(12) 实用新型专利

(10) 授权公告号 CN 202391658 U
(45) 授权公告日 2012.08.22

(21) 申请号 201120552399.6
(22) 申请日 2011.12.28
(73) 专利权人 中国科学院工程热物理研究所
地址 100190 北京市海淀区北四环西路 11 号 A202
(72) 发明人 杨科 刘雄 黄宏武 徐建中
(51) Int. Cl.
F03D 9/00 (2006.01)
B63B 35/00 (2006.01)
(ESM) 同样的发明创造已同日申请发明专利

(54) 实用新型名称
一种浮式风电场

(57) 摘要
本实用新型公开了一种浮式风电场，包括外围带有锚定系统的多个风力机和内部不带有锚定系统的多个自平衡的风力机。每个风力机的浮浮平台漂浮在水中以将风力机支撑在水面上方，锚定系统将所述外围风力机锚定到海床或湖床上，相邻两个内部风力机之间通过柔性系链相互联结；联结时系链的一端同一个风力机塔架的中部偏下的位置连接，系链的另一端同相邻的另一个风力机的浮浮平台的靠近底部的位置连接；在所述风电场的外围还布置有至少一圈带有锚定系统的浮式消波装置，所有风力机被所述浮式消波装置包围，所述浮式消波装置通过锚定系统锚定到海床或湖床上，所述外围风力机通过系链同浮式消波装置连接。
1. 一种漂浮式风电场，所述风电场部署在海上或湖水上，包括外围带有锚定系统的多个风力机和内部不带有锚定系统的多个自平衡的风力机，每个风力机包括风轮、塔架、发电机及漂浮平台，所述塔架具有上端以及联到所述漂浮平台的下端，所述风轮与发电机联且所述风轮和发电机靠近所述塔架的上端安装，所述漂浮平台漂浮在水中以将风力机支撑在水面上方，其特征在于：

所述锚定系统耦合到所述外围风力机的漂浮平台以将所述外围风力机锚定到海床或湖床上，为保证所述风力机的动态稳定性，相邻两个风力机之间通过柔性系链相互联结，联结时系链的一端同一个风力机塔架的中部偏下的位置连接，系链的另一端同相邻的另一个风力机的漂浮平台的靠近底部的位置连接。

在所述风电场的外围还布置有至少一圈带有锚定系统的漂浮式消波装置，所有风力机被所述漂浮式消波装置包围，所述漂浮式消波装置通过锚定系统锚定到海床或湖床上，所述外围风力机通过系链同漂浮式消波装置连接。

2. 根据权利要求1所述的漂浮式风电场，其特征在于，所述外围和/或内部风力机为水平轴风力机或垂直轴风力机。

3. 根据权利要求1所述的漂浮式风电场，其特征在于，在所述漂浮平台的靠近底部的位置的外围固设有消波板，用以进一步耗散或吸收波浪能量。

4. 根据权利要求1所述的漂浮式风电场，其特征在于，所述漂浮式消波装置为波能发电装置。

5. 根据权利要求1所述的漂浮式风电场，其特征在于，所述漂浮平台在靠近底部的位置设置有配重，所述配重使所述漂浮平台克服风力而稳定。

6. 根据权利要求1所述的漂浮式风电场，其特征在于，所述锚定系统还包括镇重，所述镇重设置在所述漂浮平台和锚之间，所述漂浮式消波装置和锚之间也设置有镇重。

7. 根据权利要求1所述的漂浮式风电场，其特征在于，所述内部风力机的漂浮平台是自稳定的，即不依靠索链锚定也能稳定的漂浮在海上。

8. 根据权利要求1所述的漂浮式风电场，其特征在于，所述系链的长度使得相邻风力机之间的距离大于一个风力机整体高度的2倍，当风电场遭遇台风等极限情况而出现某个风力机倒塌时不，不会砸到相邻的风力机。

9. 根据上述任一项权利要求所述的漂浮式风电场，其特征在于，所述系链在风力机倾角大于45°时断开或脱离所连接的风力机，从而在极限情况下保护没有倒塌危险的风力机。
说明 书

一种漂浮式风电场

技术领域

【0001】本发明涉及一种漂浮式风电场，尤其是一种海底地质条件要求低、水下作业量小、稳定性和经济性好、且实现方式简单的漂浮式风电场。

背景技术

【0002】随着风电产业的快速发展，风资源的开发利用逐渐由陆地转向海洋，与陆地相比，海上风资源具有风速更大，湍流度更低，风切变更小，风向更稳定的优点。另一方面，海上风电场靠近人口众多、经济发达、能源需求量大的沿海城市，不需要进行长距离高压输电，而且海面可利用面积广阔，不存在土地占用等问题。因此，海上风资源的开发利用受到世界各国越来越多的重视。

