0 02/27504 A1l

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

4 April 2002 (04.04.2002) PCT WO 02/27504 Al
(51) International Patent Classification’: GOG6F 13/00 Hill Drive, Shrewsbury, MA 01545 (US). SHAPIRO, Ray-
mond; 29 Hunter Avenue, Marlboro, MA 01752 (US).
(21) International Application Number: PCT/US01/29203

(22) International Filing Date:
18 September 2001 (18.09.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/235,496
09/918,323

26 September 2000 (26.09.2000)
30 July 2001 (30.07.2001)

Us
Us

(71) Applicant: RACHIS CORPORATION [US/US]; 300
Metrowest Technology Drive, Maynard, MA 01754 (US).

(72) Inventors: KATZ, James, S.; 4 Cedar Ridge Terrace, Bed-
ford, MA 01730 (US). NEVIN, Christine, S.; 42 Beverly

(74) Agent: JACOBS, David; Lucash, Gesmer & Updegrove,
LLP, 40 Broad Street, Boston, MA 02109 (US).

(81) Designated States (national): CA, JP, MX.

(84) Designated States (regional): Buropean patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: PERIPHERAL DEVICE DETECTION AND NOTIFICATION

502
i

PERIPHERAL

TO/FROM
INTERNET
STB
e 202
110
TOTV

(57) Abstract: Disclosed are systems (100), devices (110) and methods for deployment in digital set-top boxes (202) and associated
networks (104) to enable t-commerce and other transactions responsive to events generated by peripheral devices (502).

WO 02/27504

10

15

20

25

PERIPHERAL DEVICE DETECTION AND NOTIFICATION

Cross Reference to Related Application

This patent application claims the priority of related, commonly owned
U.S. provisional application for patent Serial Number 60/235,496, filed
September 26, 2000, the disclosure of which is incorporated in its entirety herein

by reference.

Field of the Invention

The present invention relates to interactive television set-top boxes (STBs)
generally, and, in particular, relates to methods and systems for initiating e-
commerce and t-commerce (television commerce) transactions in response to
detection of installation or removal of peripheral devices or other events
generated by a peripheral device. Thus, for example, the invention provides
systems for responding to a “Low Ink™ event or message from a printer by
automatically navigating to an e-commerce URL to enable the user to order

additional ink.

Background of the Invention

Microsoft TV (MSTV) contains a client/server subsystem for maintaining
software or data modules on the client, referred to as the Client Configuration
Architecture. This architecture permits the client to subscribe to a software
module, such as a device driver or application, so that the target software is

installed and maintained on the client via an interaction with the server.

Current STBs typically have the ability to support multiple peripheral
devices through, inter alia, serial, parallel, USB, 1394 and other interfaces.
Recently developed hardware designs will permit an end-user to plug in a
growing number of peripheral devices ("peripherals") including, but not limited

to, digital cameras (both still and video), scanners and printers.

PCT/US01/29203

WO 02/27504 PCT/US01/29203

10

15

20

25

30

Additional information regarding STBs is found in G. O'Driscoll, The
Essential Guide to Digital Set-top Boxes and Interactive TV, 2000, Prentice-Hall,
Inc., which is incorporated herein by reference.

While Windows CE and Microsoft TV are expected to support a basic
device driver module for each of these interfaces, as well as some devices that are
plugged in after system initialization, they lack an automated peripheral
identification mechanism that can respond to events generated by peripheral
devices during operation (rather than simply at device activation or insertion), and
can not support devices if the necessary software is not resident on the client at
the time of device activation or insertion.

A number of patents disclose systems for device detection. Among these
are the following, the disclosures of which are incorporated herein by reference:

U.S. Patent No. 6,023,585, which discloses automatically selecting and
downloading device drivers from a server system to a client system that includes
one or more devices; .

U.S. Patent No. 6,003,097, which discloses a system for automatically
configuring a network adapter without manual intervention by using a registry
data structure maintained within a computer system memory;

U.S. Patent No. 5,787,246, which discloses a system for configuring
devices for a computer system; and

U.S. Patent No. 5,655,148,which discloses a method for automatically
configuring devices including a network adapter without manual intervention and
without prior configuration information.

Of these, U.S. Patent No. 6,023,585 discloses a system in which at system
initialization, the host processing system requests the peripheral devices to which

it is coupled to each provide a device code for identifying the type of the

. peripheral device. The host processing system receives the device codes from the

peripheral devices and transmits the device codes to a remote server over a
network, such as the Internet. The remote server selects an appropriate device
driver for each peripheral device from a plurality of stored device drivers based

on the device codes received from the host processing system and then transmits

WO 02/27504 PCT/US01/29203

10

15

20

the device drivers to the host processing system over the network. This driver
download process is carried out with no intervention from the user.

