
US 2001.0002463A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2001/0002463 A1

Klein et al. (43) Pub. Date: May 31, 2001

(54) END-TO-END RESPONSE TIME (22) Filed: Jan. 17, 2001
MEASUREMENT FOR COMPUTER
PROGRAMS USING STARTING AND Related U.S. Application Data
ENDING QUEUES

(63) Continuation of application No. 09/428,271, filed on
(76) Inventors: Paul F. Klein, Thousand Oaks, CA Oct. 27, 1999.

(US); Raymond P. Ammerman III,
Raleigh, NC (US) Publication Classification

Correspondence Address: (51) Int. C.7 - GO4F 1/00

Attention: George H. Gates (52) U.S. Cl. .. 702/176; 702/177
Gates & Cooper LLP
Howard Hughes Center, Suite 1050 (57) ABSTRACT
6701 Center Drive West An end-to-end response time measurement method monitors
Los Angeles, CA 90045 (US) the performance of a computer program by measuring the

time between related messages that traverse inbound and
(21) Appl. No.: 09/761,904 outbound message queues.

WAIT FORA
MESSAGE TO
TRAVERSEA

MESSAGE QUEUE

12O

NBOUND
MESSAGE
QUEUE2

SAMPLE CLOCK
FOR START TIME

OUTBOUND
MESSAGE
QUEUE?

CALCULATE
RESPONSE

TIME

SAMPLE CLOCK
FOR END TIME

Patent Application Publication May 31, 2001 Sheet 1 of 3 US 2001/0002463 A1

s

US 2001/0002463 A1 Sheet 2 of 3 May 31, 2001 Patent Application Publication

ETTET ?O }}O_LINOWN

Patent Application Publication May 31, 2001 Sheet 3 of 3 US 2001/0002463 A1

WAIT FORA
MESSAGE TO
TRAVERSEA

MESSAGE QUEUE

120

NBOUND
MESSAGE
QUEUE2

SAMPLE CLOCK
FOR START TIME

OUTEOUND
MESSAGE
QUEUE?

CALCULATE
RESPONSE

TIME

SAMPLE CLOCK
FORENDTIME

FIG. 3

US 2001/0002463 A1

END-TO-END RESPONSE TIME MEASUREMENT
FOR COMPUTER PROGRAMS USING STARTING

AND ENDING QUEUES

BACKGROUND OF THE INVENTION

0001) 1. Field of the Invention
0002 This invention relates generally to computer hard
ware and Software, and more particularly to an end-to-end
response time measurement for computer programs.
0003 2. Description of Related Art
0004. In today's environment, it is common for desktop
computers to run many different local and/or network appli
cations simultaneously. Within Such computing environ
ments, it is not unusual for one application to execute
Significantly slower than other applications. Further, it is not
uncommon for the operation of one application to Seriously
impact the performance of other applications on the com
puter. As a result, the user may have to wait an inordinate
amount of time for applications to respond. Obviously, the
wait time experienced by a user is directly related to that
perSon's productivity and business opportunity.

0005. It can be difficult for the user to determine the
performance of individual applications, based only on their
observable behavior. For example, a user may be unable to
reliably detect whether abnormal performance for a specific
application is the result of operations performed by that
application, or whether it is the result of the impact from
another application, or whether it is the result of the perfor
mance of a remote System. Further, Since each application
may be able to perform many different kinds of processing,
the user may have no idea that certain requests have Sig
nificantly worse performance. Thus, there is a need in the art
for techniques that allow the performance of various appli
cations to be accurately and automatically measured.

SUMMARY OF THE INVENTION

0006 To overcome the limitations in the prior art
described above, and to overcome other limitations that will
become apparent upon reading and understanding the
present Specification, the present invention discloses a
method, apparatus, and article of manufacture for measuring
end-to-end response time for computer programs.
0007. The method comprises the steps of detecting start
and end times of a transaction, Storing the Start and end times
in a memory of a computer, and Subtracting the Start time
from the end time to calculate an end-to-end response time.
0008 Various advantages and features of novelty which
characterize the invention are pointed out with particularity
in the claims annexed hereto and form a part hereof.
However, for a better understanding of the invention, its
advantages, and the objects obtained by its use, reference
should be made to the drawings which form a further part
hereof, and to accompanying descriptive matter, in which
there is illustrated and described Specific examples in accor
dance with the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

0009 Referring now to the drawings in which like num
berS represent Similar features throughout:

May 31, 2001

0010 FIG. 1 illustrates an exemplary hardware environ
ment that could be used to implement the preferred embodi
ment of the present invention;
0011 FIG. 2 is a block diagram that illustrates the
various Software components of the present invention; and
0012 FIG. 3 is a flow chart illustrating the steps used in
the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

0013 In the following description of the preferred
embodiment, reference is made to the accompanying draw
ings which form a part hereof, and in which is shown by way
of illustration the specific embodiment in which the inven
tion may be practiced. It is to be understood that other
embodiments may be utilized and structural and functional
changes may be made without departing from the Scope of
the present invention.