【0003】目前，海上风电机一般都安装在固定于海床的平台上，这种固定式海上风力发电平台对海床地质条件要求高，水下作业量大，只适用于潮间带等浅水海域。对于较深海域，以及离岸较远的海域，漂浮式平台是一个较好的选择。但是，采用漂浮式平台需要在海床上安装一定数量的锚，对于一个漂浮式风电场，如果每台风力机下方都安装锚，成本将会很高，而且需要对大片深水海床进行地质勘探，从而进一步提高了漂浮式海上风电的成本，也限制了漂浮式风力发电所能应用的海域。

发明内容

【0004】（一）要解决的技术问题

【0005】为了解决现有技术中，漂浮式风电场需要在深水海床安装大量的锚、海底作业量大、对海底地质条件要求高、经济性差等不足，本发明提出一种新型的漂浮式风电场，这种风电场是一种对海底地质条件要求低、水下作业量小、稳定性和经济性好、且实现方式简单的漂浮式风电场，尤其适合风电机数量较多的适用于近海或者靠近深海的大型海上漂浮式风电场，对于海上风能资源的利用具有重大实用意义。

【0006】（二）技术方案

【0007】针对上述所要解决的技术问题，本发明所采取的技术方案如下：

【0008】一种部署漂浮式风电场的方法，包括：

【0009】使多个离岸漂浮式风力机漂浮到所需离岸位置，将所述多个离岸漂浮式风力机进行阵列布置形成漂浮式风电场，在每组至少一圈漂浮式消波装置将所述漂浮式风电场包围，所述漂浮式消波装置和所述漂浮式风电场外围的风力机分别使用锚定系统锚定到海床或湖床上，所述漂浮式消波装置和所述漂浮式风电场外围的风力机之间使用系链连接，相邻的两个风力机之间使用系链相互连接，连接时系链的一端同一个风力机的塔架的中部偏下的位置相连，系链的另一端同另一个相邻的风力机的漂浮平台的靠近底部的位置相连。

【0010】根据本发明的一方面，提供了一种漂浮式风电场，所述风电场部署在海上或湖泊上，包括：

【0011】外围带有锚定系统的多个风力机和内部不带有锚定系统的多个风力机，每个风力
机包括风轮、塔架、发电机及漂浮平台，所述塔架具有上端以及耦联到所述漂浮平台的下端，所述风轮与发电机耦联且所述风轮和发电机靠近所述塔架的上端安装，所述漂浮平台漂浮在水中以将风力机支撑在水面上方，其特征在于：

【0012】所述锁定系统耦合到所述外围风力机的漂浮平台以将所述外围风力机锁定到海床或湖床上；为保证所述内部风力机的动态稳定性，相邻两个风力机之间通过柔性系链相互联结，联结时系链的一段同一个风力机塔架的中部偏下的位置连接，系链的另一端同相邻的另一个风力机的漂浮平台的靠近底部的位置连接；

【0013】在所述风电场的外围布置有至少一圈带有锁定系统的漂浮式消波装置，所有风力机被所述漂浮式消波装置包围在其中，所述漂浮式消波装置通过锁定系统被锁定到海床或湖床上，所述外围风力机通过系链同漂浮式消波装置连接。

【0014】通过本发明的上述技术方案可知，漂浮式风电场中外围的风力机使用锁定系统固定到海床或湖床上，内部的风力机通过系链相互连接，由于本发明的锁定系统和系链布置方式，如果内部的某个风力机朝一个方向发生偏移或倾斜，相反方向的索链就会产生一个反方向的拉力或转矩促使保持原来的位置和竖直状态，从而保证了所述内部风力机的动态稳定性，外围的风力机则通过锁定系统保持稳定。本发明的上述结构安排可以在减少锁定系统的前提下，而保持风场中全部风力机的稳定性。同时，由于漂浮式消波装置的存在，将所有漂浮式风力发电机围在中间，波浪经过时，能量被耗散或吸收，能够大大消除波浪对风电场的影响，同时还能方便的利用波浪能发电，增加漂浮式风电场的经济效益。

【0015】优选的，所述外围和/或内部风力机为水平轴风力机或垂直轴风力机。

【0016】优选的，在所述漂浮平台的靠近底部的位置的外围固设有消波板，用以进一步耗散或吸收波浪能量。

【0017】优选的，所述漂浮式消波装置为波浪能发电装置。

【0018】优选的，所述漂浮平台在靠近底部的位置设置有配重，所述配重使所述漂浮平台克服波力而稳定。

【0019】优选的，所述锁定系统还包括镇重，所述镇重设置在所述漂浮平台和锚之间，所述漂浮式消波装置和锚之间也设置有镇重。

【0020】优选的，所述内部风力机的漂浮平台是自稳定的，即不依靠索链锁定也能稳定的漂浮在海上。

【0021】优选的，所述系链的长度使相邻风力机之间的距离大于一个风力机整体高度的2倍，当风电场遭遇台风等极限情况而出现某个风力机倒塌时，不会碰到相邻的风力机。

【0022】优选的，所述系链在风力机倾角大于45°时断开或脱离所连接的风力机，从而在极限情况下保护没有倒塌危险的风力机。

【0023】（三）有益效果

【0024】本发明与现有技术常规的漂浮式风电场相比，本发明只需要安装少量的锚即可维持所有风力机的稳定性，对海底地质条件要求低，水下作业量小，稳定性和经济性好，且实现方式简单。通过在风电场外网布置至少一圈漂浮式消波装置，减小了波浪对风力发电系统的冲击和侵害，而且可以方便的利用波浪能发电，提高整个系统的经济性。

