(54) Title: LAMINATE WAVELENGTH PLATE AND OPTICAL PICKUP USING IT

(57) Abstract: Problems with a conventional wide-band 1/4 wavelength plate are such that since a wavelength-dependency problem is not still completely resolved and a wavelength-dependent phase shift of 90° gives different efficiencies, strict optical characteristic requirements for a wavelength plate in terms of optical efficiency or the like cannot be fulfilled in an optical pickup device that handle a plurality of wavelengths. In order to provide a wavelength plate perfectly functioning as a 1/4 wavelength plate for a plurality of wavelengths and an optical pickup using this wavelength plate, provided is a laminate wavelength plate formed by pasting together a wavelength plate having a phase difference α and a wavelength plate having a phase difference β with respect to a monochromatic light of wavelength λ so that their optical axes cross each other, and allowed to function as a 1/4 wavelength plate as a whole, characterized in that the relation between the above α and β satisfies the following conditions: (3/2) × π ≠ α - 2 × π × (n - 1) π ≠ β - 2 × π × (n - 1), where n is a natural number.
従来の広帯域1/4波長板では、依然として波長依存性が完全には解決されておらず、波長によって位相が90°ずれる効率が遅っているため、複数の波長に対応する光ピックアップ装置において、光の効率等の観点から波長板に求められる厳しい光学特性上の仕様を満足できないという問題があった。本発明は、この問題を解決するために複数の波長に対して完全に1/4波長板として機能する波長板、及びその波長板を用いた光ピックアップを提供するために、波長λの単色光に対して位相差αの波長板と位相差βの波長板と共光軸が交差するように貼り合わせて、全体として1/4波長板として機能する積層波長板において、前記α及び前記βの関係が以下の条件を満足することを特徴とする積層波長板とする。

\[\left(\frac{3}{2} \right) \times \pi \neq \alpha - 2 \times \pi \times (n - 1) \]

\[\pi \neq \beta - 2 \times \pi \times (n - 1) \]

但し、nは自然数
明細書

積層波長板及ぶそれを用いた光ピックアップ

5 技術分野

本発明は、異なる波長の光を用いて光学記録媒体への情報の記録及び再生を行うことを可能とする積層波長板及びそれを用いた光ピックアップに関する。

10 背景技術

音楽や映像関連の情報の光学記録媒体であるCDやDVD等を直線偏光や円偏光等のレーザー光を利用して記録及び再生を行う光ディスク装置が幅広く利用されている。中でもCDとDVDのコンパチブル（互換性）が可能な光ディスク装置の普及と共に装置の小型化の要求も高まり、光学部品点数の削減等の簡素化による光ピックアップ装置の小型化が試みられている。

DVDは、2時間以上の映像及び音声の情報を1枚のディスクに収容可能な仕様となっておりCDに比べ記録密度が高く、それによってDVDの再生波長もCDの785nmに対して655nmと波長も短くなり、DVDとCDのコンパチブルを可能とする光ピックアップ装置では必然的に2種類の波長が必要になり、2波長対応するためにレーザー光源を2つ必要とし、そして波長板等の光学素子も夫々に対応するものが必要となるため結果的に2系統のピックアップにより光ピックアップ装置が構成されることとなるが、近年の光ピックアップ装置の小型化の要求によりピックアップを1系統で構成せんとする試みが種々なされている。

ここで、光ピックアップに用いられる偏光について説明すると、光は
電磁波と呼ばれる波の一つであり、光の進行方向と電場を含む面を偏光面、電場を含む面を振動面といい、偏光面の方向が揺れている場合を偏光という。更に、偏光が一つの平面に限られるような偏光を直線偏光と呼び、直線偏光には、入射光線と入射面の法線を含む平面に対して、水平に振動する成分のP偏光と、垂直に振動する成分のS偏光とがある。

また、ある位置でみた電場ベクトルが、時間とともに回転するような偏光を一般に楕円偏光といい、特に、光の進行方向に垂直な平面上に電場ベクトルの先端を投影したとき、その軌跡が円となるものを円偏光という。

図14は、多数次モードの位相差δ1（2790°）となる第1の波長板1（厚みd1）と多数次モードの位相差δ2（2700°）となる第2の波長板2（厚みd2）とを結晶光学軸が90°交差するよう貼り合わせてなる1/4波長板として機能する零次モードの波長板3であって、図14（a）は波長板3の入射面から見た第1、第2の波長板1、2の結晶光学軸4、5の交差角を示す図であり、図14（b）は波長板3の構成を示す斜視図である。

これは、結晶光学軸の交差角を90°することによって、余分な位相差を相殺することができる、つまりδ1−δ2 = 2790°−2700° = 90°となり、零次モードの1/4波長板として機能するものである。従って、直線偏光6が波長板3に入射すると出射面で位相が90°ずれるので円偏光7として出射することとなる。

波長板3の位相差δ3は、次式でも表わすことができる。

\[\delta 3 = \delta 1 - \delta 2 = 2 \pi \times \Delta n \times (d 1 - d 2) / \lambda \] （1）

ここで、Δnは、第1、第2の波長板1、2との屈折率差であり、λは入射光の波長である。

図15は、零次モードの位相差δ4（＝90°）となる1/4波長板
として機能する零次モードの波長板 8（厚み d 3）を示す斜視図である。直線偏光 9 が、波長板 8 へ入射すると出射面で位相が 90°ずれて円偏光 1 0 として出力する。

波長板 8 の位相差 δ 4 は、次式で表わすことができる。

\[
\delta 4 = 2 \pi \times \Delta n \times d 3 / \lambda
\]

ここで、\(\Delta n \) は波長板 8 の屈折率差（\(N e - N o \））、\(\lambda \) は入射光の波長、\(N o \) は常光線の屈折率、\(N e \) は異常光線の屈折率である。

これらの波長板 3, 8 を適宜選定してピックアップの所定の位置に配置することによってピックアップ 1 系統による 2 波長対応光ピックアップ装置を構成せんと試みた場合以下のような問題が生じる。

即ち、前述したように光ピックアップ装置の小型化により部品点数を削減するため、図 16 のように C D (785 nm) 再生用とした 1 つの 1/4 波長板 3 で 2 波長対応とするようピックアップを構成した場合、図 16 (a) に示す如く、P 偏光 1 1 がビームスリッター 1 2 (以下、PBS と称す) へ入射すると、P 偏光を透過し S 偏光を反射する特性を有する光学薄膜で形成されたミラー 1 3 を透過して P 偏光のまま 1/4 波長板 3 へ入射する、ここで位相が 90°ずれるので円偏光 1 4 として出力し C D のビット 1 5 へ入射する。ビット 1 5 で円偏光 1 4 が反射する際、回転方向が逆の円偏光 1 6 として反射するので、円偏光 1 6 が 1

/4 波長板 3 へ入射すると、S 偏光として出力し、PBS1 2 のミラー 1 3 で反射して回示しないフォトディテクタ（以下、PD と称す）へ至り 90％以上の効率でレーザー光を使用することができる。尚、図 1 6 において説明を容易にするため往路と復路で光軸をずらしている。

