

Patent- og
Varemærkestyrelsen

(51) Int.Cl.: *B01D 53/92 (2006.01)*
F02B 25/04 (2006.01) *B01D 53/14 (2006.01)*
F02B 75/02 (2006.01) *B01D 53/62 (2006.01)*
F02G 5/04 (2006.01)

(21) Ansøgningsnummer: PA 2022 70533

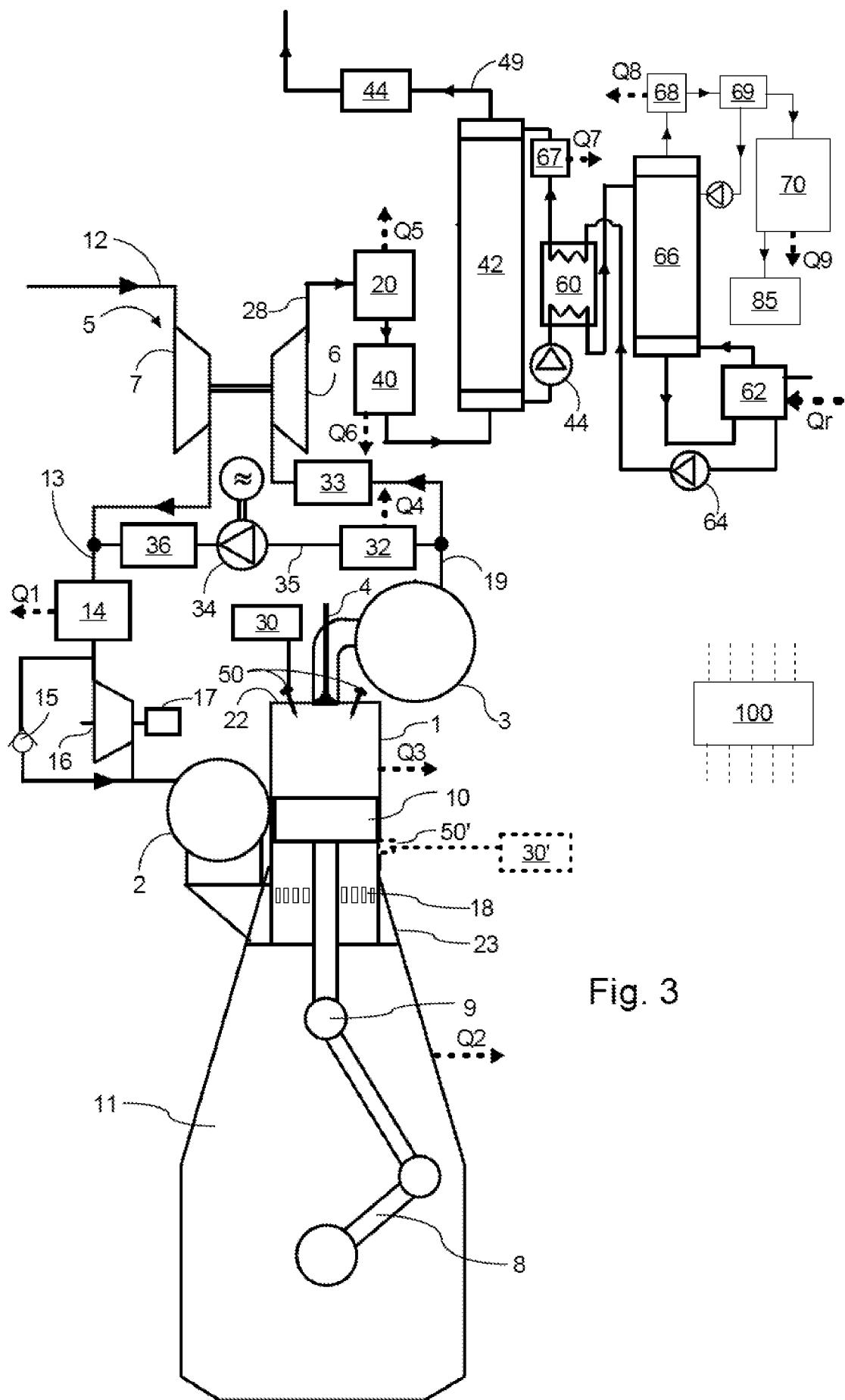
(22) Indleveringsdato: 2022-11-04

(24) Løbedag: 2022-11-04

(41) Alm. tilgængelig: 2022-11-07

(45) Patentets meddelelse bkg. og publiceret den: 2024-06-20

(73) Patenthaver:
MAN Energy Solutions, filial af MAN Energy Solutions SE, Tyskland, Teglholmsgade 41, 2450 København
SV, Danmark


(72) Opfinder:
Henrik CHRISTENSEN, --, København, Danmark
Anja Zarah FRIEDBERG, --, København, Danmark
Christian Koch JENSEN, --, København, Danmark
Philip HOLT, --, København, Danmark

(74) Fuldmægtig:
NORDIC PATENT SERVICE A/S, Bredgade 30, 1260 København K, Danmark

(54) Titel: METHOD AND LARGE TWO-STROKE UNIFLOW SCAVENGED INTERNAL COMBUSTION ENGINE
CONFIGURED FOR CARBON DIOXIDE CAPTURE

(56) Fremdragne publikationer:
US 4899544 A
JP 2010088982 A
US 2014/0127119 A1
WO 2021/045455 A1
JP 2019217492 A
WO 2022/124464 A1
DK 181014 B1

(57) Sammendrag:
A large two-stroke turbocharged uniflow scavenged internal combustion engine and a method of operating the engine by supplying a carbon-based fuel to the combustion chambers, combusting the carbon-based fuel in the combustion chambers, thereby producing exhaust gas containing carbon dioxide, supplying an excess energy flow (Q1, Q2,...Qn) in the form of a flow of primary medium with a first temperature T1 to a heat pump (80), generating an energy flow (Qr) in the form of a flow of a secondary medium having a second temperature T2 that is higher than the first temperature T1 with the heat pump (80), chemically absorbing carbon dioxide from the exhaust gas into a solvent by supplying a flow of carbon dioxide lean solvent to an absorber (42) and discharging a flow of carbon dioxide rich solvent from the absorber (42) to a desorber (64) and reboiler (62) assembly, and regenerating the carbon rich solvent in the desorber (64) and reboiler (62) assembly through heating by supplying at least a portion of the flow secondary medium to the desorber (66) and reboiler (62) assembly.

METHOD AND LARGE TWO-STROKE UNIFLOW SCAVENGED INTERNAL
COMBUSTION ENGINE CONFIGURED FOR CARBON DIOXIDE CAPTURE

TECHNICAL FIELD

5 The disclosure relates to large two-stroke internal combustion engines, in particular, large two-stroke uniflow scavenged internal combustion engines with crossheads running on a carbon-based fuel (gaseous or liquid fuel), configured to reduce carbon dioxide emissions, and to a method of
10 operating such a type of engine.

BACKGROUND

Large two-stroke turbocharged uniflow scavenged internal combustion engines with crossheads are for example used for
15 propulsion of large oceangoing vessels or as the primary mover in a power plant. Not only due to their sheer size, these two-stroke diesel engines are constructed differently from any other internal combustion engine. Their exhaust valves may weigh up to 400 kg, pistons have a diameter of up to 100
20 cm and the maximum operating pressure in the combustion chamber is typically several hundred bar. The forces involved at these high pressure levels and piston sizes are enormous.

Large two-stroke turbocharged internal combustion engines
25 that are operated with liquid fuel (e.g. fuel oil, marine diesel, heavy fuel oil, ethanol, dimethyl ether (DME) or with gaseous fuel (e.g. methane, natural gas (LNG), petroleum gas (LPG), methanol or ethane).

30 Engines that operate with a gaseous fuel may operate according to the Otto cycle in which gaseous fuel is admitted by fuel

valves arranged medially along the length of the cylinder liner or in the cylinder cover, i.e. these engines admit the gaseous fuel during the upward stroke (from BDC to TDC) of the piston starting well before the exhaust valve closes, and 5 compress a mixture of gaseous fuel and scavenging air in the combustion chamber and ignites the compressed mixture at or near TDC by timed ignition means, such as e.g. liquid fuel injection.

10 Engines that are operated with liquid fuel, and also engines that are operated with gaseous fuel with high-pressure injection, inject the gaseous- or liquid fuel when the piston is close to or at TDC, i.e. when the compression pressure in the combustion chamber is at or close to its maximum, and are 15 thus operated according to the Diesel cycle, i.e. with compression ignition.

20 The liquid- and gaseous fuels used in known large two-stroke turbocharged unit flow scavenged internal combustion engines generally contain carbon, i.e. these are carbon-based fuels, and their combustion results in the generation of carbon dioxide that is exhausted into the atmosphere. Carbon dioxide emissions are generally considered to contribute to climate change and to be minimized or avoided.

25 Known Carbon Capture Technologies are typically classified into three categories: post-combustion CO₂ capture, pre-combustion CO₂ capture, and oxy-fuel combustion. Pre-combustion means separating and capturing the carbonaceous 30 components before the combustion of fuel.

In pre-combustion carbon dioxide capture, the fuel is reacted first with oxygen and/or steam and then further processed in a water-gas shift reactor to produce a mixture of H₂ and CO₂. The CO₂ is captured from a high-pressure gas mixture that 5 contains between 15% and 40% CO₂. An advantage of pre-combustion is that the gas volume required for processing is greatly reduced and the CO₂ concentration in the gas is increased. This will reduce energy consumption and equipment investment for the separation process.

10

In Oxy-Fuel combustion, the carbon-based fuel is combusted in re-circulated flue gas and pure O₂, rather than air. This limits its commercialization potential due to the high cost of O₂ separation. The oxy-fuel combustion technology consists 15 of an air separation unit where the nitrogen is removed from the air. Then the carbon-based fuel is combusted in the re-circulated flue gas and pure oxygen. The flue gas now, primarily consisting of particulate matter from the combustion, CO₂, sulfur oxides from the fuel and water is 20 sent to a particulate matter removal unit, sulfur removal unit before condensing the water out, leaving a stream of CO₂ that can be compressed. The main advantage is that it enables nearly 100% CO₂ capture.

