A photonic integrated circuit may include a silicon layer including a waveguide and at least one other photonic component. The photonic integrated circuit may also include a first insulating region arranged above a first side of the silicon layer and encapsulating at least one metallization level, a second insulating region arranged above a second side of the silicon layer and encapsulating at least one gain medium of a laser source optically coupled to the waveguide.
PHOTONIC INTEGRATED CIRCUIT AND FABRICATION PROCESS

FIELD OF THE INVENTION

[0001] The present invention relates to integrated circuits, and more particularly to photonic integrated circuits, i.e. those incorporating one or more photonic components such as, for example, waveguides, optical modulators, optical couplers, photodetectors, etc.

BACKGROUND OF THE INVENTION

[0002] Currently, photonic integrated circuits allow the integration of practically all active or passive optical devices, such as, for example, coupling structures, waveguides, modulators, or photodetectors.

[0003] Moreover, another known advantageous component is a hybrid III-V/Si laser source. Such a laser source includes an amplifying medium (gain medium) that includes a composite III-V semiconductor material, a waveguide situated in an underlying silicon layer and optically coupled to the gain medium, and a cavity resonator optically coupled to the waveguide and containing Bragg mirrors, for example. The gain medium emits light when it is excited by electrical energy (pumping), and the cavity resonator is intended, in cooperation with the gain medium, to amplify this light so as to deliver the laser beam.

[0004] Depending on the type of laser (DBR: Distributed Bragg Reflector or DFB: Distributed Feedback laser), the Bragg mirrors are situated in the silicon at the periphery of the gain medium or else under the gain medium.

[0005] Such a hybrid laser source may require a very short distance, typically not more than a hundred nanometers, between the gain medium and the underlying silicon waveguide. Moreover, direct bonding of the gain medium to a waveguide of silicon-on-insulator type typically requires a planar surface prepared by a chemical-mechanical polishing step. Currently, a hybrid III-V laser source on a silicon substrate can be manufactured on an experimental basis and in isolation.

[0006] Integrated photonic circuits generally do not incorporate hybrid III-V/Si laser sources due to the great difficulty of integrating these sources. This is because direct bonding to the silicon-on-insulator film cannot be carried out after the complete production of the integrated circuit, and particularly after the production of the metallization levels of the interconnect part of the integrated circuit, widely denoted as the Back End Of Line (BEOL) part by those skilled in the art.

[0007] Furthermore, conventional production of the metallization levels (using deposition and chemical-mechanical polishing (CMP) of dielectrics/metals) cannot be carried out after any steps of integration of the laser source due to the substantial height of the laser source, typically about 3 microns. As a result hybrid III-V laser sources may therefore be incompatible with integration into integrated circuits. Therefore, the approach currently used to associate a laser source with an integrated circuit includes, after the integrated circuit and its interconnect (BEOL) part have been produced, fixing an already assembled laser source to one of the sides of the chip.

SUMMARY OF THE INVENTION

[0008] According to one aspect, a photonic integrated circuit that effectively integrates a hybrid laser source while being compatible with the conventional steps of fabrication of an integrated circuit, particularly the fabrication of the metallization levels, is provided. In particular, it may be possible to achieve such integration by carrying out a treatment of the back-side of the semiconductor wafer, leading to back-side integration of the laser source, whereas the metallization levels (BEOL part of the integrated circuit) are arranged on the front side.

[0009] According to one aspect, a photonic integrated circuit may include a silicon layer that includes a waveguide and at least one other electronic component, for example, an optical coupler, a modulator, or a photodetector. The photonic integrated circuit may also include a first insulating region arranged above a first side, for example the front side, of the silicon layer and encapsulating at least one metallization level, and typically several metallization levels. A second insulating region may be arranged above a second side, for example the back side, of the silicon layer and encapsulating at least the gain medium of a laser source optically coupled to the waveguide.