However, these systems are limited to only detecting the devices at system
initialization. They cannot dynamically detect device activation (for example,
inserting and MP3 player once the system has started)

Moteover, these systems do not enable initiation of e-commerce, t-
commerce and other transactions on the basis of device events that may be
generated during operation, and not merely based upon driver installation; and
none facilitates support of drivers that are installed on a temporary basis.

Since the STB is a consumer device targeted at a non-technical audience,
ease of use is of paramount importance in deploying software and software
upgrades and in conducting e-commerce and other transactions.

Accordingly, it is desirable to provide systems that facilitate “on-demand”,
or run-time deployment of software and software upgrades, as well as initiation of
e-commerce and other transactions, in the STB environment. It is also desirable
to provide systems that enable and facilitate the initiation of data transfer, e-
commerce and other digital transactions, responsive to device generated events,
which may be generated, for example, at device installation or removal, or at

other times during device operation.

WO 02/27504

i0

15

20

25

30

Summary of the Invention

The invention comprises systems, devices and methods responsive to
peripheral device detection and notification, which are useful in connection with
set-top boxes (STBs) and other client devices. In one aspect, the invention
comprises a Peripheral Interface Agent (PIA) that enables the dynamic detection
and recognition of peripheral devices installed in or removed from a television set
top box (STB) while the STB system is operating, and the initiation of e-
commerce transactions in response to such detection. For example, the PIA can
interface between the low-level device architecture provided in Windows CE and
the Microsoft TV CCA (Client Configuration Agent — the client side of the Client
Configuration Architecture). The invention thus includes device discovery,
device event handling, and server-side aspects.

Device Discovery: The device discovery aspects include systems, devices

and method of invoking retrieval of software or data from a first source to a
peripheral device capable of communicating with the first source, by (1) detecting
a device event generated by the peripheral device, (2) transmitting to the first
source, in response to detection of a device event, a request to obtain the software
or data from the first source, and (3) receiving the software or data from the first
source. The software or data are selected to be appropriate for the peripheral
device in response to the event generated by the peripheral device, and the
detecting, transmitting, and receiving are performed automatically when a device
event is detected, without intervention by the user of the peripheral device.

In one example, the peripheral device is in communication with a client
system, and the detecting, transmitting and receiving can be executed even when
the client system contains no device driver to support the peripheral device.

Software thereby obtained can be installed on the client system without a user of

 the client system manually installing the software. The software or data from the

first source can include a device driver appropriate for the peripheral device; the
request to obtain software or data can include a code identifying a device type of
the peripheral device; and the first source can be a local source on the client

system. The device event may be generated upon user interaction with the

PCT/US01/29203

WO 02/27504 PCT/US01/29203

10

15

20

25

30

peripheral device, such as by actuation of a device START button. In another
example, the first source of software or data is specified by an identifier
designating an entry in a database on a remote processor capable of
communicating with the client system via a communications channel, and the
request is transmitted to the remote processor via the communications channel.
The communications channel can include the Internet or World Wide Web.

In another practice of the invention, the transmitting of a request for the
software or data can include opening, in response to detection of a device event, a
communications channel with the first source, to enable access to libraries,
packaging or configuration data on the first source to establish a repository of
device drivers and supporting applications suitable for the peripheral device.
Similarly, the step of receiving software or data from the first source can include
receiving a package containing data, script files or software to augment a local
database to enable handling of previously unsupported devices. The packages
may include device driver packages defined in accordance with a standard format,
and may define the manner of responding to peripheral devices; and the package
itself may reside on the client system, or on the first source of data or software,
and obtained from the first source after detection of the device event. Ina
particular implementation of the invention, the method includes responding to
events originating on a home network operating in accordance with a home
network standard such as the American National Standards Institute (ANSI) home
network standard.

Event Handler: The device event handler aspects include systems, devices
and methods for responding to device events generated by a peripheral device, by
(1) detecting a device event generated by the peripheral device when the

peripheral device is in communication with a client system (2) transmitting from

the client system to a first source of software or data, in response to detection of

the device event, a request to obtain software or data from the first source, and (3)
receiving the software or data from the first source. The software or data is
selected to be appropriate for the peripheral device in response to the event

generated by the peripheral device. The detecting, transmitting, and receiving are

WO 02/27504 PCT/US01/29203

10

15

20

25

30

performed automatically when a device event is detected, without intervention by
a user of the peripheral device, and can be executed even when the client system
contains no device driver to support the peripheral device. The receiving can
include receiving from the first source (which may include a database, broadcast
carousel, or the like) a package containing any of data, script files or software to
enable a response to the detected device event. In addition, the method can
include enabling a sequence of responses to the detected device event, the
sequence being defined by the data or software in the package. The sequence of
responses, in turn, can include initiating a software program or otherwise
activating specified software. The event can be generated at peripheral device
detection time, during device operation, power-up, power-down or connection or
disconnection with or from a client processing system, or at client system powet-
up. It can also be generated upon user interaction with the peripheral device (such
as by actuating a peripheral device START button).