25

In post-combustion technology, the carbon based fuels are combusted as in conventional energy generation, and the CO₂ is captured from the exhaust gas. This carbon separation technology is roughly divided into four sub-areas, namely, absorption, adsorption, membranes, and cryogenics. An amine 30 solvent can be used to capture the CO₂ by absorption from

exhaust gas. Here CO₂ is captured in the solvent, followed by a regeneration process of the amine. A drawback is the massive scale-up of power plants and the substantial energy required for the carbon dioxide capture process. In particular, a very 5 significant amount of energy is required for amine solvent regeneration.

US4899544 discloses a cogeneration/CO₂ production plant includes a prime (an internal combustion engine, a gas turbine 10 or a combination of a power boiler and steam turbine) driving an electrical generator, a waste heat recovery unit through which hot exhaust gases from the engine are passed to recover thermal energy in usable form, and means for conveying exhaust gases coming out of the waste heat recovery unit to a CO₂ 15 recovery unit where the CO₂ is extracted and made available as a saleable byproduct.

JP2010088982 discloses a carbon dioxide recovering system includes an absorbing tower absorbing carbon dioxide 20 contained in combustion exhaust gas into an absorption liquid; a regeneration tower supplied with the absorbing liquid having the carbon dioxide absorbed from the absorbing tower, releasing carbon dioxide gas from the absorbing liquid having carbon dioxide absorbed to regenerate the absorbing liquid; 25 a reboiler heating the absorbing liquid from the regeneration tower to generate steam, supplying the steam to the regeneration tower and supplying part of the heated absorbing liquid to the absorbing tower; and a heat pump for heating the absorbing liquid absorbing the carbon dioxide supplied 30 from the absorbing tower to the regeneration tower, between the absorbing tower and regeneration tower.

DK 181014 B1 discloses a large two-stroke turbocharged uniflow scavenged internal combustion engine with crossheads for propulsion of large oceangoing vessels according to the preamble of claim 1.

5

SUMMARY

It is an object to provide an engine and a method that overcomes or at least reduces the problems indicated above.

10 The foregoing and other objects are achieved by the features of the independent claims. Further implementation forms are apparent from the dependent claims, the description, and the figures.

15 According to a first aspect, there is provided a large two-stroke turbocharged uniflow scavenged internal combustion engine with crossheads for propulsion of large oceangoing vessels, the engine comprising:

20 at least one combustion chamber, delimited by a cylinder liner, a piston configured to reciprocate in the cylinder liner, and a cylinder cover,

scavenge ports arranged in the cylinder liner for admitting scavenge gas into the at least one combustion chamber,

25 a fuel system configured for supplying a carbon-based fuel to the at least one combustion chamber,

the at least one combustion chamber being configured for combusting the carbon-based fuel thereby generating a stream of exhaust gas that contains carbon dioxide,

30 an exhaust gas outlet arranged in the cylinder cover and controlled by an exhaust valve,

the at least one combustion chamber being connected to a scavenge gas receiver via the scavenge ports 18 and to an exhaust gas receiver via the exhaust gas outlet,

5 an exhaust gas system comprising a turbine of a turbocharger system driven by the stream of exhaust gas,

an air inlet system comprising a compressor of the turbocharger system, the compressor being configured for supplying pressurized scavenge air to the scavenge gas receiver,

10 at least one excess energy flow Q_1, Q_2, \dots, Q_n being generated by the engine during engine operation,

an absorber, preferably an absorption tower, for absorbing carbon dioxide into a solvent,

15 a desorber and reboiler assembly for desorbing carbon dioxide from the solvent,

the absorber having a solvent inlet receiving carbon dioxide lean solvent from the desorber and a solvent outlet supplying carbon dioxide rich solvent to the desorber,

20 the absorber being arranged for the stream of exhaust gas passing through the absorber for separation of carbon dioxide from the stream of exhaust gas by chemical absorption into the solvent,

25 the desorber and reboiler assembly having an inlet receiving carbon dioxide rich solvent from the absorber and an outlet supplying carbon dioxide lean solvent to the absorber,

the desorber and reboiler assembly being configured for heating the solvent to release carbon dioxide from the solvent, and

30 at least one heat pump configured to receive at least a portion of the at least one excess energy flow Q_1, Q_2, \dots, Q_n in

the form of a flow of a primary medium that has a first temperature and,

the at least one heat pump being configured to generate an energy flow Q_r in the form of a flow of a secondary medium 5 having a second temperature T_2 that is higher than the first temperature, wherein at least a portion of the flow of the secondary medium is supplied to the desorber 66 and reboiler 62 assembly.

10 The amount of energy required for regenerating the solvent is significant and can amount to over 60% of the engine shaft power delivered by the large two-stroke internal combustion engine. Such a penalty for the energy efficiency of the engine would render the operation with a carbon dioxide capture 15 system significantly more expensive compared to an engine without such a carbon dioxide capture system. However, the inventors realized that a large two-stroke diesel engine generates several streams of excess energy, also called waste heat, for example in the scavenge air that needs to be cooled, 20 in the cylinders that require cooling, and in the exhaust gas that contains substantial amounts of thermodynamic energy. The flow of energy from these excess sources of energy is typically in the form of a medium, e.g. water with a temperature that is insufficient for use in the desorber and 25 the regenerator assembly. However, the inventors had the insight that the excess energy from these energy sources could be used for regeneration of the solvent by using the heat pump to generate a medium with a temperature that is high enough for use in the desorber and regenerator assembly. For 30 example, when an amine solution as the solvent, the optimal operating temperature for the regenerator is typically

between 120 °C and 130 °C, whilst the temperature of the medium can be supplied through use of the above-listed sources of excess energy is typically between 35 °C and 80 °C.

5 In a possible implementation of the first aspect, the at least one excess energy flow Q_1, Q_2, \dots, Q_n is generated by one or more of:

- a heat exchanger that transfers heat from the stream of exhaust gas downstream of the turbine to a primary medium that is supplied to the at least one heat pump,
- a heat exchanger transfers heat from the scavenging air to a primary medium that is supplied to the at least one heat pump,
- a heat exchanger that transfers heat from a cylinder cooling liquid to a primary medium that is supplied to the at least one heat pump,
- a heat exchanger that transfers heat from a stream of carbon dioxide containing gas generated by the desorber to a primary medium that is supplied to the at least one heat pump,
- a heat exchanger that transfers heat from a carbon dioxide liquefaction unit to a primary medium that is supplied to the at least one heat pump,
- a heat exchanger that transfers heat from a flow of carbon dioxide lean solvent from the desorber to the absorber to a primary medium that is supplied to the at least one heat pump.
- a heat exchanger that transfers heat from a flow of lubrication oil to a primary medium that is supplied to the at least one heat pump.

In a possible implementation of the first aspect, the engine comprises a first heat exchanger downstream of the turbine 6 of the turbocharger system, the first heat exchanger preferably being a boiler configured for generating steam, and a second heat exchanger downstream of the first heat exchanger, the second heat exchanger being configured to transfer heat from the stream of exhaust gas to a primary medium that is supplied to the heat pump.

10 In a possible implementation of the first aspect, the heat pump comprises an evaporator for evaporating a heat pump medium, the evaporator being arranged to receive at least a portion of the at least one excess energy flow $Q_1, Q_2, \dots Q_n$.

15 In a possible implementation of the first aspect, the heat pump comprises a condenser condensing a heat pump medium, the condenser being arranged to increase the temperature of a medium that is supplied to the absorber and reboiler assembly.

20 In a possible implementation of the first aspect, the heat pump comprises a fluid loop, the fluid loop comprising an evaporator, a condenser, a compressor, and a throttling valve, the compressor being configured to cycle a heat pump fluid through the loop.

25 In a possible implementation of the first aspect, the heat exchanger is configured for exchanging heat between a flow of carbon dioxide lean solvent from the desorber to the absorber and a flow of carbon dioxide rich solvent from the absorber to the desorber.

In a possible implementation of the first aspect, the solvent is an amine solution, preferably an aqueous amine solution.

- 5 In a possible implementation of the first aspect, the engine comprises an amine scrubber in the exhaust gas stream, downstream of the absorber for removing amines from the exhaust gas.
- 10 In a possible implementation of the first aspect, a selective catalytic reactor is arranged in the stream of exhaust gas, upstream of the absorber, preferably upstream of the turbine for reduction of nitrogen oxides.
- 15 In a possible implementation of the first aspect, the amine solution comprises primary, secondary, and/or tertiary amines.

In a possible implementation of the first aspect, the solvent is a NaOH/KOH solution, preferably an aqueous amine NaOH/KOH solution.

In a possible implementation of the first aspect, the temperature the medium supplied to the pump is between approximately 35 °C and approximately 80 °C and the temperature of the medium supplied by the pump to the desorber and regenerator assembly is between approximately 110 °C and approximately 160 °C, preferably between approximately 130 °C and 150 °C.

According to a second aspect, there is provided a method of operating a large two-stroke turbocharged uniflow scavenged internal combustion engine with at least one combustion chamber for propulsion of large oceangoing vessels, the method comprising:

5 supplying a carbon-based fuel to the at least one combustion chamber,

combusting the carbon-based fuel in the at least one combustion chamber, thereby generating a stream of exhaust
10 gas that contains carbon dioxide,

the engine generating at least one excess energy flow Q_1, Q_2, \dots, Q_n ,

suppling at least a portion of the at least one excess energy flow Q_1, Q_2, \dots, Q_n in the form of a flow of a primary
15 medium with a first temperature to a heat pump,

generating an energy flow Q_r in the form of a flow of a secondary medium having a second temperature T_2 that is higher than the first temperature T_1 with the heat pump,

20 chemically absorbing carbon dioxide from the stream of exhaust gas into a solvent by supplying a flow of carbon dioxide lean solvent to an absorber and discharging a flow of carbon dioxide rich solvent from the absorber to a desorber and reboiler assembly, and

25 regenerating the carbon dioxide rich solvent in the desorber and reboiler assembly through heating by supplying at least a portion of the flow secondary medium to the desorber and reboiler assembly.

