WO 02/084493 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
24 October 2002 (24.10.2002)

PCT

0O O

(10) International Publication Number

WO 02/084493 Al

(51) International Patent Classification’: GO6F 12/00

(21) International Application Number: PCT/US02/11707

(22) International Filing Date: 11 April 2002 (11.04.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/834,833 13 April 2001 (13.04.2001) US
(71) Applicant: ORACLE INTERNATIONAL CORPORA-
TION [US/US]; 500 Oracle Parkway, Redwood Shores,

CA 94065 (US).

(72) Inventor: SATHYANARAYAN, Ramaprakash, H.; 769
Shell Blvd., #103F, Foster City, CA 94404 (US).

(74) Agent: KLIVANS, Norman, R.; Skjerven Morrill LLP, 25
Metro Drive, Suite 700, San Jose, CA 95110 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

[Continued on next page]

(54) Title: FILE ARCHIVAL

/—‘111

INCREASE PROCESS SYSTEM LIMITS

//‘112

LOOP (srcA,; srcl; srcN}

1 l 118

#~{ LOCP (TILL END OF FILES) IN src

.

‘ T

COPY FILE

- y

17~ |
C;EATE
- PROCESS

(57) Abstract: Archival in a computer is performed by creating
a process if an item to be copied is a directory, and alternatively
by copying the item if the item is a file (101, FIG.1A). The cre-
ated process in turn recursively performs the just-described acts,
e.g. the act of creating or copying (103,FIG.1B), with another
item located in the just-described directory. Therefore, depend-
ing on the number of directories to be copied, a correspond-
ing number of processes may be created(117,FIG.2A), which
speeds up copying. A default limit on a resource available to a
copy process may be set to a maximum limit for the resource
(111,FIG.2A), for speedy copying.Archival may be speeded up
by transferring data from the file into a temporary buffer, lock-
ing the temporary buffer, and invoking a direct memory access
(DMA) process. Archival may be speeded up also by checking
for and eliminating the copying of circular links (such as a sym-
bolic link that points to itself). Such a created process may send
an email message if a resource at a destination is full, and wait
to be restarted subsequent to sending the email message. A user
that receives the email message makes appropriate arrangements
(e.g. deletes files in a destination disk or loads a new disk), and
therafter restarts the stopped process. On being restarted, the
process recopies a file if it was in the middle of copying the file
when it was stopped.

wO 02/084493 A1 NI 000 00O N R

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— with international search report ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 02/084493 PCT/US02/11707

FILE ARCHIVAL

BACKGROUND

Two file archiving utilities for the Unix operating system are CPIO (copy in/out)
and TAR (tape archiver). Both utilities can be used for backing up systems, or just to
create file archives. They were originally intended to be used with a tape device,
although, both create archive files on disk. Another utility, DUMP may also be used to
backup a filesystem. A corresponding utility RESTORE restores data from a DUMP
backup. RESTORE may be used interactively, to restore only certain files or directories.

In BSD Unix, the TAR utility is implemented as a front-end to the utility PAX.
PAX (in one mode) copies file operands to a destination directory. A file operand
specifies the pathname of a file to be copied or archived. When a file operand does not
select at least one archive member, PAX writes these file operand pathnames in a
diagnostic message to standard error and then exits with a non-zero exit status. When no
file operands are specified, a list of files to copy with one per line is read from the
standard input. When a file operand is a directory, the entire file hierarchy rooted at that
directory is included. The effect of the copy is as if the copied files were written to an
archive file and then subsequently extracted, except that there may be hard links between
the original and the copied files (see the -1 option). While processing a damaged archive
during a read or list operation, PAX attempts to recover from media defects and searches
through the archive to locate and process the largest number of archive members possible
(see the -e option, for more details on error handling).

The directory operand specifies a destination directory pathname. If the directory
operand does not exist, or it is not writable.by the user, or it is not of type directory, PAX
exits with a non-zero exit status. A pattern operand may be used to select one or more
pathnames of archive members. Archive members are selected using the pattern
matching notation described by fnmatch(3). When the pattern operand is not supplied, all
members of the archive are selected. When a pattern matches a directory, the entire file
hierarchy rooted at that directory is selected. When a pattern operand does not select at
least one archive member, PAX writes the pattern operands in a diagnostic message to
standard error and then exits with a non-zero exit status.

When writing an archive, block the output at a positive decimal integer number of
bytes per write to the archive file. The blocksize must be a multiple of 512 bytes with a
maximum of 32256 bytes. A blocksize can end with k or b to specify multiplication by

-1-

10

15

20

25

30

WO 02/084493 PCT/US02/11707

1024 (1K) or 512, respectively. A pair of blocksizes can be separated by x to indicate a
product. A specific archive device may impose additional restrictions on the size of
blocking it will support. When blocking is not specified, the default blocksize is
dependent on the specific archive format being used. The default block size for character
special archive files is 10240. All blocksizes less than or equal to 32256 that are
multiples of 512 are supported.