一方、図 16 (b) に示す如く、DVD を再生する場合、655 nm の P 偏光 1 1 が PBS1 2 へ入射すると、ミラー 1 3 を透過して P 偏光のまま 1/4 波長板 3 へ入射する。この際、前記 1/4 波長板 3 は、単
一波長785nmに対してのみ90°位相をずらす機能を有しているため直線偏光から円偏光への変換が十分できずに楕円偏光17として出射してしまう。これがDVDのビット15へ入射すると回転方向が前記楕円偏光17とは逆の楕円偏光18として反射して、1/4波長板3へ入射し同様に十分に直線偏光への変換ができない、つまり楕円偏光成分とS偏光成分が混在した状態で1/4波長板3から出射しPBS12のミラー13でS偏光成分のみ反射し、楕円偏光成分はミラー13を透過してしまう。従って、PDでは、例えば、本発明者の実験結果によると、光の効率の観点から65%前後がPDで検出され、残り約30%がミラーを透過してしまう楕円偏光成分として損失してしまう、効率上問題がある。これは、波長板3、8の位相差を表す各々の式(1)、(2)から位相差が波長に依存していることからも分かる。

そこで、特許第3174367号では、単色光に対して1/2波長(180°)の位相差を有する延伸フィルムと、1/4波長(90°)の位相差を有する延伸フィルムを結晶光学軸が交差するよう積層してなる積層波長板が広帯域で位相が90°ずれる機能を有する広帯域1/4波長板が提案されている。DVD(655nm)とCD(785nm)とを記録・再生する光ピックアップ装置において、前記広帯域1/4波長板を採用すれば、波長板1つで2波長対応とすることができるので、ピックアップをほぼ1系統に簡素化したいという要求を満足することを可能としている。

図17に示す如く特許第3174367号の第5図に前記広帯域1/4波長板をクロスニコルに配置した偏光板間に配置して分光スペクトルを評価した透過率の波長依存性のグラフが開示されている。

しかしながら、このグラフの実施例3の曲線、即ち広帯域1/4波長板の透過率を注視すると、400nmから800nmに向かって、徐々
に透過率が40％から50％に向かって上昇、つまりグラフが傾斜した特性を有しており、波長によって、1/4波長板として機能する効率が変化していることがわかる。尚、1/4波長板として完全に機能する透過率は50％のところである。即ち、この帯域1/4波長板では、依然として波長依存性が完全には解決されておらず、波長によって、位相が90°ずれる効率が達っているため、近年、DVD/CDのコンパチブルの光ビックアップ装置における光の効率等の観点から波長板に求められる厳しい光学特性上の仕様を満足できないという問題があった。

本発明は、上記の如き問題を解決するためになされたものであり、DVD/CDのコンパチブルの光ビックアップ装置等の複数の波長に対して完全に1/4波長板として機能する波長板、及びその波長板を用いた光ビックアップを提供することを目的とする。

発明の開示

上記課題を解決するために本発明に係る積層波長板の請求項1記載の発明は、波長λの単色光に対して位相差αの波長板と位相差βの波長板を光軸が交差するように貼り合わせて、全体として1/4波長板として機能する積層波長板において、前記α及び前記βの関係が以下の条件を満足することを特徴としている。

\[(3/2) \times \pi \neq \alpha - 2 \times \pi \times (n - 1)\]

\[\pi \neq \beta - 2 \times \pi \times (n - 1)\]

但し、nは自然数

請求項2記載の発明は、光源から出射した第1の波長の第1直線偏光と第2の波長の第2直線偏光とが、波長板を通るよう構成された光ビックアップにおいて、該波長板が、波長λの単色光に対して位相差αの波長板と位相差βの波長板を光軸が交差するように貼り合わせて、
全体として1/4波長板として機能する積層波長板であり、前記α及び前記βの関係が以下の条件を満足することを特徴としている。

\[
(3/2) \times \pi \neq \alpha - 2 \times \pi \times (n - 1)
\]

\[
\pi \neq \beta - 2 \times \pi \times (n - 1)
\]

但し、nは自然数

請求項3記載の発明は、請求項2において、上記第1の波長には655nmを用い、上記第2の波長には785nmを用いることを特徴としている。

請求項4記載の発明は、波長785nmに対して、位相差1695°となる波長板Aと、位相差850°となる波長板Bとを光軸が交差するように貼り合わせたことを特徴としている。

請求項5記載の発明は、請求項4において、前記積層波長板が、波長655nm及び785nmに対して1/4波長板として機能することを特徴としている。

請求項6記載の発明は、波長655nmに対して、位相差2700°となる波長板Cと、位相差630°となる波長板Dとを光軸が交差するように貼り合わせたことを特徴としている。

請求項7記載の発明は、請求項6において、前記積層波長板が、波長655nmに対して1/4波長板、785nmに対して1/2波長板として機能することを特徴としている。

請求項8記載の発明は、波長655nmに対して、位相差2700°となる波長板Eと、位相差1260°となる波長板Fとを光軸が交差するように貼り合わせたことを特徴としている。

請求項9記載の発明は、請求項8において、前記積層波長板が、波長655nmに対して1/2波長板、785nmに対して2/2波長板として機能することを特徴としている。
請求項10記載の発明は、光源から出射した波長655nmの第1直線偏光と波長785nmの第2直線偏光とが、第1の波長板と第2の波長板とを順次通過するよう構成された光ピックアップにおいて、該第1の波長板が、波長655nmに対して位相差2700°となる波長板Cと位相差1260°となる波長板Dとを光軸が交差するように貼り合わせた積層波長板であり、該第2の波長板が、波長785nmに対して位相差1695°となる波長板Aと位相差850°となる波長板Bとを光軸が交差するように貼り合わせた積層波長板であることを特徴としている。

請求項11記載の発明は、光源から出射した波長655nmの第1直線偏光と波長785nmの第2直線偏光とが、波長板を通過するよう構成された光ピックアップにおいて、該波長板が、波長655nmに対して位相差2700°となる波長板Cと位相差630°となる波長板Dとを光軸が交差するように貼り合わせた積層波長板であることを特徴としている。

請求項12記載の発明は、波長λの単色光に対して位相差αの波長板と位相差βの波長板とを光軸が交差するように貼り合わせて、全体として1/4波長板として機能する積層波長板において、前記α及び前記βの関係が以下の条件を満足することを特徴としている。

\[\pi \neq \alpha - 2 \times \pi \times (n - 1) \]
\[(3/4) \times \pi \neq \beta - 2 \times \pi \times (n - 1) \]

但し、nは自然数

請求項13記載の発明は、光源から出射した第1の波長の第1直線偏光と第2の波長の第2直線偏光とが、波長板を通過するよう構成された光ピックアップにおいて、該波長板が、波長λの単色光に対して位相差αの波長板と位相差βの波長板とを光軸が交差するように貼り合わせて、
全体として1/4波長板として機能する積層波長板であり、前記α及び前記βの関係が以下の条件を満足することを特徴としている。

\[\pi \neq \alpha - 2 \times \pi \times (n - 1) \]
\[\left(\frac{3}{4} \right) \times \pi \neq \beta - 2 \times \pi \times (n - 1) \]

