of the
storage element will be raised so that the storage element is in state A. If the
storage element was in intermediate threshold voltage distribution 2250 and the
upper page data is to remain at 1, then the storage element will be programmed
to final state B. If the storage element is in intermediate threshold voltage
distribution 2250 and the upper page data is to become data 0, then the
threshold voltage of the storage element will be raised so that the storage
clement is in state C. The process depicted by FIGs. 22a-c reduces the effect of
floating gate to floating gate coupling because only the upper page
programming of neighbor storage elements will have an effect on the apparent
threshold voltage of a given storage element. An example of an alternate state
coding is to move from distribution 2250 to state C when the upper page data is

a 1, and to move to state B when the upper page data is a 0.

[00175] Although FIGs. 22a-c provide an example with respect to four data
states and two pages of data, the concepts taught can be applied to other
implementations with more or fewer than four states and different than two
pages.

[00176] FIG. 23 is a flow chart describing one embodiment of a method for
programming non-volatile memory. In one implementation, storage elements
are erased (in blocks or other units) prior to programming. In step 2300, a “data
load” command is issued by the controller and input received by control
circuitry 1610. In step 2305, address data designating the page address is input
to decoder 1614 from the controller or host. In step 2310, a page of program
data for the addressed page is input to a data buffer for programming. That data
is latched in the appropriate set of latches. In step 2315, a “program” command

is issued by the controller to state machine 1612.

WO 2008/121553 PCT/US2008/057380

-58-

[00177] Triggered by the “program” command, the data latched in step 2310
will be programmed into the selected storage elements controlled by state
machine 1612 using the stepped program pulses of the pulse train 2400 of FIG.
24 applied to the appropriate selected word line. In step 2320, the program
voltage, Vpaw, 18 initialized to the starting pulse (e.g., 12 V or other value) and a
program counter (PC) maintained by state machine 1612 is initialized at zero.
In step 2330, the first Vpgum pulse is applied to the selected word line to begin
programming storage elements associated with the selected word line. If logic
“0” is stored in a particular data latch indicating that the corresponding storage
clement should be programmed, then the corresponding bit line is grounded.
On the other hand, if logic “1” is stored in the particular latch indicating that the
corresponding storage element should remain in its current data state, then the

corresponding bit line is connected to V44 to inhibit programming.

[00178] In step 2335, the states of the selected storage elements are verified.
If it is detected that the target threshold voltage of a selected storage element
has reached the appropriate level, then the data stored in the corresponding data
latch is changed to a logic “1.” If it is detected that the threshold voltage has
not reached the appropriate level, the data stored in the corresponding data latch
is not changed. In this manner, a bit line having a logic “1” stored in its
corresponding data latch does not need to be programmed. When all of the data
latches are storing logic “1,” the state machine (via the wired-OR type
mechanism described above) knows that all selected storage elements have been
programmed. In decision step 2340, a check is made as to whether all of the
data latches are storing logic “1.” If all of the data latches are storing logic “1,”
the programming process is complete and successful because all selected
storage elements were programmed and verified. A status of “PASS” is

reported in step 2345.

[00179] If, in step 2340, it is determined that not all of the data latches are

storing logic “1,” then the programming process continues. In decision step

WO 2008/121553 PCT/US2008/057380

-59-

2350, the program counter PC is checked against a program limit value PCmax.
One example of a program limit value is twenty; however, other numbers can
also be used. If the program counter PC is not less than PCmax, then the
program process has failed and a status of “FAIL” is reported in step 2355. If
the program counter PC is less than PCmax, then Vpgy is increased by the step
size and the program counter PC is incremented in step 2360. The process then

loops back to step 2330 to apply the next Vpgm pulse.

[00180] FIG. 24 depicts an example pulse train 2400 applied to the control
gates of non-volatile storage elements during programming. The pulse train
2400 includes a series of program pulses 2405, 2410, 2415, 2420, 2425, 2430,
2435, 2440, 2445, 2450, ..., that are applied to a word line selected for
programming. In one embodiment, the programming pulses have a voltage,
Veom, which starts at 12 V and increases by increments, e.g., 0.5 V, for each
successive programming pulse until a maximum of 20 V is reached. In between
the program pulses are verify pulses. For example, verify pulse set 2406
includes three verify pulses. In some embodiments, there can be a verify pulse
for each state that data is being programmed into, e.g., state A, B and C. In
other embodiments, there can be more or fewer verify pulses. The verify pulses
in cach set can have amplitudes of Vva, Vvb and Vvc (FIG. 21) or Vvb’ (FIG.