附图说明
具体实施方式

[0028] 为使本发明的目的、技术方案和优点更加清楚明白，以下结合具体实施例，对本发明进一步详细说明。

[0029] 如图1所示，漂浮式风电场100部署在海上，包括外围带有锚定系统的多个风力机1和内部不带有锚定系统的多个风力机1a，每个风力机1、1a包括风轮（图中未标示）、塔架2、发电机（图中未标示）及漂浮平台4。塔架2具有上端以及耦联到漂浮平台4的下端，所述风轮与发电机耦联且所述风轮和发电机靠近所述塔架2的上端安装，所述漂浮平台4漂浮在海面3上以将风力机支撑在海面3上方，锚定系统包括锚6和索链5，锚定系统将外围风力机1锚定到海床7上；为保证所述内部风力机1a的动态稳定性，相邻两个风力机之间通过柔性系链8相互联结，联结时系链8的一端同一个风力机塔架2的中部偏下的位置连接，系链8的另一端同相邻的一个风力机的漂浮平台4的靠近底部的位置连接，通过这样的方式使得内部风力机1a不需要锚定到海床上，从而使整个风电场100的所有风力机1、1a相互连接在一起；在所述风电场100的外围还布置有至少一圈带有锚定系统的漂浮式消波装置9，所有风力机1、1a被所述漂浮式消波装置9包围，所述漂浮式消波装置9通过锚定系统锚定到海床7上，所述外围风力机1通过系链8同漂浮式消波装置9连接。

[0030] 在图2所示第一种风电场布置示意图中，处于风电场100外围的风力机1用灰色的圆圈表示，外围的每一个漂浮式风力机1都锚定到海床7上；位于内部的漂浮式风力发电系统1a通过系链8与周围的漂浮式风力机相连，连接方法如图1所示，内部的漂浮式风力发电系统不需要锚定到海床上。外围风力机1的漂移或倾斜会受到自身的锚和相邻风力机的限制，内部风力机1a的漂移或倾斜会受到相邻风力机的限制，并最终传递到外围风力机的锚上。

[0031] 图3所示为第二种风电场布置示意图，在这个实施例中，所有风力机采取交错排列的方式。

[0032] 在其他的实施例中，在所述漂浮平台4的靠近底部的位置的外围固设有消波板，用以进一步耗散或吸收波浪能量。所述漂浮式消波装置为波浪能发电装置。这种漂浮式波浪能发电装置属于已有的成熟技术，并具有多种形式；例如，一种是由一系列活塞式发动机和发电机构成的漂浮式波浪能发电装置，可以应用于本发明作为漂浮式消波装置。在为漂浮式风力发电系统抵挡波浪冲击的同时产生电能，提高整个系统的稳定性和经济性；在应用时，活塞式发动机与发电机相间布置，排列成一排，活塞式发动机与发电机之间的距离为海浪波长的一半，当波浪经过时，活塞式发动机和发电机交替处于波峰和波谷，产生相对运动，从而使气缸中的空气不断膨胀、压缩，推动发电机发电。所述漂浮平台4在靠近底部的位置设置有配重，所述配重使所述漂浮平台4克服风力而稳定。所述锚定系统还包括镇重，所述镇重设置在所述漂浮平台和锚之间，所述漂浮式消波装置和锚之间也设置有镇重。所述内部风力机的漂浮平台是自稳定的，即不依靠索链锚定也能稳定的漂浮在海上。所述系链的长度使相邻风力机之间的距离大于一个风力机整体高度的2倍，当风电场遭遇台风等
极限情况而出现某个风力机倒塌时，不会砸到相邻的风力机。所述系链在风力机倾角大于45°时断开或脱离所连接的风力机，从而在极限情况下保护没有倒塌危险的风力机。此外，在上述实施例中，所有的风力机都可以是水平轴风力机，也可以是垂直轴风力机，对于风力机的结构形式并没有特殊的限定。

通过以上步骤实施，利用目前普遍使用的风力机叶片模态测试条件和设备，结合数值仿真计算，获得了可以描述叶片动态情况下的频率参数。

以上所述的具体实施例，对本发明的目的、技术方案和有益效果进行了进一步详细说明。所应理解的是，以上所述仅为本发明的具体实施例而已，并不用于限制本发明，凡在本发明的精神和原则之内，所做的任何修改、等同替换、改进等，均应包含在本发明的保护范围之内。
图 3