5. 但し、nは自然数

請求項14記載の発明は、請求項13において、上記第1の波長には655nmを用い、上記第2の波長には785nmを用いることを特徴としている。

請求項15記載の発明は、波長785nm、又は655nmに対して、位相差1980°となる波長板Aと、位相差990°となる波長板Bを光軸が交差するように貼り合わせたことを特徴としている。

請求項16記載の発明は、請求項15において、前記積層波長板が、波長655nm及び785nmに対して1/4波長板として機能することを特徴としている。

15. 請求項17記載の発明は、光源から出射した波長655nmの第1直線偏光と波長785nmの第2直線偏光とが、第1の波長板と第2の波長板とを順次通過するよう構成された光ビックアップにおいて、第1の波長板が、波長655nmに対して位相差2700°となる波長板Cと位相差1260°となる波長板Dとを光軸が交差するように貼り合わせた積層波長板であり、該第2の波長板が、波長785nmに対して位相差1980°となる波長板Aと位相差990°となる波長板Bとを光軸が交差するように貼り合わせた積層波長板であることを特徴としている。

20. 図面の簡単な説明

図1は、本発明に係る積層波長板の第1の実施例の構成を説明するた
めの図であり、(a)は入射方向から見た平面図、(b)は斜視概観図である。

図2は、本発明に係る積層波長板の第1の実施例の特性を示す図であり、(a)は波長と位相差との関係を示す図、(b)はクロスニコルの透過率特性を示す図である。

図3は、本発明に係る積層波長板の第2の実施例の構成を説明するための図であり、(a)は入射方向から見た平面図、(b)は斜視概観図である。

図4は、本発明に係る積層波長板の第2の実施例の特性を示す図であり、波長と位相差との関係を示す図である。

図5は、本発明に係る積層波長板の第1の変形実施例を示す図であり、(a)は入射方向から見た平面図、(b)は斜視概観図、(c)は積層する波長板の各位相差を示す表である。

図6は、本発明に係る積層波長板の第1の変形実施例における波長依存性を説明するためのグラフである。

図7は、本発明に係る積層波長板の第2の変形実施例を示す図であり、(a)は入射方向から見た平面図、(b)は斜視概観図である。

図8は、本発明に係る積層波長板の第2の変形実施例における波長依存性を説明するためのグラフである。

図9は、本発明に係る光ピックアップの第1の実施形態の構成を説明するための斜視図である。

図10(a)及び(b)は、本発明に係る光ピックアップの第1の実施形態において用いられる2種類のPBSの光学特性を示すグラフである。

図11は、本発明に係る光ピックアップの第2の実施形態の構成を説明するための斜視図である。
図12（a）及び（b）は、本発明に係る光ビックアップの第2の実施形態において用いられるDP及びPBSの光学特性を示すグラフである。
図13は、本発明に係る積層波長板の第1の変形実施例の光学作用をポアンカレ球を用いて説明するための図である。
図14は、従来の積層波長板を示す図であり、（a）は入射方向から見た平面図、（b）は斜視概観図ある。
図15は、従来の波長板を示す斜視図である。
図16（a）及び（b）は、従来の光ビックアップの光学作用を説明するための平面図である。
図17は、従来の広帯域波長板のクロスニコルの透過率を示すグラフである。

発明を実施するための最良の形態

以下、本発明を図面に示した実施の形態例に基づいて詳細に説明する。
図1は本発明に係る波長板の第1の実施形態の構成を示す図であり、図1（a）は波長板を入射方向から見た平面図、図1（b）は波長板の斜視概観図である。この波長板22は、波長785nmに対して位相差1695°（4次モード255°）及び面内回転方位（以下、方位角と称す）が25.5°の水晶波長板23と位相差850°（2次モード130°）及び方位角が79.8°の水晶波長板24を各々の結晶光学軸25、26が54.3°の角度で交差するように積層して、全体として、波長655nm及び785nmにおいて1/4波長板として機能する積層波長板である。つまり、この積層波長板22に直線偏光27が入射すると出射面で位相が90°ずれることによって円偏光28となって出射することとなる。
この積層波長板２２を、１／４波長板として機能させめんがために積層した水晶波長板２３、２４の光学特性を如何にして算出したかについて詳細に説明する。

数値計算には、以下ミューラ行列を使用し各偏光状態を示すこととする。

ここで、波長板２３の位相差を \(\delta_1 \)、方位角を \(\theta_1 \)、波長板２４の位相を \(\delta_2 \)、方位角を \(\theta_2 \)で表わす。\(\delta_1 \)と\(\delta_2 \)は、下記の式（3）、（4）で表わすことができる。

\[
\delta_1 = 2 \times \pi / \lambda \times (N_e - N_o) \times d_1 \\
\delta_2 = 2 \times \pi / \lambda \times (N_e - N_o) \times d_2
\]

\(\lambda \)は波長、\(N_o \)は常光線の屈折率、\(N_e \)は異常光線の屈折率、\(d_1 \)は水晶波長板２３の厚み、\(d_2 \)は水晶波長板２４の厚みである。

波長板２３のミューラ行列 \(A_1 \)は、下記の式（5）で表わすことができる。

\[
A_1 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 - (1 - \cos \delta_1) \sin^2 \theta_1 & (1 - \cos \delta_1) \sin 2 \theta_1 \cos 2 \theta_1 & -\sin \delta_1 \sin 2 \theta_1 \\
0 & (1 - \cos \delta_1) \sin 2 \theta_1 \cos 2 \theta_1 & 1 - (1 - \cos \delta_1) \cos^2 \theta_1 & \sin \delta_1 \cos 2 \theta_1 \\
0 & \sin \delta_1 \sin 2 \theta_1 & -\sin \delta_1 \cos 2 \theta_1 & \cos \delta_1
\end{bmatrix}
\]

波長板２４のミューラ行列 \(A_2 \)は、下記の式（6）で表わすことができる。

\[
A_2 = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 - (1 - \cos \delta_2) \sin^2 \theta_2 & (1 - \cos \delta_2) \sin 2 \theta_2 \cos 2 \theta_2 & -\sin \delta_2 \sin 2 \theta_2 \\
0 & (1 - \cos \delta_2) \sin 2 \theta_2 \cos 2 \theta_2 & 1 - (1 - \cos \delta_2) \cos^2 \theta_2 & \sin \delta_2 \cos 2 \theta_2 \\
0 & \sin \delta_2 \sin 2 \theta_2 & -\sin \delta_2 \cos 2 \theta_2 & \cos \delta_2
\end{bmatrix}
\]

積層波長板２２に入射する入射偏光状態をストークスベクトル \(T \)で下記の式（7）で表わす。
積層波長板22から出射する出射偏光状態をストークスベクトルSで下記の式(8)で表わす。

\[
T = \begin{bmatrix}
 t_1 \\
 t_2 \\
 t_3 \\
 t_4
\end{bmatrix}
\] \hspace{1cm} (7)

\[
S = \begin{bmatrix}
 S_1 \\
 S_2 \\
 S_3 \\
 S_4
\end{bmatrix}
\] \hspace{1cm} (8)

