
(19) United States
US 2008O162823A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0162823 A1
Day et al. (43) Pub. Date: Jul. 3, 2008

(54) SYSTEMAND METHOD FOR HANDLING
MULTIPLEALIASED SHADOW REGISTER
NUMBERS TO ENHANCE LOCK
ACQUISITION

(75) Inventors: Michael N. Day, Round Rock, TX
(US); Charles R. Johns, Austin,
TX (US); Roy M. Kim, Austin, TX
(US); Peichun P. Liu, Austin, TX
(US)

Correspondence Address:
CANTOR COLBURN LLP - BMAUSTN
20 Church Street, 22nd Floor
Hartford, CT 06103

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

(21) Appl. No.: 11/619,033

(22) Filed: Jan. 2, 2007

2CO

Y 2O2
s

SEND A LOCK-LOAD INSTRUCTION FROMA FIRST
PROCESSORTO A CACHE

Publication Classification

(51) Int. Cl.
G06F 2/14 (2006.01)
G06F 2/08 (2006.01)

(52) U.S. Cl. 711/138; 711/152; 711/E12.021;
711 FE12.093

(57) ABSTRACT

Exemplary embodiments include a method for enhancing
lock acquisition in a multiprocessor System, the method
including: sending a lock-load instruction from a first proces
Sor to a cache; setting a reservation flag for the first processor,
storing a reservation address, storing a shadow register num
ber, and sending lock data to the first processor in response to
the lock-load instruction; placing the lock data in target and
shadow registers of the first processor, determining from the
lock data whether lock is taken; resending the lock-load
instruction from the first processor to the cache upon a deter
mination that the lock is taken; determining whether the res
ervation flag is still set and its main memory address and
shadow register number match with the saved reservation
address and shadow register number for the first processor;
sending a status-quo signal to the first processor without
resending the lock data to the first processor upon a determi
nation that the reservation flag is still set for the first proces
Sor, and copying the lock data from the associated shadow
register to the target register in response to the status-quo
signal.

START

s

In response a reservation flag is set for the first processor, the -
reservation address is stored, a shadow register number is
stored, and the lock data is sent to the first processor

PLACE THE LOCKDATAN TARGET AND SHADOW -
REGISTERS OF THE FIRST PROCESSOR

24

RETREWE HE LOCK
DATA FROMA MAN

MEMORY TO HE CACHE

RESENTHE LOCK-LOANSTRUCTION FROM THE FRST
ROCESSOR TO THE CACHE

26

SE
RESERVATION FLAG STILL SET FOR THE FRS

PROCESSORP

SENASTATUS-QUOS GNALOE FIRST PROCESSOR
WITHOUT RESENDING THE LOCK DATA TO THE FIRST

PROCESSOR

218 Y
N IN RESPONSE TO THE STATUS-QUOSIGNAL COPY THE

LOCK DATA FROM THE SHADOW REGISTER TO THE TARGET
REGISTER

Patent Application Publication Jul. 3, 2008 Sheet 1 of 3 US 2008/0162823 A1

FIGURE 1

1 OO 1 O2

116 PROCESSOR 118
-a,

TARGET SHADOW
REGISTER REGISTER

12

BUS CONTROLLER

128

122 -- 106

BUS CONTROLLER

124
108

SYSTEM BUS

26 110

SYSTEM MEMORY

Patent Application Publication Jul. 3, 2008 Sheet 2 of 3 US 2008/0162823 A1

FIGURE 2A

\ 2O2 Gs)
SEND A LOCK-LOAD INSTRUCTION FROMA FIRST

PROCESSOR TO A CACHE

204
In response a reservation flag is set for the first processor, the
reservation address is stored, a shadow register number is
stored, and the lock data is sent to the first processor