Hardware Environment

0014 FIG. 1 illustrates an exemplary hardware environ
ment that could be used to implement the preferred embodi
ment of the present invention. The exemplary hardware
environment may include, inter alia, a client computer 100
and/or a server computer 102 connected to the client 100.
Both the client 100 and server 102 generally include, inter
alia, a processor, random access memory (RAM), read only
memory (ROM), a monitor 104, data storage devices, data
communications devices, etc. The client 100 and server 102
may also include data input devices Such as a mouse
pointing device 106 and a keyboard 108. Of course, those
skilled in the art will recognize that any combination of the
above components, or any number of different components,
peripherals, and other devices, may be used with the client
and/or Server.

0.015 The client 100 and the server 102 each operate
under the control of their respective operating Systems, Such
as OS/2TM, Windows NT, UNIX, MVS, etc. The respective
operating systems of the client 100 and server will also
control the operation of any computer programs executed by
the client 100 and the server 102.

0016. The present invention comprises a monitoring
function that is preferably implemented by one or more
computer programs executed by the client 100. Generally,
these computer programs are tangibly embodied in or read
able from a computer-readable medium or carrier, e.g., one
or more of the fixed and/or removable data Storage data
devices and/or data communications devices attached to the
client or the Server. These computer programs comprise
instructions which, when read and executed by client 100,
cause the client 100 to perform the steps necessary to
execute the Steps or elements of the present invention.
0017 Those skilled in the art will recognize that the
exemplary environment illustrated in FIG. 1 is not intended
to limit the present invention. Indeed, those skilled in the art
will recognize that other alternative hardware environments
may be used without departing from the Scope of the present
invention.

Monitoring Functions
0018. The computer program that implements the moni
toring functions of the present invention (referred to as the

US 2001/0002463 A1

“monitor program”) uses Standard “hooks' in the operating
System to monitor the message queues used to communicate
commands and/or data Sent by other computer programs
(referred to as “applications” herein) to and from other
entities, Such as the graphical user interface (GUI) compo
nent provided by the operating System, hardware devices, or
other computers. Keeping track of the messages traversing
these message queues, by application, provides the basis for
measuring an application's end-to-end response time.
0019. The message queues are monitored for certain
message types to initiate, update, and/or end a measured
end-to-end response time between a user interaction with the
client 100, an operation performed by an application, and the
resulting display of data on the monitor 104 of the client 100.
Such message types may include messages that indicate
mouse movements, pressing mouse 106 buttons, keyboard
108 operations, window creations, window “painting”, or
other device functions.

0020 For example, message types relating to mouse 106
clicks, depressing the ENTER key, window creation in the
GUI, and other window or device events in the GUI may be
used to initiate or start the monitoring function. Similarly,
message types relating to mouse 106 clicks, window “paint
ing” or updates in the GUI, window destruction in the GUI,
and other window events in the GUI may be used to update
or end the monitoring function. The resulting measured
end-to-end response time between these events comprises
performance data that may be dynamically displayed for the
user (e.g., as timing measurements are initiated or updated)
and/or stored for later reporting and analysis.
0021. In the preferred embodiment of the present inven
tion, the operating System provides the ability for the moni
tor program to examine the content of messages on a given
message queue. This interface is provided through an Appli
cation Program Interface (API) provided by the operating
System. To compute an application's end-to-end response
time, the monitor program issues the appropriate API call
and registers itself as a listener of all messages in a queue.
Thereafter, any messages that traverse the queue are also
presented to the monitor program.

0022. When the monitor program receives notification of
an inbound message to the application (usually generated as
a result of a mouse 106, keyboard 108, window event, or
other device event), the monitor program samples the value
of a clock to mark the beginning of a transaction. Thereafter,
the application also receives the inbound message and
begins its processing. When processing by the application is
complete, an outbound message is generated from the appli
cation. When the monitor program receives notification of
the outbound message from the application, the monitor
program again Samples the value of a clock to mark the
ending of the transaction. The difference between the
Sampled time values associated with the inbound and out
bound messages is the end-to-end response time for the
application.