Whenever PAX cannot create a file or a link when reading an archive or cannot
find a file when writing an archive, or cannot preserve the user ID, group ID, or file mode
when the -p option is specified, a diagnostic message is written to standard error and a
non-zero exit status will be returned, but processing will continue. In the case where
PAX cannot create a link to a file, PAX will not create a second copy of the file. If the
extraction of a file from an archive is prematurely terminated by a signal or error, PAX
may have only partially extracted a file the user wanted. Additionally, the file modes of
extracted files and directories may have incorrect file bits, and the modification and
access times may be wrong.

If the creation of an archive is prematurely terminated by a signal or error, PAX
may have only partially created the archive which may violate the specific archive format
specification. If while doing a copy, PAX detects a file is about to overwrite itself, the
file is not copied, a diagnostic message is written to standard error and when PAX
completes it will exit with a non-zero exit status.

File archival is also described in U.S. Patent 6,003,044 entitled "Method and
Apparatus for Efficiently Backing up Files Using Multiple Computer Systems" by
Pongracz, et al. that is incorporated by reference herein in its entirety.

SUMMARY

A method and system in accordance with one aspect of the invention perform
archival in a computer, by creating a process if an item to be copied is a directory, and
alternatively by copying the item if the item is a file. In one embodiment, the created
process in turn recursively performs the just-described acts, e.g. the act of creating or
copying, with another item located in the just-described directory. Simultaneously (e.g.
in case of two or more processors), or contemporaneously (in case of a single processor),
the parent of the created process repeats the act of creating or copying with another item.
Use of multiple processes speeds up archival, as compared to the use of a single process.
Therefore, depending on the number of directories to be copied, a corresponding number

of processes are created. In one embodiment, the number of created processes is limited

2-

WO 02/084493 PCT/US02/11707

10

15

20

25

30

by a maximum limit specified by an operator. When such a limit is specified, the creating
process waits for the number to fall below the limit, before creating another process.

In accordance with another aspect of the invention, a copy process changes a
default limit on a resource to a maximum limit for the resource prior to copying. For
example, prior to creation of a process, the parent process (or the parent's parent) may
change the limits, so that all processes created thereafter inherit the new limits. Examples
of resources include: the number of open files, the file size, and the amount of available
memory (which may be stack and/or heap). Increase of the limit on such resources helps
in speeding up archival.

In accordance with yet another aspect of the invention, a copy process is speeded
up by transferring data from the file into a temporary buffer, locking the temporary
buffer, and invoking a direct memory access (DMA) process for making a copy from the
temporary buffer. The copy process may be further speeded up by checking for circular
links (such as a symbolic link that points to itself), and eliminating time otherwise spent
by prior art techniques in attempting to copy circular links.

In accordance with still another aspect of the invention, a copy process sends an
email message if a resource at a destination is full, and thereafter waits to be restarted
subsequent to sending the email message. The process may identify an email address for
such a message from a password file, based on an identity of a user that started the
process. A user that receives the email may make appropriate arrangements (e.g. delete
files in a destination disk or load a new disk), and therafter restart the process. On being
restarted, the process recopies a file (from the beginning of the file) if it was in the middle
of copying the file when it stopped.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates, in a high-level block diagram, a system of one embodiment,
for archival of files from multiple sources to multiple destinations.

FIG. 1B illustrates, in an intermediate-level block diagram, use of multiple
processes in the system of FIG. 1A, to perform copying.

FIG. 1C illustrates, in a low-level block diagram, a circular link in a source of
FIG. 1A.

FIG. 2A illustrates, in a high-level flow chart, acts performed in one embodiment
by a process of FIG. 1B.

FIG. 2B illustrates, in a lower level flow chart, acts performed in a copy operation

iltustrated in FIG. 2A.

WO 02/084493 PCT/US02/11707

10

15

20

25

30

DETAILED DESCRIPTION

A method and apparatus in one embodiment of the invention perform archival in a
computer (such as an IBM PC or a Sun workstation), by copying files from one or more
sources 101A-101N (wherein A< T <N, N being the total number of sources) to one or
more destinations 102A-102M (wherein A<J < M, M being the total number of
destinations). In this embodiment, sources 101A-101N can be specified as one or more
lists of file names, and/or as names of directories that are each to be copied as a whole.
Alternatively, the user can identify a list (also called "excluded list") of files and/or
directories that need to be excluded.

Although FIG. 1A illustrates each file source 1011 as a disk and each destination
1027 as another disk, such sources and destinations need not be disks, and instead could
be tapes, or other storage media. Moreover, such sources and destinations can be all on
the same storage media (e.g. on the same disk), rather than being on separate storage
media, as would be apparent to the skilled artisan in view of the disclosure.