2O6

PLACE THE LOCK DATAN TARGET AND SHADOW
REGISTERS OF THE FIRST PROCESSOR

214

RETREVE THE LOCK N
| DATA FROMA MAIN (a)
MEMORY TO THE CACHE

Y 2O8 21 O
Y

RESEND THE LOCK-LOAD INSTRUCTION FROM THE FIRST
PROCESSOR TO THE CACHE

212
S THE

RESERVATION FLAG STILL SET FOR THE FIRST
PROCESSORP

216

SEND A STATUS-QUO SIGNAL TO THE FIRST PROCESSOR
WITHOUT RESENDING THE LOCK DATA TO THE FIRST

PROCESSOR

IN RESPONSE TO THE STATUS-QUO SIGNAL COPY THE
LOCK DATA FROM THE SHADOW REGISTER TO THE TARGET

REGISTER

Patent Application Publication Jul. 3, 2008 Sheet 3 of 3 US 2008/0162823 A1

FIGURE 2B

SEND A STORE REQUEST FROM THE FIRST PROCESSOR TO
THE CACHE IN AN EFFORT TO ACQUIRE THE LOCK

222 y
S THE RESERVATION

FLAG FOR THE FIRST PROCESSOR
TILL SET WHEN THE CACHE HAS RECEIVED

THE STORE REGUEST?

THE STORE REQUEST FROM
THE FIRST PROCESSOR FALS

ACOUIRE THE LOCK FOR THE
FIRST PROCESSOR

US 2008/0162823 A1

SYSTEMAND METHOD FOR HANDLING
MULTIPLEALIASED SHADOW REGISTER

NUMBERS TO ENHANCE LOCK
ACQUISITION

TRADEMARKS

0001 IBM(R) is a registered trademark of International
Business Machines Corporation, Armonk, N.Y., U.S.A.
Other names used herein may be registered trademarks, trade
marks or product names of International Business Machines
Corporation or other companies.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The invention relates generally to memory manage
ment in a multiprocessor system and, more particularly, to
enhancing a lock acquisition mechanism.
0004 2. Description of the Background
0005. In a large symmetrical multi-processor system, lock
acquisition is frequently used to synchronize access to data
structures. Systems that run with producer-consumer types of
applications have to make Sure that the produced data is
globally visible before signaling to the consumers so that they
can access the produced data structure. Usually, the producer
tries to acquire a lock using a lock-load instruction and Verify
on a lock-word value. Once the producer application has
acquired the lock, the producer application is the owner of the
data structure until it releases the lock. The consumer will
have to wait for the lock to be released before accessing the
data structure.
0006 When attempting to acquire a lock, software “spins'
or loops on an atomic update sequence that executes the lock
load instruction and compares the data with a software spe
cific definition indicating “lock free.” If the value is “not
free,” a branchback to lock load instruction is taken to restart
the sequence. If the value does indicate free, the loop is exited
and a conditional lock store instruction is used to update the
lock word to “lock taken.” The lock store fails if the processor
attempting to acquire the lock no longer holds the reservation
made at lock load time. If this lock store fails, Software again
restarts the loop beginning with the lock load instruction. This
spin loop of continually reading and re-reading the lock word
when the lock is taken causes the same data to be retrieved out
of cache over and over while the lock is taken by another
processing element. Accessing the cache array to get the same
data and send it again and again, while the lock is taken by
another processor, is power consuming, is wasteful of cache
access cycles (in cases of shared caches) and could create
system live-lock in a large configuration system.
0007. Therefore, a need exists for a system and method for
saving power and preventing a potential live-lock situation.