22a), for instance.

[00181] As mentioned, the voltages which are applied to word lines to
implement a boost mode are applied when programming occurs, e.g., prior to
and during a program pulse. In practice, the boost voltages of a boost mode can
be initiated slightly before each program pulse and removed after each program
pulse. On the other hand, during the verify process, for instance, which occurs
between program pulses, the boost voltages are not applied. Instead, read
voltages, which are typically less than the boost voltages, are applied to the
unselected word lines. The read voltages have an amplitude which is sufficient

to maintain the previously programmed storage elements in a NAND string on

WO 2008/121553 PCT/US2008/057380

-60-

when the threshold voltage of a currently-programmed storage element is being

compared to a verify level.

[00182] The foregoing detailed description of the invention has been
presented for purposes of illustration and description. It is not intended to be
exhaustive or to limit the invention to the precise form disclosed. Many
modifications and variations are possible in light of the above teaching. The
described embodiments were chosen in order to best explain the principles of
the invention and its practical application, to thereby enable others skilled in the
art to best utilize the invention in various embodiments and with various
modifications as are suited to the particular use contemplated. It is intended that

the scope of the invention be defined by the claims appended hereto.

WO 2008/121553 PCT/US2008/057380

-61-
CLAIMS
What is claimed is:
1. A method for decoding data in non-volatile storage, comprising:

performing multiple sense operations on at least one non-volatile storage
clement; and

determining a programming state of the at least one non-volatile storage
element using iterative probabilistic decoding, the iterative probabilistic
decoding uses reliability metrics which are based on the multiple sense

operations.

2. The method of claim 1, wherein the reliability metrics comprise

logarithmic likelihood ratios.

3. The method of claim 1, wherein the sense operations comprise

read operations.

4. The method of claim 1, further comprising:
for each of the multiple sense operations, providing bits which represent
a sensed programming state of the at least one non-volatile storage element, the

reliability metrics are provided for each of the bits.

5. The method of claim 4, further comprising:
reading a table which cross references sensed programming states and

bits to reliability metrics.

6. The method of claim 1, wherein the iterative probabilistic

decoding attempts to satisfy parity checks of an error correction code.

WO 2008/121553 PCT/US2008/057380

-62-

7. The method of claim 6, wherein the error correction code
comprises a low density parity check code which is applied over a set of non-
volatile storage elements which includes the at least one non-volatile storage

element.

8. The method of claim 1, further comprising:
determining an initial set of reliability metrics to use in the iterative

probabilistic decoding based on the multiple sense operations.

9. The method of claim 1, wherein the multiple sense operations
include a first sense operation and at least one subsequent sense operation, the
iterative probabilistic decoding iterates initially using first reliability metrics
which are based on the first sense operation but not the at least one subsequent
sense operation, the first reliability metrics are adjusted to obtain adjusted
reliability metrics as the probabilistic decoding iterates, the method further
comprising:

adjusting the adjusted reliability metrics, as the probabilistic decoding

iterates further, based on the at least one subsequent sense operation.

10. The method of claim 9, wherein the adjusted reliability metrics
are adjusted to indicate a higher reliability when a sensed programming state of
the at least one subsequent sense operation is consistent with a sensed

programming state of the first sense operation.

11. The method of claim 9, wherein the adjusted reliability metrics
are adjusted to indicate a lower reliability when a sensed programming state of
the at least one subsequent sense operation is inconsistent with a sensed

programming state of the first sense operation.

WO 2008/121553 PCT/US2008/057380

-63-

12. The method of claim 9, wherein the multiple sense operations
include a first sense operation and at least one subsequent sense operation, and
the iterative probabilistic decoding iterates initially using first reliability metrics
which are based on the first sense operation but not the at least one subsequent
sense operation, the method further comprising:

restarting the iterative decoding process using probability metrics which
are based on the first sense operation and the at least one subsequent sense

operation.

