Abstract:
The invention encompasses pet food compositions and methods for the treatment and/or prevention of diseases or disorders in companion animals, for example, for the treatment or obesity, including administering a pet food composition including pyruvic acid or a salt thereof to a companion animal, or lipoic acid or salt thereof and pyruvic acid or a salt thereof to a companion animal. The invention encompasses pet food compositions and methods for managing weight including administering a pet food composition including pyruvic acid or a salt thereof, or lipoic acid or a salt thereof and pyruvic acid or a salt thereof to a companion animal to a companion animal.
COMPANION ANIMAL COMPOSITIONS INCLUDING PYRUVIC ACID AND SALTS THEREOF AND METHODS OF USE THEREOF

BACKGROUND OF THE INVENTION

An important indicator of animal health is the body composition of the animal. An unhealthy diet and/or an unhealthy lifestyle can result in the animal having an unhealthy proportion of body fat, particularly in relation to lean muscle in the body. If the amount of body fat is in excess of 30% by weight, it indicates that the animal is unhealthy particularly if the amount of body fat is in excess of 35% by weight.

SUMMARY OF THE INVENTION

The inventors have developed food compositions and methods of use comprising compositions for treating or preventing disorders in animals.

Accordingly, the invention encompasses companions pet food compositions meeting ordinary nutritional requirements of a pet and including an effective amount of pyruvic acid or a salt thereof, or effective amounts of lipoic acid or a salt thereof and pyruvic acid or a salt thereof.

In all of these methods, it is desirable to administer the antioxidant or mixture thereof in an amount effective to promote or maintain the healthy body composition.

Another embodiment encompasses methods for maintaining or promoting a healthy body composition, for example, loss of weight or body fat, increased percentage of lean muscle mass in a companion animal which includes feeding the animal a composition including pyruvic acid or a salt thereof, or lipoic acid or a salt thereof and pyruvic acid or a salt thereof in an amount effective to promote or maintain the healthy body composition.

DETAILED DESCRIPTION OF THE INVENTION

General Description

The invention generally encompasses compositions comprising pyruvic acid or a salt thereof, or lipoic acid or a salt thereof and pyruvic acid or a salt thereof.

In certain embodiments, the pyruvic acid or a salt thereof is present in the composition in an amount of 5 ppm to 20000 ppm.
In certain embodiments, the pyruvic acid or a salt thereof is present in the composition in an amount of 10 ppm to 10,000 ppm.

In certain embodiments, the pyruvic acid or a salt thereof is present in the composition in an amount of 50 ppm to 5000 ppm.

In certain embodiments, the pyruvic acid or a salt thereof is present in the composition in an amount of 100 ppm to 2500 ppm.

In certain embodiments, the pyruvic acid or a salt thereof is present in the composition in an amount of 5 ppm to 5000 ppm.

In certain embodiments, the lipoic acid or a salt thereof is present in the composition in an amount of 10 ppm to 4000 ppm.

In certain embodiments, the lipoic acid or a salt thereof is present in the composition in an amount of 50 ppm to 5000 ppm.

In certain embodiments, the lipoic acid or a salt thereof is present in the composition in an amount of 100 ppm to 2000 ppm.

In certain embodiments, the lipoic acid or a salt thereof is present in the composition in an amount of 500 ppm to 1000 ppm.

In certain embodiments, the composition further comprises protein, fat, carbohydrate, fiber, and combinations thereof.

In certain embodiments, the composition is a dog food.

In certain embodiments, the composition is a cat food.

In certain embodiments, the composition is a food, a nutritional diet, a supplement, an animal treat, or a toy.

In certain embodiments, the composition is in the form of a moist food.

In certain embodiments, the composition is in the form of a dry food.

In another embodiment, the invention encompasses methods for managing weight in a companion animal, which comprises administering to the companion animal a composition comprising an effective amount of pyruvic acid or a salt thereof, or effective amounts of lipoic acid or a salt thereof and pyruvic acid or a salt thereof.
The term "companion animal" used in the present invention includes any non-human animal suitable for being kept as a pet by humans including a dog, a cat, and a rodent. All embodiments of the invention are preferably for the treatment of cats and/or dogs.

The term "dog" includes those dogs which are companion animals such as *Canis familiaris*, working dogs and the like. The term dog is synonymous with the term canine.

The term "cat" includes those cats which are companion animals known as domestic cats or house cats.

The term "rodent" includes, but is not limited to, hamsters, mice, rats, guinea pigs, gerbils, rabbits, hedge hogs, ferrets, chinchillas etc.

All percentages expressed herein are by weight of the composition on dry matter basis unless specifically stated otherwise.

Compositions of the Invention

One embodiment of the invention encompasses compositions for companion animals including pyruvic acid or a salt thereof, or lipoic acid or a salt thereof and pyruvic acid or a salt thereof.

As used herein, the term "lipoic acid or a salt thereof" includes, but is not limited to, for example, alpha-lipoic acid, a racemic mixture of lipoic acids, a lipoate salt, ester, amide or derivative thereof, for example as described in U.S. patent number 5,621,117. In various embodiments, the lipoic acid can be administered in a composition comprising a wet or dry food composition, which may be in the form of a moist food, dry food, supplement or treat.

The lipoic acid may be incorporated therein or on the surface of any food composition, such as, for example, a layer, or on the surface of the food composition, such as by spraying or precipitation thereon or may be added to the diet by way of snack, supplement, or by spraying or precipitation thereof or may be added to the diet in a way of snack, supplement, treat or in a liquid portion of the diet such as water or another fluid. The lipoic acid may be administered as a powder, solid or as a liquid including a gel. An important aspect is that the animal be provided an effective amount of the lipoic acid to provide a positive effect.

Typically, the source of lipoic acid is present in the composition in an amount of up to an amount which remains non-toxic to the animal. Typical maximum quantities can vary from 10 to 5000 ppm. In certain embodiments, the range is from 100 ppm to 2500 ppm.

As used herein, the term "pyruvic acid or a salt thereof" includes, but is not limited to, for example, pyruvic acid or carboxylate anion of pyruvic acid known as pyruvate. In various embodiments, the pyruvic acid or a salt thereof can be administered in a composition comprising a wet or dry food composition, which may be in the form of a moist food, dry food, supplement, or treat. The pyruvic acid or a salt thereof may be incorporated therein or on the supplement or treat. The pyruvic acid or a salt thereof may be incorporated therein or on the
surface of any food composition, such as, by spraying or precipitation thereon or may be added to the diet by way of snack, supplement, treat or in the liquid portion of the diet such as water or another fluid. The pyruvic acid or a salt thereof may be administered as a powder, solid or as a liquid including a gel. An important aspect is that the animal be provided an effective amount of the pyruvic acid or a salt thereof to provide a positive effect. Typically, the source of pyruvic acid or a salt thereof is present in the composition in an amount of up to an amount, which remains non-toxic to the animal. Typical maximum quantities can vary from 10 to 10000 ppm. In certain embodiments, the range is from 100 ppm to 5000 ppm.

As used herein, the term "salt" or "salt thereof" refers to acidic groups that may be present in compounds used in the present compositions. Lipoic acid and pyruvic acid are acidic in nature and are capable of forming base salts with various pharmacologically acceptable cations. Examples of such salts include alkali metal or alkaline earth metal salts and, particularly, calcium, magnesium, sodium, lithium, zinc, potassium, and iron salts.

In various embodiments, a food composition comprising lipoic acid provides a substantially nutritionally complete diet for the intended recipient animal. A "nutritionally complete diet" is a diet that includes sufficient nutrients for maintenance of normal health of a healthy animal on the diet.

The quantity of lipoic acid can vary from 5 ppm to 5000 ppm, (10 ppm to 4000 ppm, 50 ppm to 3000 ppm, 100 ppm to 2000 ppm, 500 ppm to 1000 ppm. In various embodiments, the range of lipoic acid that can be administered dogs is 150 ppm to 4500 ppm. In various embodiments, the range of lipoic acid that can be administered cats is 65 ppm to 2600 ppm. In certain illustrative embodiments, quantities can vary from 5 ppm to an amount which remains non-toxic to the pet. In other embodiments, a range is from 0 ppm to 200 ppm.