[0010] The cavity resonator of the laser source may include Bragg mirrors, for example. When the silicon layer is thick enough, the cavity resonator, typically the Bragg mirrors, and the waveguide may be produced inside the silicon layer. However, in some applications, it may be preferable for the silicon layer not to be too thick, i.e. typically less than or equal to 300 nanometers in thickness, so as not to compromise the operational efficiency of the other photonic components. Furthermore, in such a configuration, either the laser is a DBR laser and an additional waveguide is then advantageously arranged above the second side of the silicon layer, and the second insulating region then also encapsulates this additional waveguide, or the laser is a DFB laser and an additional waveguide as well as the Bragg mirrors of the cavity resonator are then advantageously arranged above the second side of the silicon layer, and the second insulating region then also encapsulates this additional waveguide, as well as the Bragg mirrors.

[0011] The gain medium of the laser source is then advantageously situated in the immediate vicinity of this additional means or additional waveguide and possible cavity resonator, for example separated from this additional means by part of the second insulating region having a thickness less than or equal to 100 nanometers.

[0012] As a variant, the additional means, or additional waveguide and possible cavity resonator, can be arranged not above the second side of the silicon layer, but above the first side of this silicon layer. The first insulating region then also encapsulates the additional means. The gain medium of the laser source is then situated in the immediate vicinity of the second side of the silicon layer, for example separated from this second side by an insulating layer, commonly denoted PADOX by those skilled in the art, possibly having a thickness about one hundred nanometers.

[0013] The silicon layer may also incorporate a coupler, and the first insulating region may incorporate a metal mirror arranged facing the coupler. The coupler will then be, for example, send part of the laser beam emitted by the laser source back across the second insulating region and another part in the direction of the mirror, which will reflect it towards the second insulating region. In this way interference with the various insulating layers, in particular the nitride layers of the first insulating region is reduced, and losses in
the substrate, which conventionally occur for a coupler produced on a silicon-on-insulator (SOI) substrate, are also reduced.

This feature, i.e., a metal mirror incorporated into the first insulating region and arranged facing a coupler, can be considered independently of the presence of a laser source integrated into the integrated circuit as defined above. The metal mirror is advantageously arranged in a first metallization level situated opposite the first side of the silicon layer. The coupler, incorporated into the silicon layer, can be a grating coupler possessing a relief surface turned towards the first insulating region.

According to another aspect, a method of fabrication of a photonic integrated circuit is provided. The method includes producing, inside a silicon layer arranged above a buried insulating layer arranged above a carrier substrate, a waveguide and at least one other photonic component. The method also includes producing, above a first side of the silicon layer, at least one metallization level encapsulated in a first insulating region, and removing the carrier substrate and the buried insulating layer so as to uncover or approach a second side of the silicon layer, opposite the first side.

The method also includes making a laser source optically coupled to the waveguide. Making the laser source includes encapsulating at least the gain medium of this laser source in a second insulating region situated above the second side.

According to one embodiment, the production of the laser source includes forming an etched heterostructure above at least one additional insulating layer itself situated above the second side. The etched heterostructure may form the gain medium. Another insulating layer may be deposited above the at least one additional insulating layer and the heterostructure so as to form the second insulating layer.

According to a first variant, the production of the laser source may include, prior to the formation of the gain medium, forming, above the second side of the silicon layer, an additional means or at least one additional waveguide optically coupled to the waveguide. According to one embodiment of this variant, the formation of the additional means may include depositing an additional silicon layer above the additional insulating layer, at least one etching of the additional silicon layer, and depositing at least one additional insulating layer above the etched additional silicon layer and the additional insulating layer. The heterostructure may be formed above the at least one additional insulating layer.

According to another variant, the method may include prior to production of the metallization level or levels, forming, above the first side of the silicon layer, an additional means or at least one additional waveguide optically coupled to the waveguide. According to one embodiment, which can be considered independently of the production of the laser layer, the method may furthermore include producing, in the silicon layer, a coupler and producing a metal mirror encapsulated in the first insulating region facing the coupler. The mirror may advantageously be produced during the production of the tracks of a first metallization level.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 2 is a schematic cross-sectional view of a photonic integrated structure preparatory to obtaining of a photonic integrated circuit in accordance with an embodiment of the present invention.