以上、式(5)〜(8)より下記の式(9)のミューラ行列式が得られる。

\[
\begin{bmatrix}
 S_1 \\
 S_2 \\
 S_3 \\
 S_4
\end{bmatrix}
= A_1 \cdot A_1
\begin{bmatrix}
 t_1 \\
 t_2 \\
 t_3 \\
 t_4
\end{bmatrix}
\] \hspace{1cm} (9)

式(9)において、Tを下記の入射偏光状態とすると、

\[
T = \begin{bmatrix}
 t_1 \\
 t_2 \\
 t_3 \\
 t_4
\end{bmatrix}
= \begin{bmatrix}
 1 \\
 1 \\
 0 \\
 0
\end{bmatrix}
\] \hspace{1cm} (10)

\[
S = A_1 \cdot A_1
= \begin{bmatrix}
 1 \\
 1 \\
 0 \\
 0
\end{bmatrix}
\] \hspace{1cm} (11)
となる。積層波長板の位相差 Γ は、

$$\Gamma = \arctan \frac{S_1}{\sqrt{S_1^2 + S_1^2}} \quad (12)$$

で表わすことができるから、式 (11), (12) から Γ が $(2 \times n - 1) \times (\pi / 2)$, n は自然数、となるようにシミュレーションを行った。

以上のシミュレーション結果から各水晶波長板の位相差及び方位角が、
$(\delta 1, \theta 1, \delta 2, \theta 2) = (169.5^\circ, 25.5^\circ, 850^\circ, 79.8^\circ)$
のとき、Γ は、図 2 (a) の如き位相差波長依存性カーブを描き、波長 655 nm で位相差 270°（点 K1）、785 nm で位相差 90°（点 K2）、またはカーブ特性は図示しないが、波長 655 nm で位相差 90°、785 nm で位相差 270° となり、両波長において積層波長板が 1/4 波長板として完全に機能することを実現せしめた。

この積層波長板 2 2 をクロスニコルに配置した偏光板間に配置した分光スペクトル評価したところ、図 2 (b) の如き透過率特性を描くことが確認され、波長 655 nm 及び 785 nm で透過率 50% となり誤差なく 1/4 波長板として機能することが実証され、入射した直線偏光を損失なく円偏光に変換する 2 波長対応の積層波長板を提供することが可能となった。

尚、このシミュレーションにおいて、式 (3), (4) から積層する水晶波長板の板厚を製造コスト上問題のない範囲に予め任意に決定し、数値計算を行って解を算出しているので、所定の複数の波長に対して、各水晶波長板の板厚を適宜決定して 1/4 波長板として機能する積層波長板を求める一連の上記過程の中から、各水晶波長板の位相差 α, β が下記の 2 式の条件を満足する範囲から決定されることが判明した。
(3/2) \times \pi \neq \alpha - 2 \times \pi \times (n - 1) \quad (13)
\pi \neq \beta - 2 \times \pi \times (n - 1) \quad (14)

n: 自然数, \alpha = \delta 1, \beta = \delta 2

即ち、本発明に係るシミュレーション解析及び実験結果から、複数の波長に対し 1/4 波長板として機能する積層波長板は、各々の位相差（多数次モード分を除いた実質的な位相差）が、180° 及び 270° からずれた位相差を有する水晶波長板同士を積層して構成されるという結果に想到した。

図 3 は本発明に係る波長板の第 2 の実施形態の構成を示す図であり、図 3（a）は波長板を入射方向から見た平面図、図 3（b）は波長板の斜視概観図である。この波長板 71 は、波長 785 nm 又は 655 nm に対して位相差 1980° （5 次モード 180°）及び方位角が 14° の水晶波長板 72 と、位相差 990° （2 次モード 270°）及び方位角が 72° の水晶波長板 73 とを各々の結晶光学軸 74, 75 が 58° の角度で交差するように積層して、全体として、波長 655 nm 及び 785 nm において 1/4 波長板として機能する積層波長板である。つまり、この積層波長板 71 においても直線偏光が入射すると出射面で位相が 90° ずれることによって円偏光となって出射するのである。

前述と同様なシミュレーションを行った結果から各水晶波長板の位相差及び方位角が、

\((\delta 1, \theta 1, \delta 2, \theta 2) = (1980°, 14°, 990°, 72°) \)

のとき、\(\Gamma \) は、図 4 の如き位相差波長依存性カーブを描き、波長 655 nm で位相差 270° (点 K'1), 785 nm で位相差 90° (点 K'2), またはカーブ特性は図示しないが、波長 655 nm で位相差 90°, 785 nm で位相差 270° となり、両波長において積層波長板が 1/4 波長板として完全に機能することを実現せしめている。
この場合、各水晶波長板 2, 3 の位相差 \(\alpha, \beta \) は下記の条件式を満足する範囲から決定される。

\[
\begin{align*}
\pi & \neq \alpha - 2 \times \pi \times (n - 1) \quad (15) \\
(3/4) \times \pi & \neq \beta - 2 \times \pi \times (n - 1) \quad (16)
\end{align*}
\]

\(n \) : 自然数, \(\alpha = 5, \beta = 5 \) 2

尚、方位角は、所望値に対して、±5°の精度で各々の波長板を積層していれば 2 波長に対して 1/4 波長板として十分機能するので、量産性においても低コスト化が期待できる。

図 5 は本発明の変形実施形態に係る波長板の構成を示す図であり、図5 (a) は波長板を入射方向から見た平面図、図5 (b) は波長板の斜視概観図である。この波長板 2 9 は、波長 655 nm に対して位相差 2
700°（7 次モード180°）及び方位角が 7°の水晶波長板 3 0 と
位相差 630°（1 次モード 270°）及び方位角が 52°の水晶波長
板 3 1 とを各々の結晶光学軸 3 2, 3 3 が 45°の角度で交差するよう
に積層して、全体として、波長 655 nm において 1/4 波長板として
機能し、785 nm において 1/2 波長板として機能する積層波長板で
ある。つまり、この積層波長板 2 9 に波長 655 nm の直線偏光 3 4 が
入射すると出射面で位相が 90°ずれることによって円偏光 3 5 となっ
て出射し、また波長 785 nm の P 偏光 3 6 が入射すると出射面で位相
が 180°ずれることによって S 偏光となって出射することとなる。

この積層波長板 2 9 を、波長 655 nm において 1/4 波長板として
機能し、785 nm において 1/2 波長板として機能せしめんがために
積層した水晶波長板 2 3, 2 4 の光学特性を如何にして算出したかにつ
いては、前述の実施例において用いたミューラ行列によって求めたので
ここでは説明を省略する。ここでは、光学的性能について詳細に説明す
る。
波長板30, 31の各波長における位相差を図5(c)に示す。波長655nmの直線偏光34が波長板30に入射すると、波長板30で位相差が180°つき14°偏光面は回転することになる。更に波長板31で位相差が270°つき円偏光35となって出射する。785nmの直線偏光では大きく位相差が変化する、即ち波長板30では位相差100°となって楕円偏光となり、波長板31で位相差を167°つけることで直線偏光に戻すことができる。