When started (by a command to the operating system), a process that implements
the method has access to resources based on limits (called "default limits"), which may be
lower than maximum limits allowed for the process. Therefore, in an optional act, the
process changes the default limits (as illustrated by act 111 in FIG. 2A), to the maximum
limits. Such changes may be implemented in the Unix operating system, by a call to the
system function “getrlimit” to identify the maximum limit, followed by a call to another
system function “setrlimit” to set the maximum limit as the default.

For example, a default limit on open files may be changed from 64 simultaneously
open files to 1024 which is the maximum. In a similar manner other limits, such as stack
size, heap size and file size are changed to their corresponding maximums. In one
implementation, the heap size is not increased to its maximum, but to 10 less than the
maximum, because on some platforms sometimes setting the limits to maximum was not
successful.

Note that the new limits do not affect the current process (that changes the limits),
but instead affect any new processes spawned (or forked) from the current process. In
one implementation, the current process also sets itself as a process group (in an optional
act not shown in FIG. 2A), so that termination of the current process terminates all
processes spawned (or forked) from the current process. Next, in this implementation,
the current process spawns a new process that receives the new limits, and then the

current process waits on completion of the new process.

-4-

WO 02/084493 PCT/US02/11707

10

15

20

25

30

In one implementation, the new process has two loops, an outer loop 112 (FIG.
2A) on all the sources 101A-101N, and an inner loop 113 (FIG. 2A) on all files within
each source 1011. Inside these loops, the process checks (see act 114 of FIG. 2A) if an
item to be copied is a file and if so, simply copies the file (as illustrated by act 115).
During such copying the file may be copied to multiple destinations, if specified.

If the item is not a file, then if the item is a directory, the process checks (see act
116 in FIG. 2A) if the number of processes that are currently executing is less than the
maximum, and if so creates (see act 117) a new process and returns to loop 113, and
otherwise waits (see act 118) until the number falls below the maximum. Therefore, the
new process handles copying of the contents of the just-described directory, in a recursive
manner. Depending on the implementation, such a process can have more loops or less
loops (i.e. other than 2 loops).

At any given time, several processes 103A-103P (wherein A<K <P, P being the
total number of processes) may be performing copy operations, e.g. on a corresponding
number of directories. These copy processes 103A-103P are in addition to (and are
spawned from) the above-described group process (not shown in FIG. 1B). Therefore, it
is not necessary for each of processes 103A-103P to be killed individually, and instead
they are all killed when the group process is killed.

Specifically, in one implementation, copy process 103K takes a source list the
user has given, and opens each source directory, and traverses till the end, the complete
tree. Prior to such tree traversal, copy process 103K first allocates memory for storing
the absolute directory (complete name) and relative directory (current location of child),
for use in identification and management (for use in creating the directory at the
destination) of the files being copied.

Copy process 103K also allocates memory to hold data from each file being
copied. In this implementation, copy process 103K initially requests the operating system
to provide the maximum limit (e.g. 1 GB), and if unsuccessful requests half the
previously requested amount repeatedly, until successful. Depending on the sources
101A-101N, the allocated memory may be larger than the size of each of a majority of
files to be copied. If so, such copying can be performed with a single read operation (per
file) to a source 1011, thereby to minimize the overall input/output (I/O) operations as
compared to a prior art process (such as "CPIO" or "TAR") that copies one block (e.g. of
512 bytes) at a time.

For example, copy process 103K can copy a 1 MB file into the allocated memory

-5-

WO 02/084493 PCT/US02/11707

10

15

20

25

30

in a single read operation (if the allocated memory is larger than 1 MB). If the file size is
larger than the allocated memory, then multiple reads are required, although the number
of such reads is likely to be smaller than in the prior art (depending on the size of the
allocated memory). For example, an 80 MB file may be copied in 4 read operations if the
allocated memory is only 20 MB.

In one implementation, copy process 103K checks that length of a directory name
does not exceed a predetermined maximum length of a path (e.g. 1024). Next, copy
process 103K stores in a stack the absolute and local paths to a current directory (e.g. by
doing "sprintf" into a locally maintained stack, and changing a pointer inside the stack ---
the pointer moves up and down, always pointing to the beginning of the stack).

If an entry in a source directory is a symbolic link, then copy process 103K checks
if the symbolic link is circular (i.e. points back to itself as illustrated in FIG. 1C) and if so
ignores the link. Process 103K does a traversal of the symbolic link, to find where the
link is pointing to. For example, process 103K checks if current directory is pointing to
parent directory, etc. Process 103K also checks if it is going beyond 1024 links when
doing this check. Finally, process 103K does a string compare, and if it is the same file
then it is a circular link. Process 103K also checks if the link is nonexistent or some junk,
by checking if it exists. Process 103K calls "stat" which provides the statistics on the
regular file from the system and "lstat" for link statistics.