In a possible implementation of the second aspect, the at
30 least one excess energy flow Q_1, Q_2, \dots, Q_n is supplied by heat exchanging the primary medium with exhaust gas in a heat

exchanger downstream of the turbine of the turbocharger system, preferably in a heat exchanger downstream of a boiler that is arranged downstream of the turbine of the turbocharger system.

5

In a possible implementation of the second aspect, the method comprises supplying a flow of gas containing carbon dioxide and water generated in the desorber to a separator for separating the carbon dioxide and water, the separator preferably being a knockout drum to obtain a flow of a gas mainly containing carbon dioxide and a flow of a liquid mainly containing water.

10

In a possible implementation of the second aspect, the method comprises supplying the flow of gas mainly containing carbon dioxide to a liquefaction unit.

15

In a possible implementation of the second aspect, the method comprises liquefying the stream of gas mainly containing carbon dioxide in a liquefaction unit to obtain a stream of liquefied carbon dioxide.

20

In a possible implementation of the second aspect, the method comprises directing the stream of liquefied carbon dioxide into a liquefied carbon dioxide storage unit.

25

These and other aspects will be apparent from the embodiments described below.

BRIEF DESCRIPTION OF THE DRAWINGS

In the following detailed portion of the present disclosure, the aspects, embodiments, and implementations will be explained in more detail with reference to the example 5 embodiments shown in the drawings, in which:

Fig. 1 is an elevated view of a large two-stroke diesel engine according to an example embodiment,

Fig. 2 is an elevated view from another angle of the large two-stroke engine of Fig. 1,

10 Fig. 3 is a diagrammatic representation of the large two-stroke engine according to Figs. 1 and 2 in an embodiment,

Fig. 4a is a diagrammatic representation of a first embodiment of the heat pump used in the embodiment of Figs. 1 to 3,

Fig. 4b is a diagrammatic representation of a second 15 embodiment of the heat pump used in the embodiment of Figs.

1 to 3, and

Fig. 5 is a diagrammatic representation in more detail of an embodiment of a heat pump used in the embodiment of Figs. 1 to 4a, and

20 Fig. 6 is a diagrammatic representation of the large two-stroke engine according to Figs. 1 and 2, in another embodiment.

DETAILED DESCRIPTION

25 In the following detailed description, an internal combustion engine will be described with reference to a large two-stroke low-speed turbocharged internal combustion crosshead engine in the example embodiments. Figs. 1, 2, and 3 show an embodiment of a large low-speed turbocharged two-stroke 30 diesel engine with a crankshaft 8 and crossheads 9. Figs. 1 and 2 are elevated views from different angles. Fig. 3 is a

diagrammatic representation of an embodiment of the large low-speed turbocharged two-stroke diesel engine of Figs. 1 and 2 with its intake and exhaust systems. In this embodiment, the engine has six cylinders in line. However, the large low-
5 speed turbocharged two-stroke internal combustion engine may have between four and fourteen cylinders in line, with the cylinder liners carried by an engine frame 11. The engine may e.g. be used as the main engine in a marine vessel or as a stationary engine for operating a generator in a power
10 station. The total output of the engine may, for example, range from 1,000 to 110,000 kW.

The engine is in this example embodiment an engine of the two-stroke uniflow scavenged type with scavenging ports 18 in
15 the lower region of the cylinder liners 1 and a central exhaust valve 4 in a cylinder cover 22 at the top of the cylinder liners 1. The scavenge gas is passed from the scavenge gas receiver 2 through the scavenge ports 18 of the individual cylinder liners 1 when the piston 10 is below the
20 scavenge ports 18.

When the engine is operated as a premix engine (Otto principle), gaseous fuel containing carbon (e.g. Methanol, petroleum gas or LPG, methane, natural gas LNG, or Ethane) is
25 admitted from gaseous fuel admission valves 50' under the control of an electronic controller 100 when the piston 10 is in its upward movement (from BDC to TDC) and before the piston 10 passes the fuel valves 50' (gas admission valves). Gaseous or liquid carbon containing fuel (e.g. fuel oil) is injected
30 at high pressure (preferably 300 bar or more) is injected into the combustion chamber fuel valves 50 when the piston 10

is at or near TDC. The fuel gas is admitted at a relatively low pressure that is below 30 bar, preferably below 25 bar, more preferably below 20 bar, and supplied by a gaseous fuel supply system 30'. The current containing fuel for injecting 5 through the fuel valves 50 is supplied by a fuel system 30. High-pressure can either be generated by the fuel system 30 (common rail) or in the fuel valves 50. The fuel admission valves 50' are, preferably evenly, distributed around the circumference of the cylinder liner and placed in the central 10 region of the length of the cylinder liner 1. The admission of the gaseous fuel takes place when the compression pressure is relatively low, i.e. much lower than the compression pressure when the piston reaches TDC, hence allowing admission at relatively low pressure.

15

When the engine is operated as a compression ignition engine (Diesel principle) there are no gas admission valves 50' and the carbon containing fuel (gaseous or liquid) is injected at high pressure through the fuel valves 50 when the piston 10 20 is at or near TDC.

A piston 10 in the cylinder liner 1 compresses the charge of gaseous fuel and scavenge gas, (or compresses the scavenge gas in case the operation is with fuel injection at TDC only) 25 and at or near TDC ignition is triggered by injection of the fuel at high pressure from fuel valves 50 that are preferably arranged in the cylinder cover 22 or through the compression in case of liquid fuel injection at or near TDC only. Combustion follows and exhaust gas containing carbon dioxide 30 is generated.

When the exhaust valve 4 is opened, the combustion gas flows through a combustion gas duct associated with the cylinder 1 into the combustion/exhaust gas receiver 3 and onwards through a first exhaust gas conduit 19 that includes a selectively 5 catalytic reactor 33 for reduction of nitrous oxides (NOx) in the exhaust gas.

Through a shaft, the turbine 6 drives a compressor 7 supplied with fresh air via an air inlet 12. The compressor 7 delivers 10 pressurized scavenge air to a scavenge air conduit 13 leading to the scavenge air receiver 2. The scavenge air in conduit 13 passes an intercooler 14 for cooling the scavenge air.

Either upstream (shown) or downstream (not shown) of the 15 intercooler 14 the exhaust gas recirculation conduit 35 connects to the scavenge air conduit 13. At this position, recirculated exhaust gas is mixed with the scavenge air to form scavenge gas that flows to the scavenge gas receiver 2. A controller 100 (electronic control unit) is configured to 20 adjust the ratio between the scavenge air and exhaust gas in the scavenge gas, as will be described in greater detail below.

The cooled scavenge air or gas passes via an auxiliary blower 25 16 driven by an electric motor 17 that pressurizes the scavenge airflow when the compressor 7 of the turbocharger 5 does not deliver sufficient pressure for the scavenge air receiver 2, i.e. in low- or partial load conditions of the engine. At higher engine loads the turbocharger compressor 7 30 delivers sufficient compressed scavenge air and then the auxiliary blower 16 is bypassed via a non-return valve 15. It

is noted, that the examination may comprise more than one turbocharger 5, thereby forming a turbocharger system.

The controller 100, which as such may be comprised of several 5 interconnected electronic units that comprise a processor and other hardware for performing the function of a controller), is generally in control of the operation of the engine and exerts control over e.g. gaseous fuel admission (quantity and timing), liquid fuel injection (quantity and timing), and 10 opening and closing of the exhaust valve 4 (timing and extent of lift), recirculated exhaust gas ratio and operation of various coolers, pumps, and other equipment. Hereto, the controller 100 is in receipt of various signals from sensors that inform the controller 100 of the operating conditions of 15 the engine (engine load, engine speed, blower speed, scavenging gas temperature, exalt gas temperature at various locations, exhaust gas temperature at various locations, pressures in the scavenging system, in the combustion chambers, in the exhaust gas system, and in the exhaust gas 20 recirculation system. Preferably, the engine comprises a variable timing exhaust valve actuation system allowing individual control of the exhaust valve timing for each combustion chamber. The controller 100 is connected via signal lines or wireless connections to the fuel valves 50, the 25 liquid fuel admission valves 50', the exhaust valve actuator, an angular position sensor that detects the angle of the crankshaft and generates a signal representative of the position of the crankshaft, and a pressure sensor, preferably in the cylinder cover 22 or alternatively in the cylinder 30 liner 1 generating a signal representative of the pressure in the combustion chamber.

Depending on the engine size, the cylinder liner 1 may be manufactured in different sizes with cylinder bores typically ranging from 250 mm to 1000 mm, and corresponding typical 5 lengths ranging from 1000 mm to 4500 mm.

The cylinder liners 1 are mounted in a cylinder frame 23 with a cylinder cover 22 placed on the top of each cylinder liner 1 with a gas-tight interface therebetween. The piston 10 is 10 arranged to reciprocate between Bottom Dead Center (BDC) and Top Dead Center (TDC). These two extreme positions of the piston 10 are separated by a 180 degrees revolution of the crankshaft 8. The cylinder liner 1 is provided with a plurality of circumferentially distributed cylinder 15 lubrication holes that are connected to a cylinder lubrication line that provides a supply of cylinder lubrication oil when the piston 10 passes the cylinder lubrication holes 25, thereafter piston rings in the piston 10 (not shown) distribute the cylinder lubrication oil over the running 20 surface (inner surface) of the cylinder liner 1. The cylinder liners are provided with a jacket (not shown) and jacket cooling water is circulated in the space between the jacket and the cylinder liner.