13. The method of claim 1, further comprising:

obtaining voltage threshold profiles of the at least one non-volatile
storage element for each of a plurality of programming states based on a
plurality of sense operations performed on a set of non-volatile storage
elements;

providing a set of reliability metrics based on the voltage threshold
profiles; and

accessing the reliability metrics which are used in the iterative

probabilistic decoding from the set of reliability metrics.

14. The method of claim 13, wherein the providing the set of
reliability metrics comprises:

determining a conditional probability function f1(u|X) based on the
plurality of sense operations, where u indicates a sensed threshold voltage and
X represents a programmed state of the plurality of programming states; and

determining a probability function f2(v) based on the plurality of sense
operations, for each programming state, where v indicates a deviation of a

sensed threshold voltage from a threshold voltage free of read noise.

15. An apparatus for performing the method set forth in any one of

claims 1 through 14.

WO 2008/121553

Fig.

1

o~

I

b\

PCT/US2008/057380
1/28

Fig. 2

Bit line
126
12006\ f Drain
SGD —~——120 gglect
gate
100CG
1
WL3 —100
102CG
~ :|~102
WL2
104CG
~~ :|~104
WL
106CG\ :|
WLO —106
12206\] Source
—~——122 select
SGS gate
_I/~f128

Source

WO 2008/121553

2/28

320
Drain 321
select gates |
~—>

——322

SGD - ———¢|—————=— —
——323

W3 - ———44H—-————- T+
——324

W2 - ———H{—————- +
—~—325

WLl ——— —H — — — — — — &
——326

weo - —-———4H—————- <+

Source

select gates

—327

SGS ————¢|——— — — —

PCT/US2008/057380

360

——362
—_——t e
—~——363
—_—— e —_—
364
—_—— e — —
——365
—_—— e — —
——366
—_—— e — —
——367

Source

WO 2008/121553 PCT/US2008/057380
3/28

Fig. 4

400
Information bits, J
eg., i=[10] l

Encoder, 402
Information bits
and parity bits, Written state X
e.g.,v=[1010Q]

Non-volatile

storage, 404

Read state Y1, Y2 Code words/bits y1, y2

LLR tables,
406

LLRs

Decoder, 408

!

Decoded
information bits
and parity bits,
e.g., v=[1010]

Decoded
Information bits,
e.g., i=[1 0]

WO 2008/121553

4/28
Fig. 5a
— 500
Program random data to M storage
elements
Set k=0
— 504
—»| k=k+1

v — 506

Perform N measurements of V4 for
each storage element written to state k

l — 508
Obtain a noise-free V1 for each

storage element by averaging the N
measurements for each storage
element

l — 510
Construct histogram of distribution of
noise-free Vry across all storage
elements using noise-free V4 from
each storage element

l — 512
Normalize and curve fit histogram to
obtain f1(u|X=state k), the pdf
indicating the probability that a storage
element will have a Vty=u when the
storage element was programmed to
state k

v — 514
Store results

yes ﬁ 516

no

_— 518

End

PCT/US2008/057380

Fig. 5b

— 520
Program random data to M storage
elements
v — 522
Set k=0
— 524
—» k=k+1

Perform N measurements of Vy for
each storage element written to state k

l _—~ 528

Subtract the noise-free V1 from each
measurement to obtain shifted
measurements

l _— 530

Construct histogram of distribution of
shifted measurements across all
storage elements

l _— 532

Normalize and curve fit histogram to
obtain f2(v), the pdf indicating the
probability that a storage element will
have a read V4 which deviates from
the noise-free Vry by v when the
storage element was programmed to
state k

Store results

yes @ 536

no
— 538

End

WO 2008/121553 PCT/US2008/057380

5/28

Fig. 6a

Distribution of Vry readings

State 0 State 1 State 15

600—\ /- 602 604 \
V1
Fig. 6b
Noise-free V1n
State 0 State 1 . State 15
| | Vi
VrHNFo VTHNE1 VTHNF15
Fig. 6¢C
Distribution of noise-free Vtx
State 0 State 1 State 15
650 ~