以上の光学作用について図13に示すポアンカレ球を用いて説明する。ここで、入射光の偏光状態をP0とする。波長655nmにおいて、波長板30では方位角ψ1(＝7°)によって、角度2ψ1の位置に回転軸aが配置される。回転軸aを軸にして2700°回転させると7回転した後P1の位置に移動する。更に、波長板31で方位角ψ2(＝52°)により角度2ψ2の位置に回転軸bが配置される。回転軸bを軸に630°回転させると1回転した後P2の位置に移動し、これにより全体として位相差は270°となり左回転の円偏光として出射することになる。

次に、波長785nmでは、波長板30で回転軸aを軸にして6回転した後P1'の位置に移動し、波長板31で回転軸bを軸にして1回転した後P2'の位置に移動することになり、全体として位相差は180°となり偏光面が90°回転することとなる。この波長板29の波長依存性を図6に示す。曲線38は785nm用零次1/2波長板の波長依存特性を、曲線39は785nm用15次1/2波長板の波長依存特性を、そして曲線40は波長板29の波長依存特性を示しており、波長板29が波長655nmにおいて1/4波長板として機能し、785nmにおいて1/2波長板として機能することが確認できる。

図7は本発明の第2の変形実施形態に係る波長板の構成を示す図であ
り、図7（a）は波長板を入射方向から見た平面図、図7（b）は波長板の斜視観察図である。この波長板41は、波長655nmに対して位相差2700°（7次モード180°）及び方位角が12°の水晶波長板42と位相差1260°（3次モード180°）及び方位角が57°の水晶波長板43とを各々の結晶光学軸44、45が45°の角度で交差するように積層して、全体として、波長655nmにおいて1/2波長板として機能し、785nmにおいて2/2波長板として機能する積層波長板である。つまり、この積層波長板41に波長655nmのP偏光46が入射すると出射面で位相が180°ずれることによってS偏光47となって出射し、また波長785nmのP偏光48が入射すると出射面で位相が360°ずれるのでP偏光を維持したまま出射することとなる。

この積層波長板41を、波長655nmにおいて1/2波長板として機能し、785nmにおいて2/2波長板として機能せしめんがために積層した水晶波長板42、43の光学特性を如何にして算出したかについて、前述の実施例と同様にミューラ行列により求めたので説明を省略する。この波長板41の波長依存性を図8に示す。曲線50は655nm用零次1/4波長板の波長依存特性を、そして曲線51は波長板41の波長依存特性を示したものであり、波長板41が波長655nmにおいて1/2波長板として機能し、785nmにおいて2/2波長板として機能していることが確認できる。

尚、方位角は、前述したように所望値に対して、±5°の精度で各々の波長板を積層していれば各々波長に対して所望の波長板として十分機能するので、産業性においても低コスト化が期待できる。

本発明の特徴は、複数の波長に対して1/4波長板或いは1/2波長板として機能せしめんとする波長板を実現するため、零次モードの単板
の波長板をただ多数次モードにするだけでは波長依存性が大きいので、レーザー光の波長の変化により位相差が大きく変動してしまうという問題点に鑑み、更にもう1枚補正用波長板を貼り合わせ使用波長帯域での位相変化を補償したところにある。

即ち、積層する各々の波長板のモード次数を変えることによって波長依存性を調整して互いに補正するように波長板を設計し構成したことにある。

更に、従来提案されている広帯域波長板では、広範囲な波長に渡って、1/4波長板として機能するよう構成しているが、前述したクロスニコルの透過率でも分かるように完全に1/4波長板として機能するまでには至っておらず、つまり損失が必ず発生するという問題が存在し、本発明者はこの問題点に鑑み、広帯域に渡って位相差を1/4波長とする視点から逆の発想により、即ちビンポイントで複数の波長に対して完全に1/4波長板として機能する波長板を実現せしめたことを特徴としている。

次に、前述した本発明に係る積層波長板を用いた2波長対応光ビックアップについて以下、詳細に説明する。

図9は、本発明の光ビックアップに係る第1の実施形態を示す斜視図である。

まず、DVD（655nm）の再生について説明する。655nm及び785nmを出射可能な光源を有する2入LD52から655nmの直線偏光SA（S偏光）が出射し第1のPBS53へ入射する。第1のPBS53の斜面54には図10（a）の如き透過特性を有する光学薄膜が形成されているので、SAは斜面54を透過して、第2の変形実施例で示した積層波長板41へ入射する。前述したように655nmに対しては1/2波長板として機能するので、直線偏光SAは位相が18
0° ついて直線偏光 P A (P 偏光) となって出射する。P A は、図 10 (b) の如き透過特性を有する光学薄膜が斜面 55 に形成された第 2 の PBS 56 へ入射し、斜面 55 を透過してコリメートレンズ 57、反射ミラーを経て本発明に係る一実施例で示した 1/4 波長板 22 へ入射し円偏光として出射し対物レンズ（以下、OB J と称す）59 を通過して DVD のビット 60 入射する。

ビット 60 で反射した際に円偏光は回転方向が逆転し、OB J 59 を通過して 1/4 波長板 22 へ入射する。円偏光は往路に対して復路では回転方向が逆になっているので直線偏光 SA (S 偏光) として出射し、反射ミラー 58、コリメートレンズ 57 を経て第 2 の PBS 56 へ入射する斜面 55 に形成された光学薄膜の特性から SA はこれを透過し、積層波長板 41 へ入射し位相が 180° ついて PA (P 偏光) として出射し第 1 の PBS 53 へ入射する斜面 54 は 655 nm の P 偏光は透過しない光学薄膜が形成されているので PA は斜面 54 で反射して PD 61 で検出される。

次に、CD (785 nm) の再生について説明する。2 入 LD 52 から 785 nm の直線偏光 SB (S 偏光) が出射し第 1 の PBS 53 へ入射する。第 1 の PBS 53 の斜面 54 には図 10 (a) の如き透過特性を有する光学薄膜が形成されているので、SB は斜面 54 を透過して、積層波長板 41 へ入射する。前述したように 785 nm に対しては 2/2 波長板として機能するので、直線偏光 SB はこれを維持したまま出射する。SB は、図 10 (b) の如き透過特性を有する光学薄膜が斜面 55 に形成された第 2 の PBS 56 へ入射し、斜面 55 を透過してコリメートレンズ 57、反射ミラーを経て 1/4 波長板 22 へ入射し円偏光として出射し OB J 59 を通過して CD のビット 60 入射する。

ビット 60 で反射した際に円偏光は回転方向が逆転し、OB J 59 を
通過して1／4波長板22へ入射する。円偏光は往路に対して復路では
回転方向が逆になっているので直線偏光PB（P偏光）として出射し、
反射ミラー58、コリメートレンズ57を経て第2のPBS56へ入射
する斜面55に形成された光学薄膜の特性からPBは斜面55で反射し
てPD62で検出される。