The invention also includes systems, devices and methods for responding
to events generated by a peripheral device in communication with a client system,
by (1) detecting an event generated by the peripheral device, and (2) responding
to the event generated by the peripheral device, by executing a corresponding
function, without intervention by the user of the client system. The function can
be defined on the basis of either the event or the peripheral device, and may
comprise navigation to a web site (including navigating to a predetermined web
page when no other response to a given event is defined) and initiation of an e-
commerce transaction.

In another example, the method includes detecting changes in one or more
peripheral devices during operation of the peripheral devices, by detecting events

generated by the peripheral devices, and dynamically responding to the detected

. changes to manage new devices or events. In this manner, the client system

supports peripheral devices attached thereto, either before or after powering-up
the client system, even when no supporting device driver currently exists on the

client system at the time the device is attached to the client system.

WO 02/27504 PCT/US01/29203

10

15

20

25

30

In particular implementations of the invention, the method includes
detecting events generated on a bus in communication with the client system
(wherein the bus may operate in accordance with a predefined bus protocol, such
as USB or IEEE-1394) or originating on a wireless network in communication
with the client system; and responding to events originating on a home network
operating in accordance with a home network standard (such as the American
National Standards Institute (ANSI) standard).

The systems and methods can also include, upon detection of an event
associated with a device or device class represented in a list of event classes,
initiating a response to the event, wherein the response is among a list of possible
responses to events specified in the list of event classes, for each of a set of
devices or devices classes. This aspect may include associating, with a given
device, an extensible list of possible sequences of responses to events in each
event class. The system can store a list of devices and device events that can be
extended without modification to base client system software; and can also store,
in the first source of data or software, at least one extensible set of mappings of
event types and corresponding responses, including an extensible list of event
types and responses not previously encountered or supported by the client system.
These characteristics enable the system to respond to detection of event typés and
devices not previously encountered or supported by the system.

In addition, the system may include detecting a new event type not
previously encountered or supported by the client system, and opening a
communications channel with the first source to obtain a package of software or
data specifying a response to the new event type. The mode of responding to
peripheral devices may be defined by a package resident on the client system, or

on the first source. The package can be resident in the client system or obtained

- from the first source after detection of the device event. Still further, the method

may include detecting a device type for the device, and responding to newly
encountered, unsupported devices based on the detected device type.
The methods of the invention can also include navigating to a default Web

page when no software can be obtained from the first source to support the

WO 02/27504 PCT/US01/29203

10

15

20

25

30

device; permitting device-driver-originated events to initiate interaction with a
user of the peripheral device, via a user interface; and permitting the user,
following initiation of interaction, to control the peripheral device through the
user interface. A standard format can be employed to define browser navigation
directives, define or initiate device events, and/or communicate runtime or device
event-specific data.

The invention also enables third parties to implement, in software, specific
responses to device events, wherein the specific responses to device events can
include device events not previously encountered by the system. Third party
implementation can be supported by establishing a common interface definition
for use by third parties, and permitting third parties to download extensible user
interface software modules, to enable extensibility of code or functions associated
with responses to device event. Specific response implementations can be defined
to the client system using a standard format such as World Wide Web Consortium
(W3C) XML. ‘

Server Side: The server side aspect of the invention includes systems and
methods for providing a configurable intermediary between a client device and a
digital processing system, by (1) receiving from the client device a peripheral
device signal representative of an event generated by a peripheral device
connected to the client device; (2) processing the peripheral device signal to
generate an intermediary signal, the intermediary signal having a selectable,
standardized format capable of being understood by the digital processing system;
and (3) transmitting, to the digital processing system, the intermediary signal.

The standardized format can be selected based on parameters of the digital
processing system. The processing step can be executed on a server processor
capable of communication with the client device via a communications channel
such as the Internet; and the client device can be a television set-top box. The
digital processing system can be a billing system, or information delivery, storage
or logging system.