N /- 652 654 \

V4

WO 2008/121553

f1(u[X=
660

f(ulX=
State 0) State 1)

6/28

Fig. 6d

PCT/US2008/057380

Probability distributions
for Vy for set of storage

elements

f1(u|X=
State 15)

Fig. 7a

Distribution of (measured
V14 - Noise-free V) for
single state for single
storage element

Fig. 7c

Probability distribution
(f2(v)) for State O

Fig. 7d

Probability distribution
(f2(v)) for State 1

\ /‘ 662 664 \/\
V4

Fig. 7b

Distribution of (measured
V14 - Noise-free V) for
single state for set of
storage elements

Fig. 7e

Probability distribution
(f2(v)) for State 15

WO 2008/121553 PCT/US2008/057380
7/28

— 800

Calculate conditional probability
P(Y1,Y2|X) (probability that, given a
programmed state X, first read result is
Y1 and second read result is Y2)

l _— 810

Calculate conditional probability
P(X|Y1,Y2) (probability that, given a
first read result Y1 and a second read
result Y2, the programmed state is X)

l _— 820

Calculate LLR for each bit given all
possible Y values for N reads

l _— 830

Store results

WO 2008/121553 PCT/US2008/057380
8/28

Fig. 9a

Programmed State:

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
position:
Top 1 0011 0011 0 0 1 1 0 0 1
Hgher 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1
Upper 1 1 1 1 0 0 0 0 0 0 O O 1 1 1 1
lower 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 O

A

Bitvalues/

Fig. 9b

First read result, Y1
Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
position:

Top -M1 M1 M1 -M1-M1 M1 M1-M1-M1 M1 M1 -M1 -M1 M1 M1 -M1

Higher -M2 -M1 M1 M2 M2 M1-M1-M2-M2-M1 M1 M2 M2 M1-M1 -M2

Upper -M3 -M3 -M2 -M1 M1 M2 M3 M3 M3 M3 M2 M1 -M1-M2-M3 -M3

Lower -M3 -M3 -M3 -M3 -M3 -M3 -M2 -M1M1 M2 M3 M3 M3 M3 M3 M3
A

Initial LLRs /

after first read

Fig. 9c

Second read result, Y2

B(i;[sition- 0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
qu Adjustments to current LLR
Elgher used by decoder

pper

Lower

WO 2008/121553 PCT/US2008/057380
9/28

Fig. 10a Fig. 10b

Top bit Higher bit
First read result, Y1 First read result, Y1
0 1 15 0 1 15
AN O AN 0
> >
E E
3 3
= Initial LLR = Initial LLR
g values 5 values
o T o
C C
Q Q
(&] (&]
(O]]
»no n o
Fig. 10c Fig. 10d
Upper bit Lower bit
First read result, Y1 First read result, Y1
0 1 15 0 1 15
AN O AN O
> - >
E E
3 3
= Initial LLR = Initial LLR
3 I 3 values
5 values S u
o o
C C
Q Q
(&] (&]
]]
»n o »n o

WO 2008/121553 PCT/US2008/057380
10/28

Fig. 11a

—~1100 —1114
Begin first read operation Assign initial probability metric to each
N bit in code words indicating a reliability
—1102 of the bit based on the first and second
Sense whether V4 of storage element read results

store result

is above or below compare points; l

~—1116
l Perform iterative decoding using initial
~—1104 probability metrics; adjust probability
Determine programming state metrics in subsequent iterations

l ~— 1106

Assign code words based on
programming states

Decoding converges?

v 1108

Begin second read operation

Y ~1110 _—1120
Sense whether Vry of storage Store decoded code words as final
elements is above or below compare read result
points; store result
l _—1112 122
: : Declare error or perform additional
Determine programming states read operation <

WO 2008/121553
11/28

Fig.
—~1130
Begin first read operation

l 1132

Sense whether V1 of storage
elements is above or below compare
points; store result

l — 1134

Determine programming states

l —1136
Assign code words based on

programming states

l 1138

Assign initial probability metric to each
bit in code words indicating a reliability
of the bit based on the first read result

X 1140

Perform iterative decoding of code
words using initial probability metrics;
adjust probability metrics in
subsequent iterations

PCT/US2008/057380

11b

— 1146
Store current valugs of probability
metrics
l —1148

Begin second read operation

l _—1150

Sense whether V1 of storage
elements is above or below compare
points; store result

4 — 1152
Determine programming states

v _—1154

Adjust current values of probability
metrics based on second read

l — 1156
Continue iterative decoding of code

words using adjusted values of
probability metrics; adjust probability
metrics further in subsequent iterations

End or
adjust

, 1158
continue

continue 1142

Decoding status?