SUMMARY OF THE INVENTION

0008 Exemplary embodiments include a method for
enhancing lock acquisition in a multiprocessor System, the
method including: sending a lock-load instruction from a first
processor to a cache; setting a reservation flag for the first
processor, storing a reservation address, storing a shadow
register number, and sending lock data to the first processorin
response to the lock-load instruction; placing the lock data in
target and shadow registers of the first processor, determining
from the lock data whether lock is taken; resending the lock
load instruction from the first processor to the cache upon a

Jul. 3, 2008

determination that the lock is taken; determining whether the
reservation flag is still set and its main memory address and
shadow register number match with the saved reservation
address and shadow register number for the first processor;
sending a status-quo signal to the first processor without
resending the lock data to the first processor upon a determi
nation that the reservation flag is still set for the first proces
Sor, and copying the lock data from the associated shadow
register to the target register in response to the status-quo
signal.
0009 Exemplary embodiments also include multiproces
Sor system with enhanced lock acquisition, including: a first
processor, a cache coupled to the first processor, the first
processor sending a load-lock instruction to the cache, the
cache, in response to the load-lock instruction, setting a res
ervation flag for the first processor, storing a reservation
address, storing a shadow register number, and sending lock
data to the first processor, a target register included in the first
processor for holding the lock data to determine whether lock
is taken; and a shadow register included in the first processor
for holding the lock data to provide the lock data to the target
register for lock evaluation in response to a status-quo signal
from the cache to the first processor, the status-quo signal
indicating that the lock is taken and the reservation flag is still
set, and its main memory address and shadow register number
match with the saved reservation address and shadow register
number for the first processor.
0010 System and computer program products corre
sponding to the above-Summarized methods are also
described and claimed herein.
0011 Additional features and advantages are realized
through the techniques of the present invention. Other
embodiments and aspects of the invention are described in
detail herein and are considered a part of the claimed inven
tion. For a better understanding of the invention with advan
tages and features, refer to the description and to the draw
1ngS.

TECHNICAL EFFECTS

0012. As a result of the summarized invention, technically
we have achieved a solution, which provides a memory man
agement system that saves power and prevents live-lock situ
ations.

BRIEF DESCRIPTION OF THE DRAWINGS

0013 The subject matter which is regarded as the inven
tion is particularly pointed out and distinctly claimed in the
claims at the conclusion of the specification. The foregoing
and other objects, features, and advantages of the invention
are apparent from the following detailed description taken in
conjunction with the accompanying drawings in which:
0014 FIG. 1 is a block diagram illustrating a multiproces
Sor system with enhanced lock acquisition; and
0015 FIGS. 2A and 2B are a flow diagram illustrating
enhanced lock acquisition in a multiprocessor System.
0016. The detailed description explains the preferred
embodiments of the invention, together with advantages and
features, by way of example with reference to the drawings.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

0017. The present invention and the various features and
advantageous details thereof are explained more fully with

US 2008/0162823 A1

reference to the non-limiting embodiments that are illustrated
in the accompanying drawings and detailed in the following
description. It should be noted that the features illustrated in
the drawings are not necessarily drawn to scale. Descriptions
of well-known components and processing techniques are
omitted so as to not unnecessarily obscure the present inven
tion in detail. The examples used herein are intended merely
to facilitate an understanding of ways in which the invention
may be practiced and to further enable those of skill in the art
to practice the invention. Accordingly, the examples should
not be construed as limiting the scope of the invention.
0018 Referring to FIG. 1 of the drawings, the reference
numeral 100 generally designates a multiprocessor system
with enhanced lock acquisition embodying features of the
present invention. The multiprocessor system 100 generally
includes a first processor 102, a cache 104, a first bus control
ler 106, a system bus 108, a system memory 110, and a second
bus controller 112. The first processor 102 includes target and
shadow registers 116 and 118. Furthermore, the target regis
ters 116 do not have a one-to-one relationship with the
shadow registers 118. Any given target register can be asso
ciated with any of the shadow register (that is, aliased shadow
registers). The first processor 102 is coupled to the cache 104
via a connection 120 for communicating with the cache 104
including loading lock data 114. When the first processor 102
receives the lock data 114 from the cache 104, the first pro
cessor 102 places the lock data 114 in both the target register
116 and the shadow register 118. Preferably, the cache 104 is
a level 2 (L2) cache of the first processor 102.
0019. The cache 104 is coupled to the first bus controller
106 via a connection 122. The first bus controller 106 is also
coupled to the system bus 108 via a connection 124. The
system bus 108 is then coupled to the system memory 110 via
a connection 126. Therefore, the cache 104 is in communica
tion with the system memory 110 through the first bus con
troller 106 and the system bus 108. Also, the second bus
controller 112 is coupled to the system bus 108 via a connec
tion 128. Another bus master Such as a second processor may
be coupled to the second bus controller 112 possibly through
a second cache.
0020 Generally, the multiprocessor system 100 has one or
more additional processors other than the first processor 102.
Occasionally, the first processor 102 and any one of the addi
tional processors need to access a particular memory address
space and possibly alter the data stored in the particular
memory address space. In this case, it is important to reserve
that particular memory address space for a single processor at
a time. This is achieved by using a reservation flag and lock
acquisition. The lock data 114 typically contains information
as to which processor has a temporary, exclusive light to
access a particular memory address space corresponding to
the lock data 114. The reservation flag facilitates the process
of lock acquisition by notifying any concerned processors
whether they can attempt to acquire lock at a given point in
time.