In response to receipt of the intermediary signal, the digital processing

system can execute an e-commerce transaction process; or can provide an

WO 02/27504 PCT/US01/29203

10

15

20

25

30

application program and e-commerce user interface that supports interactive e-
commerce between a user of a client device and one or more vendors, by
permitting the user to select items from a menu of product/service categories, and
then registering the user's purchase of one or more items from the categories.
This may include navigation to a Web site, and/or initiating an e-commerce
transaction. The e-commerce user interface can be provided on a set-top box, PC,
Internet appliance or other device capable of connecting to the Internet via a
wireless or wire-line channel.

The systems and methods can also inciude (1) receiving peripheral device
signals from each of a plurality of client devices; (2) selecting, for each of the
received peripheral device signals, a respective, selectable, standardized format
associated with the respective peripheral device signal and a selected one of a
plurality of digital processing systems; (3) processing the respective peripheral
device signal to generate an intermediary signal with a format capable of being
processed by the selected digital processing system; and (4) routing and
transmitting, to appropriate ones of the plurality of digital processing systems,
respective intermediary signals. In each case, the peripheral device signal can be
a peripheral device identifier. In addition to providing information regarding the
peripheral, the system can also transmit an identifier for the STB, and either the
peripheral identifier or the STB identifier can be associated with a credit card
number for billing; or with a subscriber to a service provided by an eﬁtity and
implemented by the digital processing system.

The invention also includes systems, devices and methods for using a
configurable intermediary between a client system and a first source of software
or data to respond to events generated by a peripheral device connected to the

client system, by (1) receiving from the client system a peripheral device signal

. representative of an event generated by a peripheral device connected to the client

device; (2) processing the peripheral device signal to generate an intermediary
signal having a selectable, standardized format capable of being understood by the
first source, and (3) responding to the event generated by the peripheral device, by

executing a corresponding function, without intervention by the user of the client

WO 02/27504

10

15

20

25

system, wherein the function is executed with reference to software or data
obtained from the first source of software or data in response to receipt of the
intermediary signal. The responding step includes opening, in response to the
intermediary signal, a communications channel between the client system and the
first source, to enable access to aﬁy of libraries, packaging or configuration data
on the first source to establish a repository of device drivers and supporting
applications suitable for the peripheral device.

In each case, the systems and methods can include logging device activity
into a database (such as an Extensible Markup Language (XML) database), or a
billing system. At least a portion of the billing system or information logged
thereto can be stored in a client system capable of communication with the
peripheral device; or on a remote server. The systems and methods can also
permit device-driver-originated events to initiate interaction with a user of the
peripheral device, via a user interface; permitting the user, folldwing initiation of
interaction, to control the peripheral device through the user interface; and
utilizing a standard format to define device driver packages, communicate device
event-specific data, or communicate runtime data.

The invention will also support drivers that are installed on a temporary
basis. This is important because set top boxes are generally very resource
constrained. Temporary driver support allows a driver to be installed through PTIA
and used for an indeterminate amount of time. When the driver is not in use, it
will be removed from the system. However, the invention will track the fact that
the device was configured on the system so the next time it is installed, it won’t

appear to the user that it is a first time installation.

10

PCT/US01/29203

WO 02/27504 PCT/US01/29203

10

15

20

25

Definition of Certain Terms Employed Herein

Bus enumerator - A device driver that identifies devices located on a specific bus

and assigns a unique identification code to each device.

Channel - A collection of resources described by a Channel Definition Format
(CDF) file. The CDF file defines a hierarchy of elements included in the channel.
In addition to defining the resources in the chénnel, the CDF file also specifies
how each item will be deployed on the client, and when the channel should be
updated. Thus, MSOs (see definition below) can deliver content directly to STBs
(see definition below) on a regular schedule by transmitting the content to them

through a channel. No STB user interaction is required to maintain a channel.

DLL - Dynamic Link Library, a library of executable functions or data that can be
used by a Windows application. Typically, a DLL provides one or more particular
functions and a program accesses the functions by creating either a static or
dynamic link to the DLL.

MSO - Multiple Cable System Operator (wherein the term “cable” is used to refer

to cable television (also called CATV or community antenna television).

MSTYV - Collective reference to the Microsoft TV systems.

PIA - Peripheral Interface Agent, the device recognition and transaction initiating

agent of the transactional system of the invention described herein.

STB - Set-top box.

11

WO 02/27504 PCT/US01/29203

CCA - Client Configuration Agent, client-resident components of the Client
Configuration Architecture in Microsoft TV systems — responsible for requesting

updated content such as device drivers, databases, etc.
CCS - Client Configuration Server, server-resident components of the Client

Configuration Architecture in Microsoft TV systems — responsible for storage and
delivery of the content CCA requests.