Decoding status?

converged
g _—1160

read result

adjust Store decoded code words as final
read result
converged
— 1144 — 1162
Store decoded code words as final Declare error or perform additional

¢

read operation

WO 2008/121553

12/28

PCT/US2008/057380

Fig. 11c

1170

1186

Begin first read operation

Sense whether V1 of storage
elements is above or below compare
points; store result

l 1172

Declare error or perform additional
read operation

_-1188

Begin second read operation q

Assign code words based on
programming state

Assign initial probability metric to each
bit in code words indicating a reliability
of the bit based on the first read result

l _—1180

l _—1178

4 ~—1190
A 4 —1174 Discard current values of probability
Determine programming states metrics
v —1176 l ~—1192

Sense whether V1 of storage
elements is above or below compare
points; store result

v _—1194

Determine programming states

Perform iterative decoding of code
words using initial probability metrics;
adjust probability metrics in

‘—I

subsequent iterations

Assign new initial probability metric to
each bit in code words indicating a
reliability of the bit based on the first

and second read results

continue 1182

Decoding status?

converged

_—1184

restart

Store decoded code words as final

read result

WO 2008/121553 PCT/US2008/057380
13/28

Fig. 12

Sparse
parity
check
matrix H, Variable nodes
1200 vl v2 v3 va4 v5 v6 v7 v8 vo V10y11v12yq3
ONONONONONONONONONONONONO
cn1 1 1 1 1
cn2 1] 1 1 1
cn3 O 1 111 111
cnd [1 1 1
Check cn5 0 1 1 1
nodes cng |1 1K 1
cn7 1 1 1 1
cn8 [1 1 111
cn9 |1 1 1 1
cn10 O 1111111
Fig. 13
Sparse
bipartite
graph,

1300

WO 2008/121553

SGD

WL (unselected)

PCT/US2008/057380
14/28

Fig. 14a

Pre-conditioning :

waveform, 140

WL (selected)

SGS (option 1)

SGS (option 2)

Selected BL (option 1)

Selected BL (option 2)

Source

1400
) Vsep i ¥
7 I A
: :VREAD 1402
R N
Read pulse, 1408 '

N N . .

/ \ ' ~ Veer ' 1404
: Vses - 1410
2

] \/:SGS)
' ' 1412
T
:f VBL\ L 1414
: R1416:
I Vel ' 1418
T a
1419
LV ¥
. SOURCE
0t t2 t3 t4

WO 2008/121553 PCT/US2008/057380
15/28

Vseo 1420
—
SGD
\/READ
¥ 1422
WL (unselected) M
1426 Veera, 1428 Vcer-2, 1430 VceRr-3,

1427 Yy 1429 3y 1431}

WL (selected) \ x — 1424
Pre-conditioning

waveform before Vv
CGR-3,
each read pulse Veer-1, Veer2,
g 1427 1429 143{

1426~y x 1432
WL (Selected) m
Pre-conditioning

waveform before
first read pulse

Vses 1435
[\ [\ a\a
SGS (option 1)
Vsas
1436
=
SGS (option 2)
Vel 1437
—
Selected BL ~ ~ ~
(option 1)
Ve 1438
—
Selected BL_/—____/—_/_L
(option 2)
1439
V. y
SOURCE

Source

WO 2008/121553
16/28

Fig. 14c

Baseline pre-
conditioning waveform, Read pulse, 1408

PCT/US2008/057380

1404

1406 —/—\—/\, Vear

Pre-conditioning
waveform of longer "y
duration, 1441 Read pulse, 1408

1440

4/—_/\‘ Veer

Pre-conditioning
waveform which is closer
to read pulse, 1443 Yy Read\pulse, 1408