The compositions of the invention include pyruvic acid or salt thereof in an amount effective to treat or prevent a disorder in a companion animal. Generally, the amount effective in the composition includes a source of pyruvic acid or salt thereof in an amount of from 5 ppm to 20000 ppm, 10 ppm to 10000 ppm, 50 ppm to 5000 ppm, 100 ppm to 3000 ppm. In certain embodiments, the pyruvic acid or salt thereof is in an amount of 100 to 3000 ppm, and in other embodiments, the pyruvic acid or salt thereof is in an amount of approximately 2000 ppm.

The combination of lipoic acid or salt thereof and pyruvic acid or salt thereof is present at a concentration that is not deleterious to the intended animal's health. Thus, for example, the lipoic acid or salt thereof is present at a concentration that does not cause undesirable or toxic effects, acid or salt thereof is present at a concentration that does not cause undesirable or toxic effects.
The invention is based upon the discovery that adding a combination of lipoic acid or salt thereof and pyruvic acid or salt thereof to a composition for consumption by a companion animal provides treatment for obesity. Adding a combination of lipoic acid or salt thereof and pyruvic acid or salt thereof to a composition for consumption also decreases body fat and increases lean muscle mass.

The composition can be a liquid or a solid food. When the composition is a liquid, the lipoic acid or salt thereof and pyruvic acid or salt thereof can be admixed with other components, where the composition is solid, the lipoic acid or salt thereof and pyruvic acid or salt thereof may be coated on the composition, incorporated into the composition, or both.

In various embodiments, the lipoic acid or salt thereof and pyruvic acid or salt thereof may be added to the animal’s food by a compounding manufacturer at a site or by an animal’s caregiver prior to feeding the animal. In various embodiments, the lipoic acid or salt thereof and pyruvic acid or salt thereof may be added during the processing of animal’s food, such as during and/or after mixing of other components of the composition that is then packaged and made available to consumers. Such processing may include extrusion, canning, baking, and the like or any other method or process of producing pet foods that is known in the art. In various embodiments, the lipoic acid or salt thereof and pyruvic acid or salt thereof may be contributed by a natural source like an animal or plant component, or the lipoic acid or salt thereof and pyruvic acid or salt thereof may be contributed by a synthetically derived source, or the lipoic acid or salt thereof and pyruvic acid or salt thereof may be contributed by a mixture of natural and synthetic sources.

The compositions in addition to the lipoic acid or salt thereof and pyruvic acid or salt thereof include at least one component suitable for consumption by a companion animal including, but not limited to, fats, carbohydrates, proteins, fibers, nutritional balancing agents such as vitamins, minerals, and trace elements, and mixtures thereof. One of ordinary skill in the art can select the amount and type of food ingredients for a specific food based upon dietary requirements of the animal, for example, the animal’s species, age, size, weight, health, and function.

The food ingredient part of the food composition can include up to about 100% of any particular food ingredient or can include a mixture of food ingredients in various proportions. In certain embodiments, the food composition includes a combination of food ingredients in amounts of about 0 wt. % to 50 wt. % fat, 0 wt. % to 75 wt. % carbohydrate, 0 wt. % to 95 wt. % protein.
%. protein, 0 wt. % to 40 wt. % dietary fiber, and 0 wt. % to 15 wt. % of one or more nutritional balancing agents.

In certain embodiments, the fat and carbohydrate food ingredient is obtained from a variety of sources such as animal fat, fish oil, vegetable oil, meat, meat products, grains, other animal or plant sources, and mixtures thereof. Grains include wheat, corn, barley, and rice.

In certain embodiments, the fiber food ingredient is obtained from a variety of sources such as vegetable fiber sources; for example, cellulose, beet pulp, peanut hulls, and soy fiber.

In certain embodiments, the nutritional balancing agents are obtained from a variety of sources known to skilled artisans; for example, vitamin and mineral supplements and food ingredients. Vitamins and minerals can be included in amounts required to avoid deficiency and maintain health. These amounts are readily available in the art. The National Research Council (NRC) provides recommended amounts of such nutrients for farm animals. See, e.g., Nutrient Requirements of Swine (10th Rev. Ed., Nat’l Academy Press, Wash., D.C., 1998), Nutrient Requirements of Poultry (9th Rev. Ed., Nat’l Academy Press, Wash., D.C., 1994), Nutrient Requirements of Horses (5th Rev. Ed., Nat’l Academy Press, Wash., D.C., 1989). The American Feed Control Officials (AAFCO) provides recommended amounts of such nutrients for dogs and cats. See American Feed Control Officials, Inc., Official publication, pp. 129-137 (2004). Vitamins generally useful as food additives include vitamin A, vitamin B1, vitamin B2, vitamin B6, vitamin B12, vitamin D, biotin, vitamin K, folic acid, inositol, niacin, and pantothenic acid. Minerals and trace elements useful as food additives include calcium, phosphorus, sodium, potassium, magnesium, copper, zinc, chloride, iron, selenium, iodine, and other.

In certain embodiments, the food compositions may contain additional ingredients such as vitamins, minerals, fillers, palatability enhancers, binding agents, flavors, stabilizers, emulsifiers, sweeteners, colorants, buffers, salts, coatings, and the like known to skilled artisans. Stabilizers include substances that tend to increase the shelf life of the composition.
such as preservatives, synergists, and sequestrants, packaging gases, stabilizers, emulsifiers, thickeners, gelling agents, and humectants. Examples of emulsifiers and/or thickening agents include gelatin, cellulose ethers, starch, starch esters, starch ethers, and modified starches.

Specific amounts for each composition component, food ingredient, and other ingredients will depend on a variety of factors such as the particular components and ingredients included in the composition; the species of animal; the animal’s age, body weight, general health, sex, and diet; the animal’s consumption rate; the type of disease or condition being treated; and the like. Therefore, the component and ingredient amounts may vary widely and may deviate from the preferred proportions described herein.

In one illustrative embodiment, the composition may, for example, in addition to the hair loss acid or salt thereof and pyruvic acid or salt thereof also include at least one of the following:

(a) 0% to 75% carbohydrate,

(b) 2% to 50% fat,

(c) 0% to 40% dietary fiber, and

(d) 0% to 15% of one or more nutritional balancing agents.

The compositions can contain additional ingredients intended to maintain or improve the health of the animal, for example, supplements, medications, herbs, holistic drugs, and compositions, and the like.

The composition of the invention may include one or more additional ingredients to prevent or treat one or more diseases or conditions. The component in the diet, which accomplishes this, is an antioxidant or mixture thereof. An antioxidant is a material that quenches a free radical. Examples of such materials include foods such as Ginkgo Biloba, citrus pulp, grape pomace, tomato pomace, carrot and spinach, all preferably dried as well as citrus pulp, grape pomace, tomato pomace, carrot and spinach, all preferably dried as well as various other materials such as beta-carotene, selenium, coenzyme Q10 (ubiquinone), lutein, tocotrienols, soy isoflavones, S-adenosylmethionine, glutathione, taurine, N-acetylcysteine, Vitamin E, Vitamin C, alpha-lipoic acid, 1-carnitine and the like. Vitamin E can be administered as a tocopherol or a mixture of tocopherols and various derivatives thereof such as esters like vitamin E acetate, succinate, palmitate, and the like. The alpha form is preferable but beta, gamma and delta forms can be included. The d form is preferable but racemic mixtures are acceptable. The forms and derivatives will function in a Vitamin E-like activity after ingestion by the pet. Vitamin C can be administered in this diet as ascorbic acid and its various derivatives thereof such as calcium phosphate salts, cholesteryl salt, 2-monophosphate, and the like which will function in a vitamin C-like activity after ingesting by the pet. They can...
be in any form such as liquid, semisolid, solid and heat stable form. L-carnitine can be administered in the diet and various derivatives of carnitine such as the salts such as the hydrochloride, fumarate and succinates, as well as acetylated carnitine, and the like can be used.

[0052] The quantities administered in the diet, all as wt% (dry matter basis) of the diet, are calculated as the active material, per se, that is measured as free material. The maximum quantities administered should not bring about toxicity. At least about 100 ppm or at least about 150 ppm of Vitamin E can be used. A preferred range of 500 to 1,000 ppm can be employed. Although not necessary, a maximum of about 2000 ppm or about 1500 ppm is generally not exceeded. With respect to Vitamin C at least about 50 ppm is used, desirably at least about 75 ppm and more desirably at least about 100 ppm. A preferred range is from 100 to 200 ppm.