0023. However, an application can and frequently does
generate multiple outbound messages as part of its proceSS
ing. Moreover, between these outbound messages, the appli
cation can continue to perform its processing associated with
a transaction. Because of this, it becomes hard to determine
the true end of the application's processing, which is needed
to accurately measure the end-to-end response time. So, in

May 31, 2001

order to be Sure the monitor program has captured the entire
processing time of the transaction, the end-to-end response
time is always reported as the difference in time between
receipt of the inbound message and the last outbound
message generated by the application. If multiple outbound
messages are generated before another inbound message is
received, then the end-to-end response time is updated
multiple times to reflect the difference in time between the
inbound message and the last-received outbound message.

Software Components

0024 FIG. 2 is a block diagram that illustrates the
various Software components of the present invention. The
client 100 includes a monitor program 110, application 112,
inbound message queue 114, and outbound message queue
116. Although only one application 112 is shown in FIG. 2,
many applications 112 could be running simultaneously and
the monitor program 110 would collect data for each inde
pendently. Further, there may be multiple queues 114 and
116 that can be monitored.

0025 The monitor program 110 registers its interest in
Seeing messages on the inbound message queue 114 and
outbound message queue 116 by issuing an API call to the
operating system (called WinSetHook in OS/2 and similarly
named in Windows NT). The API call provides for the
creation of “clones' of messages and the transmission of
these clones to computer programs registered with the
operating System. Once this API call is made, the monitor
program 110 is ready to receive all messages Sent to and
from the application 112.
0026. User input via the mouse 106 or keyboard 108
initiates a request (also called a transaction) for information
that causes the operating System to create an inbound
message that is Sent to the inbound message queue 114.
Similarly, the operating System itself can also generate
inbound messages in response to “window' or other device
events, that are also Sent to the inbound message queue 114.
Once a message arrives at inbound message queue 114, it is
“cloned” and sent to the monitor program 110 before being
Sent to the application 112.
0027. To start the monitoring function, the monitor pro
gram 110 takes note of the inbound message, Such as a
mouse 106 or keyboard 108 or “window event’ message, by
Sampling the current time value of a clock function provided
by the client 100 and labeling this as the “start time” for the
transaction. The application 112 then processes the inbound
message, which may, for example, result in the generation of
a request to the Server 102, which is also transmitted as a
message through the outbound message queue 116. The
Server 102 processes the request and then returns the results
back to the application 112 as a message via the inbound
message queue 114. When the processing by the application
112 is completed, it generates an outbound message, Such as
a “window paint’ message, which is Sent to the outbound
message queue 116.
0028. The monitor program 110 receives a “clone” of
each outbound message, because it is registered to See
messages on Outbound message queue 116. The monitor
program 110 takes note of the outbound “window paint”
message by again Sampling the current time value of the
clock function provided by the client 100 and labeling this
as the “end time” for the transaction. The time difference

US 2001/0002463 A1

between the “end time” and the “start time” comprises the
measured end-to-end response time for the entire transaction
(which may include the interaction between the client 100
and server 102 as illustrated above).
0029 Depending on how the application 112 is con
Structed, it may still continue to process data after the first
outbound “window paint’ message is Sent to outbound
message queue 116. The monitor program 110 continues to
monitor for Outbound “window paint’ messages from appli
cation 112 Sent to the outbound message queue 116 and
updates the end-to-end response time accordingly. More
Specifically, upon notification of Subsequent outbound “win
dow paint’ messages, before receipt of another inbound
mouse 106 or keyboard 108 or window event message, the
monitor program 110 updates the response time using the
sampled time associated with the last outbound “window
paint’ message as the “end time' of the transaction.
0.030. In addition to monitoring end-to-end response time
for a specific application 112, the monitor program 110 can
also monitor end-to-end response times for client-Server
requests (as described above) or for multiple windows
asSociated with a Specific application. For example, if the
application 112 includes multiple windows, the monitor
program 110 can identify the name (i.e., title) given each
window and their associated inbound and outbound mouse
or keyboard or window event messages.

Detailed Control Flow and Message Recording
Method

0031. In the preferred embodiment, the response time
information obtained by the present invention is Stored in a
double linked, circular list 118, although other data struc
tures may be used as well. When all the list 118 entries are
used up, the list 118 will "wrap' or start to re-use oldest list
118 entries first. In addition, the list 118 may be written to
a data Storage device, So no loSS of information occurs.
0.032 The analysis and reporting of response time mea
Surements goes through three basic conversation points:
initiate, update and terminate. These conversation points use
different messages and message queues to obtain the infor
mation. A discussion of these conversation points follows.
0.033 For example, a response time measurement of an
application that interacts with the GUI component of the
operating System may be initiated by monitoring the
inbound message queue for one of the following message
types:

0034) Window Create

0035) Mouse Button 1 Down
0036) Enter Key

0037 Button Activation
0.038. As a message is examined, its process id (pid),
threadid (tid), message queue handle (msgq) and Session id
(sessid) are determined through standard API functions
provided by the operating System. If the message is one of
the above, the list 118 is searched backwards to find an
active list 118 entry with the corresponding pid, tid and
msgq. An active entry is defined as a list 118 entry that has
been initiated but not yet marked closed.