Veer

L

1442

Pre-conditioning
waveform of lower Read pulse, 1408
amplitude, 1445 X N

1444

Veer
Pre-conditioning Read pulse, 1408
waveform of different "
shape, 1447 \ Veer

1446

A~

Lk

WO 2008/121553 PCT/US2008/057380
17/28

Fig. 14d

1450
- - : Vsep ¥
s /T 7 ' N—
: / EVREAD) f—1402
WL (unselected) : : : : CN————
Read pulse, 1408
j \ Veer 1452
WL (selected) S [: .
.. I . Vses - 1410
SGS (option 1) —_— m
: - Vses .
\ 1412
. . . : r—
SGS (option 2) : : f) ;
Pre-conditioning__~ : : 1415 |
waveform, 145% VBL\ L S ' f_1454
. . \
Selected BL (option 1) : : ' Nl ;
L : 1416 -
Pre-conditioning __ : : :
waveform, 146% VL . f—1458
Selected BL (option 2) : " : ;
1446
- Vsource l
Source

t0 t1 t2 t3 t4

WO 2008/121553 PCT/US2008/057380
18/28

Fig. 14e

1400
Vsep

SGD 7
'VREAD

v
N—
B e U

WL (unselected) . - ! . .
N

1402

Read pulse, 1408

. Veor 1452
WL (selected) - - / .)
)) . . Vsas .

1462

VA 0\ _*

SGS (option 1) : : : ! :
S I C Vees

: _ : 1464

o SN __

SGS (option 2)))] .)

L Vo 1415 1414
Selected BL (option 1) — : K1‘41—6 I

VL : 1418

Selected BL (option 2)

1466

. Vsource

Source _U
Pre-conditioning 0 t1 t2 t3 t4
waveform, 1468

WO 2008/121553

PCT/US2008/057380
19/28

Fig. 14f

) 1400
. Vsep

SGD

7
1402

. VREAD

WL (unselected)

Read pulse, 1408

. Veor 1452

—
N

:/ I \ 4
r

WL (selected)

I/

Vsas

SGS (option 1)

SGS (option 2)

Selected BL (option 1)

Selected BL (option 2)

Source
Pre-conditioning :
~

Body Bias

t0

aveform, 1472 . ’
wav _f_\ - . Ve

: : 1410
A"
: "Vsas
. 1412
s NG
: :VBL/—J415 1414
7 ¥
A . \Rs—
ﬁ ' 1416
' Ve : 1418
/ a
1419
Y, v
- VSOURCE
1470
—

t1 t2 t3 t4

WO 2008/121553

20/28

Fig. 14g
— 1474
Begin read operation

l,.1475
k=0

¢ — 1476
Apply pre-conditioning
waveform

¢ 1477
Apply read pulse

l — 1478
Sense whether V14 is above or
below compare point

_—1480 1479

ext compare

K=k point?

yes

1481

Store results

Fig. 14i
— 1490
Program random data to

storage elements

v — 1491
k=0
v —1492
Perform measurements of V1n
for each storage element
written to State k, sometimes

and sometimes without, and/or
with different waveform
characteristics

v 1493
Obtain reliability metrics for

PCT/US2008/057380

Fig. 14h

1482

Begin read operation

l,—1483
k=0

v 1484

Apply pre-conditioning
waveform

I _-1485

Apply read pulse

l _—1486

Sense whether V14 is above or
below compare point

k=k+1

~— 1488

1489

Store results

with pre-conditioning waveform [«

State k based on
measurements

— 1494
— Store results
—1496 1495
k=k+1
yes
no _— 1497
| I

End

WO 2008/121553 PCT/US2008/057380
21/28

Fig. 15

P-well, 1505\ Memory ;r_ray, 1500
______________________ —
s gt I

|
SGD |l |
WL3~ | :
Word |
1
Lines 1 | 1550 1550 550 al._ Ve
7 NAND
WLO Z | - string
SGS |
{528 | !
| 1\
— — —¢ |
l | 1504
| I| Source
— | Line
P 1550 1550 155 :
! |
' |
| |
| !
| |
| |
| |
| |
: — —e —¢ |
|
| |
] |
=i '
|| 185 155 155 :
= |
| |
| !
\ e |__________ ||
T