For l-carnitine about 50 ppm, desirably about 200 ppm, more desirably about 300 ppm for canines are a useful minimum. For felines, slightly higher minimums of l-carnitine can be employed, such as about 100 ppm, 200 ppm, and 500 ppm. A non-toxic maximum quantity can be employed, for example, less than about 5,000 ppm. For canines, lower quantities can be employed, for example, less than about 5,000 ppm. For canines, a preferred range is 200 ppm to 400 ppm. For felines, a preferred range is 400 ppm to 600 ppm. Beta-carotene at 1-15 ppm can be employed. Selenium at 0.1 up to 5 ppm can be employed. Lutein at least about 5 ppm can be employed. Tocotrienols at least about 25 ppm can be employed. Coenzyme Q10 at least about 25 ppm can be employed. S-adenosylmethionine at about 1000 ppm can be employed. Taurine at least about 1000 ppm can be employed. Soy isoflavones at least 25 ppm can be used. N-acetyl cysteine at least about 50 ppm can be used. Glutathione at least about 50 ppm can be used. Gingko Biloba at least 50 ppm of extract can be used. [0053] In certain embodiments, the compositions further include an effective amount of at least one substance selected from the group consisting of glucosamine, chondroitin, chondroitin sulfate; methyl sulfonylethanesulfonyl methanesulfonates (‘MSM’), creatine, antioxidants, Perna canaliculata, omega-3 fatty acids, omega-6 fatty acids and mixtures thereof.

[0054] In certain embodiments, the composition can be a treat. Treats include compositions that are given to an animal to entice the animal to eat during a non-meal time, for example, dog bones for canines. Treats may be nutritional wherein the composition includes one or more key nutrients or and may have a food-like composition. Non-nutritional treats encompass any other nutrients or and may have a food-like composition. Non-nutritional treats encompass any other
treats that are non-toxic. The composition or components are coated onto the treat, incorporated into the treat, or both. Treats of the invention can be prepared by an extrusion, or baking process similar to those used for dry food. Other processes also may be used to either coat the composition on the exterior of existing treat forms or inject the composition into an existing treat form.

In certain embodiments, the composition can be a toy. Toys include chewable toys such as artificial bones. The lipoic acid or a salt thereof can form a coating on the surface of such artificial bones. The lipoic acid or a salt thereof can form a coating on the surface of the toy or on the surface of a component of the toy. The lipoic acid or a salt thereof can be incorporated partially or fully throughout the toy, or both. In one embodiment, the lipoic acid or a salt thereof is orally accessible by the intended user. There are a wide range of suitable toys currently marketed, for example, U.S. Pat. No. 5,339,771, U.S. Pat. No. 5,419,283, and references disclosed therein. This invention provides both partially consumable toys, for example, toys including plastic components, and fully consumable toys, for example, rawhides and various artificial bones.

The invention preferably provides toys for use by a dog or a cat.

Preparation of the Compositions of the Invention

The compositions of the invention may be prepared in a canned or wet form using conventional food preparation processes known to skilled artisans. Typically, ground animal proteinaceous tissues are mixed with the other ingredients such as fish oils, cereal grains, balancing ingredients, special-purpose additives (e.g., vitamin and mineral mixtures, inorganic salts, cellulose and beet pulp, bulking agents, and the like), the lipoic acid or a salt thereof and other conventional ingredients. The mixture is heated while stirring to about 212 °F. Temperatures outside this range are acceptable but may be commercially impractical without use of other processing aids. When heated to the appropriate temperature, the material will typically be in the form of a thick liquid. The thick liquid is filled into cans. A lid is applied, and the container is hermetically sealed. The sealed can is then placed into conventional equipment designed to sterilize the contents. Sterilization is usually accomplished by heating to temperatures of greater than about 230 °F for an appropriate time depending on the temperature used, the composition, and similar factors.

The compositions of the present invention can be added to the food compositions before, during, or after preparation.
Food compositions may be prepared in a dry form using conventional processes known to skilled artisans. Typically, dry ingredients such as animal protein, plant protein, grains, and the lipoic acid or salt thereof and pyruvic acid or salt thereof are ground and mixed together. Moist or liquid ingredients, including fats, oils, animal protein, water, and the like are then added to and mixed with the dry mix. The mixture is then processed into kibbles or similar dry pieces. Kibble is often formed using an extrusion process in which the mixture of dry and wet ingredients is subjected to mechanical work at a high pressure and temperature, and forced through small openings and cut off into kibble by a rotating knife. The wet kibble is then dried through small openings and cut off into kibble by a rotating knife. The wet kibble is then dried and optionally coated with one or more topical coatings such as flavors, fats, oils, powders, and the like. Kibble also can be made from the dough using a baking process, rather than extrusion, wherein the dough is placed into a mold before dry-heat processing. The food compositions can be in the form of a treat using an extrusion or baking process similar to those described above for dry food of a toy such as those disclosed in U.S. Patent Nos. 5,339,771 and 5,419,283.

In certain embodiments, the lipoic acid or salt thereof and pyruvic acid or salt thereof can be added to the food compositions before, during, or after preparation.

Methods of Treating or Preventing Disorders with Compositions of the Invention

The invention also encompasses methods of treating or preventing certain disorders by administering a therapeutically or prophylactically effective amount of a composition including pyruvic acid or salt thereof, or lipoic acid or salt thereof and pyruvic acid or salt thereof to a companion animal in need thereof.

Another embodiment of the invention encompasses methods of treating or preventing an unhealthy body composition in a companion animal. In one embodiment, the method of treating or preventing an unhealthy body composition in a companion animal includes feeding the animal a composition including the pyruvic acid or salt thereof, or lipoic acid or salt thereof and pyruvic acid or salt thereof in an amount effective to treat or prevent the unhealthy body composition.

The invention also encompasses the use of a composition including the pyruvic acid or salt thereof, or lipoic acid or salt thereof and pyruvic acid or salt thereof for the manufacture of a medicament for the treatment or prevention of an unhealthy body composition in a companion animal.

Another embodiment, an animal that is suffering from an unhealthy body composition is fed the composition of the invention for a period until the animal reaches the desired body composition. The period is preferably at least 4 weeks, more preferably at least 6 weeks.
weeks, and most preferably at least 8 weeks. This period depends on the animal’s body composition and the desired optimal body composition trying to be achieved. As used herein, an animal that is suffering from an unhealthy body composition has a body fat amount in excess of 30% by weight, and an unhealthy body composition includes a body fat:lean muscle weight ratio greater than 30:60. In other words, the body fat amount is greater by weight, there is less by weight of muscle and the remaining 2% is bone. On the other hand, a healthy body composition includes a body fat:lean muscle weight ratio of around 20:78, indicating 20% fat and 78% lean muscle by weight. These values can be determined using DEXA (dual-energy x-ray absorptiometry).

Cats fed a food containing the pyruvic acid or salt thereof, or lipoic acid or salt thereof and pyruvic acid or salt thereof lost significantly more weight, body fat, and increased percentage lean and percent bone-mineral content compared to a similar control food. Dogs fed a food containing pyruvic acid or salt thereof, or lipoic acid or salt thereof and pyruvic acid or salt thereof alone had a higher percentage lean and less percent body fat. In addition, dogs fed the pyruvic acid or salt thereof, or lipoic acid or salt thereof and pyruvic acid or salt thereof alone had greater bone mineral density compared to the other foods, and less total fat than the control food and fish oil. This data suggests pyruvic acid or salt thereof, or lipoic acid or salt thereof and pyruvic acid or salt thereof has the unique ability to increase fat loss and improve body composition, in ad libitum fed dogs and cats.