25 The liquid fuel valves 50 (typically more than one per cylinder, preferably three or four), are mounted in the cylinder cover 22 and connected to a source of pressurized carbon containing fuel 30. The liquid fuel valves 50 are preferably arranged around the exhaust valve 4, in particular 30 around the central outlet (opening) in the cylinder cover 22, and circumferentially evenly distributed. The central outline

is controlled by the exhaust valve 4. The timing and quantity of the apparition fuel injection are controlled by the controller 100. The fuel valves 50 are only used to inject a small amount of ignition liquid (pilot) if the engine is 5 operating in the premix mode. If the engine is operating in a compression ignition mode, the amount of liquid fuel required for operating the engine with the actual engine load is injected through the liquid fuel valves 50. The cylinder 22 cover may be provided with pre-chambers (not shown) and a 10 tip of the liquid fuel valves 50, typically a tip provided with a nozzle with one or more nozzle holes is arranged such that the pilot oil (ignition liquid) is injected and atomized into the pre-chambers to trigger ignition. The pre-chambers assist in ensuring reliable ignition.

15

The fuel admission vales 50' are installed in the cylinder liner 1 (or in the cylinder cover 22), with their nozzle substantially flush with the inner surface of the cylinder liner 1 and with the rear end of the fuel valve 50' protruding 20 from the outer wall of the cylinder liner 1. Typically, one or two, but possibly as many as three or four fuel valves 50' are provided in each cylinder liner 1, circumferentially distributed (preferably circumferentially evenly distributed) around the cylinder liner 1. The fuel admission valves 50' 25 are in an embodiment arranged substantially medial along the length of the cylinder liner 1. The fuel admission valves 50' are connected to a pressurized source of gaseous fuel 30' (e.g. Methanol, LPG, LNG, Ethane, or Ammonia), i.e. the fuel is in the gaseous phase when it is delivered to the fuel 30 admission valves 50'. Since the gaseous fuel is admitted during the stroke of the piston 10 from BDC to TDC, the

pressure of the source of gaseous fuel merely needs to be higher than the pressure residing in the cylinder liner 1, and typically a pressure of less than 20 bar is sufficient for the gaseous fuel delivered to the fuel admission valves 5 50.' The fuel admission valves 50' are connected to the controller 100, which determines the timing of the opening and closing of the fuel admission valves 50', and the duration of the opening of the fuel admission valves 50'.

10 The liquid fuel for ignition is in an embodiment a fuel oil, marine diesel, heavy fuel oil, ethanol, or Dimethyl ether (DME).

The gaseous operation mode can be one of several operation 15 modes of the engine. Other modes may include a liquid fuel operation mode, in which all of the fuel required for the operation of the engine is provided in liquid form through the liquid fuel valves 50. In the gaseous fuel operation mode, the engine is operated with gaseous fuel that is admitted 20 during the stroke of the piston from BDC to TDC at relatively low pressure as the main fuel, i.e. providing for a major portion of the energy supplied to the engine, whereas the liquid fuel is, by comparison, constitutes a relatively small amount of fuel that makes only a relatively small contribution 25 to the amount of energy supplied to the engine, the purpose of the liquid fuel being timed ignition, i.e. the liquid fuel serves as an ignition liquid.

Thus, the engine of the present embodiment can be a dual-fuel 30 engine, i.e. the engine has a mode in which it operates

exclusively on liquid fuel and a mode in which it nearly exclusively operates on gaseous fuel.

In this embodiment, the engine is shown as a premix engine
5 operating according to the Otto principle. However, this
should be understood that the engine can just as well be a
compression ignition engine (operating according to the
Diesel principle), with the carbon-based fuel (gaseous or
liquid) being injected at high pressure when the piston 10 is
10 at or near TDC.

The engine is operated by supplying a carbon-based fuel to
the combustion chambers (liquid and/or gaseous fuel),
combusting the carbon-based fuel in the combustion chambers,
15 thereby generating a stream of exhaust gas containing carbon
dioxide, preferably recirculating a first portion of the
stream of exhaust gas (or of the combustion gas in an
embodiment where the recirculated gases taken directly from
the combustion chambers), and exhausting another (second)
20 portion of the stream of exhaust gas as exhaust gas, supplying
pressurized scavenge gas containing exhaust gas to the
combustion chambers, the pressurized scavenge gas containing
in an embodiment at least 40% by mass recirculated exhaust
gas, preferably 40 to 55%, separating carbon dioxide from the
25 exhaust gas in a carbon dioxide absorption process, and
storing the separated carbon dioxide.

Downstream of the turbine 6 of the turbocharger, the exhaust
gas enters a second exhaust conduit 28 which leads the exhaust
30 gas to a boiler 20 (also referred to as economizer), which is
configured to generate steam. The steam is used e.g. aboard

a marine vessel in which the engine is installed for various purposes or the steam can be directly used for heating a desorber 66 and regenerator 62 assembly that will be described in greater detail further below since this steam has a 5 temperature sufficient for being supplied directly to the regenerator 66 and reboiler 62 assembly.

Downstream of the boiler 20, the second exhaust conduit 28 continues to a first heat exchanger 40 in which the exhaust 10 gas exchanges seat with a primary medium that will be described in greater detail further below.

Downstream of the first heat exchanger 40, the second exhaust conduit 28 continues and connects to an inlet at the bottom 15 of an absorber 42. The absorber 42 is preferably an absorbing tower, e.g. a packed absorbing tower. The exhaust gas flows through the absorber 42 to an outlet at the top of the absorber 42.

20 The absorber 42 is part of a system for chemically absorbing carbon dioxide using a solvent. An example of a suitable solvent is an amine solution. The amine solution may comprise primary, secondary, and/or tertiary amines. Another example of a suitable solution is a NaOH/KOH solution, preferably an 25 aqueous amine NaOH/KOH solution.

Carbon dioxide is removed from the exhaust gas by a packed absorption tower (absorber) 42. This reaction is exothermic and increases the solvent temperature along the absorption 30 tower 42. As an example, the carbon dioxide concentration in the exhaust gas from the engine is between 4-5% (no exhaust

gas recirculation) and 9-10% (with exhaust gas recirculation) by volume and is introduced in the absorber 42 countercurrent with the solvent, which enters at the top of the absorption tower 42 and is referred to as the carbon dioxide lean solvent. This carbon dioxide lean solvent is supplied by a desorber 66 at approximately 35 °C to 55 °C and ambient pressure. At the top of the absorber 42 a wash water section consisting of a packed bed removes most of the volatile amine sorbent, that has escaped to the exhaust gas, by condensing and solubilizing it. The total height of the absorption tower 42 can be up to 50 meters. As carbon dioxide is absorbed in the absorber 42, a stream of carbon dioxide rich solvent from the bottom of the absorber 42 is fed by a pump 44 into a cross heat exchanger 60 for heat exchange with a stream of carbon dioxide lean solvent before it is introduced into the desorber 66 and reboiler 62 assembly where it is heated in the reboiler 62, in order to release the carbon dioxide from the solvent. The stripping (desorbing) temperature varies between 120 °C and 150 °C, and the operating pressure reaches up to 5 bar.

20

A water-saturated carbon dioxide stream is released from the top of the desorber column 66 and is cooled in a heat exchanger 68 in order to condense most of the water content, which is then separated in a knockout drum 69 and returned to the desorber column 66. The stream of carbon dioxide from the knock-out drum 69 is subsequently compressed/liquified in a liquefaction unit 70 and stored temporarily in a storage tank 88, which is an embodiment a cryogenic storage tank. From the temporary storage tank 85, the liquefied carbon dioxide can be transported to a final storage or utility site (not shown). If the engine is installed in a marine vessel, the temporary

storage tank 88 will be arranged in the marine vessel and will be emptied when the marine vessel is in a harbor that is provided with utilities for receiving liquefied carbon dioxide.

5

The regeneration process of the amine solution does not remove all the carbon dioxide in the solution, and the regenerated carbon dioxide lean solvent is recycled to the absorption tower 42 with a lean carbon dioxide loading by the action of 10 a pump 64. Before reaching the absorber 42, the carbon dioxide rich solvent exchanges heat with the carbon dioxide lean solvent in the cross heat exchanger 60 and in a heat exchanger 67.

15 The carbon dioxide loading of the solvent after it has absorbed carbon dioxide through the column is referred to as the carbon dioxide rich solvent. The difference between this lean and rich load is the amount of captured carbon dioxide from the exhaust gas.

20

The carbon dioxide concentration in the exhaust gas leaving the absorber 42 is up to 10 times lower than the carbon dioxide concentration of the exhaust gas that enters the absorber 42.

25

Some of the amines of the solvent may still be present in the exhaust gas leaving the absorber 42, and these are removed by an amine scrubber 44 that is arranged in the exhaust conduit 49 downstream of the absorber 42.

30

The engine produces a number of excess energy flows Q_1 , Q_2 , Q_n , also referred to as waste heat flows, from various parts of the engine. In the embodiment of Fig. 3 these include:

- Q_1 , the primary cooling medium (e.g. water) of the scavenge air cooler 14. The cooling water from the scavenge air cooler 14 will typically have a temperature between approximately 20 and 240 °C,
- Q_2 , the primary medium engine lubrication oil, which will typically have a temperature between 45 and 55 °C
- Q_3 the primary cooling medium (e.g. water) of the cylinder jacket cooler. The cooling water from the cylinder jacket will typically have a temperature between approximately 70 and 90 °C,
- Q_4 the primary cooling medium (e.g. water) of an exhaust gas recirculation conduit cooler 32, which typically has a temperature between approximately 50 to 350 °C,
- Q_5 the boiler 20, which typically will supply steam with a temperature between approximately 160 and 170 °C,
- Q_6 the primary medium (e.g. water) that is used in the first heat exchanger 40, that will typically have a temperature between 160 and 170 °C,
- Q_7 , the primary medium (e.g. water) that is used in the second heat exchanger 67, that will typically have a temperature between 100 and 170 °C,
- Q_8 the primary medium (e.g. water) that is used in the third heat exchanger 68, that will typically have a temperature between 95 and 105 °C,
- Q_9 the primary medium (e.g. water) that is used to cool the liquefaction unit 70, that will have a temperature that depends on the type of technology used for liquefaction and

on the type of cooling system used for the liquefaction unit 70.