If the symbolic link is nonexistent (or junk), copy process 103K blindly preserves
the symbolic link. Since processes 103A-103P operate in parallel, another process 103A
may be writing the file that is found to be "junk". So, process 103K processes only one
directory, and the symbolic link may be to another directory that another process 103A 1s
still copying. Therefore, the pointer may become a valid pointer after process 103A is
completed. Process 103K keeps traversing a symbolic link until it finds (1) a regular file,
(2) circular link or (3) nonexistent file (or junk).

If the symbolic link points to a file or a directory, then a copy of the link is formed
at the destination, and thereafter the following acts are performed (depending on the
nature of the entry). If an entry in a source directory is (or a symbolic link points to) a
file, then copy process 103K copies the file. Prior to copying the file, process 103K
creates a directory at the destination. Specifically, process 103K combines the
destination directory given by the user with relative directory and current directory name,
to form the destination address. During directory creation, or file copying, process 103K

preserves the time stamps and permissions. Also; during the directory creation or file

-6-

10

15

20

25

30

WO 02/084493 PCT/US02/11707

copying if there is an error about insufficient space at the destination, process 103K sends
email to the user and waits for the user (as discussed below in detail). When multiple
destinations are specified, the waiting for user affects copying for all destinations, not just
the destination having insufficient space.

Note that process 103K performs a forcible copy, and if the destination file is
previously there, then process 103K "unlinks" that file and copies the new file. Also;
during the file copy itself, process 103K creates a destination file (if it already exists,
process 103K does "unlink") and then process 103K truncates the file to 0 bytes. Process
103K may get an error saying no space on disk, in which case process 103K sends email
(as described below).

Also unlike a prior art process (such as "CPIO" or "TAR") that copies data one
block (e.g. of 512 bytes) at a time, first into a user's area in memory and then into a kernel
area, copy process 103K copies the data only once, directly into the above-described
allocated memory, and thereafter invokes direct memory accesss (DMA) to copy the data
from the allocated memory. Therefore, prior to any copying, copy process 103K locks
the allocated memory, so that the memory is available during DMA.

If an entry in the source directory is another directory, copy process 103K uses a
limit "npp" on the number of parallel processes (which is specified by the user, and if
user doesn't provide it, defaults to a predetermined number such as 10) to determine if
another process can be created. For example, if the system has eight CPUs, the user may
specify npp to be 8 or 16 (i.e. one process per CPU or two processes per CPU).
Therefore, the process compares "npp" with a variable "cnp" which identifies the "current
number of processes" and starts at 1. If "cnp" is less than "npp" then the new process
forks a child process. So, many processes operate in parallel, to perform copying of
different directories.

In one embodiment, a new process is not created for entries (also called “items”)
in a directory that are normally present and relate to the directory structure, such as the
entries "." for current directory and ".." for parent directory. Also, depending on the
embodiment, a new process may not be created for the directory "lost+found" which is a
directory created by the Unix operating system. Also, a new process may not be created
if the directory is in an excluded list (described above).

As noted above, when the destination disk is full, process 103K sends an email
message to the operator. Specifically, process 103K sends the email to an address

identified in an environmental variable “ALERT_USER?”. If this variable is not set,

-7-

WO 02/084493 PCT/US02/11707

10

15

20

25

30

process 103K identifies the current user whoever is running the process, and identifies
their email address (e.g. in Unix by reading the /etc/password to get user information,
obtain the user's email id from the password file.)

Next, process 103K creates a temporary file for holding the email message. If the
disk doesn't have any space, process 103K creates a file whereever the disk space is
available (e.g. in various directories such as \tmp or home directory of the user). Process
103K only needs about 1 KB to hold the email message. Next, process 103K writes the
mail message into a temporary file, and then invokes a system command (e.g. mailx in
Unix) to send the mail message. Then process 103K removes the file (e.g. by invoking
the unlink function). Process 103K also sends a signal to itself to stop (e.g.
kill(getpid(),SIGSTOP) in Unix). So, user is notified and process 103K is stopped at this
time, and the user must cleanup somewhere to continue the copying. Next, user must
send a continue signal to process 103K, after the user has cleaned up the disk. The user
may issue a command "kill -CONT 'pid™ in the Unix operating system, and then process
103K continues its operation. The "kill" command is a system call that stops or starts the
process. The mail message provides the process id to the user, which the user needs to
restart the process. On restarting, process 103K starts back in the copy function, which
resets the file descriptor to the beginning (the current minus the number of bytes we have
written).

Then process 103K re-writes the whole file (although in another embodiment it
simply continues from where it left off, e.g. using "lseek" system call to move a file
pointer to anywhere inside the file). As process 103K knows the location of where the
last character was written, it can continue. So, the destination file can be grown after
clean up, with the operating system keeping track of where the blocks are located. Each
block has a pointer to the next block, with the operating system updating the pointers.
When asked to write a number of bytes to the disk, the operating system gets the free
blocks, and sets up a pointer from one block to the next block. At the time of writing a
large block (say 1GB block), operating system copies one block at a time.