FIG. 2 is a schematic cross-sectional view of the photonic integrated structure of FIG. 1 after bonding of a handle substrate.

FIG. 3 is a schematic cross-sectional view of the photonic integrated structure of FIG. 2 after removal of the carrier substrate of said structure.

FIG. 4 is a schematic cross-sectional view of the photonic integrated structure of FIG. 3 after etching of the insulating layer.

FIG. 5 is a schematic cross-sectional view of the photonic integrated structure of FIG. 4 including an additional waveguide above the waveguide.

FIG. 6 is a schematic cross-sectional view of the photonic integrated structure of FIG. 5 after III-V wafer bonding.

FIG. 7 is a schematic cross-sectional view of the photonic integrated structure of FIG. 6 after selective chemical etching of the substrate of the wafer and III-V laser patterning and etching.

FIG. 8 is a schematic cross-sectional view of a photonic integrated circuit in accordance with an embodiment of the present invention.

FIG. 9 is a schematic cross-sectional view of a photonic integrated circuit in accordance with another embodiment of the present invention.

FIG. 10 is a schematic cross-sectional view of an integrated circuit in accordance with the prior art.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In FIG. 1, the reference SB denotes a Silicon-On-Insulator (SOI) wafer. The SOI substrate includes a silicon layer or film 1 having, in this embodiment, a thickness of about 300 nanometers, arranged above a buried insulating layer 2, commonly denoted BOX (Buried Oxide) by those skilled in the art. This buried insulating layer 2 is itself arranged above a carrier substrate 3.

Various photonic components are produced in this silicon layer 1, for example, a waveguide GO arranged in a part 10 of this layer, a grating coupler 11, another waveguide 12, a modulator 13 and a photodetector 14.

Although any kind of optical modulator may be used, the modulator 13 may be an electro-optical modulator, for example a Mach-Zehnder modulator having an architecture well known by the man skilled in the art and including a phase shifter (also called phase modulator) in each of the two branches of the Mach-Zehnder modulator, both phase shifters being controlled in phase opposition. For simplicity reasons only one of those phase shifters of the modulator 13 is illustrated in the figures.

Of course, FIG. 1 shows a variety of photonic components that can be produced in the silicon layer without this list being exhaustive. Of course, it may be possible for only some of these components to be produced, depending on the desired applications. These various photonic components are mutually separated by an insulating region 100, silicon dioxide for example.

It should be noted that if the laser source to be produced is a DBR laser, the part 10 of the silicon layer also incorporates Bragg mirrors optically coupled to the waveguide GO and which are to be situated on the periphery of the III-V gain medium of the laser source.

This silicon layer 1 has a first side F1, or front side, and a second side F2 or back side, that is arranged above the
buried insulating layer 2. In a conventional way known per se, the process for producing each photonic integrated circuit of the wafer includes producing several metallization levels, here four levels M1, M2, M3, M4 embedded in a first insulating region 4. The insulating material forming this first insulating region is commonly denoted as the intermetal dielectric (IMD) by those skilled in the art. This production may be conventionally based on deposition and chemical-mechanical polishing (CMP) of dielectrics (oxide) and metals (copper).

[0036] The tracks produced in these metallization layers can, at least in some cases, be connected by vias V. These metallization levels are typically used to interconnect components and to connect them to external contact pads. The height of the interconnect region RTX is typically about 3 microns.

[0037] Simultaneously with the production of the tracks of the first metallization level M1, a metal mirror 5 may be advantageously produced opposite the relief surface of the grating coupler 11. Next, a substrate 26 acting as a handle is bonded (FIG. 2) to the upper side of the insulating region 4.

[0038] After the structure has been flapped, the carrier substrate 3 is removed, as illustrated in FIG. 3, typically by grinding. As illustrated in FIG. 4, the insulating (BOX) layer 2 is etched to uncover the second side F2 of the silicon layer, i.e. the back side. It is from this back side that the processing for producing the laser source will be carried out.