May 31, 2001

0039. If an active entry is found with a matching pid, tid
and msgd, and the message is a “window create” message,
the window handle is saved if the sessid indicates that it is
a title-bar window. This will be used later to determine the
title of the window or the transaction name. Next, the
message is discarded and a return to the operating System is
executed. If an active entry is found with a matching pid, tid
and msgd, and the message is not a “window create’
message, the list 118 entry is marked closed and no new
timings are reported for that list 118 entry. At this point, a
new list 118 entry is initiated. The executable file name of
the application 112 and the time are determined and Stored
away in the list 118 entry along with the pid, tid and msgc.
0040 Similarly, a response time measurement of an
application that interacts with the GUI component of the
operating System may be updated by monitoring the out
bound message queue 116 for message types:

0041) Window Paint
0042. If the message being examined on the outbound
message queue is a “window paint’ message, the list 118 is
Searched for an active entry with a matching pid, tid and
msgq. When found, the current time value is obtained and
Subtracted from the time value the transaction started. Next,
the text is queried from the title bar window handle to get the
name of the transaction. Thereafter, the transaction's execut
able file name, pid, tid, Start time, current elapsed time, and
transaction name may be displayed by the monitor program
110.

0043. An application 112 may receive any number of
“window paint’ messages during the course of a transaction.
The present invention provides a dynamic update mecha
nism that automatically reports the information each time a
“window paint’ message is encountered for a given active
application 112. Also note that the present invention will
report on any number of active applications 112 that may or
may not be executing Simultaneously.

0044 Finally, a response time measurement of an appli
cation that interacts with the GUI component of the oper
ating System may be terminated or closed by monitoring the
inbound message queue 114 for one of the following mes
Sage types:

0045 Mouse Button 1 Down

0046) Mouse Button 2 Down
0047. When either of the above messages are encoun
tered on the inbound message queue 114, the list 118 is
Searched for a matching pid, tid and msgo. If found, the entry
is marked closed and no new timings will be reported for
that list 118 entry. This mechanism must be used to close the
transaction Since in a message-driven GUI environment,
there is no message that indicates that the transaction has
finished updating or painting the window displayed by the
GUI component of the operating System.

0048. When the list 118 entry is marked closed, the last
reported timing from an update or “window paint’ message
is not altered, So the true transaction response time is not
affected by this user interaction. If the user triggered a
Mouse Button 1 Down, then in Some cases this will be seen
on the outbound message queue 116 and a new response
time measurement will be initiated for the window or

US 2001/0002463 A1

application 112 in focus. If the user triggered a Mouse
Button 2 Down, then no new response time measurement
will be initiated.

0049. In addition to the scenario described above, client/
Server applications, Such as the Netscape web browser, can
be monitored to provide a means of “bracketing transac
tions in a more automated fashion, particularly when the
application's response time measurement is Started and
Stopped.
0050. In this situation, the enabling and disabling of the
Stop button window displayed by the Netscape web browser
may serve as the transaction initiation and termination
identifiers, respectively. This allows the user to discern the
difference between the retrieval of information from the
Internet (this is the true response time) and the display of the
information, once downloaded from the Internet, on the
monitor 104, which may continue indefinitely for some web
Sites.

0051. The response time measurement is initiated by
monitoring the outbound message queue 116 for the Stop
button window id and the Window Enable message. When
the above situation is encountered, a new list 118 entry is
initiated as described above. In addition, message traffic
between the Netscape web browser and the server 102 may
also be monitored.

0.052 The updating of the transaction response time for
the Netscape web browser is the same as the generic update
method described above. The response time measurement is
terminated by monitoring the outbound message queue 116
for the Stop button window id and the Window Disable
message. When the above Situation is encountered, the list
118 entries are Searched for an active matching pid, tid and
msgq. When found, a final time value is recorded and the
response time is updated with this last time delta, thereby
providing the true response time of the targeted web site.
The list 118 entry is then marked closed and Netscape
message traffic recording is disabled.