In another aspect, the present invention provides a means for communicating information or instructions for treating or preventing an unhealthy body composition in a companion animal. The communicating means includes a document, digital storage media, optical storage media, audio presentation, or visual display containing the information or instructions. Preferably, the communication is a displayed web site or a brochure, product label, package insert, advertisement, or visual display containing such information or instructions. Useful information includes one or more of (1) methods and techniques for administering the compositions and using the methods of the present invention, (2) details about the side effects, if any, caused by using the present invention, alone or in combination with other drugs, and (3) contact information for patients to use if they have a question about the invention and its use. Useful instructions include dosages, administration amounts and the frequency, and administration routes. The communicating means is useful for instructing on the frequency, and administration routes. The communicating means is useful for instructing on the
benefits of using the present invention and communicating the approved methods for using the
invention. The invention is not limited to the particular methodology, protocols, and reagents
thereof, because they may vary. Further, the terminology used herein is for the
described herein because they may vary. Further, the terminology used herein is for the
purpose of describing particular embodiments only and is not intended to limit the scope of the
present invention. As used herein and in the appended claims, the singular forms "a," "an," and
the include plural reference unless the context clearly dictates otherwise. Similarly, the
"the" include plural reference unless the context clearly dictates otherwise. Similarly, the
words "include," "includes," and "including" are to be interpreted inclusively rather than
exclusively. All technical and scientific terms have the same meanings as commonly understood by one of ordinary skill in the art in
the field of the invention, although any compositions, methods, articles of manufacture, or
other means of materials similar or equivalent to those described herein can be used in the
practice of the present invention, the preferred compositions, methods, articles of manufacture,
or other means of materials are described herein.

All patents, patent applications, publications, and other references cited or referred to
herein are incorporated herein by reference to the extent allowed by law. The discussion of
those references is intended merely to summarize the assertions made therein. No admission is
made that any such patents, patent applications, publications or references, or any portion
termed herein are included, and are not intended to limit the scope of the invention unless
otherwise specifically indicated.

EXAMPLES

This invention can be further illustrated by the following examples of preferred
embodiments thereof, although it will be understood that these examples are included
merely for purposes of illustration and are not intended to limit the scope of the invention unless
otherwise specifically indicated.

EXAMPLE 1
Thirty-two dogs were utilized in the weight loss study. All dogs began the study with
body fat (of total weight) greater than 34.8%. The dogs remained on the weight loss study
for 4 months unless optimal body weight was achieved earlier (20% body fat). Dogs were
allotted to one of four treatments, each per treatment (Tables 1, 2, and 3). Each food was
kibbled and formulated in accordance with the Association of American Feed Control Officials.
nutrient guide for dogs and balanced to meet adult maintenance requirements. During the weight loss study, all dogs underwent dual energy x-ray absorptiometry (DEXA) at months 0, 1, 2, 3, and 4. Following weight loss, the dogs remained on the same foods for a period of 4 months to determine if the food would prevent weight regain. During the maintenance portion of the study, dogs underwent DEXA at months 0, 2, and 4. Blood chemistry screens were also analyzed at all DEXA timepoints.

Table 1: Formula # and Description of the Food

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control</td>
</tr>
<tr>
<td>2</td>
<td>Control plus calcium pyruvate</td>
</tr>
<tr>
<td>3</td>
<td>Control plus lipoic acid</td>
</tr>
<tr>
<td>4</td>
<td>Control plus lipoic acid and calcium pyruvate</td>
</tr>
</tbody>
</table>

Table 2: Ingredient Composition of foods used

<table>
<thead>
<tr>
<th>Ingredient (Wt. % of food)</th>
<th>Formula 1</th>
<th>Formula 2</th>
<th>Formula 3</th>
<th>Formula 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell</td>
<td>29.4</td>
<td>22.8</td>
<td>22.8</td>
<td>27.5</td>
</tr>
<tr>
<td>Poultry Meal</td>
<td>10</td>
<td>13.8</td>
<td>19.2</td>
<td>16.4</td>
</tr>
<tr>
<td>Corn Gluten</td>
<td>9.4</td>
<td>11.8</td>
<td>13.8</td>
<td>10.4</td>
</tr>
<tr>
<td>Meat</td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Chicken</td>
<td>9.1</td>
<td>5</td>
<td>9.6</td>
<td>9.6</td>
</tr>
<tr>
<td>Soy Meal</td>
<td>6.6</td>
<td>5</td>
<td>9.6</td>
<td>9.6</td>
</tr>
<tr>
<td>Beet Pulp</td>
<td>2.3</td>
<td>1.8</td>
<td>3.3</td>
<td>3</td>
</tr>
<tr>
<td>Fish Flakes</td>
<td>5.6</td>
<td>4</td>
<td>6.0</td>
<td>6</td>
</tr>
<tr>
<td>Soybean Oil</td>
<td>3</td>
<td>1</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Corn</td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Yeast</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Choline</td>
<td>0.9</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>L-carnitine</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Lipoic Acid</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Sunflower Meal</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Salted Salmon</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Choline Chloride</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Vitamin B</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Table 3 illustrates the nutrient values of each of the pet food compositions used in the study.

<table>
<thead>
<tr>
<th>Nutrient (dry matter)</th>
<th>Percentage</th>
<th>Formula 1</th>
<th>Formula 2</th>
<th>Formula 3</th>
<th>Formula 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture content</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Crude Protein</td>
<td>24.0%</td>
<td>24.0%</td>
<td>24.0%</td>
<td>24.0%</td>
<td>24.0%</td>
</tr>
<tr>
<td>Crude Fat</td>
<td>8.0%</td>
<td>8.0%</td>
<td>8.0%</td>
<td>8.0%</td>
<td>8.0%</td>
</tr>
<tr>
<td>Ash</td>
<td>7.0%</td>
<td>7.0%</td>
<td>7.0%</td>
<td>7.0%</td>
<td>7.0%</td>
</tr>
<tr>
<td>Calcium</td>
<td>0.8%</td>
<td>0.8%</td>
<td>0.8%</td>
<td>0.8%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Potassium</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Sodium</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Chloride</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Total Fiber</td>
<td>7.5%</td>
<td>7.5%</td>
<td>7.5%</td>
<td>7.5%</td>
<td>7.5%</td>
</tr>
<tr>
<td>Insoluble Fiber</td>
<td>21.0%</td>
<td>21.0%</td>
<td>21.0%</td>
<td>21.0%</td>
<td>21.0%</td>
</tr>
<tr>
<td>Soluble Fiber</td>
<td>18.8%</td>
<td>18.8%</td>
<td>18.8%</td>
<td>18.8%</td>
<td>18.8%</td>
</tr>
<tr>
<td>Lysine</td>
<td>8.8%</td>
<td>8.8%</td>
<td>8.8%</td>
<td>8.8%</td>
<td>8.8%</td>
</tr>
<tr>
<td>Pyroglutamic Acid</td>
<td>0.9%</td>
<td>0.9%</td>
<td>0.9%</td>
<td>0.9%</td>
<td>0.9%</td>
</tr>
<tr>
<td>Lipid Acid</td>
<td>1.8%</td>
<td>1.8%</td>
<td>1.8%</td>
<td>1.8%</td>
<td>1.8%</td>
</tr>
</tbody>
</table>

Table 4 illustrates predicted time to reach 20% body fat for dogs fed each of the pet food compositions.

<table>
<thead>
<tr>
<th>Monthly to Weight Loss Goal</th>
<th>Formula 1</th>
<th>Formula 2</th>
<th>Formula 3</th>
<th>Formula 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 months</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>3 months</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>4 weeks</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>5 weeks</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>6 weeks</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Table 4: Predicted Time to Reach 20% Body Fat

Table 4: Predicted Time to Reach 20% Body Fat

<table>
<thead>
<tr>
<th>Probability Associated with a Subject's Paired T-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula 1</td>
</tr>
<tr>
<td>Formula 2</td>
</tr>
<tr>
<td>Formula 3</td>
</tr>
<tr>
<td>Formula 4</td>
</tr>
</tbody>
</table>
The rate of fat loss for all dogs in the current study was linear ($R^2 > 0.87$ for each dog). As a result, the data was used to predict how long it would take for the dogs on average to achieve a weight loss goal of 20% body fat. The food containing both lipoic acid and pyruvate has the shortest time on average to reach the weight loss goal of 20% body fat. In addition, this food also has the smallest standard deviation indicating less variation amongst the dogs.

Tables 5-14 illustrate the average physical and chemical characteristics of dogs fed each of the pet food compositions.