It is noted that this list of excess energy flows generated 5 by the engine is not exhaustive and merely serves to provide examples of such sources.

At least one of the above-listed sources of excess energy Q_1 , 10 $Q_2 \dots Q_n$, in particular, those that have a temperature below the temperature required for heating the desorber 66 and regenerator 62 assembly (which requires a secondary medium with a temperature of at least 120 °C preferably at least 110 °C) is supplied to a heat pump 80. The heat pump 80 is configured to generate a stream of energy Q_r in the form of 15 the flow of a secondary medium (e.g. water or steam) with a temperature of at least 120 °C preferably at least 130 °C. Preferably the temperature of the secondary medium supplied to the desorber 66 and reboiler 62 assembly is between 130 and 140 °C most preferred approximately 136 °C.

20

A first embodiment of the implementation of the pump 80 is shown in Fig. 4a. In this embodiment, a plurality of sources of excess energy Q_1 , $Q_2 \dots Q_n$ is applied to the single heat pump 80, and a stream of energy Q_r that is supplied to the 25 desorber 66 and regenerator 62 assembly is generated by the pump 80.

A second embodiment of the implementation of the pump 80 is shown in Fig. 4b. In this embodiment, one of a plurality of 30 sources of excess energy Q_1 , $Q_2 \dots Q_n$ is applied to one of a plurality of heat pumps 80 and the stream of energy Q_r that

is supplied to the desorber 66 and regenerator 62 assembly is generated by the plurality of heat pumps 80 and preferably combined into one stream of energy Q_r to the desorber 66 and regenerator 62 assembly.

5

The heat pump or pumps 80 are used to boost the temperature of the amine solution in the reboiler 62. The heat pump 80 comprises at least an evaporator, a condenser, a compressor, and a throttling valve. Within the heat pump 80 a heat pump (refrigerating) fluid is cycled in a cycle that comprises the evaporator, a condenser, a compressor, and a throttling valve, as shown in Fig. 5. The heat pump 80 functions by the evaporator receiving thermal heat from the flow of energy Q_2 . The heat pump fluid evaporates in the evaporator and enters the compressor. The compressor is driven, e.g. by an electric motor that receives electric power, e.g. from an alternator or generator driven by takeoff power from the crankshaft of the engine. The compressor increases the pressure and temperature of the heat pump fluid. Downstream of the compressor the heat pump fluid enters the condenser, and heat is transferred to the heat sink and the heat pump fluid condenses. Subsequently, the heat pump fluid expands in the throttling valve before it re-enters the evaporator and the cycle repeats. The secondary medium, e.g. water or steam, transports heat from the condenser to the reboiler 62, preferably in a cycle that is driven by a pump, the secondary medium having a temperature of at least 120 °C preferably at least 130 °C. Thus, the reboiler 62 forms the heat sink for the heat pump 80.

30

To boost the efficiency of the heat pump 80 the condenser part is in an embodiment split into three heat exchanger (HEX) regions; a super-heater, a condenser, and a sub-cooler. The heat extracted in the super-heater and condenser region is 5 sent to the heat sink. The heat extracted in the sub-cooler is used to preheat the heat pump fluid leaving the evaporator. By having this condenser arrangement less work is needed for the compressor and the system efficiency increases. Moreover, a water loop with a steam HEX and an electrical coil is 10 applied in between the condenser, super-heater and reboiler 62. The fluid entering the steam HEX is in an embodiment the steam generated in the boiler 20. The steam HEX and electrical coil ensure that the reboiler 62 receives sufficient energy in the whole engine load range.

15

In Fig. 5 several energy flows $Q_1, Q_2 \dots Q_n$ are utilized. If only one energy flow is $Q_1, Q_2 \dots Q_n$ applied the deaerator below the evaporator can be removed.

20 In an embodiment, the engine is provided with an exhaust gas recirculation system that comprises an exhaust gas recirculation conduit 35 that connects the first exhaust conduit 19 to the scavenge air conduit 13. Preferably, the exhaust gas recirculation conduit 35 connects to the first 25 exhaust gas conduit 19 upstream of the selective catalytic reactor 33. Preferably, the exhaust gas recirculation conduit 35 connects to the scavenge air conduit 13 upstream of the scavenge air cooler 14. However, it should be understood that the exhaust gas recirculation conduit 35 can also connect to 30 the scavenge air conduit 13 downstream of the scavenge air cooler 14. The exhaust gas recirculation conduit 35 comprises

a blower 34 to force exhaust gas from the exhaust gas conduit to the scavenge air conduit, since the pressure in the scavenger conduit 13 is typically higher than the pressure in the first exhaust gas conduit 19 during engine operation. In 5 the shown embodiment the blower 34 is driven by an electric motor, but it is understood that the blower could be powered by any other source of rotary power. In the shown embodiment, the blower 34 is arranged between the exhaust gas recirculation cooler 32 and an exhaust gas recirculation 10 scrubber 36. However, it is understood that the position of the blower 35 could be upstream or downstream of the other elements in the exhaust gas recirculation circuit 35. The exhaust gas recirculation cooler 32 is arranged upstream of the exhaust gas recirculation scrubber 36. The main purpose 15 of the exhaust gas recirculation scrubber 36 is to remove impurities (soot). The controller 100 is configured to control the speed of the blower 34 in the exhaust gas recirculation system for regulating the percentage of recirculated exhaust gas in the pressurized scavenge gas, preferably to a 20 percentage by mass of at least 35% to increase the concentration of carbon dioxide in the exhaust gas and thereby increase the effectiveness of the carbon dioxide absorption system. The exhaust gas recirculation rate can also be controlled by means of valves (not shown) that are controlled 25 by the controller 100. Thus, the controller 100 is configured to operate the engine with a percentage of recirculated exhaust gas in the pressurized scavenge gas of 40% or higher, 45% or higher, or 50% or higher depending on the operating conditions. Generally, the controller 100 is configured to 30 operate with the highest possible percentage of recirculated exhaust/combustion gas since this facilitates the removal of

current dioxide from the exhaust gas. By the "highest possible", is meant the highest ratio that does not cause unacceptable detrimental effects, such as a reduction in the quality of the combustion process, the reliability of the 5 combustion process, an unacceptable increase in the heat load on the engine, etc. The medium (e.g. water or steam) used to exchange heat with the exhaust gas in the exhaust gas recirculation cooler 32 leaves the exhaust gas recirculation cooler 32 with a temperature of approximately 130 to 170 °C 10 and this medium can therefore be directly used in the desorber 66 and regenerator 62 assembly, i.e. without involving heat pump 80. The recirculated exhaust gas enters the exhaust gas recirculation cooler 32 with a temperature between approximately 260 and 400 °C and the desired temperature for 15 the medium can be obtained by adjusting the flow rate of the medium through the exhaust gas recirculation cooler 32. Exhaust gas recirculation increases the carbon dioxide concentration of the exhaust gas supplied to the absorber 42 resulting in a lower energy consumption of the desorber 66 20 and regenerator 62 assembly. A higher exhaust gas recirculation ratio also reduces the magnitude of the flow of exhaust gas to the absorber 42 and thus, an absorber tower with a lesser diameter can be used when exhaust gas recirculation is used or the ratio is increased. Further, the 25 energy extracted in the exhaust gas recirculation cooler 32, which is excess energy (waste heat) that is supplied to the desorber 66 and regenerator 62 assembly, thereby significantly reducing the amount of energy that needs to be supplied to operate the desorber 66 and regenerator 62 30 assembly. The medium coming from the exhaust gas recirculation cooler 32 has a high temperature compared to other excess

heat streams of the engine (since the medium is heated by exhaust gas that has not passed through the turbine 6 of the turbocharger 5) and can therefore be used directly in the desorber 66 and regenerator 62 assembly.

5

Fig. 6 shows another embodiment of the engine. In this embodiment, structures and features that are the same or similar to corresponding structures and features previously described or shown herein are denoted by the same reference 10 numeral as previously used for simplicity. In this embodiment, the engine and the operation thereof are largely identical to the previous embodiment, and hence only the differences with the previous embodiment will be described in detail.

15 This embodiment comprises an optional second scavenge air cooler 14a downstream of the scavenge air cooler 14. The scavenge air cooler 14 can be configured to generate a stream of heat exchange medium to the desorber 66 and regenerator 62 assembly with the temperature that is sufficient for direct 20 use in the desorber 66 and regenerator 62 assembly. The second scavenge air cooler 14a generates an excess energy flow Q_{10} in the form of a stream of primary medium (e.g. water) with a temperature that requires the use of the heat pump 80 to generate a stream of a secondary medium before the stream of 25 energy can be used in the desorber 66 and regenerator 62 assembly. The stream of energy Q_{10} generated in the second scavenge air cooler 14a is sent to the heat exchanger 80.

30 In this embodiment, there can optionally be provided an additional fourth heat exchanger 41 downstream of the first heat exchanger 40. This additional fourth heat exchanger 41

allows for the generation of another excess energy stream Q_{11} that is supplied to the heat pump 80.

In this embodiment, there can also be created an additional 5 excess energy flow Q_{12} from excess heat from the exhaust gas recirculation scrubber 36 that is supplied to the heat pump 80.

The various aspects and implementations have been described 10 in conjunction with various embodiments herein. The embodiments can be combined in various ways. Further, other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed subject-matter, from a study of the drawings, the disclosure, 15 and the appended claims. In the claims, the word "comprising" does not exclude other elements or steps, and the indefinite article "a" or "an" does not exclude a plurality. A single processor, controller, or other unit may fulfill the functions of several items recited in the claims. The mere fact that 20 certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage. The reference signs used in the claims shall not be construed as limiting the scope.