Logic

0053 FIG. 3 is a flow chart illustrating the logic of the
present invention. Block 120 represents the monitor pro
gram 110 waiting for a message to traverse either the
inbound or outbound message queue. Block 122 is a deci
sion block that represents the monitor program 110 deter
mining whether the message traversed the inbound message
queue. If So, control transferS to Block 124 which represents
the monitor program 110 Sampling a time value from a clock
for the start time. Thereafter, control transfers back to Block
120. Block 126 is a decision block that represents the
monitor program 110 determining whether the message is
traversing the outbound message queue. If So, control trans
fers to Block 128 which represents the monitor program
Sampling a time value from the clock for the in time and
Block 130 which represents the monitor program 110 cal
culating the response time. Thereafter, control transferS back
to Block 120.

Conclusion

0.054 The foregoing description of the preferred embodi
ment of the invention has been presented for the purposes of
illustration and description. It is not intended to be exhaus

May 31, 2001

tive or to limit the invention to the precise form disclosed.
Many modifications and variations are possible in light of
the above teaching. It is intended that the Scope of the
invention be limited not by this detailed description, but
rather by the claims appended hereto.

What is claimed is:
1. A method for measuring end-to-end response time for

a transaction performed by a computer, comprising the Steps
of:

monitoring a first queue and a Second queue in a com
puter,

assigning a start time when a first message is received at
the first queue;

assigning a stop time when a Second message, Sent in
response to the first message, is received at the Second
queue, and

Subtracting the Start time from the Stop time to calculate
an end-to-end response time.

2. The method of claim 1, further comprising the Steps of:
updating the Stop time when a third message, Sent in

response to the first message, is received at the Second
queue, and

Subtracting the Start time from the Stop time to calculate
the end-to-end response time.

3. The method of claim 1, wherein the end-to-end
response time is calculated for a plurality of computer
programs executed by the computer.

4. The method of claim 1, wherein the end-to-end
response time is calculated for a plurality of windows
displayed by a computer program executed by the computer.

5. The method of claim 1, wherein the Second message is
Selected from a group comprising a window create message,
a mouse button 1 down message, an enter key message, and
a button activation message.

6. The method of claim 1, wherein the first message is a
window paint message.

7. A computerized apparatus for measuring end-to-end
response time for a transaction performed by a computer,
comprising:

a computer,

a first queue and a Second queue in the computer, the first
queue and the Second queue containing messages;

a start time, assigned to a first message when the first
message is received at the first queue,

a Stop time, assigned to a Second message when the
Second message, Sent in response to the first message,
is received at the Second queue, and

an end-to-end response time, calculated by Subtracting the
Start time from the Stop time.

8. The computerized apparatus of claim 7, further com
prising:

a third message, Sent in response to the first message,
received at the Second queue and receiving a Second
Stop time, and

the end-to-end response time being calculated by Sub
tracting the Second Stop time from the Start time.

US 2001/0002463 A1

9. The computerized apparatus of claim 7, wherein the
end-to-end response time is calculated for a plurality of
computer programs executed by the computer.

10. The computerized apparatus of claim 7, wherein the
end-to-end response time is calculated for a plurality of
windows displayed by a computer program executed by the
computer.

11. The computerized apparatus of claim 7, wherein the
Second message is Selected from a group comprising a
window create message, a mouse button 1 down message, an
enter key message, and a button activation message.

12. The computerized apparatus of claim 7, wherein the
first message is a window paint message.

13. An article of manufacture comprising a program
Storage medium readable by a computer having a memory,
the medium tangibly embodying one or more programs of
instructions executable by the computer to perform method
Steps for measuring end-to-end response time for a transac
tion performed by the computer, the method comprising the
Steps of:

monitoring a first queue and a Second queue in a com
puter,

assigning a start time when a first message is received at
the first queue,

assigning a stop time when a Second message, Sent in
response to the first message, is received at the Second
queue, and

May 31, 2001

Subtracting the Start time from the Stop time to calculate
an end-to-end response time.

14. The method of claim 13, further comprising the steps
of:

updating the Stop time when a third message, Sent in
response to the first message, is received at the Second
queue, and

Subtracting the Start time from the Stop time to calculate
the end-to-end response time.

15. The method of claim 13, wherein the end-to-end
response time is calculated for a plurality of computer
programs executed by the computer.

16. The method of claim 13, wherein the end-to-end
response time is calculated for a plurality of windows
displayed by a computer program executed by the computer.

17. The method of claim 13, wherein the second message
is Selected from a group comprising a window create mes
Sage, a mouse button 1 down message, an enter key mes
Sage, and a button activation message.

18. The method of claim 13, wherein the first message is
a window paint message.