Table 5 illustrates that illustrative pet food composition including lipoic acid and calcium pyruvate resulted in reduced lean body mass in dogs fed the illustrative pet food composition over a four month period.

DXA Analysis

Table 5: Lean Body Mass (grams)

<table>
<thead>
<tr>
<th>Parameter Measured</th>
<th>Formula 1</th>
<th>Formula 2</th>
<th>Formula 3</th>
<th>Formula 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SEM</td>
</tr>
<tr>
<td>- Observed Month 0</td>
<td>8505.95 ± 8674.70</td>
<td>8500.30 ± 8674.95</td>
<td>8873.39 ± 8876.70</td>
<td>8858.09 ± 8588.13</td>
</tr>
<tr>
<td>Month 1</td>
<td>8545.1 ± 8674.49</td>
<td>8600.76 ± 8379.35</td>
<td>8102.1</td>
<td>17114.104</td>
</tr>
<tr>
<td>Month 2</td>
<td>8482.50 ± 8674.95</td>
<td>8626.30 ± 8422.71</td>
<td>9092 ± 1105</td>
<td></td>
</tr>
<tr>
<td>- Observed Month 3</td>
<td>8534.54 ± 8727.70</td>
<td>8541.00 ± 8518.20</td>
<td>953 ± 1087</td>
<td></td>
</tr>
<tr>
<td>Month 4</td>
<td>8672.64 ± 8848.52</td>
<td>8636.60 ± 8579.06</td>
<td>1001 ± 1067</td>
<td></td>
</tr>
<tr>
<td>Change from Month 0</td>
<td>39.16 ± 113</td>
<td>272.63 ± 208.74</td>
<td>66.1 ± 122</td>
<td></td>
</tr>
</tbody>
</table>

Treatment Effect

<table>
<thead>
<tr>
<th>Effect</th>
<th>Formula 1</th>
<th>Formula 2</th>
<th>Formula 3</th>
<th>Formula 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kruskal-Wallis</td>
<td>NS*</td>
<td>NS*</td>
<td>NS*</td>
<td>NS*</td>
</tr>
</tbody>
</table>

Month 0 vs NS* NS* O.0100 NS*
Table 6 illustrates that illustrative pet food composition including lipoic acid and calcium pyruvate resulted in reduced percent body fat in dogs fed the illustrative pet food composition over a four month period.

<table>
<thead>
<tr>
<th>Month 0 vs</th>
<th>NS*</th>
<th>NS*</th>
<th>NS</th>
<th>NS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month 0 vs</td>
<td>NS*</td>
<td>NS*</td>
<td>NS*</td>
<td>NS*</td>
</tr>
<tr>
<td>Month 0 vs</td>
<td>NS*</td>
<td>NS*</td>
<td>NS*</td>
<td>NS*</td>
</tr>
</tbody>
</table>

NS = Not significant (i.e. p-values > 0.1)

** Wilcoxin signed-rank test

Table 6: Percent Body Fat
NS = Not significant (i.e. p-values > 0.1)

** Wilcoxin signed-rank test

Table 7 illustrates that illustrative pet food composition including lipoic acid and calcium pyruvate resulted in reduced total body fat in dogs fed the illustrative pet food composition over a four month period.

Table 7: Total Body Fat (grams)

<table>
<thead>
<tr>
<th>Parameter Measured</th>
<th>Formula 1</th>
<th>Formula 2</th>
<th>Formula 3</th>
<th>Formula 4</th>
<th>Treatment Effect (Kruskal-Wallis)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N Mean ± SEM</td>
<td>N Mean ± SEM</td>
<td>N Mean ± SEM</td>
<td>N Mean ± SEM</td>
<td></td>
</tr>
<tr>
<td>Observed Month 0</td>
<td>8 6106.65 ± 341</td>
<td>8 5936.61 ± 340</td>
<td>8 6249.08 ± 679</td>
<td>8 6164.74 ± 696</td>
<td>NS*</td>
</tr>
<tr>
<td>Observed Month 1</td>
<td>8 4954.41 ± 437</td>
<td>8 5065.91 ± 491</td>
<td>8 5454.59 ± 602</td>
<td>8 5070.16 ± 626</td>
<td>NS*</td>
</tr>
<tr>
<td>Observed Month 2</td>
<td>8 4078.66 ± 442</td>
<td>8 4247.31 ± 424</td>
<td>8 4768.61 ± 529</td>
<td>8 4032.25 ± 572</td>
<td>NS*</td>
</tr>
<tr>
<td>Observed Month 3</td>
<td>8 3515.89 ± 353</td>
<td>8 3671.10 ± 331</td>
<td>8 4269.15 ± 524</td>
<td>8 3259.35 ± 534</td>
<td>NS*</td>
</tr>
<tr>
<td>Observed Month 4</td>
<td>8 3077.63 ± 264</td>
<td>8 3284.01 ± 324</td>
<td>8 3911.53 ± 454</td>
<td>8 3102.36 ± 525</td>
<td>NS*</td>
</tr>
<tr>
<td>Change from Month 0 to 1</td>
<td>8 -152.2 ± 167</td>
<td>8 -870.70 ± 189</td>
<td>8 -794.49 ± 113</td>
<td>8 -1094.6 ± 134</td>
<td>NS*</td>
</tr>
<tr>
<td>Change from Month 0 to 2</td>
<td>8 -2028.0 ± 213</td>
<td>8 -1689.3 ± 288</td>
<td>8 -1480.5 ± 176</td>
<td>8 -2132.5 ± 248</td>
<td>NS*</td>
</tr>
<tr>
<td>Change from Month 0 to 3</td>
<td>8 -2590.8 ± 182</td>
<td>8 -2265.5 ± 328</td>
<td>8 -1979.9 ± 197</td>
<td>8 -2965.4 ± 351</td>
<td>NS*</td>
</tr>
<tr>
<td>Parameter Measured</td>
<td>Formula 1</td>
<td>Formula 2</td>
<td>Formula 3</td>
<td>Formula 4</td>
<td>Treatment Effect (Kruskal-Wallis)</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>—</td>
<td>N Mean ± SEM</td>
<td>N Mean ± SEM</td>
<td>N Mean ± SEM</td>
<td>N Mean ± SEM</td>
<td>—</td>
</tr>
<tr>
<td>Change from Month 0 to 4</td>
<td>8 -3029.0 ± 196</td>
<td>8 -2652.6 ± 385</td>
<td>8 -2337.8 ± 254</td>
<td>8 -3062.4 ± 291</td>
<td>NS*</td>
</tr>
<tr>
<td>Month 0 vs 1**</td>
<td><0.0100</td>
<td><0.0100</td>
<td><0.0100</td>
<td><0.0100</td>
<td></td>
</tr>
<tr>
<td>Month 0 vs 2***</td>
<td><0.0100</td>
<td><0.0100</td>
<td><0.0100</td>
<td><0.0100</td>
<td></td>
</tr>
<tr>
<td>Month 0 vs 3***</td>
<td><0.0100</td>
<td><0.0100</td>
<td><0.0100</td>
<td><0.0100</td>
<td></td>
</tr>
<tr>
<td>Month 0 vs 4***</td>
<td><0.0100</td>
<td><0.0100</td>
<td><0.0100</td>
<td><0.0100</td>
<td></td>
</tr>
</tbody>
</table>

* NS = Not significant (i.e., p-values > 0.1)

** Wilcoxin signed-rank test

Table 8 illustrates that an illustrative pet food composition including lipoic acid and calcium pyruvate resulted in reduced total body weight in dogs fed the illustrative pet food composition over a four month period.