[0039] This being so, generally, no processing is carried out on bare silicon. This is the reason why, before carrying out further processing, the silicon layer is covered with an additional insulating layer 70, commonly denoted the PADOX by those skilled in the art.

[0040] As a variant, when the buried insulating layer 2 includes a stack that includes a PADOX layer topped by a silicon layer nitride topped by a layer of TEOS oxide, the etching of the layer 2 is carried out as far as the PADOX layer 70, which may make it possible to avoid consuming the silicon dioxide of the regions 100. In this case, the side F2 of the silicon layer is approached and thus it may not be desirable to reform the PADOX layer 70. The thickness of this PADOX layer is typically about 100 nanometers.

[0041] Next, as illustrated in FIG. 5, an additional waveguide 71 is produced above the waveguide GO of the interconnect part 10. This waveguide 71 may be for the future laser source that is here assumed to be a DFB laser.

[0042] In this respect, wafer-scale deposition of an amorphous silicon layer is carried out on the additional insulating layer 70, which layer is etched so as to form the additional waveguide 71. In the event of the future laser source being a DFB laser, the additional means 71 or additional waveguide also incorporate Bragg mirrors optically coupled to the additional waveguide to contribute to the formation of the cavity resonator. In this respect, a double etching of the amorphous silicon layer is carried out to form the additional waveguide, then the Bragg mirrors.

[0043] Next, an additional insulating layer 72, for example made of silicon dioxide, is deposited on the additional means 71 and on the additional insulating layer 70 (PADOX), and a chemical-mechanical polishing is then carried out on the additional insulating layer 72. The thickness of the additional means 71 is typically about 200 nanometers, whereas the thickness of the additional insulating layer 72 is less than or equal to 100 nanometers.

[0044] The stack 7 thus produced and having been polished, is thus ready to receive the active gain medium that amplifies the laser source. Thus, as illustrated in FIG. 6, a heterostructure 8 made of III-V semiconductor material is formed. This formation is carried out by direct bonding of a wafer 8 formed by a III-V heterostructure.

[0045] More precisely, the heterostructure 8 includes a substrate 80 that includes a p-type semiconductor material, InP for example, a stack 81 of layers forming quantum wells, made of InGaAsP for example, and a layer 82 of an n-type material, for example an InP/InGaAs stack.

[0046] The thickness of the heterostructure 8 may typically be about a few hundred microns. The thickness of the stack of quantum wells 81 may be about 300 nm and the thickness of the layer 82 may be about 200 nm.

[0047] As illustrated in FIG. 7, selective chemical etching of the substrate 80 (selective over the active layers 81 and 82) is carried out, followed by lithography and etching adapted to the III-V material to obtain the gain medium 800 of the laser source. Next eutectic deposits 801, 802, 803, based on gold for example, are deposited to allow metal contacts to be made to the etched layer 820 and to the etched layer 830.

[0048] As illustrated in FIG. 8, the structure is encapsulated by depositing another insulating layer above the stack 7 to form a second insulating region 9 above the structure 800 and the stack 7. Conventional production of contacts 910 is carried out to make contact with the eutectic zones 801, 802 and 803, as well as conventional production of other contacts 903 to connect metal tracks to contact pads situated on the back side.

[0049] After the steps of finishing and cutting the wafer to singulate the integrated circuits, a photonic integrated circuit IC is obtained, as illustrated in FIG. 8. The integrated circuit includes a silicon layer 1 that includes a waveguide GO and at least one other photonic component and a first insulating region 4 arranged above a first side F1 of the silicon layer and encapsulating here several metallization levels M1-M4. The integrated circuit also includes a second insulating region 9 above a second side F2 of the silicon layer and encapsulating the gain medium 800 of the laser source SL and, in this embodiment, an additional means 71 or at least one additional waveguide, and possibly also Bragg mirrors. This laser source is optically coupled to the waveguide GO which is situated in part 10 of the silicon layer 1.