12

WO 02/27504 PCT/US01/29203

10

15

20

25

Brief Description of the Drawings

The present invention is illustrated by way of example and not limitation
in the figures of the accompanying drawings, in which like references indicate
similar elements and in which:

FIG. 1 iilustrates an MSTV client system connected to a server system
over the Internet.

FIG. 2 illustrates an MSTV client system.

FIG. 3 illustrates internal features of an MSTV STB in block diagram
form.

FIG. 4 illustrates the internal features of an MSTV server in block diagram
form.

FIG. 5 illustrates an MSTV STB connected to one or more peripheral
devices.

FIG. 6A-6F are a flow diagrams illustrating methods in accordance with
the invention.

FIG. 7 is a schematic diagram depicting PIA architecture in accordance
with the invention.

FIG. 8 depicts method steps executed by the architecture of FIG. 7. '

FIG. 9 depicts active logging architecture in accordance with the
invention.

FIG. 10 depicts method steps executed in accordance with a further
practice of the invention.

FIGS. 11-16 depict screenshots generated by the InterAct! aspects of the

invention.

13

WO 02/27504 PCT/US01/29203

10

15

20

25

30

Detailed Description of the Invention

The following detailed description is organized into the following major
sections:

Section I: Overview

SectionII: ~ Functional Description
Section III: Client Architecture
Section IV: Server Architecture

Section I: Overview

In the discussion set forth hereinafter, for purposes of explanation, specific
details are set forth in order to provide a thorough understanding of the invention.
It will be appreciated by those skilled in the art that the present invention may be
practiced without these specific details. In particular, those skilled in the art will
appreciate that the methods described herein can be implemented in devices,
systems and software other than Microsoft TV and CCS/CCA, and the examples
set forth herein are provided by way of illustration rather than limitation. In other
instances, conventional or otherwise well-known structures and devices are shown
in block diagram form in order to facilitate description of the present invention.

The present invention includes steps that may be embodied in machine-
executable software instructions, and thus the present invention includes a method
that is carried out in a processing system as a result of a processor executing the
instructions. In other embodiments, hardware elements may be employed in place
of, or in combination with, software instructions to implement the present
invention.

In one embodiment, the present invention is included in a system known

as Microsoft TV, which utilizes a standard television set as a display device for

browsing the World Wide Web ("the Web") and which connects to the Internet
using a standard telephone modem apparatus, cable modem, or other similar
communication path. A user of a Microsoft TV client system can access, via the

Internet, digital data, content and services provided by one or more remote

14

WO 02/27504 PCT/US01/29203

10

15

20

25

30

servers, in accordance with known Internet practice. Thus the Microsoft TV
services may be employed in combination with software running in the Microsoft
TV client system, to enable the user to browse the Web, send electronic mail, and
otherwise employ the Internet.

| Although the present invention is described herein as implemented in the
Microsoft TV system for illustrative purposes, the invention can also be
implemented in other contexts, such as in other STB environments, conventional
personal computers (PCs), workstations, or other processing environments.

The invention comprises a transactional system responsive to events
associated with installation, removal or other device generated events occurring
during operation of peripheral devices in the STB environment. Thus, for
example, the invention can respond to a “Low Ink” event or message from a
printer connected to the STB, by automatically navigating to an e-commerce URL
to enable the user to order additional ink. The agent that enables this functionality
is referred to herein as the PIA. Thus, a key purpose of the PIA is device
discovery. When a device is plugged into an interface, the PIA will recognize that
the device has appeared on the system and will become an agent for the user to
install the appropriate software for the device. The PIA will contain a database of
all devices known to have supporting drivers or other software on the PIA server.
This database can be itself managed by Microsoft TV CCA, so that new devices,
drivers and software can be added to the PIA database over time.

In accordance with a preferred practice of the invention, the PIA database
will permit various kinds of device installation and operation scenarios, including
automatic (hidden) installation, user notification through the Microsoft TV
browser, and optional software installation. For each particular device, multiple

scenarios can be permitted and supported. For example, when an imaging device

~ such as a camera is plugged into a USB port, the PIA could install a device driver

automatically and then prompt the user to install, and potentially purchase,
optional software such as an application, to enhance the usability of the device.
By way of further example, when a user plugs a printer into the set top

box, the PIA could prompt the user to enter into an e-commerce transaction, such

15

WO 02/27504

10

15

20

25

30

as the purchase of additional paper, toner or other supplies, or font software or
other applications. Thus, an additional significant component of the invention
comprises methods and systems for initiating and conducting e-commerce
transactions in response to device detection, removal or other device related
events. As noted above, by way of example, the PIA can respond to a “Low Ink”
event or message from a printer by automatically causing the browser to navigate
to an e-commerce URL to enable the user to order additional ink.