Note that instead of generating an email message when a destination disk 1s full,
such email messages may be generated even when other errors are encountered, in which
case the appropriate error notification is included in the email message.

In one embodiment, process 103K performs the above-described traversal of a
directory for all the files and directories therein, and if it sees a file it copies and

otherwise forks a process also as noted above. During such a traversal if process 103K

-8-

WO 02/084493 PCT/US02/11707

10

15

20

25

30

reaches maximum limit on the number of directories that can be held in the above-
described stack which contains the absolute and local paths to a current directory.
Process 103K does the same operations but calls itself in a recursive fashion (at the end)
to use the operating system's memory normally used as stack area. Note that the above-
described stack is limited in size because process 103K allocates the rest of the memory
for copying purposes (except for 4 bytes which contain two variables that identify the
source file and destination file that is being copied at any given time).

Therefore, when process 103K runs out of space allocated for the above-described
stack, process 103K uses the operating system's stack space, by making recursive calls,
and traverses through all the directories recursively. Recursive calls are not done until
process 103K runs out of space for the above-described stack. The above-described stack
is used for holding the list of directories that are being traversed (or need to be traversed
depending on the implementation). The remaining allocated memory for process 103K
holds global variables, and a temporary buffer for transferring the data from/to disk. As
noted above, the temporary buffer is locked and DMA process is told to make a copy.

One implementation of the method and system described herein is illustrated in a
software description that is attached hereto as an Appendix (below). This specific
implementation performs a parallel copy, wherein the maximum number N of parallel
process at any given time is a command line option, with one process being created for
each directory. Such implementation can copy a list of directories, and when a -1 option
is used the user can select directories that user wants to copy. Also, in such an
implementation, there can be multiple source directories and multiple destination
directories. Such an implementation may also identify circular links, in order to avoid
looping. Also, such an implementation can preserve time stamp and permissions for the
files being copied. Furthermore, such an implementation may overwrite files at the
destination, unless the owner is not the same.

Moreover, when a destination disk is full in the middle of a copy, this
implementation sends email to ALERT USER, which is an environment variable. If this
varible is not set, the email is optionally sent to the userid who started the copy method,
and the same information may be written to the terminal tty. Also, this implementation
waits until disk space is available. If multiple destinations are selected, and one
destination is out of disk space, this implemntation keeps other destinations waiting until
disk space is available at the one destination. However, in this implementation, if

multiple destinations are given and if those directories are NFS mounted, then if one

9-

WO 02/084493 PCT/US02/11707

10

15

network is slow other directories will also become slow. Such an implementation can be
provided with an option to ignore certain specified files during the copy operation. Also,
such an implementation can be provided with an option to not preserve symbolic links,
but to copy files in place of such links.

Note that various functions and/or software and/or data structures described herein
are not limited to use in an archival process, and instead may be used with other
processes as will be apparent to the skilled artisan. For example, the user notification
feature (e.g. use of an email message) can be used in a process that performs file
download in a local computer from a remote computer. As another example, the user
notification can be used in a disk defragmentation process, or in a process that performs
virus checks as would be apparent to the skilled artisan in view of the disclosure.
Therefore, any process that can run without the user's presence but which requires the
user's assistance in certain situations can use the user notification feature when the
situations arise.

Numerous modifications and adaptations of the embodiments are encompassed by

the attached claims.

-10-

WO 02/084493 PCT/US02/11707

10

15

20

25

30

APPENDIX

Function getmntent() returns one entry from /etc/filesystems for each call.
Returns : 0 if successfully found next entry; >0 if any error; and <0 on Eof. This function
is implemented for platforms which do not provide "getmntent” in their standard libraries.

Function getmnt_ent() returns next mount point. Calls function getmntent().

Function write_mesg() writes a mail message to the operator. Function
write_mesg() receives as inputs the following: a file name to which the message is to be
written, a process id which identifies the process being stopped so that the process can be
restarted by the operator, a source directory that identifies the location where the archival
has been stopped, a destination directory that identifies the location at which the there
was insufficient disk space, and name of the file system at the destination. Function
write_mesg() includes instruction on how to restart the stopped process, €.g. contains the
instruction "type 'kill -CONT pid' to continue copying” wherein pid is replaced with the
process id described above.

Function getDirName() gets parent's directory name for the path. Function
getDirName() receives as input the path and a character "ch" and returns a string till last
occurence of ch.

Function getmpoint() returns mount point for a path by parsing through "." and "\"
or "/" depending on the file system (Unix or Windows). Function getmpoint() receives as
input a pointer to the path. Calls functions getDirName() and getmnt_ent().

Function sendmail() sends mail to the environmental variable ALERT USER (or
if this is null to the operator that started this process) indicating disk is full. Function
sendmail() first finds some temporary location to create a file to hold the message, €.g. in
the "/tmp" directory, or user's home directory. Calls function write_mesg(). Receives as
inputs the source path (which is simply passed to write_mesg), and the destination path
(which is used with functions getDirName and getmpoint to identify the name of
destination file system to function write_mesg).