[0050] As a variant, as illustrated in FIG. 9, it may be possible to arrange the additional means 71 of the laser source in the first insulating region 4. The gain medium 800 of the laser source SL is then arranged in the immediate vicinity of the silicon layer 1 and is separated from the second side F2 of the latter by the additional insulating layer 70 (PADOX). In this respect, the additional means 71 are produced prior to the production of the metallization levels M1-M4 of the integrated circuit, again by wafer-scale deposition of a layer of amorphous silicon and etching(s).

[0051] It should also be noted that, whether in the embodiment of FIG. 8 or the embodiment of FIG. 9, the grating coupler 11 turns its relief surface 110 towards the first insulating region 4 in the direction of the metal mirror 5. The light beam that arrives on the coupler via the silicon layer is subdivided in the coupler 11 into a first beam that crosses the insulating region 9 towards an optical fiber fixed onto the back side FAR of the chip for example, and into a second beam that travels towards the metal mirror 5 to be reflected in the direction of the optical fiber. Thus, none of these beams may be
perturbed by the nitride layers that are, for example, found in the first insulating region 4. The production of a metal mirror 5 in the first insulating region 4 is generally independent of the integration (or absence of integration) of a hybrid III-V laser source in the IC chip.

[0052] Thus, according to another aspect, a photonic integrated circuit is provided that includes a silicon layer that includes at least one coupler 11, for example a grating coupler, and a first insulating region 4 arranged above a first side F1 of the silicon layer 1 and encapsulating one or more metallization levels. A metal mirror is situated facing the coupler, for example a first metallization layer, and a second insulating layer 9 is situated above a second side F2 of the silicon layer 1, opposite the first side.

[0053] The advantages of such a structure in relation to a prior-art structure, as illustrated in FIG. 10, are now described. In the prior-art structure equipped, for example, with an optical fiber fixed to its front side FAV, when a light beam reaches the coupler 11, it is subdivided into a first beam that crosses the insulating region 4 towards the optical fiber, and into a second beam that moves towards the substrate 3. Thus, there is a loss in the substrate and a perturbation of the first beam by the nitride layers of the first insulating region.

[0054] Thus, according to this other aspect, losses in the substrate and perturbations by the nitride layers as indicated above, are reduced or avoided. It may also be possible, as illustrated in FIG. 9, to incorporate, into the first insulating region 4, a means 150 or a heat-dissipating radiator connected to the silicon layer 1, opposite the gain medium of the laser source. This means or heat-dissipating radiator may be produced by metal tracks and specific vias simultaneously with the production of the metal tracks of the various metallization levels of the interconnect (BEOL) part of the integrated circuit.

[0055] Of course this heat-dissipating radiator can also be provided in the embodiment in FIG. 8. Also, the heat-dissipating radiator may improve the heat dissipation of the integrated circuit.

[0056] As indicated above and illustrated in particular in FIG. 8 or 9, the photonic integrated circuit includes as a photonic component, a modulator 13. As indicated above, although any kind of optical modulator may be used, the modulator is a Mach-Zehnder modulator having a structure well-known by the man skilled in the art. Only one phase shifter of the Mach-Zehnder modulator is represented for ease of understanding.

[0057] In integrated circuits of the prior art, such as the one illustrated in FIG. 10, having an SOI substrate including the silicon layer or film 1 arranged above the buried insulating layer (BOX) 2 itself arranged above the carrier substrate 3, the modulator 13 is above the carrier substrate. However such a prior structure has drawbacks.

[0058] As a matter of fact if the carrier substrate is a small resistivity (SR) substrate, some resistive and capacitive (RC) parasitic effects occur between the silicon film and the carrier substrate leading to a speed limitation and an increase of power consumption.

[0059] It may be possible to avoid such drawbacks by using a high resistivity (HR) substrate as the carrier substrate. However using such HR-SOI substrates may be relative costly and may lead to processing issues.

[0060] The fabrication method described above leads, with reference to FIGS. 1-9, to a photonic integrated circuit that includes a modulator 13 having, as illustrated in FIG. 8 or 9, without a carrier substrate above the modulator after the structure has been flipped and the carrier substrate 3 removed, as illustrated in FIG. 3, typically by grinding.