PATENTKRAV

1. Stor, turboladet, totaktsforbrændingsmotor med længdeskylning og krydshoveder til fremdrift af store
5 oceangående skibe, hvilken motor omfatter:

mindst ét forbrændingskammer, der er afgrænset af en cylinderforing (1), et stempel (10), der er konfigureret til at bevæge sig frem og tilbage i cylinderforingen (1), og et cylinderdæksel (22),

10 skylleåbninger (18), der er anbragt i cylinderforingen (1) til at lade skyllegas trænge ind i det mindst ene forbrændingskammer,

15 et brændstofsystem (30), der er konfigureret til tilførsel af et carbonbaseret brændstof til det mindst ene forbrændingskammer,

hvor det mindst ene forbrændingskammer er konfigureret til forbrænding af det carbonbaserede brændstof, hvorved der genereres en strøm af udstødningsgas, som indeholder carbondioxid,

20 et udstødningsgasudløb, der er anbragt i cylinderdækslet (22) og styres af en udstødningsventil (4),

hvor det mindst ene forbrændingskammer er forbundet med en skyllegasmotager (2) via skylleåbningerne (18) og med en udstødningsgasmotager (3) via udstødningsgasudløbet,

25 et udstødningsgassystem, der omfatter en turbine (6) i et turboladersystem (5), som drives af udstødningsgasstrømmen,

30 et luftindløbssystem, der omfatter en kompressor (7) i turboladersystemet (5), hvilken kompressor (7) er konfigureret til at tilføre tryksat skylleluft til skylleluftmotageren (2),

hvor mindst én overskydende energistrøm ($Q_1, Q_2, \dots Q_n$) genereres af motoren under motorens drift,

kendetegnet ved

5 en absorber (42), fortrinsvis et absorptionstårn, til absorbering af carbondioxid i et opløsningsmiddel,

en desorber- (66) og reboiler- (62) enhed til desorption af carbondioxid fra opløsningsmidlet,

10 hvilken absorber (42) har et opløsningsmiddelindløb til modtagelse af carbondioxidfattigt opløsningsmiddel fra desorberen (66) og et opløsningsmiddeludløb, der tilfører carbondioxidrigt opløsningsmiddel til desorberen (66),

15 hvor absorberen (42) er indrettet til strømmen af udstødningsgas, der passerer gennem absorberen (42) for separation af carbondioxid fra strømmen af udstødningsgas ved kemisk absorption i opløsningsmidlet,

hvor desorber- (66) og reboiler- (62) enheden har et indløb, der modtager carbondioxidrigt opløsningsmiddel fra absorberen (42), og et udløb, der tilfører carbondioxidfattigt opløsningsmiddel til absorberen (42),

20 hvor desorber- (66) og reboiler- (62) enheden er konfigureret til opvarmning af opløsningsmidlet for at frigøre carbondioxid fra opløsningen, og

25 mindst én varmepumpe (80), der er konfigureret til at modtage mindst en del af den mindst éne overskydende energistrøm ($Q_1, Q_2, \dots Q_n$) i form af en strøm af et primært medium, der har en første temperatur, og

30 hvor den mindst éne varmepumpe (80) er konfigureret til at generere en energistrøm (Q_r) i form af en strøm af et sekundært medium med en anden temperatur T_2 , der er højere end den første temperatur, hvor mindst en del af strømmen af

sekundært medium tilføres desorber- (66) og reboiler- (62) enheden.

2. Motor ifølge krav 1, hvor den mindst én overskydende energistrøm (Q_1, Q_2, \dots, Q_n) genereres af én eller flere af:

- en varmeveksler (20, 40, 41, 44), der overfører varme fra strømmen af udstødningsgas nedstrøms for turbinen (6) til et primært medium, der tilføres den mindst én varmepumpe (80),
- en varmeveksler (14, 14a), der overfører varme fra skylleluften til et primært medium, der tilføres den mindst én varmepumpe (80),
- en varmeveksler, der overfører varme fra en cylinderkølevæske til et primært medium, der tilføres den mindst én varmepumpe (80),
- en varmeveksler (68), der overfører varme fra en strøm af carbondioxid indeholdende gas genereret af desorberen (66) til et primært medium, der tilføres den mindst én varmepumpe (80),
- en varmeveksler, der overfører varme fra en cylinderkølevæske til en carbondioxidlikvefaktionsenhed (70) til et primært medium, der tilføres den mindst én varmepumpe (80),
- en varmeveksler (67), der overfører varme fra en strøm af carbondioxidfattigt opløsningsmiddel fra desorberen (66) til absorberen (42) til et primært medium, der tilføres den mindst én varmepumpe (80),
- en varmeveksler, der overfører varme fra en strøm af smøreolie til et primært medium, der tilføres den mindst én varmepumpe.

3. Motor ifølge krav 1 eller 2, og som omfatter en første varmeveksler (20) nedstrøms for turboladersystemets (5) turbine (6), hvilken første varmeveksler (20) fortrinsvis er en kedel, der er konfigureret til generering af damp, og 5 fortrinsvis en anden varmeveksler (40) nedstrøms for den første varmeveksler (20), hvor den anden varmeveksler (40) er konfigureret til at overføre varme fra strømmen af udstødningsgas til et primært medium, der tilføres varmepumpen (80).

10

4. Motor ifølge et hvilket som helst af de foregående krav, hvor varmepumpen (80) omfatter en fordamper til fordampning af et varmepumpemedium, hvilken fordamper er indrettet til at modtage mindst en del af den mindst ene overskydende 15 energistrøm (Q_1, Q_2, \dots, Q_n) via et primært medium.

5. Motor ifølge et hvilket som helst af de foregående krav, hvor varmepumpen (80) omfatter en kondensator, der kondenserer et varmepumpemedium, hvor kondensatoren er 20 indrettet til at hæve temperaturen på det sekundære medium, der tilføres desorber- (66) og reboiler- (62) enheden.

6. Motor ifølge et hvilket som helst af de foregående krav, hvor varmepumpen (80) omfatter en fluidsløjfe, hvilken 25 fluidsløjfe omfatter en fordamper, en kondensator, en kompressor og en drosselventil, hvor kompressoren er konfigureret til at føre et varmepumpefluid gennem sløjfen.

7. Motor ifølge et hvilket som helst af de foregående krav, 30 og som omfatter en krydsvarmeveksler (60), der er konfigureret til udveksling af varme mellem en strøm af

carbondioxidfattigt opløsningsmiddel fra desorberen (66) til absorberen (42) og en strøm af carbondioxidrigt opløsningsmiddel fra absorberen (42) til desorberen (66).

5 8. Fremgangsmåde ifølge et hvilket som helst af de foregående krav, hvor opløsningsmidlet er en aminopløsning.

9. Fremgangsmåde ifølge et hvilket som helst af de foregående krav, og som omfatter en aminskrubber (44) i 10 udstødningsgasstrømmen, nedstrøms for absorberen (42) til fjernelse af aminer fra strømmen af udstødningsgas.

10. Fremgangsmåde ifølge et hvilket som helst af de foregående krav, hvor en selektiv, katalytisk reaktor (33) anbringes i 15 strømmen af udstødningsgas, opstrøms for absorberen (42), fortrinsvis opstrøms for turbinen (6) til reduktion af nitrogenoxider.

11. Fremgangsmåde til drift af en stor, turboladet, 20 totaktsforbrændingsmotor med længdeskylning med mindst et forbrændingskammer til fremdrift af store oceangående skibe, hvilken motor omfatter:

tilførsel af et carbonbaseret brændstof til det mindst ene forbrændingskammer,

25 forbrænding af det carbonbaserede brændstof i det mindst ene forbrændingskammer, hvorved der genereres en strøm af udstødningsgas, som indeholder carbondioxid,

hvor motoren genererer mindst en overskydende energistrøm (Q_1, Q_2, \dots, Q_n),

30 kendetegnet ved

tilførsel af mindst en del af den mindst ene overskydende energistrøm (Q_1, Q_2, \dots, Q_n) i form af en strøm af et primært medium med en første temperatur T_1 til en varmepumpe (80),

5 generering af en energistrøm (Q_r) i form af en strøm af et sekundært medium med en anden temperatur T_2 , der er højere end den første temperatur T_1 , med varmepumpen (80),

10 kemisk absorption af carbondioxid fra udstødningsgassen i et opløsningsmiddel ved tilførsel af en strøm af carbondioxidfattigt opløsningsmiddel til en absorber (42) og udledning af en strøm af carbondioxidrigt opløsningsmiddel fra absorberen (42) til en desorber- (64) og reboiler- (62) enhed, og

15 regenerering af det carbondioxidrige opløsningsmiddel i desorber- (64) og reboiler- (62) enheden via opvarmning ved tilførsel af mindst en del af strømmen af sekundært medium til desorber- (66) og reboiler- (62) enheden.

20 12. Fremgangsmåde ifølge krav 11, hvor den mindst ene overskydende energistrøm (Q_1, Q_2, \dots, Q_n) tilføres ved varmeveksling af det primære medium med udstødningsgas i en varmeveksler (20, 40, 41) nedstrøms for turboladersystemets (5) turbine (6), fortrinsvis i en varmeveksler (40, 44) nedstrøms for en kedel (20), der er anbragt nedstrøms for turboladersystemets (5) turbine (6).

25 13. Fremgangsmåde ifølge krav 11 eller 12, og som omfatter tilførsel af en gasstrøm, der indeholder carbondioxid og vanddamp eller damp genereret i desorberen (66) til en separator (69) for separation af carbondioxiden og vanddampen 30 eller dampen, hvilken separator fortrinsvis er en knockout-tromle til et opnå en strøm af gas, der hovedsageligt

indeholder carbondioxid, og en strøm af en væske, der hovedsageligt indeholder vand.

14. Fremgangsmåde ifølge krav 13, og som omfatter tilførsel
5 af gasstrømmen, der hovedsageligt indeholder carbondioxid,
til en likvefaktionsenhed (70) og likvefaktion af strømmen af
gas, der hovedsageligt indeholder carbondioxid, for at opnå¹⁰
en strøm af flydende carbondioxid, hvilken fremgangsmåde
fortrinsvis omfatter dirigering af strømmen af flydende
carbondioxid ind i en enhed (85) til opslagring af flydende
carbondioxid.