Function basename() returns a string from the last occurence of the char ch to the
end of a path. Receives as input path and character ch.

Function readln() reads next line from the file descriptor, and copies the line into
buffer and returns the number of bytes read. Specifically, it receives as input the file
descriptor and a pointer to a buffer in which the line is stored, and it provides as output -
the number of bytes read.

Function isFileIsDir() receives as input a path, and returns one of RT_DIR if path

11-

WO 02/084493 PCT/US02/11707

10

15

20

25

30

is a directory, RT_FILE if path is a file, RT_SYM if path is a symbolic link, and
RT_ERR if there is an error or any spacial files or circular link. Checks if path is a
symbolic link by looking at the attributes of the directory entry. For example, checks if
(mode & S_IFMT) == S_IFLNK, wherein mode is of an entry in the directory, and if so,
reads where path is linked to by making a system call readlink() If the path is linked to
".." then returns RT_ERR due to circular link. Change directory to path and if successful
return RT_SYM, and else path is not a sym link to regular file, so change back to
working directory. If the path is linked to "." again return RT_ERR due to circular link.
Also, string compare path with current directory, to see if the file is linked to itself, e.g.
/tmp/foo -> /tmp/foo, and again returns RT_ERR due to circular link. Note that this
function checks for circular links, both as absolute paths, and also as paths relative to the
current directory. Calls function basename() to parse portions of a filename before and
aftera"."

Function copy() copies all files identified by an input variable src_file to a
destination identified by another input variable dest_dirs, and a third input variable srcf
holds the source filename only, and is used when the same source is copied to multiple
destination directories. Loops on a variable "done" while the value is 0 which indicates
that the src_file is a symbolic link. Inside the loop, function copy() checks if the user has
opted to preserve the symbolic link, or copy the file/directory at the destination. If the
user has opted to copy the file instead of a symbolic link, function copy() continues to
loop until it finds a directory/file, or a circular link or a bad link. The default is for
function copy() to keep (i.e. copy) symbolic links, if the user did not specify an option. If
a file is found, function copy() copies the file. If a directory is found, function copy()
copies the entire directory. If a bad link or a circular link is found, function copy() warns
the user. During the looping, checks if the src_file is a symbolic link to relative path, i.e.
compares the src_file to current location (obtained by calling function getDirName), and
if so returns without any copying, but warning the user because a circular link 1s found.
This function also checks if the directory entry has a link attribute, e.g. checks if mode
(as described above in reference to function isFilelsDir) and if it is a link it is necessary to
recurse one more time, else checking if (mode & S_IFMT) == S_IFDIR) in which case
variable done is set to 1 and otherwise to 2. Function copy() also spawns a new process
("child") when done is 1 (because a directory is to be copied), and if the spawn fails
simply sleeps for 5 seconds, and tries again. The new process ("child") performs the

function scanDirs(). Function copy() also checks if the destination disk is full, and if so

-12-

WO 02/084493 PCT/US02/11707

10

15

20

25

30

invokes function sendmail (described above) to wait for disk space to be made available.

Function rec_dir() recursively travels into a directory till the end leaf, and copies
if the leaf is regular file, makes symbolic link if a leaf 1s symlink, and otherwise creates a
directory. One embodiment does not use recursive functioning due to stack growth.
Receives as inputs two names, a relative directory name and an absolute directory name.
Checks if string length of the first name is greater than PATH_MAX (which 1s 1024 in
one embodiment), and if so signals an error and returns. Reads the directory entries till
Eof, and ignores ".", ".." and "lost+found" entries. Calls function isFileIsDir() with each
file name, ignores any errors, and copies the entry if it is a file or a link. Creates
directories at destination. If the destination disk is full, function rec_dir() also invokes
function sendmail (described above) to wait for disk space to be made available.
Function rec_dir () is called by function scanDirs() when there is insufficient memory in
the stack (i.e. overflow of stack), and by function copy() to traverse the directory which is
a symbolic link and if the user opted not to preserve symbolic links.

Function scanDirs() accepts two arguments, abspathofDir and relDirName. This
function has two stacks, one for storing the absolute path of source directory (e.g.
abspathofDir), and another for storing relative path from the source directory (e.g.
relDirName). This function traverses the absolute path of the directory and does the
following: if it finds a file or symbolic link, it calls function copy() to copy the file or
link, and if it finds a directory it pushes the paths (both relative path and absolute path) to
this directory into the stacks. The just-described action of copying or pushing on stack is
repeated for each entry (which can be, e.g. a file, a link or a directory) in the current
directory. This function, before copying, verifies should this file needs to be copied or
not (user can have this file to be excluded). When creating a destination directory, if the
destination disk is full, function scanDirs() also invokes function sendmail (described
above) to wait for disk space to be made available. When all entries in the current
directory have been processed, the stacks are popped (i.e. the values from the stacks are
set to current directory) and the just-described operation is performed on the current
directory. Such processing of directories from the stacks continues until the stacks are
empty. In case of stack overflow, this function (i.e. scanDirs) calls function rec_dir
(discussed in previous paragraph) to proceed from the directory.