このように構成することによって、1系観のピックアップで2波長対
応の光ピックアップ装置を実現することができた。

尚、ここでは1／4波長板として第1の実施形態である図1に示した
1／4波長板22を用いたが、第2の実施形態である図3に示した1／
4波長板71を用いてもよいことは言うまでもない。

図11は、本発明の光ピックアップに係る第2の実施形態を示す斜視
図である。まず、DVD（655nm）の再生について説明する。655
nmを出射する光源を有するLD63から655nmの直線偏光PA
（P偏光）が出射しダイクロイックプリズム（以下、DPと称す）64
へ入射する。DP64は図12(a)の如き光学特性を有しているので、
PAはDP64を透過して、PBS65へ入射する。PBS65の斜面
66には図12(b)の如き特性を有する光学薄膜が形成されているの
で、PAは斜面66を透過してコリメートレンズ57を通過して第1の
変形実施例で示した積層波長板29へ入射する。前述したように655
nmに対しては1／4波長板として機能するので、直線偏光PAは位相
が90°ついて円偏光となって出射し反射ミラー58、OBJ59を通
過してDVDのピット60へ入射する。

ピット60で反射した際に円偏光は回転方向が逆転した円偏光となり、
OBJ59、反射ミラー58を通じて積層波長板29へ入射する。円
偏光は往路に対して復路では回転方向が逆になっているので直線偏光SA
(S偏光)として出射し、PBS65へ入射し斜面66で反射して非
点収差板 (Astigmatism; 以下、ＡＳ板と称す) 67 を介して PD 68 で検出される。尚、非点収差とは、光軸外の物点からの光が子午面と球欠面で集光点がずれる収差のことである。

次に、CD (785nm) の再生について説明する。ホロレーザ (LD と PD との一体モジュール) 69 から 785nm の直線偏光 PB (P 偏光) が出射し DP64 へ入射し図 12 (a) の如き透過特性を有するので、斜面 70 で反射して、PBS65 へ入射する。斜面 66 は P 偏光を透過するので、PB は斜面を透過しコリメートレンズ 57 を通過して積層波長板 29 へ入射する。前述したように 785nm に対しては 1/

2 波長板として機能するので、位相が 180° ついて SB (S 偏光) として出射し、反射ミラー 58、OBJ59 を経て CD のビット 60 へ入射する。

ビット 60 で反射した SB は O BJ 59、反射ミラー 58 を経て積層波長板 29 へ入射する。ここで、位相が 180° ついて PB (P 偏光) となって出射しコリメートレンズ 57 を通過して PB を透過する PBS65 を通過して DP64 へ入射する。DP64 は 785nm の P 偏光を透過しない光学特性を有しているので、PB は斜面 70 で反射してホロレーザ 69 で検出されることとなる。

このようなビックアップ構成とすることでも、1 系統のビックアップで 2 波長対応の光ビックアップ装置を実現することができる。

従って、DVD/CD のコンパチブル等の 2 波長対応のより小型のビックアップ装置を提供することを可能とした。

ここでは、波長板に水晶を用いた場合を例にして説明したが、本発明はこれに限らず本発明に係る積層波長板は、複屈折性を有する結晶やフィルム等の樹脂に幅広く適用できるとは言うまでもない。

以上説明したように、本発明によれば以下のような優れた効果が得ら
れる。

請求項1の発明は、波長λの単色光に対して位相差αの波長板と位相差βの波長板とを光軸が交差するように貼り合わせて、前記α及び前記βの関係が

\[
\begin{align*}
(3/2) \times \pi & \neq \alpha - 2 \times \pi \times (n - 1) \\
\pi & \neq \beta - 2 \times \pi \times (n - 1)
\end{align*}
\]

を満足するように構成したので、全体として波長依存性を補償した1/4波長板として機能する積層波長板を提供できるという優れた効果を奏する。

請求項2及び3の発明は、全体として波長依存性を補償した1/4波長板として機能する積層波長板を用いたので、複数の波長に対応した小型のピックアップを提供できるという優れた効果を奏する。

請求項4及び5の発明は、波長785nmに対して、位相差1695°となる波長板Aと、位相差850°となる波長板Bとを光軸が交差するように貼り合わせたので、全体として波長依存性を補償した1/4波長板として機能する積層波長板を提供できるという優れた効果を奏する。

請求項6及び7の発明は、波長655nmに対して、位相差2700°となる波長板Cと、位相差630°となる波長板Dとを光軸が交差するように貼り合わせたので、波長655nmに対して1/4波長板、785nmに対して1/2波長板として機能する積層波長板を提供できるという優れた効果を奏する。

請求項8及び9の発明は、波長655nmに対して、位相差2700°となる波長板Eと、位相差1260°となる波長板Fとを光軸が交差するように貼り合わせたので、波長655nmに対して1/2波長板、785nmに対して2/2波長板として機能する積層波長板を提供できる
という優れた効果を奏する。

請求項10の発明は、光源から出射した波長655nmの第1直線偏光と波長785nmの第2直線偏光とが、第1の波長板と第2の波長板とを順次通過するよう構成し、第1の波長板が、波長655nmに対して位相差2700°となる波長板Cと位相差1260°となる波長板Dとを光軸が交差するように貼り合わせた積層波長板であり、第2の波長板が、波長785nmに対して位相差1695°となる波長板Aと位相差850°となる波長板Bとを光軸が交差するように貼り合わせた積層波長板としたので、複数の波長に対応した小型の光ピックアップを提供できるという優れた効果を奏する。

請求項11の発明は、波長655nmに対して位相差2700°となる波長板Cと位相差630°となる波長板Dとを光軸が交差するように貼り合わせた積層波長板を使用したので、波長655nmと波長785nmに対応した小型の光ピックアップ提供できるという優れた効果を奏する。

請求項12の発明は、波長λの単色光に対して位相差αの波長板と位相差βの波長板とを光軸が交差するように貼り合わせて、前記α及び前記βの関係が

\[\pi \neq \alpha - 2 \times \pi \times (n - 1) \]

\[(3/4) \times \pi \neq \beta - 2 \times \pi \times (n - 1) \]

但し、nは自然数を満足するように構成したので、全体として波長依存性を補償した1/4波長板として機能する積層波長板を提供できるという優れた効果を奏する。

請求項13及び14の発明は、全体として波長依存性を補償した1/4波長板として機能する積層波長板を用いたので、複数の波長に対応し
た小型のビックアップを提供できるという優れた効果を奏する。

請求項15及び16の発明は、波長785nm、又は655nmに対して、位相差1980°となる波長板Aと、位相差990°となる波長板Bとを光軸が交差するように貼り合わせたので、全体として波長依存性を補償した1/4波長板として機能する積層波長板を提供できるという優れた効果を奏する。