15. Fremgangsmåde ifølge et hvilket som helst af kravene 11
til 13, og som omfatter likvefaktion af carbondioxid genereret
15 ved forbrænding af carbonbaseret brændstof i en
likvefaktionsenhed (70).

1/4

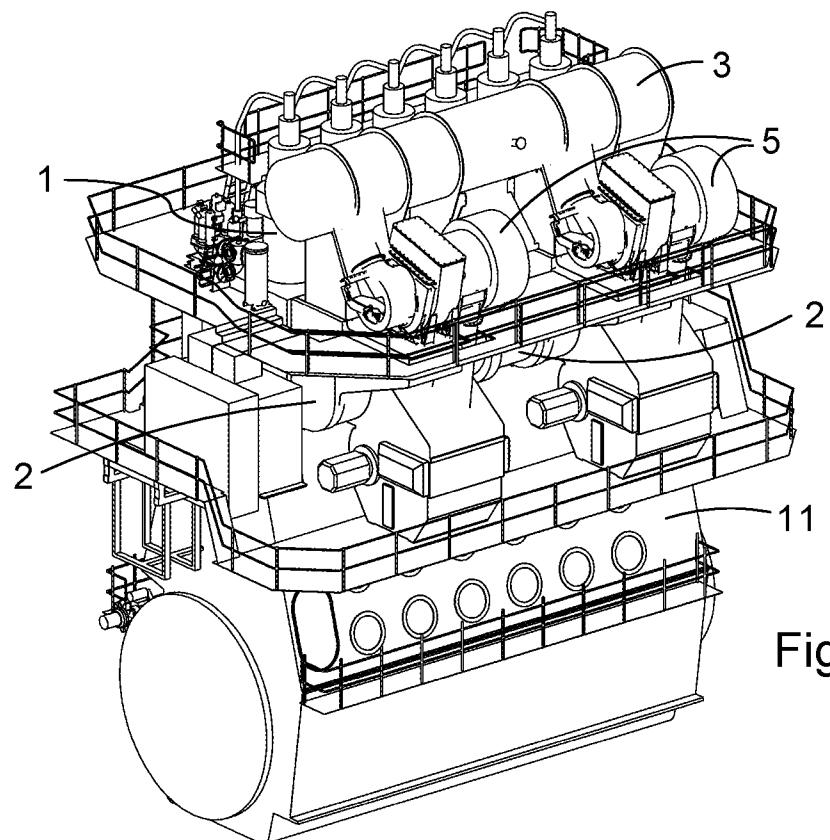


Fig. 1

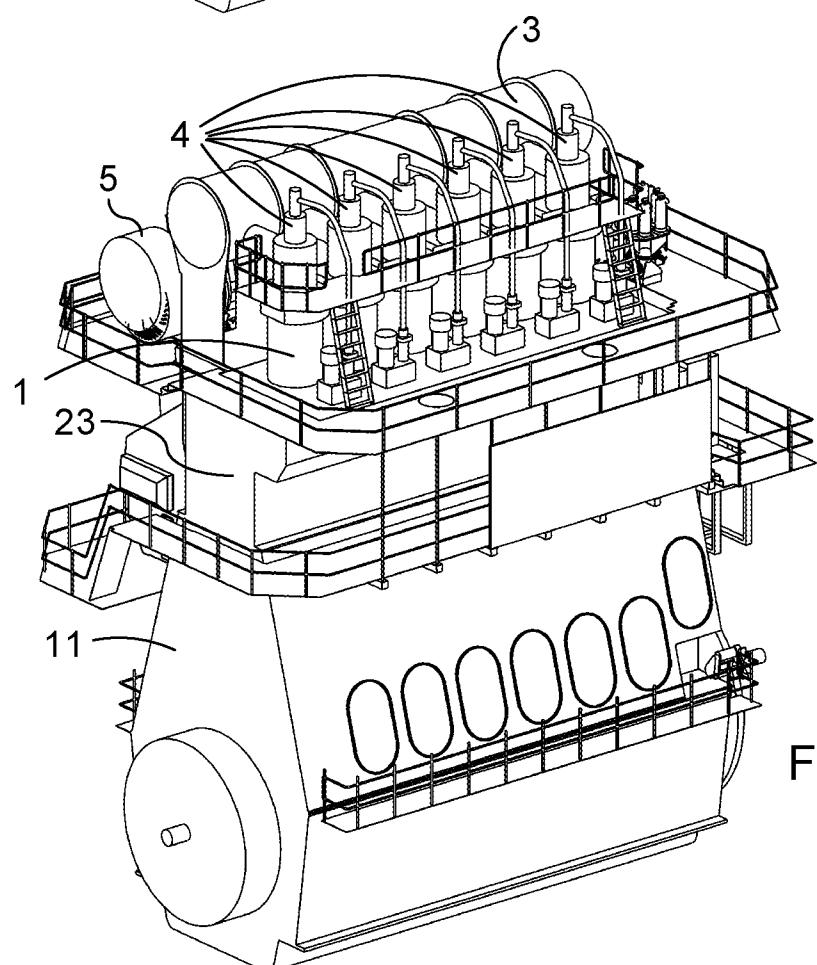


Fig. 2

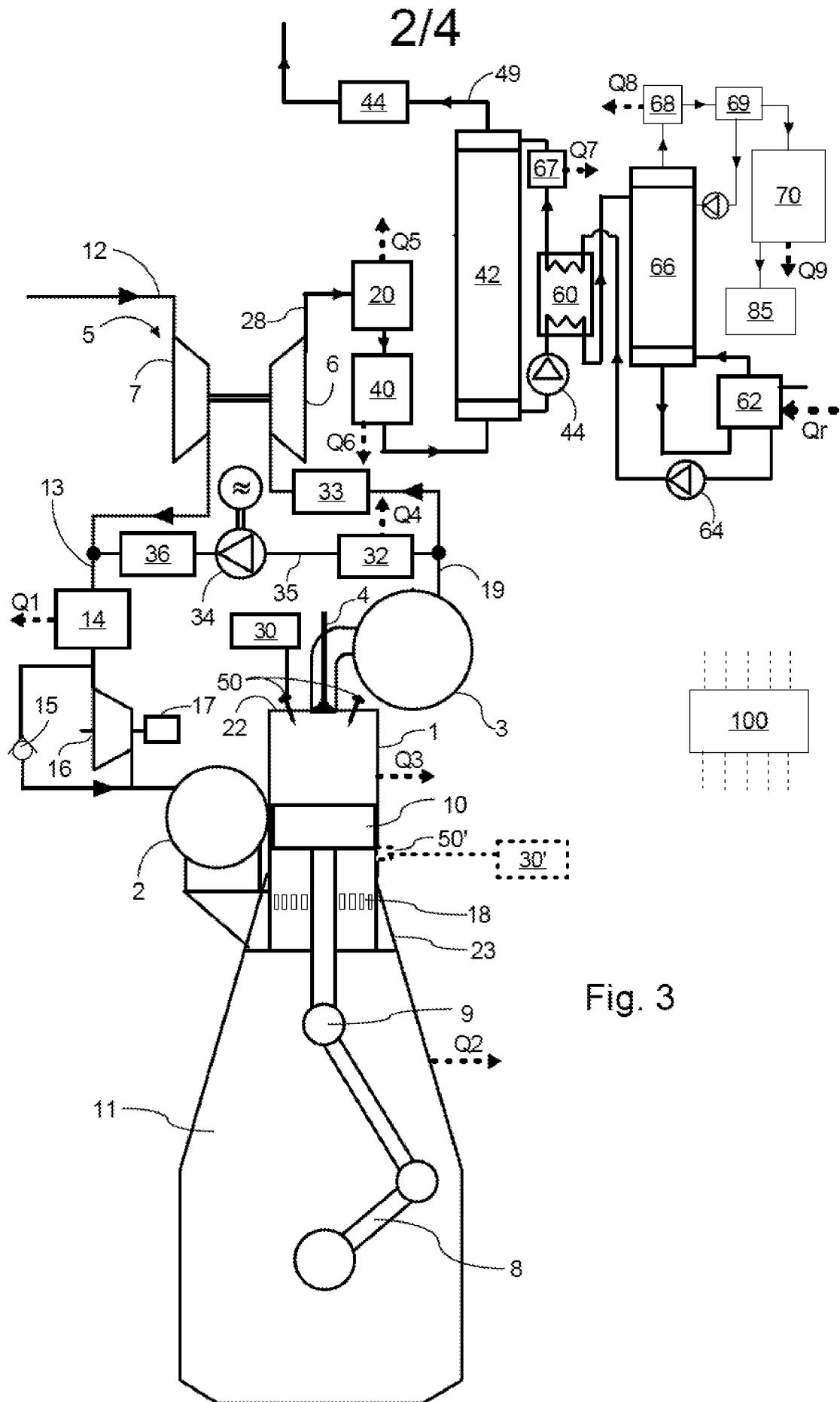


Fig. 3

3/4

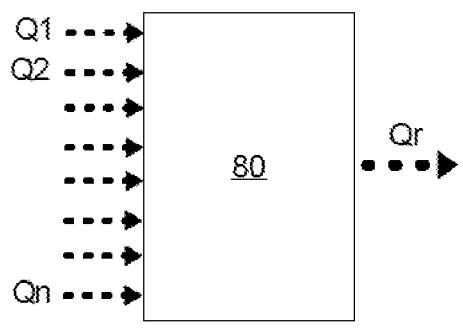


Fig. 4a

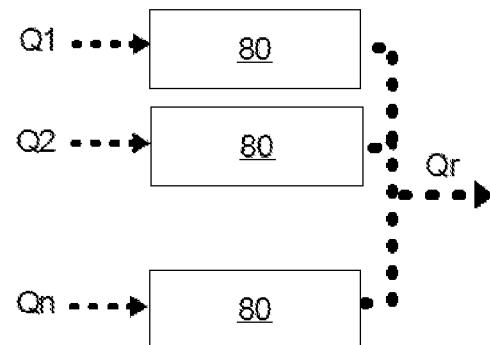
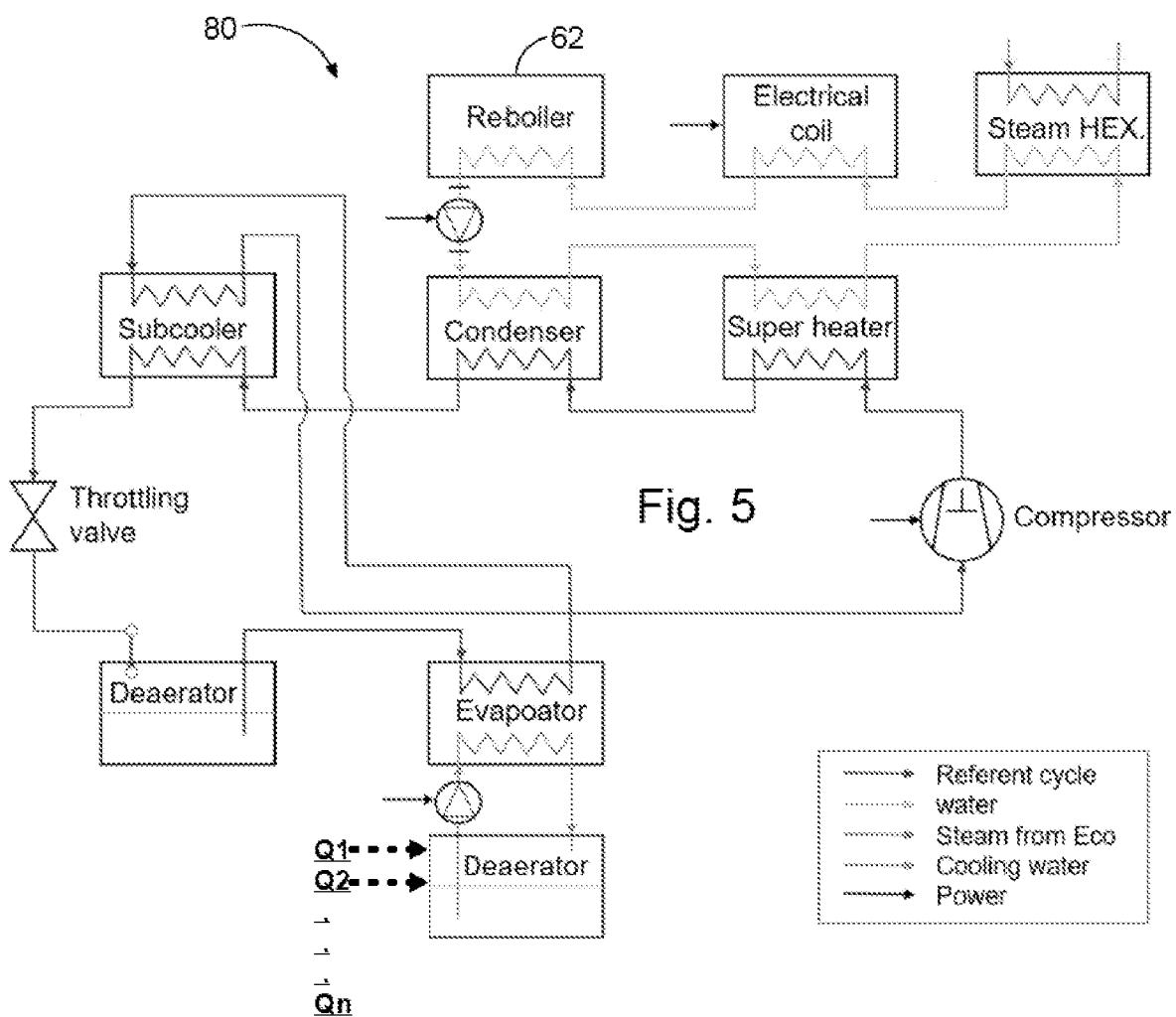
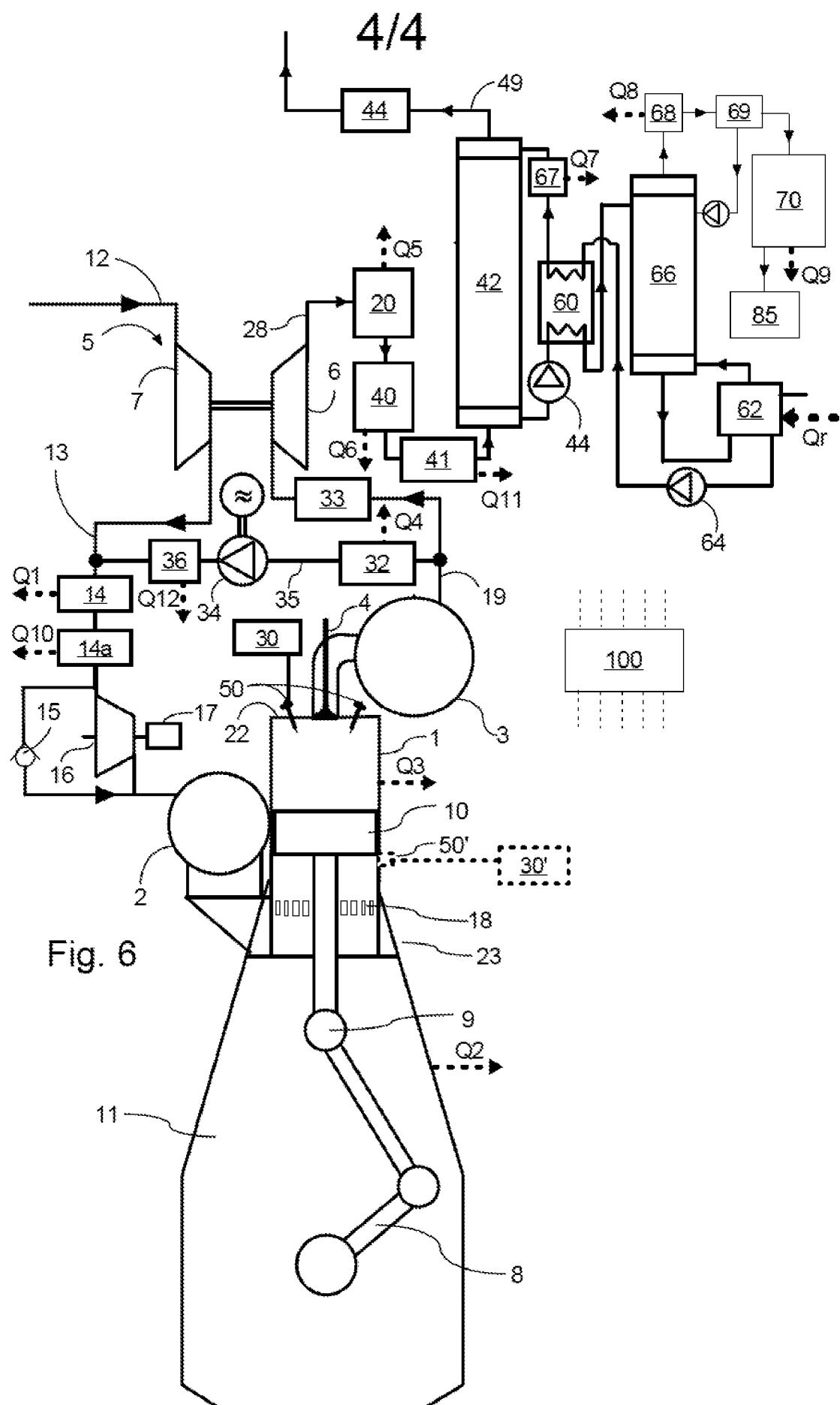




Fig. 4b

Additional search report - patent

Application No.
PA 2022 70533

A. Classification		
B01D 53/14 (2006.01), B01D 53/92 (2006.01), F01N 3/00 (2006.01), F02B 25/04 (2006.01)		
According to International Patent Classification (IPC)		
B. Fields searched		
PCT-minimum documentation searched (classification system followed by classification symbols)		
IPC&CPC: F02B, F02D		
Documentation searched other than PCT-minimum documentation		
DK, NO, SE, FI: IPC-classes as specified in Box A above		
Electronic database consulted during the search (name of database and, where practicable, search terms used)		
EPODOC, WPI, FULL TEXT: ENGLISH		
C. Documents considered to be relevant		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant for claim No.
A	DK 181014 B1 (MAN ENERGY SOLUTIONS) 2022.09.23, see especially abstract; pg. 9, ln. 3 – pg. 14, ln. 5, pg. 15, ln. 13-17; fig. 3-5.	1-15
<input type="checkbox"/> Further documents are listed in the continuation of Box C		
* Special categories of cited documents:		
"A" Document defining the general state of the art which is not considered to be of particular relevance.		
"D" Document cited in the application.		
"E" Earlier application or patent but published on or after the filing date.		
"L" Document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified).		
"O" Document referring to an oral disclosure, use, exhibition, or other means.		
"P" Document published prior to the filing date but later than the priority date claimed.		
"T" Document not in conflict with the application but cited to understand the principle or theory underlying the invention.		
"X" Document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an essential difference when the document is taken alone.		
"Y" Document of particular relevance; the claimed invention cannot be considered to involve an essential difference when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.		
"&" Document member of the same patent family.		
Danish Patent and Trademark Office		
Helgeshøj Allé 81 DK-2630 Taastrup Denmark Tel.: +45 43 50 80 00		
Date of completion of the search report 04/09/2023		
Authorized officer Flemming Christensen Tel.: +45 43 50 82 47		

Additional search report - patent

Application No.
PA 2022 70533

C. Documents considered to be relevant (continuation)		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant for claim No.