Function usage() echoes the user's usage of this tool. This function is called
whenever the user uses the wrong options.

Function exclude_thisfile () performs the following operation. Before copying

13-

WO 02/084493 PCT/US02/11707

10

15

20

25

each file, checks the file name in a specific file which contains a list of filenames to be
excluded when the user uses an exclude option. Using this option slows down the
copying process.

Function make_arglist() checks the command line argument and overwrites the
default values with the user-provided values. For example, the number of processes, by
default is 10 but can be overwritten by the user.

Function increase limits() increases various resource limits, such as stack size,
heap size, number of file open descriptors and file size.

Function copy_srcfile() is called by the function main (described below) with the
source file name and relative path as arguments. This function calls function copy()
(described above) if source file name is a regular file or symbolic link. Ifit is a directory,
this function checks the number of parallel processes running. If the number of parallel
processes is less than a limit "numproc" (which may be set by the user; by default this
number is set to 10), then it forks a child process, and the child process calls function
scandirs (), and the parent process returns to the function main.

Function main() calls function increase_limits () (described above), sets the
process as a group leader, forks a child and waits for the child. Child calls function
make_arglist() (described above), to verify command line arguments, and opens /dev/tty
for writing messages to the user. Child then loops through all the source directories, to
perform copying: scans each source directory and for each entry, calls function
copy_srcfile (which spawns a child and returns as described above). On return, the child
checks if exclude or include option is used. If exclude option is set in the command line
option, then it calls function exclude_thisfile () (described above). If include option (i.e.
copy only listed files) is set, copies only the listed files instead of scanning the source
directory (i.e. reads from the listed files and copies them by calling function
copy_srcfile). If neither the exclude nor the include option are set, then the child calls
function copy_srcfile, thereby to recursively spawn additional child processes if
necessary. On return from the function copy_srcfile, this child waits for all its child

processes to finish.

-14-

WO 02/084493 PCT/US02/11707
CLAIMS

1. A method of copying items implemented in a computer, the method comprising
creating a process if an item to be copied is a directory; and

copying the item if the item is a file.

2. The method of Claim 1 further comprising:

the process performing the act of creating or copying with another item in

the directory.

10 3. The method of Claim 1 further comprising, after the copying:

repeating the act of creating or copying with another item.

4. The method of Claim 1 further comprising, prior to the creating:

comparing a current number of processes started for copying with a limit;

15 and

waiting if the current number is greater than or equal to the limit.

5. The method of Claim 1 further comprising, prior to the copying:

increasing from a default limit on a resource to a maximum limit for the

20 resource.

6. The method of Claim 5 wherein:

the resource is number of open files.

25 7. The method of Claim 5 wherein:

the resource is file size.

-15-

WO 02/084493 PCT/US02/11707
8. The method of Claim 5 wherein:

the resource is memory.

9. The method of Claim 8 wherein:

5 the memory is organized as a stack.

10. The method of Claim 8 wherein:

the memory is organized as a heap.

10 11. The method of Claim 1 wherein the copying comprises:
transferring data from the file into a temporary buffer;
locking the temporary buffer; and

invoking a direct memory access (DMA) process for making a copy from

the temporary buffer.
15
12. The method of Claim 1 further comprising, prior to the copying:
checking if the item is a link to itself; and

performing said copying only if the item is not a link to itself.

20 13. The method of Claim 12 wherein:

the checking includes a string comparison operation.

14. The method of Claim 1 further comprising, during the copying:
sending an email message if a resource at a destination is full.
25
15. The method of Claim 14 further comprising, during the copying:

waiting to be restarted subsequent to sending the email message.
-16-

WO 02/084493 PCT/US02/11707

10

15

20

25

16. The method of Claim 15 wherein said waiting comprises:

sending a signal to self to suspend execution.

17. The method of Claim 14 further comprising, during the copying:

recopying said file from beginning, on being restarted.

18. The method of Claim 14 further comprising:

identifying an email address from a password file based on an identity of a

user that started the process of performing the creating or copying.

19. The method of Claim 1 wherein:

said creating is performed only if said directory is not a current directory

and not a parent directory.

20. A method of copying files implemented in a computer, the method comprising:

increasing from a default limit on a resource to a maximum limit for the

resource; and

copying a file.

21. The method of Claim 20 wherein:

said resource is one of (number of open files, file size, and memory).

22. A method of copying files implemented in a computer, the method comprising:
transferring data from the file into a temporary buffer;
locking the temporary buffer; and

invoking a direct memory access (DMA) process for making a copy from

-17-

WO 02/084493 PCT/US02/11707
the temporary buffer.