Table 8: Total Body Weight (grams)

<table>
<thead>
<tr>
<th>Parameter Measured</th>
<th>Formula 1</th>
<th>Formula 2</th>
<th>Formula 3</th>
<th>Formula 4</th>
<th>Treatment Effect (Kruskal-Wallis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>N Mean ± SEM</td>
<td>N Mean ± SEM</td>
<td>N Mean ± SEM</td>
<td>N Mean ± SEM</td>
<td>—</td>
</tr>
<tr>
<td>- Observed Month 0</td>
<td>8 15994.8 ± 666</td>
<td>8 15172.3 ± 1240</td>
<td>8 15580.1 ± 1665</td>
<td>8 15207.2 ± 1858</td>
<td>NS*</td>
</tr>
<tr>
<td>- Observed Month 1</td>
<td>8 13964.5 ± 678</td>
<td>8 14294.2 ± 1999</td>
<td>8 14503.7 ± 1555</td>
<td>8 13886.5 ± 1747</td>
<td>NS*</td>
</tr>
<tr>
<td>- Observed Month 2</td>
<td>8 13027.8 ± 681</td>
<td>8 13379.1 ± 1039</td>
<td>8 13839.2 ± 1481</td>
<td>8 12883.6 ± 1686</td>
<td>NS*</td>
</tr>
<tr>
<td>- Observed Month 3</td>
<td>8 12596.4 ± 687</td>
<td>8 12852.2 ± 946</td>
<td>8 13253.2 ± 1402</td>
<td>8 12199.9 ± 1612</td>
<td>NS*</td>
</tr>
<tr>
<td>- Observed Month 4</td>
<td>8 12202.9 ± 681</td>
<td>8 12582.5 ± 946</td>
<td>8 12986.4 ± 1402</td>
<td>8 12100.8 ± 1612</td>
<td>NS*</td>
</tr>
<tr>
<td>Month 4</td>
<td>681</td>
<td>916</td>
<td>1401</td>
<td>1611</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Change from Month 0 to 1</td>
<td>8</td>
<td>-1130.4 ± 125</td>
<td>8</td>
<td>-968.06 ± 185</td>
<td>8</td>
</tr>
<tr>
<td>Change from Month 0 to 2</td>
<td>8</td>
<td>-2067.0 ± 135</td>
<td>8</td>
<td>-1793.2 ± 287</td>
<td>8</td>
</tr>
<tr>
<td>Change from Month 0 to 3</td>
<td>8</td>
<td>-2558.4 ± 103</td>
<td>8</td>
<td>-2320.1 ± 358</td>
<td>8</td>
</tr>
<tr>
<td>Change from Month 0 to 4</td>
<td>8</td>
<td>-2891.9 ± 137</td>
<td>8</td>
<td>-2589.8 ± 412</td>
<td>8</td>
</tr>
</tbody>
</table>

* NS = Not significant (ie. p-values > 0.1)
** Wilcoxin signed-rank test

Chemistry Screens

[0076] Table 9 illustrates that an illustrative pet food composition including lipoic acid and calcium pyruvate resulted in reduced serum alanine aminotransferase levels in dogs fed the illustrative pet food composition over a four month period.

Table 9: Serum Alanine Aminotransferase

<table>
<thead>
<tr>
<th>Parameter Measured</th>
<th>Formula 1</th>
<th>Formula 2</th>
<th>Formula 3</th>
<th>Formula 4</th>
<th>Treatment Effect (Kruskal-Wallis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>N Mean ± SEM</td>
<td>N Mean ± SEM</td>
<td>N Mean ± SEM</td>
<td>N Mean ± SEM</td>
<td>—</td>
</tr>
<tr>
<td>- Observed Month 0</td>
<td>8 48.25 ± 11.4</td>
<td>8 43.75 ± 6.43</td>
<td>8 44.44 ± 8.52</td>
<td>8 54.63 ± 10.7</td>
<td>NS*</td>
</tr>
<tr>
<td>- Observed Month 1</td>
<td>8 40.88 ± 9.5</td>
<td>8 33.88 ± 5.94</td>
<td>8 35.50 ± 6.42</td>
<td>8 51.38 ± 17.5</td>
<td>NS*</td>
</tr>
<tr>
<td>- Observed Month 2</td>
<td>8 42.50 ± 13.2</td>
<td>8 34.50 ± 3.67</td>
<td>8 34.63 ± 6.11</td>
<td>8 44.88 ± 12.8</td>
<td>NS*</td>
</tr>
<tr>
<td>Parameter</td>
<td>Control</td>
<td>Treatment 1</td>
<td>Treatment 2</td>
<td>Treatment 3</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Mean (S.D.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NS = Not significant (ie. p-values > 0.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 illustrates that an illustrative pet food composition including lipoic acid and calcium pyruvate resulted in reduced serum alkaline phosphatase levels in dogs fed the illustrative pet food composition over a four month period.
<table>
<thead>
<tr>
<th>Parameter Measured</th>
<th>Formula 1</th>
<th></th>
<th>Formula 2</th>
<th></th>
<th>Formula 3</th>
<th></th>
<th>Formula 4</th>
<th></th>
<th>Treatment Effect (Kruskal-Wallis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Observed Month 0</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>NS*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>243.38 ± 85.6</td>
<td>171.13 ± 72.3</td>
<td>124.56 ± 34.8</td>
<td>158.00 ± 64.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Observed Month 1</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>NS*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125.63 ± 47.4</td>
<td>83.38 ± 28.6</td>
<td>57.63 ± 7.38</td>
<td>72.63 ± 28.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Observed Month 2</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>NS*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>111.56 ± 42.6</td>
<td>67.88 ± 17.9</td>
<td>52.25 ± 5.16</td>
<td>75.63 ± 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Observed Month 3</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>NS*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>122.13 ± 41.3</td>
<td>68.63 ± 16.3</td>
<td>56.88 ± 3.98</td>
<td>75.00 ± 20.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Observed Month 4</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>NS*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>111.00 ± 37.4</td>
<td>57.63 ± 11.7</td>
<td>51.25 ± 3.87</td>
<td>66.00 ± 17.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change from Month 0</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>NS*</td>
</tr>
<tr>
<td>0 to 1</td>
<td></td>
<td>-117.75 ± 39.3</td>
<td>-87.75 ± 44.4</td>
<td>-68.58 ± 33.6</td>
<td>-85.38 ± 36.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change from Month 0</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>NS*</td>
</tr>
<tr>
<td>0 to 2</td>
<td></td>
<td>-128.38 ± 43.6</td>
<td>-163.25 ± 55.3</td>
<td>-74.25 ± 36.5</td>
<td>-79.38 ± 41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change from Month 0</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>NS*</td>
</tr>
<tr>
<td>0 to 3</td>
<td></td>
<td>-121.25 ± 44.8</td>
<td>-102.50 ± 57.9</td>
<td>-69.63 ± 38.9</td>
<td>-83.90 ± 46.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change from Month 0</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>N=8</td>
<td>Mean ± SEM</td>
<td>NS*</td>
</tr>
<tr>
<td>0 to 4</td>
<td></td>
<td>-132.38 ± 49.7</td>
<td>-113.50 ± 63.7</td>
<td>-75.25 ± 38.9</td>
<td>-92.00 ± 50.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month 0 vs 1**</td>
<td></td>
<td><0.0100</td>
<td><0.0100</td>
<td>0.0156</td>
<td><0.0100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month 0 vs 2**</td>
<td></td>
<td><0.0100</td>
<td>0.0156</td>
<td>0.0156</td>
<td>0.0234</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month 0 vs 3**</td>
<td></td>
<td><0.0100</td>
<td>0.0234</td>
<td>0.0391</td>
<td>0.0234</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month 0 vs 4**</td>
<td></td>
<td><0.0100</td>
<td><0.0100</td>
<td>0.0156</td>
<td>0.0234</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* NS = Not significant (ie. p-values > 0.1)
** Wilcoxin signed-rank test
[0078] Table 11 illustrates that an illustrative pet food composition including lipoic acid and calcium pyruvate resulted in reduced serum cholesterol levels in dogs fed the illustrative pet food composition over a four month period.