請求項17記載の発明は、光源から出射した波長655nmの第1直線偏光と波長785nmの第2直線偏光とが、第1の波長板と第2の波長板とを順次通過するよう構成し、該第1の波長板が、波長655nmに対して位相差2700°となる波長板Cと位相差1260°となる波長板Dとを光軸が交差するように貼り合わせた積層波長板であり、該第2の波長板が、波長785nmに対して位相差1980°となる波長板Aと位相差990°となる波長板Bとを光軸が交差するように貼り合わせた積層波長板としたので、複数の波長に対応した小型の光ビックアップを提供できるという優れた効果を奏する。
請求の範囲

1．波長λの単色光に対して位相差αの波長板と位相差βの波長板とを光軸が交差するように貼り合わせて、全体として1/4波長板として機能する積層波長板において、
前記α及び前記βの関係が以下の条件を満足することを特徴とする積層波長板。

\[
\left(\frac{3}{2} \right) \times \pi \neq \alpha - 2 \times \pi \times (n - 1) \\
\pi \neq \beta - 2 \times \pi \times (n - 1)
\]

但し、nは自然数

2．光源から出射した第1の波長の第1直線偏光と第2の波長の第2直線偏光とが、波長板を通じるよう構成された光ピックアップにおいて、
該波長板が、波長λの単色光に対して位相差αの波長板と位相差βの波長板とを光軸が交差するように貼り合わせて、全体として1/4波長板として機能する積層波長板であり、前記α及び前記βの関係が以下の条件を満足することを特徴とする光ピックアップ。

\[
\left(\frac{3}{2} \right) \times \pi \neq \alpha - 2 \times \pi \times (n - 1) \\
\pi \neq \beta - 2 \times \pi \times (n - 1)
\]

但し、nは自然数

3．上記第1の波長には655nmを用い、上記第2の波長には785nmを用いることを特徴とする請求項2記載の光ピックアップ。

4．波長785nmに対して、位相差1695°となる波長板Aと、位相差850°となる波長板Bとを光軸が交差するように貼り合わせたところを特徴とする積層波長板。

5．前記積層波長板が、波長655nm及び785nmに対して1/4波長板として機能することを特徴とした請求項4記載の積層波長板。
6. 波長655 nmに対して、位相差270° となる波長板Cと、位相差630° となる波長板Dとを光軸が交差するように貼り合わせたことを特徴とする積層波長板。

7. 前記積層波長板が、波長655 nmに対して1/4波長板、785
nmに対して1/2波長板として機能することを特徴とした請求項6記載の積層波長板。

8. 波長655 nmに対して、位相差270° となる波長板Eと、位相差1260° となる波長板Fとを光軸が交差するように貼り合わせたことを特徴とする積層波長板。

9. 前記積層波長板が、波長655 nmに対して1/2波長板、785
nmに対して2/2波長板として機能することを特徴とした請求項8記載の積層波長板。

10. 光源から出射した波長655 nmの第1直線偏光と波長785 nmの第2直線偏光とが、第1の波長板と第2の波長板とを順次通過するよう構成された光ビックアップにおいて、

該第1の波長板が、波長655 nmに対して位相差270° となる
波長板Cと位相差1260° となる波長板Dとを光軸が交差するように
貼り合わせた積層波長板であり、

該第2の波長板が、波長785 nmに対して位相差1695° となる
波長板Aと位相差850° となる波長板Bとを光軸が交差するように貼
り合わせた積層波長板であることを特徴とする光ビックアップ。

11. 光源から出射した波長655 nmの第1直線偏光と波長785 nmの第2直線偏光とが、波長板を通過するよう構成された光ビックアッ
プにおいて、

該波長板が、波長655 nmに対して位相差270° となる波長板
Cと位相差630° となる波長板Dとを光軸が交差するように貼り合わ
せた積層波長板であることを特徵とする光ビックアップ。
12. 波長λの単色光に対して位相差αの波長板と位相差βの波長板とを光軸が交差するように貼り合わせて、全体として1/4波長板として機能する積層波長板において、

前記α及び前記βの関係が以下の条件を満足することを特徴とする積層波長板。

\[\pi \neq \alpha - 2 \times \pi \times (n - 1) \]
\[(3/4) \times \pi \neq \beta - 2 \times \pi \times (n - 1) \]

但し、nは自然数

13. 光源から出射した第1の波長の第1直線偏光と第2の波長の第2直線偏光とが、波長板を通じるよう構成された光ビックアップにおいて、

該波長板が、波長λの単色光に対して位相差αの波長板と位相差βの波長板とを光軸が交差するように貼り合わせて、全体として1/4波長板として機能する積層波長板であり、前記α及び前記βの関係が以下の条件を満足することを特徴とする光ビックアップ。

\[\pi \neq \alpha - 2 \times \pi \times (n - 1) \]
\[(3/4) \times \pi \neq \beta - 2 \times \pi \times (n - 1) \]

但し、nは自然数

14. 上記第1の波長には655nmを用い、上記第2の波長には785nmを用いることを特徴とする請求項13記載の光ビックアップ。

15. 波長785nm、又は655nmに対して、位相差1980°となる波長板Aと、位相差990°となる波長板Bとを光軸が交差するように貼り合わせたことを特徴とする積層波長板。

16. 前記積層波長板が、波長655nm及び785nmに対して1/4波長板として機能することを特徴とした請求項15記載の積層波長板。
17. 光源から出射した波長655nmの第1直線偏光と波長785nmの第2直線偏光とが、第1の波長板と第2の波長板とを順次通過するよう構成された光ビックアップにおいて、

該第1の波長板が、波長655nmに対して位相差2700°となる波長板Cと位相差1260°となる波長板Dとを光軸が交差するように貼り合わせた積層波長板であり、

該第2の波長板が、波長785nmに対して位相差1980°となる波長板Aと位相差990°となる波長板Bとを光軸が交差するように貼り合わせた積層波長板であることを特徴とする光ビックアップ。
図1

(a) 79.8°（面内方位角）
25.5°（面内方位角）
入射方向より見た図

(b) 入射光
S偏光
27
円偏光
28
出射光

d1 d2
図2

(a) 位相差波長依存性

(b) クロスニコル透過率
図3

(a) 71 X 75
72°（面内方位角）
14°（面内方位角）
入射方向より見た図

(b) 72 73
入射光
S偏光
出射光
円偏光
図5

(a)

52° (面内方位角)
7° (面内方位角)

(b)

PまたはS
650mm
780mm

(c)

<table>
<thead>
<tr>
<th></th>
<th>660 nm</th>
<th>780 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>波長板30</td>
<td>2700°</td>
<td>2257°</td>
</tr>
<tr>
<td></td>
<td>360×7+180</td>
<td>360×6+100</td>
</tr>
<tr>
<td>波長板31</td>
<td>630°</td>
<td>527°</td>
</tr>
<tr>
<td></td>
<td>360×1+270</td>
<td>360×1+167</td>
</tr>
</tbody>
</table>
図7

(a)

(b)

入射光
650mm
780mm

出射光
S

W03/091768
PCT/JP03/05257

7/17
図 8

2波長波長板シミュレーション

波長 (nm)