23. The method of Claim 22 further comprising, prior to the transferring:
checking if the file is a link to itself; and

5 performing said copying only if the file is not a link to itself.

24. A method of copying files implemented in a computer, the method comprising:
copying a file; and
sending an email message if a resource at a destination is full.
10
25. The method of Claim 24 further comprising:

waiting to be restarted subsequent to sending the email message.

26. The method of Claim 24 further comprising:

15 identifying an email address from a password file based on an identity of a

user that started the copying.

27. A method of copying files, the method comprising:
starting a process for copying a file; and

20 receiving an email message if a resource at a destination is full.

28. The method of Claim 27 further comprising:

changing the resources at the destination in response to the email message;

and

25 restarting the process.

29. An apparatus for copying items, the apparatus comprising

-18-

WO 02/084493 PCT/US02/11707

means for creating a process if an item to be copied is a directory; and

means for copying the item if the item is a file.

30. The apparatus of Claim 29 further comprising;:

5 means for sending an email message if a destination disk 1s full.

31. The apparatus of Claim 29 further comprising:

means for increasing a limit on a resource to maximum.
10 32. The apparatus of Claim 29 wherein said means for copying comprises:
means for using a temporary buffer; and

means for using direct memory access (DMA).

33. The apparatus of Claim 29 further comprising:

15 means for checking if the item is a link to itself.

-19-

WO 02/084493

1/3

AN

-
-
-
-

FILE
SOURCE
A
FILE
SOURCE
I
FILE
SOURCE
N
LOCAL
FILE

DESTINATION

\‘t1/01A ml \‘(—;;N\T/

—_
o
N
>

PROCESSOR —» PROCESSOR

PCT/US02/11707

T

—

REMOVE
FILE
DESTINATION

| mT T L
|

L, PROCESSOR :
L_—

102M J_

cZ> I
| Y =
| 5H§ |
| GEE |
| O ‘Lg |

FIG. 1A __ 2
— 103A _— 103K _—103P
| § [§ 1 4
COPY COPY COPY
PROCESS PROCESS PROCESS
PROCESSOR
FIG. 1B
[—>A—>B —>C—>D—|
FILE SOURCE
FIG. 1C

SUBSTITUTE SHEET (RULE 26)

WO 02/084493

2/3

PCT/US02/11707

/"111

INCREASE PROCESS SYSTEM LIMITS

'

_—112

LOOP (srcA,; srcl; srcN)

’f

'

_— 113

‘———> LOOP (TILL END OF FILES) IN srcl

YES

1/115

COPY FILE

L

IS AFILE?

et

CREATE

PROCESS

FIG. 2A

SUBSTITUTE SHEET (RULE 26)

WO 02/084493 PCT/US02/11707

3/3

START

121

'/-122
ALLOCATE
MEMORY
l .
|
Y /—-123
READ FILE
¢ o
[4

WRITE A FILE TO MULTIPLE DEST

‘ /-125

1§

PRESERVE FILE STATS

FIG. 2B

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/11707

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GO6F 12/00
US CL 707/204

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 707/204, 707/200, 707/206, 710/108,

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EAST, WEST, USPG-PUB, DERWENT, IBM TDB, EPO, JPO

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

13-34, column 1, lines 50-55, column 9, lines 60-67, column 8, lines 52-61,

column 9, lines 59-67 to column 10, lines 1-60, column 12, lines 5-67 to column 18, lines

lines 41-67, column 6, lines 16-30, column 6, lines 46-67 to column 7, lines 1-13

X US 6,378,054 (Karasudani et al) 23 April 2002 (03.25.1998), FIG. 1, FIG. 2, FIG. 3, 1-8, 20-21, 29-30,
- column 12, lines 65-67 to coulumn 13, lines 1-5, column 3, lines 50-67 to column 4, lines | = -=--eceeee-
Y 1-26, column 6, lines 63-67 to column 7, lines 1-8, column 9, lines 60-67, coulumn 3, lines 12-19, 23-28, 30,33

24.
X US 5,652,883 (Adcock) 29 July 1997 (03.23.1995), column 4, lines 8-26 9-10
X US 5,544,346 (Amini et al) 06 August 1996 (12.09.1994), column 3, lines 22-40, cloumn 4, 11, 22

l:l Further documents are listed in the continuation of Box C.

[]

See patent family annex.

* Special categories of cited documents:

“A"” document defining the general state of the art which is not considered to be
of particular relevance

“E” earlier application or patent published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified)

“O” document referring to an oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than the
priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inveative step
when the documeat is taken alone

“yr document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&" document member of the same patent family

Date of the actual completion of the international search

17 May 2002 (17.05.2002)

Date of mailing of the international search report

12 JUN 2002

Name and mailing address of the ISA/US

Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703)305-3230

Authorized officer
2t
Isaac Woo

Jn K Mottt
Telephone No. (703{—305-0081

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