Table 11: Serum Cholesterol

<table>
<thead>
<tr>
<th>Parameter Measured</th>
<th>Formula 1</th>
<th>Formula 2</th>
<th>Formula 3</th>
<th>Formula 4</th>
<th>Treatment Effect (Kruskal-Wallis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Observed Month 0</td>
<td>8 218.38 ± 14.8</td>
<td>8 191.25 ± 12.8</td>
<td>8 203.33 ± 12.7</td>
<td>8 238.75 ± 16.1</td>
<td>NS*</td>
</tr>
<tr>
<td>- Observed Month 1</td>
<td>8 158.25 ± 8.69</td>
<td>8 144.13 ± 12.6</td>
<td>8 146.00 ± 8.24</td>
<td>8 158.13 ± 12.2</td>
<td>NS*</td>
</tr>
<tr>
<td>- Observed Month 2</td>
<td>8 153.63 ± 6.76</td>
<td>8 146.00 ± 11.8</td>
<td>8 144.75 ± 8.3</td>
<td>8 159.88 ± 7.83</td>
<td>NS*</td>
</tr>
<tr>
<td>- Observed Month 3</td>
<td>8 154.75 ± 5.78</td>
<td>8 151.38 ± 11.4</td>
<td>8 145.25 ± 8.83</td>
<td>8 152.00 ± 8.04</td>
<td>NS*</td>
</tr>
<tr>
<td>- Observed Month 4</td>
<td>8 149.38 ± 5.37</td>
<td>8 144.63 ± 11.2</td>
<td>8 139.00 ± 9.22</td>
<td>8 149.75 ± 9.70</td>
<td>NS*</td>
</tr>
<tr>
<td>Change from Month 0 to 1</td>
<td>8 -60.13 ± 10.7</td>
<td>8 -47.13 ± 8.29</td>
<td>8 -58.50 ± 12</td>
<td>8 -80.63 ± 10.7</td>
<td>NS*</td>
</tr>
<tr>
<td>Change from Month 0 to 2</td>
<td>8 -64.78 ± 12.3</td>
<td>8 -45.25 ± 6.74</td>
<td>8 -59.75 ± 9.67</td>
<td>8 -78.88 ± 11.7</td>
<td>NS*</td>
</tr>
<tr>
<td>Change from Month 0 to 3</td>
<td>8 -63.63 ± 10.3</td>
<td>8 -39.88 ± 7.02</td>
<td>8 -59.25 ± 9.73</td>
<td>8 -86.75 ± 10.4</td>
<td>0.0256</td>
</tr>
<tr>
<td>Change from Month 0 to 4</td>
<td>8 -69.00 ± 11</td>
<td>8 -46.63 ± 6.38</td>
<td>8 -65.50 ± 10.9</td>
<td>8 -89.00 ± 9.64</td>
<td>0.0601</td>
</tr>
</tbody>
</table>

Month 0 vs 1*: <0.0100
Month 0 vs 2*: <0.0100
Month 0 vs 3*: <0.0100
Month 0 vs 4*: <0.0100
Table 12: Serum Creatinine

<table>
<thead>
<tr>
<th>Parameter Measured</th>
<th>Formula 1</th>
<th>Formula 2</th>
<th>Formula 3</th>
<th>Formula 4</th>
<th>Treatment Effect (Kruskal-Wallis)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean ± SEM</td>
<td>N</td>
<td>Mean ± SEM</td>
<td>N</td>
</tr>
<tr>
<td>- Observed Month 6</td>
<td>8</td>
<td>0.61 ± 0.04</td>
<td>8</td>
<td>0.62 ± 0.04</td>
<td>8</td>
</tr>
<tr>
<td>- Observed Month 1</td>
<td>8</td>
<td>0.58 ± 0.03</td>
<td>8</td>
<td>0.50 ± 0.02</td>
<td>8</td>
</tr>
<tr>
<td>- Observed Month 2</td>
<td>8</td>
<td>0.59 ± 0.03</td>
<td>8</td>
<td>0.51 ± 0.02</td>
<td>8</td>
</tr>
<tr>
<td>- Observed Month 3</td>
<td>8</td>
<td>0.56 ± 0.04</td>
<td>8</td>
<td>0.46 ± 0.02</td>
<td>8</td>
</tr>
<tr>
<td>- Observed Month 4</td>
<td>8</td>
<td>0.57 ± 0.03</td>
<td>8</td>
<td>0.45 ± 0.02</td>
<td>8</td>
</tr>
<tr>
<td>Change from Month 0 to 1</td>
<td>8</td>
<td>-0.02 ± 0.02</td>
<td>8</td>
<td>-0.12 ± 0.03</td>
<td>8</td>
</tr>
<tr>
<td>Change from Month 0 to 2</td>
<td>8</td>
<td>-0.01 ± 0.02</td>
<td>8</td>
<td>-0.11 ± 0.03</td>
<td>8</td>
</tr>
<tr>
<td>Change from Month 0 to 3</td>
<td>8</td>
<td>-0.05 ± 0.01</td>
<td>8</td>
<td>-0.16 ± 0.03</td>
<td>8</td>
</tr>
<tr>
<td>Change from Month 0 to 4</td>
<td>8</td>
<td>-0.03 ± 0.02</td>
<td>8</td>
<td>-0.17 ± 0.03</td>
<td>8</td>
</tr>
<tr>
<td>Month 0 vs</td>
<td>NS*</td>
<td><0.0100</td>
<td>NS*</td>
<td></td>
<td>0.0156</td>
</tr>
</tbody>
</table>

* NS = Not significant (i.e. p-values > 0.1)

** Wilcoxon signed-rank test

Table 12 illustrates that illustrative pet food composition including lipoic acid and calcium pyruvate resulted in reduced serum creatinine levels in dogs fed the illustrative pet food composition over a four month period.
NS = Not significant (ie. p-values > 0.1)

** Wilcoxin signed-rank test

Table 13 illustrates that illustrative pet food composition including lipoic acid and calcium pyruvate resulted in reduced serum triglyceride levels in dogs fed the illustrative pet food composition over a four month period.

Table 13: Serum Triglycerides
Table 14 illustrates that illustrative pet food composition including lipoic acid and calcium pyruvate resulted in reduced serum urea nitrogen levels in dogs fed the illustrative pet food composition over a four month period.

Table 14: Serum Urea Nitrogen

<table>
<thead>
<tr>
<th>Parameter Measured</th>
<th>Formula 1</th>
<th>Formula 2</th>
<th>Formula 3</th>
<th>Formula 4</th>
<th>Treatment Effect (Kruskal-Wallis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Mean ± SEM</td>
<td>Mean ± SEM</td>
<td>Mean ± SEM</td>
<td>Mean ± SEM</td>
<td>—</td>
</tr>
<tr>
<td>Observed Month 0</td>
<td>8</td>
<td>11.71 ± 0.5</td>
<td>8</td>
<td>14.94 ± 3.32</td>
<td>NS*</td>
</tr>
<tr>
<td>Observed Month 1</td>
<td>8</td>
<td>13.70 ± 0.78</td>
<td>8</td>
<td>14.70 ± 1.76</td>
<td>NS*</td>
</tr>
<tr>
<td>Observed Month 2</td>
<td>8</td>
<td>13.30 ± 0.87</td>
<td>8</td>
<td>12.93 ± 0.39</td>
<td>NS*</td>
</tr>
<tr>
<td>Observed Month 3</td>
<td>8</td>
<td>13.95 ± 0.81</td>
<td>8</td>
<td>12.69 ± 0.78</td>
<td>NS*</td>
</tr>
<tr>
<td>Observed Month 4</td>
<td>8</td>
<td>14.54 ± 0.79</td>
<td>8</td>
<td>12.65 ± 0.91</td>
<td>NS*</td>
</tr>
<tr>
<td>Change from Month 0 to 1</td>
<td>8</td>
<td>1.99 ± 0.8</td>
<td>8</td>
<td>-0.24 ± 1.93</td>
<td>NS*</td>
</tr>
<tr>
<td>Change from Month 0 to 2</td>
<td>8</td>
<td>1.59 ± 0.69</td>
<td>8</td>
<td>-2.01 ± 2.64</td>
<td>NS*</td>
</tr>
<tr>
<td>Change</td>
<td>8</td>
<td>2.24 ± 0.79</td>
<td>8</td>
<td>-2.25 ± 3.41</td>
<td>NS*</td>
</tr>
<tr>
<td>Parameter Measured</td>
<td>Formula 1</td>
<td>Formula 2</td>
<td>Formula 3</td>
<td>Formula 4</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean (SF)</td>
<td>Mean (SF)</td>
<td>Mean (SF)</td>
<td>Mean (SF)</td>
<td></td>
</tr>
<tr>
<td>Month</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* NS = Not significant (i.e., p-values > 0.1)

** Wilcoxin signed-rank test

[0082] The invention is not to be limited in scope by the specific embodiments disclosed in the examples, which are intended as illustrations of a few aspects of the invention, and any embodiments, which are functionally equivalent, are within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art and are intended to fall within the appended claims.