These abilities to link devices to optional applications, and to invoke a
purchase event or other e-commerce or digital transaction upon device insertion,
removal or other device related events, constitute significant advantages over
prior art systems and methods.

In a preferred embodiment of the invention, PIA could monitor device
installations on the system so that devices that are removed or replaced would
have their attendant software also removed. The removal of software typically
adds a level of complication, in that user interaction would be required for
removal of purchased software. PIA could eliminate this requirement of user
interaction.

PIA can also contain and provide software enhancements to the Microsoft
TV CCA, as required. For example, the PIA could permit the management of
multiple devices and applications that may not be able to simultaneously reside on
a client system.

In addition, PIA will support drivers that are installed on a temporary
basis. This is important because set top boxes are generally very resource
constrained. Temporary driver support allows a driver to be installed through PIA
and used for an indeterminate amount of time. When the driver is not in use, it
will be removed from the system. However, PIA will track the fact that the
device was configured on the system so the next time it is installed, it won’t
appear to the user that it is a first time installation. This is important because PIA
allows processing based upon device events and it might make sense for some
peripherals to distinguish between a first time installation and subsequent

enumerations (or installs) of the same device. Additionally, a driver (or other

16

PCT/US01/29203

WO 02/27504 PCT/US01/29203

10

15

20

25

30

software component) may maintain data on the STB (e.g. registry settings) with
its current operational settings. When support is installed on a temporary basis,
these settings should remain for use the next time the software is installed. For
example, the first time installation of a specific digital camera may result in a
flash movie playing showing the operations of the camera. Subsequent
enumerations may result in an automatic navigation to a photo album web site. If
this is the desired result, this should occur whether or not the driver needs to be
re-installed each time.

The invention described herein would Be useful for MSOs, set top OEMs,
ISVs and peripheral vendors. For MSOs, PIA can offer the ability to support new
software and peripherals, as well as enhanced flexibility in their deployments.
For ISVs, PIA can offer an automated mechanism to offer targeted software titles.
For peripheral vendors, PIA permits driver and support software installation.
Significantly, peripheral vendors will be able to enter into the set top box market
regardless of whether the peripheral was available when the set top box was
originally developed.

In one practice of the invention, the PIA architecture can be implemented
in several modules, including one manager and one module for each hardware
interface that PIA is to support. Significant interfaces in the system include those
between PIA and, in one example, the Microsoft TV CCA modules; as well as
between PIA and the browser, to generate potential e-commerce transactions, as
in the example of navigating to a vendor URL to enable the purchase of additional
printer supplies.

With reference to the attached FIGS. 1-5, FIG. 1 illustrates a well-known
configuration of conventional MSTV network, typical of the prior art, for which

the invention is adapted, and for which the invention can provide additional

. functionality. As shown in FIG. 1, a client device 110 is in communication with

at least one remote Internet server 106, such as an MSTV server, via the Internet
104 or other network infrastructure and a communications device 108, such as a
conventional cable modem or the like. The remote server generally includes one

or more conventional computer systems. The server may comprise multiple

17

WO 02/27504 PCT/US01/29203

10

15

20

25

30

physical and logical devices connected in a distributed architecture. The system
can also include a World Wide Web Server 102.

FIG. 2 illustrates a conventional MSTV client system 110 including an
electronic STB 202, a conventional television set 204, and a conventional, hand-
held remote control unit 206. The STB 202 includes hardware and software for
providing the user with a graphical user interface (GUI) by which the user can
browse the Internet, send e-mail, and access other Internet services. The user can
employ remote control 206 to control the client system to browse the Web and
perform other functions. The STB 202 receives commands from the remote
control 206 and is coupled to the television set by a link 208. Each of these
aspects is discussed in detail in the above-cited U.S. patents, which are
incorporated by reference herein.

FIG. 3 illustrates exemplary internal components of a conventional MSTV
STB 202, in which the client system is controlled by a central processing unit
(CPU) 302 which is coupled to a bus 304. In accordance with known computer
practice, functions described herein as being performed by the STB 202 (and by
the invention) may result from the CPU 302 of the STB 202 executing software
instructions, from operation of hardwired circuitry, or both. It will also be
recognized that the bus 304 may represent multiple physical buses connected by
various bridges and/or adapters, the details of which are not required for an
understanding of the present invention. Also in accordance with conventional
practice, an audio converter 306 (for providing audio output to the television) and
video encoder 308 (for providing video output to the television set) are connected
to the bus 304. A communications device 310 (such as a cable modem) is
connected to the bus 304 to provide bidirectional data communication with the

remote server or servers (102, 106 of FIG. 1) via the Internet. ROM 312 and

. RAM 314 are also connected to the bus 304, as is an expansion bus 316 that can

be used to connect various peripheral devices to the STB 202. The STB 202
thereby functions as the host device of a processing system. Peripheral devices
that can be connected to the STB 202 via the expansion bus 316 include, but are

not limited to, printers, CD-ROMs or other mass storage devices, microphones,

18

WO 02/27504 PCT/US01/29203

10

video cameras, video tuners, input devices such as joysticks or mice, and other
data communication devices.