0021 Preferably, the lock data 114 includes a lock word,
the value of which reflects whetherlock is taken at aparticular
point in time. For example, the lock word consisting of all
Zero bits indicates that lock is not already taken on the afore
mentioned particular memory address space, whereas the
lock word consisting of any non-Zero bit(s) indicates other
wise. In this example, the first processor 102 checks the lock
word and determines whether lock is already taken or not. If
lock is already taken, the first processor 102 asks for the lock

Jul. 3, 2008

word repeatedly until the first processor 102 sees the lock
word consisting of all Zero bits (i.e., until the lock is released).
0022. In a prior art system, the first processor 102 would
keep accessing the cache 104 to retrieve the lock data 114
even during the time periods when the lock has not been
released (i.e., the lock data 114 is not changed yet). This
would translate into both unnecessary power consumption
and a hindrance to the overall performance of the cache 114.
The first processor 102, does not retrieve the lock data 114
during the time period when the lock is not released yet.
Instead, the first processor 102 copies the lock data 114 from
the shadow register 118 to the target register 116. Preferably,
the cache 104 sends a status-quo signal to the first processor
102 in response to a lock-load instruction from the first pro
cessor 102, when the lock is still taken (for example, by
another processor). Note that, in a prior art system, old lock
data originally retrieved from the cache would probably have
been altered, and therefore, could not be reused. Even with
attempted improvements on the prior art, first processor 102
has the limitation that each target register is associated with
only one of the shadow register, or a one-to-one relationship.
Preferably, the cache 104 sends a status-quo signal to the first
processor 102 in response to a lock-load instruction from the
first processor 102, when the lock is still taken and the asso
ciation between the shadow register and target register is the
same. Without this improvement, incorrect lock data is for
warded if either the shadow or target registers change.
(0023 Referring now to FIGS. 2A-B, a flow diagram 200
illustrates enhanced lock acquisition in a multiprocessor sys
tem in accordance with embodiments of the invention.

0024. In step 202, a lock-load instruction is sent from a
first processor to a cache. For example, the first processor 102
sends the lock-load instruction to the cache 104. The lock
load instruction asks the cache to return lock data. Further
more, the lock-load instruction associates a shadow register
with the target register.
0025. In step 204, in response to the lock-load instruction,
a reservation flag is set for the first processor, the reservation
address is stored, a shadow register number is stored, and the
lock data is sent to the first processor. For example, the cache
104 sets the reservation flag for the first processor 102 and
sends the lock data 114 to the first processor 102.
0026. In step 206, the lock data is placed in target and
shadow registers of the first processor. For example, the first
processor 102 places the lock data 114 in the target register
116 and the shadow register 118.
0027. In step 208, it is determined whether lock is taken.
For example, the first processor 102 checks the lock data 114
in the target register 116 and determines whether the lock data
114 indicates that lock is taken. If lock is taken, the process
goes to step 210. Otherwise, the process goes to step 220.
0028. In step 210, upon a determination that the lock is
taken, the lock-load instruction is resent from the first pro
cessor to the cache. For example, the first processor 102
resends the lock-load instruction to the cache 104.