[0083] For any references that have been cited, the entire disclosures of which are incorporated herein by reference.
What is claimed is:

1. A composition comprising pyruvic acid or a salt thereof.
2. The composition of claim 1 further comprising lipoic acid or a salt thereof.
3. The composition of claim 1 or claim 2, wherein pyruvic acid or a salt thereof is present in the composition in an amount of 5 ppm to 20000 ppm.
4. The composition of any preceding claim, wherein pyruvic acid or a salt thereof is present in the composition in an amount of 50 ppm to 5000 ppm.
5. The composition of any preceding claim, wherein pyruvic acid or a salt thereof is present in the composition in an amount of 10 ppm to 10000 ppm.
6. The composition of any one of claims 2-5, wherein lipoic acid or a salt thereof is present in the composition in an amount of about 5 ppm to about 5000 ppm.
7. The composition of any one of claims 2-6, wherein lipoic acid or a salt thereof is present in the composition in an amount of 10 ppm to 4000 ppm.
8. The composition of any one of claims 2-7, wherein lipoic acid or a salt thereof is present in the composition in an amount of 50 ppm to 3000 ppm.
9. The composition of any one of claims 2-8, wherein lipoic acid or a salt thereof is present in the composition in an amount of 100 ppm to 2000 ppm.
10. The composition of any one of claims 2-9, wherein lipoic acid or a salt thereof is present in the composition in an amount of 500 ppm to 1000 ppm.
The composition of any preceding claim, wherein the composition further comprises a protein, fat, carbohydrate, fiber, and combinations thereof.

The composition of any preceding claim, wherein the composition is a dog food.

The composition of any preceding claim, wherein the composition is a cat food.

The composition of any preceding claim, wherein the composition is a food, a nutritional diet, a supplement, an animal treat, or a toy.

The composition of any preceding claim, which is in the form of a moist food.

The composition of any preceding claim, which is in the form of a dry food.

The composition comprising lipoic acid or a salt thereof and pyruvic acid or a salt thereof.

A method for preventing or treating obesity in a companion animal, which comprises administering to the companion animal a composition comprising an effective amount of pyruvic acid or a salt thereof.

The method of claim 18, further comprising an effective amount of lipoic acid or a salt thereof.

The method of claim 18 or claim 19, wherein pyruvic acid or a salt thereof is present in the composition in an amount of 5 ppm to 20000 ppm.

The method of any one of claims 18-20, wherein pyruvic acid or a salt thereof is present in the composition in an amount of 10 ppm to 10000 ppm.

The method of any one of claims 18-21, wherein pyruvic acid or a salt thereof is present in the composition in an amount of 50 ppm to 5000 ppm.

The method of any one of claims 18-22, wherein pyruvic acid or a salt thereof is present in the composition in an amount of 100 ppm to 2500 ppm.
24. The method of any one of claims 18-23, wherein the composition further comprises a protein, fat, carbohydrate, fiber, and combinations thereof.

25. The method of any one of claims 19-24, wherein lipoic acid or a salt thereof is present in the composition in an amount of 5 ppm to 5000 ppm.

26. The method of any one of claims 19-25, wherein lipoic acid or a salt thereof is present in the composition in an amount of 10 ppm to 4000 ppm.

27. The method of any one of claims 19-26, wherein lipoic acid or a salt thereof is present in the composition in an amount of 50 ppm to 3000 ppm.

28. The method of any one of claims 19-27, wherein lipoic acid or a salt thereof is present in the composition in an amount of 100 ppm to 2000 ppm.

29. The method of any one of claims 19-28, wherein lipoic acid or a salt thereof is present in the composition in an amount of 500 ppm to 1000 ppm.

30. The method of any one of claims 18-29, wherein the composition further comprises a protein, fat, carbohydrate, fiber, and combinations thereof.

31. The method of any one of claims 18-30, wherein the composition is a dog food.

32. The method of any one of claims 18-31, wherein the composition is a cat food.

33. The method of any one of claims 18-32, wherein the composition is a food, a nutritional diet, a supplement, an animal treat, or a toy.

34. The method of any one of claims 18-33, which is in the form of a moist food.

35. The method of any one of claims 18-34, which is in the form of a dry food.

36. The method of any one of claims 18-35, wherein the companion animal is a dog.
37. The method of any one of claims 18-36, wherein the companion animal is a cat.

38. The method of any one of claims 18-37, wherein the administration is oral feeding.

39. A method for managing weight in a companion animal, which comprises administering to the companion animal a composition comprising an effective amount of pyruvic acid or a salt thereof.

40. The method of claim 39 further comprising an effective amount of lipoic acid or a salt thereof.

41. A method for decreasing body fat in a companion animal, which comprises administering to the companion animal a composition comprising an effective amount of pyruvic acid or a salt thereof.

42. The method of claim 41 further comprising an effective amount of lipoic acid or a salt thereof.

43. A method for increasing lean body mass in a companion animal, which comprises administering to the companion animal a composition comprising an effective amount of pyruvic acid or a salt thereof.

44. The method of claim 43 further comprising an effective amount of lipoic acid or a salt thereof.
A. CLASSIFICATION OF SUBJECT MATTER

INV. A23K1/16 A23K1/18 A23L1/29 A61P3/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbol)

A23K A23L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DE 198 36 450 A1 (SUEDDEUTSCHE KALKSTICKSTOFF [DE]) 17 February 2000 (2000-02-17)</td>
<td>1, 3-5, 11-16, 18, 20-24, 30-39, 41, 43</td>
</tr>
<tr>
<td>Y</td>
<td>page 2, line 1 - line 20 page 3, line 47 - line 50 page 4, line 20 - line 39</td>
<td>2, 6-10, 17, 19, 25-29, 40, 42, 44</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

See patent family annex

Date of the actual completion of the international search: 28 April 2010

Date of mailing of the international search report: 27/05/2010

Name and mailing address of the ISA:

European Patent Office, P B 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340 2040
Fax (+31-70) 340 3016

Authorized officer:

Vermeulen, Stephane
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication where appropriate of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>page 1, line 9 - line 17</td>
<td>2,6-10,</td>
</tr>
<tr>
<td></td>
<td>page 4, line 27 - line 34</td>
<td>17, 19,</td>
</tr>
<tr>
<td></td>
<td>claim 17</td>
<td>25-29,</td>
</tr>
<tr>
<td></td>
<td>page 4, line 23 - line 31</td>
<td>40,42,44</td>
</tr>
<tr>
<td></td>
<td>page 8, line 10 - line 23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 12, line 31 - page 13, line 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 13, line 30 - page 14, line 4</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>US 2003/224061 AI (PACIORETTY LINDA M [US] ET AL) 4 December 2003 (2003-12-04)</td>
<td>2,6-10,</td>
</tr>
<tr>
<td></td>
<td>paragraph [0018] - paragraph [0020]</td>
<td>17, 19,</td>
</tr>
<tr>
<td></td>
<td>paragraph [0047]</td>
<td>25-29,</td>
</tr>
<tr>
<td></td>
<td>claims 22,26, 27</td>
<td>40,42,44</td>
</tr>
<tr>
<td>X</td>
<td>US 6 277 842 BI (CARTHRON JAMES ALEXANDER [US]) 21 August 2001 (2001-08-21)</td>
<td>1-44</td>
</tr>
<tr>
<td></td>
<td>column 1, line 5 - line 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 3, line 45 - line 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 3, line 57 - line 61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 4, line 11 - line 18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 5, line 19 - line 28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>claims 1,5,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph [0006]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph [0076]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>paragraph [0218]</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/0210 (continuation of second sheet) (April 2005)
INTERNATIONAL SEARCH REPORT

Information on patent family members

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 19836450 A1</td>
<td>17-02-2000</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>GB 2344996 A</td>
<td>28-06-2000</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2003224061 A1</td>
<td>04-12-2003</td>
<td>AU 2003251394 A1</td>
<td>19-12-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03101469 A1</td>
<td>11-12-2003</td>
</tr>
<tr>
<td>US 6277842 B1</td>
<td>21-08-2001</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>EP 1875816 A2</td>
<td>09-01-2008</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)