FIG. 4 illustrates an exemplary architecture of a conventional MSTV
server 106, which includes a CPU 402, ROM 404, RAM 406, a mass storage
module 408, a communication module 410, and various input/output (I/O) devices
412.

Similarly, FIG. 5 illustrates a conventional MSTV client system 110
(including STB 202) connected to one or more peripheral devices 502 in
accordance with known MSTV/STB practice.'

19

WO 02/27504

10

15

20

25

30

PCT/US01/29203

Section II: Functional Description

FIGS. 6A- 6F depict methods of the present invention, which can be
employed in systems such as those depicted in FIGS. 1-5, to advantageously
provide additional functionality for such systems. Referring now to FIG. 6A, a
method or software process 602 according to the invention invokes the retrieval of
software or data from a first source (such as server 106 of FIG. 1, or a local
source) to a peripheral device (such as a printer, digital camera, or other
peripheral device 502 of FIG. 5). The illustrated method 602 includes detecting a
device event generated by the peripheral device (step 604), transmitting to the
first source, in response to detection of a device event, a request to obtain the
software or data from the first source (step 606), selecting software or data from
the first source appropriate for the peripheral device in response to the event
generated by the peripheral device (step 608), and receiving the selected software
or data from the first source (step 610). As described in greater detail below, the
detecting, transmitting, selecting and receiving (604, 606, 608, 610) can be
performed automatically when a device event is detected, without intervention by
the user of the peripheral device.

An altemative practice of the invention is depicted in FIG. 6B, which
illustrates a method 612 of responding to device events generated by a peripheral
device. The illustrated method includes detecting a device event (step 614)
generated by the peripheral device when it is in communication with an STB or
other client system. In response to detection step 614, the process transmits, from
the client system to a first source of software or data, a request to obtain software
or data (step 616). In response to the request, software or data appropriate for the
peripheral device (as defined by characteristics of the detected event) are selected
(step 618), and the selected software or data are received from the first source
(step 620).

As in the method of FIG. 6A, these operations can be performed
automatically (using the software and system architecture described in detail in

the following sections) when a device event is detected, without intervention by a

20

WO 02/27504

10

15

20

25

30

user of the peripheral device, and can be executed even when the client system
contains no device driver to support the peripheral device. The device events can
be generated at peripheral device detection time, during device operation, at
device power-up, power-down or disconnect, or at client system power-up.

Another practice of the invention is depicted in FIG. 6C. The illustrated
method (622) of responding to events generated by a peripheral device in
communication with a client system, includes detecting an event generated by the
peripheral device (step 624), and responding to the event generated by the
peripheral device by executing a correspondiﬁg function, without intervention by
the user of the client system (step 625).

FIG. 6D depicts a server-based method (626) of providing a configurable
intermediary between a client device and a digital processing system. In a manner
analogous to the aspects described above and in the following discussion, method
626 includes receiving from the client device a peripheral device signal
representative of an event generated by a peripheral device connected to the client
device (step 628). The peripheral device signal is then processed (as described in
greater detail below) to generate an intermediary signal (step 630), which has a
selectable, standardized format capable of being understood by the digital
processing system. The intermediary signal is then transmitted to the digital
processing system at step 632.

FIG. 6E depicts another server-based process 634 in accordance with the
invention -- a method of employing a configurable intermediary between a client
system and a first source of software or data to respond to events generated by a
peripheral device connected to the client system. Referring now to FIG. 6E,
method 634 begins by receiving from the client system a peripheral device signal

representative of an event generated by a peripheral device connected to the client

. device (step 636). The peripheral device signal is then processed (step 638) to

generate an intermediary signal with a selectable, standardized format capable of
being understood by the first source. The process then responds (steps 640, 642)
to the event generated by the peripheral device, by executing a corresponding

function (step 640) without intervention by a user of the client system. The

21

PCT/US01/29203

WO 02/27504

10

15

20

25

30

function is executed (step 640) with reference to software or data obtained from
the first source in response to receipt of the intermediary signal. In the illustrated
method, in response to receipt of the intermediary signal the process opens a
communications channel (step 642) between the client system and the source of
data or software, to enable access to libraries, packages or configuration data on
the source, to thereby establish a repository of device drivers and supporting
applications suitable for the peripheral device.