[0061] Thus RC parasitic effects are greatly reduced while HR-SOI substrates are no longer needed. For example, a parasitic capacitor reduction of 50% may be obtained versus a prior art structure based on an SR-SOI substrate, and a parasitic capacitor reduction of 33% may be obtained versus a prior art structure based on an HR-SOI substrate.

[0062] Thus according to another embodiment illustrated in FIG. 8 or 9, a photonic integrated circuit is also proposed, that includes a silicon layer 1 that includes a modulator 13 having a relief surface and another surface opposite the relief surface, a first insulating region 4 arranged above a first side F1 of the silicon layer and encapsulating at least one metallization level M1-M4 coupled to the relief surface of the modulator, a second insulating region 9 arranged above a second side F2 of the silicon layer and above the another surface of the modulator, and no other substrate turned towards the another surface of the modulator.

[0063] As illustrated also in FIG. 8 or 9, a photonic integrated circuit is also proposed that includes a substrate (for example the handle substrate 6), a silicon layer 1 including a modulator 13 having a relief surface turned towards the substrate and another surface opposite said relief surface, a first insulating region 4 arranged between a first side F1 of the silicon layer and the substrate and encapsulating at least one metallization level M1-M4 coupled to the relief surface of the modulator, and a second insulating region 9 arranged above a second side F2 of the silicon layer and above the another surface of the modulator.

[0064] Further at least one metallization level M1-M4 may be advantageously used for forming a shield for shielding the modulator from said handle substrate. Of course the integrated circuit may include such a modulator with or without the other photonic components, such as the laser source.

1-24. (canceled)

25. An integrated circuit comprising:
 a silicon layer;
 a waveguide carried within said silicon layer;
 at least one other photonic component carried within said silicon layer;
 a first insulating layer above a first side of said silicon layer;
 at least one metallization level encapsulated by said first insulating layer;
 a second insulating layer above a second side of said silicon layer;
 and
 a laser source optically coupled to said waveguide and comprizing a gain medium encapsulated by said second insulating layer.

26. The integrated circuit according to claim 25, wherein said laser source comprises at least one additional waveguide optically coupled to said waveguide above the second side of said silicon layer, and wherein said at least one additional waveguide is encapsulated by said second insulating layer.

27. The integrated circuit according to claim 26, wherein said gain medium is adjacent said at least one additional waveguide.

28. The integrated circuit according to claim 26, wherein said gain medium is spaced apart from said at least one additional waveguide by a portion of said second insulating having a thickness less than or equal to 100 nm.
29. The integrated circuit according to claim 25, wherein said laser source further comprises at least one additional waveguide above the first side of said silicon layer and optically coupled to said waveguide; wherein said at least one additional waveguide is encapsulated by said first insulating layer; and wherein said gain medium is adjacent the second side of said silicon layer.

30. The integrated circuit according to claim 29, wherein said gain medium is spaced apart from the second side of said silicon layer by a distance of 100 nm.

31. The integrated circuit according to claim 25, wherein said silicon layer comprises a coupler; and wherein said first insulating layer comprises a metal mirror facing said coupler.

32. The integrated circuit according to claim 31, wherein said metal mirror is carried within the first arranged in the at least one metallization level opposite the first side of the silicon layer.

33. The integrated circuit according to claim 25, further comprising a grating coupler carried within said silicon layer, said grating coupler having a relief surface facing said first insulating layer.

34. The integrated circuit according to claim 25, further comprising a heat-dissipating radiator carried within said first insulating layer and coupled to said silicon layer opposite said gain medium.

35. The integrated circuit according to claim 25, further comprising a modulator carried within said silicon layer, said modulator having a relief surface facing said first insulating layer and another surface opposite the relief surface and facing said second insulating layer; and wherein said at least one metallization level is coupled to the relief surface.