WO 2008/121553 PCT/US2008/057380
22/28

Memory Memory
device, die,

1696 1698
e T

CONTROL
CIRCUITRY
1610

Power
Control
1616

MEMORY ARRAY
1900

Boost
Control
1615

ROW DECODER 1630

Address
Decoder
1614 ADDR T READ/WRITE CIRCUITS 1665

Sense Sense [~ 1600 | Sense

State ————> BI?ck Blgck --------- Blng

Machine
1612

|_ADDR | COLUMN DECODER 1660

Data

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1| |on-chip
|
|
|
|
|
|
|
|
|
|
|
: /0
|

1650

WO 2008/121553

PCT/US2008/057380

23/28

Fig. 17

CONTROL
CIRCUITRY
1610

|

Host/
Controller

Data
¢ /0
— COLUMN DECODER 1660B
«—> READ/WRITE CIRCUITS 1665B
< o)
O O
™) ™)
[(o] [(o]
i i
Q MEMORY ARRAY Q
<> O
S 1500 S
(11 (11
@) @)
= =
@) @)
04 04
> READ/WRITE CIRCUITS 1665A
—> COLUMN DECODER 1660A

WO 2008/121553 PCT/US2008/057380
24/28

Flg . 1 8 Sense block,

bit line 1600

1680
I_ “core 0"~ :
portion >
: (sense 1682 1/670 |
| module) Vi y :
I .
Bitline Latch |
I Hine Laic Sense Circuitry |
: A |
| I
______________________ I
1672
o MDD S S I S ——n—nm——m——o—m—oe—ms—oo——n—o—m—o———— o— I
4
State Processor
Machine / >
1612 1693 J

1692 I

/ Data Latches

1694

/ /O Interface

WO 2008/121553 PCT/US2008/057380
25/28

F|g 19 SGD IIBJLeO IIBJLOO ITje1 Bljo1 BljeZ ITJLOZ BLIj4255
e g
II_I II_I IL| IL| II_I IL| IL|
wo iy Al -
=R =R
wogp gt 3 P P8
SGS ::I ::I ::I ::I ::I Il:I :]
e S
s | o o0
bIo;cki = \A architecture,1910\

WL_d1

-
i
E

WL63

WL2

WLA1

WLO

WL_d0

SGS

I I U I I O I I I
I I I I O I I I I I =
MU U U iU e. T T2
MU U U e U2

LI
I_I
E
=
=
-
LI

\SOU rce

WO 2008/121553 PCT/US2008/057380
26/28

of
storage
elements
A
AR ARARA
: I Vi
Vva Vvb Vve
Vra Vrb Vrc
Fig. 21
of
storage 2120
elements _ 2nd pass
A T T - - lower page
_- - 21 00 =~ g
TR _ - = 2110 °\ Oupper page
¢ st pass </ 2nd pass A

Okl Ok ©
: [\ mm VT’

Vva Vvb Vve

Vra Vrb Vre

WO 2008/121553 PCT/US2008/057380
27/28

o Fig. 22a
[[+
Vry
»% Fig. 22b
A (N
Vi
VWi
Fig. 22¢
/\'225{— m
NI
E | ::/ | \\ C
' V;/a Vi/b Vvc
\;ra Vr=b V:rc
Upper 1 0 1

o O

Lower 1 1

WO 2008/121553 PCT/US2008/057380
28/28

Fig. 23

2300
= v 2330
set data load —»| apply program pulse
command
y 2335
2305 verify o
/
set address data
2345
| o
input program data
l 2315 2355
/
set program status = fail
command
l 2320
/
Vpgm = init value
PC=0 step Vpgm and /2360
| increment PC
Fig. 24
2445 2490
2440 J
2425 2430 273y | [
2420 O I
2415 .
2410 oo
2405 J J
2406
\ v J

Pulse train, 2400

INTERNATIONAL SEARCH REPORT

International application No

/ PCT/US2008/057380

A. CLASSIFIGATION O SUBJECT MATTER
INV. G11C16/34 GllC16/26

GO6F11/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

G11C GO6F

Minimum documentation searched (classification system followed by classification symbols)

Docurnentation searched other than minimurn documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data, INSPEC