0029. In step 212, it is determined whether the reservation
flag is still set and its main memory address and shadow
register number match with the saved reservation address and
shadow register number for the first processor. For example,
the cache 104 checks the reservation flag for the first proces
sor to see if it is still set and checks for addresses match. If it
is still set and addresses match, the process goes to step 216.
If it is reset, it goes to step 214.

US 2008/0162823 A1

0030. In step 214, upon a determination that the reserva
tion flag for the first processor is reset, the lock data is
retrieved from a main memory to the cache. For example, the
lock data 114 is retrieved from the main memory 110 to the
cache 104. Then, the process goes back to step 204.
0031. In step 216, upon a determination that the reserva
tion flag for the first processor is still set, a status-quo signal
is sent to the first processor without resending the lock data to
the first processor. For example, the status-quo signal is sent
to the first processor 102 without resending the lock data 114
to the first processor 102. This means that the lock data 114 is
not retrieved from the cache 104.
0032. In step 218, in response to the status-quo signal, the
lock data is copied from the shadow register to the target
register. For example, the processor 102 copies the lock data
114 from the shadow register 118 to the target register 116.
Then, the process goes back to step 208.
0033. In step 220, upon a determination in step 208 that
lock is taken, a store request is sent from the first processor to
the cache in an effort to acquire the lock. For example, the first
processor 102 sends the store request to the cache 104 in an
effort to acquire the lock.
0034. In step 222, it is determined whether the reservation
flag for the first processor is still set when the cache has
received the store request. For example, the cache 104 deter
mines whether the reservation flag for the first processor 102
is still set when the cache 104 has received the store request
from the first processor 102. If the reservation flag is still set,
then the process goes to step 224. If the reservation flag is
reset before the cache has received the store request, then the
process goes to step 226.
0035. In step 224, the lock is acquired for the first proces
sor. For example, the first processor 102 acquires the lock and
writes to the lock data to indicate its lock acquisition.
0036. In step 226, the store request from the first processor

fails and the process resumes by going back to step 202.
0037. One skilled in the art will understand that the lock
load instruction sent in step 202 can be performed hitwo steps
to achieve the association between the target and shadow
registers. The first step 202 is the request to the cache to return
the lock data to a specified shadow register. When either the
data is returned in step 204 or the status-quo signal is returned
in step 218, a second load is performed in step 206 and step
218 to copy the data from the shadow register to the target.
0038. The capabilities of the present invention can be
implemented in Software, firmware, hardware or some com
bination thereof.
0039. As one example, one or more aspects of the present
invention can be included in an article of manufacture (e.g.,
one or more computer program products) having, for
instance, computer usable media. The media has embodied
therein, for instance, computer readable program code means
for providing and facilitating the capabilities of the present
invention. The article of manufacture can be included as apart
of a computer system or sold separately.
0040. Additionally, at least one program storage device
readable by a machine, tangibly embodying at least one pro
gram of instructions executable by the machine to perform the
capabilities of the present invention can be provided.
0041. The flow diagrams depicted herein are just
examples. There may be many variations to these diagrams or
the steps (or operations) described therein without departing
from the spirit of the invention. For instance, the steps may be

Jul. 3, 2008

performed in a differing order, or steps may be added, deleted
or modified. All of these variations are considered a part of the
claimed invention.
0042. While the preferred embodiment to the invention
has been described, it will be understood that those skilled in
the art, both now and in the future, may make various
improvements and enhancements which fall within the scope
of the claims which follow. These claims should be construed
to maintain the proper protection for the invention first
described.