36. The integrated circuit according to claim 25, further comprising a substrate carrying said first insulating layer.

37. The integrated circuit according to claim 35, further comprising a substrate carrying said first insulating layer; and wherein said at least one metallization level comprises a shield configured to shield said modulator from said substrate.

38. An integrated circuit comprising:

- a semiconductor layer;
- a waveguide carried within said semiconductor layer;
- a first insulating layer carried by a first side of said semiconductor layer;
- at least one metallization level carried within said first insulating layer;
- a second insulating layer carried by a second side of said semiconductor layer; and
- a laser source optically coupled to said waveguide and comprising a gain medium carried within said second insulating layer.

39. The integrated circuit according to claim 38, wherein said semiconductor layer comprises silicon.

40. The integrated circuit according to claim 38, wherein said laser source comprises at least one additional waveguide optically coupled to said waveguide adjacent the second side of said semiconductor layer, and wherein said at least one additional waveguide is carried within said second insulating layer.

41. The integrated circuit according to claim 40, wherein said gain medium is adjacent said at least one additional waveguide.

42. An integrated circuit comprising:

- a silicon layer;
- a modulator carried within said silicon layer and having first and second opposing surfaces;
- a first insulating layer above a first side of the silicon layer at least one metallization level encapsulated by said first insulating layer and coupled to the first surface of said modulator; and
- a second insulating layer above a second side of the silicon layer and above the second surface of said modulator;

43. The integrated circuit according to claim 42, further comprising a substrate carrying said first insulating layer.

44. An integrated circuit comprising:

- a substrate;
- a silicon layer;
- a modulator carried within said silicon layer and having a first surface facing said substrate and a second surface opposite the first surface;
- a first insulating layer arranged between a first side of said silicon layer and said substrate;
- at least one metallization level encapsulated by said first insulating layer and coupled to the first surface of said modulator; and
- a second insulating layer arranged above a second side of said silicon layer and above the second surface of said modulator.

45. The integrated circuit according to claim 44, wherein said at least one metallization level comprises a shield configured to shield the modulator from said substrate.

46. A method of making an integrated circuit, comprising:

- forming a semiconductor layer above a buried insulating layer, the buried insulating layer being above a carrier substrate, a waveguide, and at least one other photonic component;
- forming, adjacent a first side of the semiconductor layer, at least one metallization level within a first insulating layer;
- removing the carrier substrate and the buried insulating layer to at least one of expose and be adjacent a second side of the semiconductor layer opposite the first side;
- and
- forming a laser source optically coupled to the waveguide, wherein forming the laser source comprises forming at least the gain medium of the laser source in a semiconductor layer adjacent the second side.

47. The method according to claim 46, wherein forming the semiconductor layer comprises forming a silicon layer.

48. The method according to claim 46, wherein forming the laser source comprises:

- forming, adjacent at least one additional insulting layer adjacent the second side;
- forming, adjacent the at least one additional insulting layer, an etched semiconductor heterostructure defining said gain medium; and
- depositing another insulating layer adjacent the at least one additional insulting layer and the heterostructure to define the second insulating layer.

49. The method according to claim 48, wherein forming the laser source further comprises, prior to forming of the gain medium, forming, adjacent the second side of the semiconductor layer, at least one additional waveguide optically coupled to the waveguide.

50. The method according to claim 49, wherein forming the at least one additional waveguide comprises:
depositing an additional semiconductor layer adjacent the additional insulating layer;
etching the additional semiconductor layer; and
depositing at least one additional insulating layer above the etched additional semiconductor layer and the additional insulating layer;
the etched heterostructure being formed above the at least one additional insulating layer.

51. The method according to claim 46, further comprising, prior to forming the at least one metallization layer, forming, above the first side of the semiconductor layer, at least an additional waveguide optically coupled to the waveguide.

52. The method according to claim 46, further comprising: forming a coupler in the semiconductor layer; and forming a metal mirror within the first insulating layer facing the coupler.

53. The method according to claim 52, wherein the metal mirror is formed while forming tracks of the at least one metallization level.

* * * * *