Electronic data base consulted during the international search (hame of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X WO 2004/112040VA (MILSYS LTD [IL]; BAN - 1,3-6,
AMIR [IL]; LITSYN SIMON [IL]; ALROD IDAN 8-12,1b6
[IL]) 23 December 2004 (2004-12-23)

Y page 5, line 15 - page 6, line 33 2,7,13,

14

page 8, 1ine 21 - page 10, Tine 23

Y Us 2003/112901 A1 (GUPTA ALOK KUMAR [ush 2,13,14
19 June 2003 (2003-06-19)
paragraph [0065] - paragraph [0068]

A US 2004/005865 Al (EROZ MUSTAFA [US] ET 1-6,8-15"

‘ AL) 8 January 2004 (2004-01-08)

Y paragraph [0038] - paragraph [0046]; ; 7
figures 4-6

-/—

Further documents are listed in the continuation of Box C.

See patgnt family annex.

* Special categories of cited documents :

"A" document defining the general state of the ait which is not
considered o be of particular relevance

"E" earlier document but published on or after the International
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication daie of another
citation or other special reason (as specffied)

0 document referring to an oral disclosure, use, exhibition or
other means

*P" document published prior to the international filing date but
later than the priority date claimed

'T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory undetlying the

invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannol be considered 1o
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
inthe art.

document member of the same patent family

&

Date of the aciual completion of the international search

2 July 2008

Date of malling of the intemational search report

18/07/2008

Name and nmalling address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,
Fax: (+31-70) 340-3016

Authorized officer

Balaguer ldpez, J

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2008/057380

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Gitation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No,

A

DATABASE INSPEC [Online]

THE INSTITUTION OF ELECTRICAL ENGINEERS,
STEVENAGE, GB; Inspec No. Circuits and
Systems, ISCAS 2006, Proceedings

24 May 2006 (2006- 05 -24), ,

FEI SUN ET AL: "Multilevel flash memory
on-chip error correction based on trellis
coded modulation”

XP002486337

Database accession no. 9047661

the whole document

& FEI SUN ET AL.: "multilevel flash
memory on-chip error correction based on
trellis coded modulation” 2006 IEEE
INTERNATIONAL SYMPOSIUM ON CIRCUITS AND
SYSTEMS 21-24 MAY 2006 ISLAND OF KOS,

GREECE, 24 May 2006 (2006-05-24), page 4

pp.,

2006 IEEE International Symposium on
Circuits and Systems (IEEE Cat. No.
06CH37717C) . IEEE P1scataway, NJ, USA
ISBN: 0-7803-9389-9

US 6 279 133 B1 (VAFAI MANOUCHEHR [US] ET

AL) 21 August 2001 (2001-08-21)

column 6, line 26 - column 7, line 28
column 9 Tine 20 - column 11 line 20;
figures 3 4

EP 1 137 001 A (SONY CORP [JP]) -

26 September 2001 (2001-09-26)

the whole document

WO 2008/042593 A (SANDISK CORP [US];
BRANDMAN YIGAL [US]; CONLEY KEVIN M [US])
10 April 2008 (2008-04-10)

the whole document

1-15

'1-15

1-15

1-15

Fom PCT/ISA/210 (sontinuation of second shest) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information 6n patent family members

International application No

PCT/US2008/057380

Patent document

Publication

Patent family

Publication

cited in search report date member(s) date

WO 2004112040 .- A 23-12-2004 JP 2006527901 T 07-12-2006
KR 20060025172 A 20-03-2006

US 2003112901 Al 19-06-2003 NONE |

US 2004005865 Al 08-01-2004 US 2005166133 Al 28-07-2005

\ US 6279133 B1 21-08-2001 NONE

EP 1137001 A 26-09-2001 CN - 1317793 A 17-10-2001
JP 2001266498 A 28-09-2001
KR 20010090509 A 18-10-2001
US 2001048564 Al 06-12-2001

WO 2008042593 A - 10-04-2008 NONE

Form PCT/ISA/210 (patent family annex) (April 2008)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - claims
	Page 63 - claims
	Page 64 - claims
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - wo-search-report
	Page 94 - wo-search-report
	Page 95 - wo-search-report