What is claimed is:
1. A method for enhancing lock acquisition in a multipro

cessor System, the method comprising:
sending a lock-load instruction from a first processor to a

cache;
setting a reservation flag for the first processor, storing a

reservation address, storing a shadow register number,
and sending lock data to the first processor in response to
the lock-load instruction;

placing the lock data in target and shadow registers of the
first processor;

determining from the lock data whether lock is taken;
resending the lock-load instruction from the first processor

to the cache upon a determination that the lock is taken;
determining whether the reservation flag is still set for the

first processor;
sending a status-quo signal to the first processor without

resending the lock data to the first processor upon a
determination that the reservation flag is still set and its
main memory address and shadow register number
match with the saved reservation address and shadow
register number for the first processor, and

copying the lock data from an associated shadow register to
the target register in response to the status-quo signal.

2. The method of claim 1, further comprising:
upon a determination that the lock is not taken, sending a

store request from the first processor to the cache in an
effort to acquire the lock;

determining whether the reservation flag for the first pro
cessor is still set when the cache has received the store
request:

upon a determination that the reservation flag for the first
processor is still set when the cache has received the
store request, acquiring the lock for the first processor,
and

upon a determination that the reservation flag for the first
processor is reset when the cache has received the store
request, failing the store request for the first processor.

3. The method of claim 2, further comprising:
upon a determination that the reservation flag is reset for

the first processor, retrieving the lock data from a system
memory to the cache; and

in response to the lock-load instruction, setting the reser
Vation flag for the first processor and sending lock data to
the first processor.

4. The method of claim 3, further comprising:
upon copying the lock data from the associated shadow

register to the target register, determining from the lock
data whether lock is taken.

5. The method of claim 4, wherein the cache is a level 2
(L2) cache of the first processor.

6. The method of claim 5, wherein the lock data includes
information on whether lock is taken or not.

US 2008/0162823 A1

7. The method of claim 1, wherein the lock data includes a
lock word for indicating whether lock is taken or not.

8. The method of claim 7, wherein the lock word consisting
of Zero values in all bits indicates that lock is not taken.

9. The method of claim 1, wherein the first processor does
not directly work on data placed in the shadow register.

10. The method of claim 1, wherein the reservation flag for
the first processor is reset when a store operation is performed
on the lock data by a bus master.

11. The method of claim 10, wherein the bus master is a
second processor.

12. The method of claim 1, wherein the sending a status
quo signal to the first processor without resending the lock
data to the first processor does not require accessing the
cache.

13. The method of claim 1, further comprising:
enhancing the lock acquisition by eliminating unnecessary

access to the cache for the same lock data.
14. A multiprocessor system with enhanced lock acquisi

tion, comprising:
a first processor,
a cache in signal communication with the first processor,

the first processor configured to send a load-lock instruc
tion to the cache, the cache, in response to the load-lock
instruction, configured to set a reservation flag for the
first processor, store a reservation address, store a
shadow register number, and send lock data to the first
processor,

a target register included in the first processor configured
for holding the lock data to determine whether lock is
taken; and

a shadow register included in the first processor configured
for holding the lock data to provide the lock data to the

Jul. 3, 2008

target register for lock evaluation in response to a status
quo signal from the cache to the first processor, the
status-quo signal indicating that the lock is taken and the
reservation flag is still set and its main memory address
and shadow register number match with the saved res
ervation address and shadow register number for the first
processor.

15. The multiprocessor system of claim 14, further com
prising:

a first bus controller in signal communication with the
cache;

a system bus in signal communication with the first bus;
a system memory in signal communication with the system

bus; and
a second bus controller in signal communication with the

system bus.
16. The multiprocessor system of claim 14, wherein the

cache is a level 2 (L2) cache of the first processor.
17. The multiprocessor system of claim 14, wherein the

lock data includes information on whether lock is taken or
not.

18. The multiprocessor system of claim 14, wherein the
lock data includes a lock word for indicating whether lock is
taken or not.

19. The multiprocessor system of claim 14, wherein the
lock word consisting of Zero values in all bits indicates that
lock is not taken.

20. The multiprocessor system of claim 14, wherein the
first processor does not directly work on data placed in the
shadow register.