位相差 (°)
図13
図15
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl \(^7\) G02B5/30, G11B7/135

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl \(^7\) G02B5/30, G11B7/135

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y A</td>
<td>JP 2000-276766 A (Matsushita Electric Industrial Co., Ltd.), 06 October, 2000 (06.10.00), Full text; all drawings; particularly, Claim 2 (Family: none)</td>
<td>1-5,12-16, 10,17</td>
</tr>
<tr>
<td>Y A</td>
<td>JP 2001-4841 A (Matsushita Electric Industrial Co., Ltd.), 12 January, 2001 (12.01.01), Full text; all drawings; particularly, Claim 1 (Family: none)</td>
<td>1-5,12-16, 10,17</td>
</tr>
</tbody>
</table>

[] Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "E" document member of the same patent family

Date of the actual completion of the international search
29 July, 2003 (29.07.03)

Date of mailing of the international search report
12 August, 2003 (12.08.03)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 1998)
INTERNATIONAL SEARCH REPORT

DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 10-214431 A (Matsushita Electric Industrial Co., Ltd.), 11 August, 1998 (11.08.98), Full text; all drawings; particularly, Par. Nos. [0027] to [0040] (Family: none)</td>
<td>1-3, 6-7, 12-14</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2001-344800 A (Asahi Glass Co., Ltd.), 14 December, 2001 (14.12.01), Full text; all drawings; particularly, Claim 1 (Family: none)</td>
<td>1-3, 6-7, 12-14</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2001-184695 A (Toshiba Corp.), 06 July, 2001 (06.07.01), Full text; all drawings; particularly, Claim 2 (Family: none)</td>
<td>1-3, 6-7, 12-14</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2001-307368 A (Pioneer Electronic Corp.), 02 November, 2001 (02.11.01), Full text; all drawings; particularly, Par. Nos. [0006] to [0008] (Family: none)</td>
<td>1-3, 8-9, 12-14</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>10, 17</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2002-14228 A (Asahi Glass Co., Ltd.), 18 January, 2002 (18.01.02), Full text; all drawings; particularly, Claim 1 (Family: none)</td>
<td>1-3, 8-9, 12-14</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>10, 17</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2002-117571 A (Ricoh Co., Ltd.), 19 April, 2002 (19.04.02), Full text; all drawings; particularly, Par. Nos. [0025] to [0032] (Family: none)</td>
<td>1-3, 8-9, 12-14</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>10, 17</td>
</tr>
<tr>
<td>X</td>
<td>J.M. Beckers, Achromatic Linear Retarders, April 1971, Applied Optics, Vol.10, No.4, pages 973 to 975 (Family: none)</td>
<td>1, 2-9, 11-16</td>
</tr>
<tr>
<td>Y</td>
<td>975</td>
<td>10, 17</td>
</tr>
<tr>
<td>X</td>
<td>JP 10-68816 A (Sharp Corp.), 10 March, 1998 (10.03.98), Full text; all drawings (Family: none)</td>
<td>1, 12</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>2-3, 13-14</td>
</tr>
<tr>
<td>X</td>
<td>JP 10-177737 A (Sankyo Seiki Mfg. Co., Ltd.), 30 June, 1998 (30.06.98), Full text; all drawings; particularly, Claim 3 (Family: none)</td>
<td>1, 12</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>2-3, 13-14</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (July 1998)
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
国際調査報告

国際出願番号 PCT/JP03/05257

A. 発明の属する分野の分類（国際特許分類（IPC））
 Int. C17 G02B 5/30, G11B 7/135

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
 Int. C17 G02B 5/30, G11B 7/135

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国実用新案公報 1926-1996年
日本国公知実用新案公報 1971-2003年
日本公知実用新案公報 1994-2003年
日本国実用新案公報 1996-2003年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2000-276766 A（松下電器産業株式会社）2000.10.06、全文、全図、特に【請求項2】、（ファミリーなし）</td>
<td>1-5, 12-16, 10, 17</td>
</tr>
<tr>
<td>A</td>
<td>JP 2001-4841 A（松下電器産業株式会社）2001.01.12、全文、全図、特に【請求項1】、（ファミリーなし）</td>
<td>1-5, 12-16, 10, 17</td>
</tr>
<tr>
<td>Y</td>
<td>JP 10-214431 A（松下電器産業株式会社）1998.08.11、全文、全図、特に【0027】-【0040】、（ファミリーなし）</td>
<td>1-3, 6-7, 12-14, 11</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※ 引用文献のカテゴリ
「A」特に関連のある文献ではなく、一般的な技術水準を示すもの
「E」国際出願目安の出願または特許であるが、国際出願日以後に公表されたもの
「L」優先権主張を基準とする文献又は他の文献の発行日若しくは他の特別な理由を確認するために引用する文献（理由を付す）
「O」口頭による開示、使用、展示等に該当する文献
「P」国際出願前で、かつ優先権の主張の基礎となる出願の日の後に公表された文献

国際調査を完了した日 29.07.03
国際調査報告の発送日 12.08.03

国際調査機関の名称及び住所
日本国特許庁（ISA／JP）
〒100-8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
森内正明
電話番号 03-3581-1101 内線 3269

株式PCT／ISA／210（第2ページ）（1998年7月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリ*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2001-344600 A（旭硝子株式会社）2001.12.14、全文、全図、特に【請求項1】、（ファミリーなし）</td>
<td>1-3, 6-7, 12-14</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2001-184695 A（株式会社東芝）2001.07.06、全文、全図、特に【請求項2】、（ファミリーなし）</td>
<td>1-3, 6-7, 12-14</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2001-307368 A（バイオニア株式会社）2001.11.02、全文、全図、特に【0 0 0 6】－【0 0 0 8】、（ファミリーなし）</td>
<td>1-3, 8-9, 12-14</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>10, 17</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2002-14228 A（旭硝子株式会社）2002.01.18、全文、全図、特に【請求項1】、（ファミリーなし）</td>
<td>1-3, 8-9, 12-14</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>10, 17</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2002-117571 A（株式会社リコー）2002.04.19、全文、全図、特に【0 0 2 5】－【0 0 3 2】、（ファミリーなし）</td>
<td>1-3, 8-9, 12-14</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>10, 17</td>
</tr>
<tr>
<td>X</td>
<td>J. M. Beckers, Achromatic Linear Retarders, April 1971, Applied Optics, Vol.10, No.4, p.973-p975</td>
<td>1, 12</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>2-9, 11-16</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>10, 17</td>
</tr>
<tr>
<td>X</td>
<td>JP 10-68816 A（シャープ株式会社）1998.03.10、全文、全図、（ファミリーなし）</td>
<td>1, 12</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>2-3, 13-14</td>
</tr>
<tr>
<td>X</td>
<td>JP 10-177737 A（株式会社三協精機製作所）1998.06.30、全文、全図、特に【請求項3】、（ファミリーなし）</td>
<td>1, 12</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>2-3, 13-14</td>
</tr>
</tbody>
</table>

様式PCT／ISA／210（第2ページの続き）（1998年7月）