Referring now to FIG. 6F, there is shown an e-commerce method in
accordance with the invention. In the illustratéd process, the client device detects
installation or another event from a peripheral device (step 644). It then
determines browser content or control required to respond to the event (step 646)
and instructs the browser to navigate to an e-commerce site or other URL (step
648). Next, the client prompts the user of the client device as required to obtain
data or control (step 650) and transmits e-commerce or other data to the server
(step 652). In turn, the server receives the e-commerce or other data from the
client (step 654), determines an appropriate response, based on the data (step
656), and transmits responsive e-commerce or other data to the client (step 658).
Finally, the client receives from the server the responsive e-commerce or other

data (step 660).

Section III. Client Architecture
This section describes an exemplary architecture of PIA, a software
application designed to better enable peripheral devices connected to STBs. Each
component of PIA is described in detail, including the overall operation of each
component, external interfaces and the communications mechanisms used

between components. The embodiments described in this section are capable of

- interaction with, and utilization of, commercially available Windows CE

architecture, sold by Microsoft Corporation, Redmond, Washington, in
conjunction with Microsoft's Microsoft TV Advanced and the Microsoft TV
Advanced Browser. Additional description of Microsoft TV Advanced and
Microsoft TV Advanced Browser is publicly available in documents published by

22

PCT/US01/29203

10

15

20

25

30

WO 02/27504 PCT/US01/29203

Microsoft Corporation, the teachings of which are incorporated herein by
reference.

A central, though by no means the only, objective of the PIA system of the
invention is to provide a better user experience for connecting peripherals to set
top boxes (STBs). The PIA system described herein will automatically update the
system to support newly installed devices and will invoke software clients in
response to "events" generated by the device. PIA does not limit the type of
peripherals that it will support, but is well suited to support devices that are
dynamically inserted. PIA will support devicés located on any bus, as long as a
knowledgeable bus enumerator exists for that bus, in accordance with known bus
practice.

The PIA system will respond to events generated in the system to carry out a
desired function. The events generated in a given system are flexible, based upon
their definition for that system. Generic device class events can be defined, as can
device-specific events. Events may have static, dynamic and/or device-specific
data associated with them. Events can be generated from any source, although
typically device drivers and bus enumerators will be generating most events.

For example, upon the insertion of a new device, the bus enumerator which
manages that bus or device would generate an INSTALL' event. Upon receipt of
the INSTALL' event, PIA could contact a server to install the necessary drivers to
support the device. Additionally, once the installation is complete, PIA could
communicate with the browser to navigate to an e-commerce site appropriate for
the newly installed device. The devices, events and responses are defined in a

platform-specific database, as further described below.

1 PIA Architecture Overview

The architecture of PIA involves several components. FIG. 7 shows an
example of the components in PIA including a USB bus enumerator 726. FIG. 7
is provided by way of example, and the structures shown may be changed, based
upon the PIA-knowledgeable components present in a given system. As FIG. 7

illustrates, one embodiment of the PIA invention utilizes Microsoft TV Advanced

23

WO 02/27504

10

15

20

25

30

components 736 and Windows CE components 734. The interactions of the
elements shown in FIG. 7 will be discussed in greater detail below.

Microsoft TV Advanced is one, though by no means the only,
environment for implementation of PIA. One objective of Microsoft TV
Advanced is to address the needs of users who are less computer-knowledgeable
than the average PC user. PIA supports this mission, by enabling Microsoft TV
Advanced to dynamically add support for new peripherals without user
intervention in the typical case.

In addition, Microsoft TV Advanced sﬁpports field updates of the
opetating system, but does not address the need to add dynamic device support in
the field. PIA adds this ability, by exploiting an Microsoft TV Advanced
component on the client set top box known as the Client Configuration Agent
(CCA) 718 of FIG. 7. As described below, CCA 718 is an agent that
communicates with a Client Configuration Server (or CCS, part of the Microsoft
TV Advanced Server) to obtain software updates in the field.

PIA also provides additional functionality through communications with
the Microsoft TV Advanced Browser 704 of FIG. 7, as described in detail below.
For example, the browser can be directed to navigate to a specific Web site that is
appropriate for a device that has just been inserted. In addition, PIA can provide
information to the Microsoft TV Advanced Server 720 of FIG. 7, that enables it to
respond with targeted content. These ease-of-use features are a basic design goal
of PIA, which the system achieves, in one embodiment, through interaction with

the Microsoft TV Advanced infrastructure.

1.1 PIA Component Overview
The PIA architecture described herein has been designed to be flexible in its

‘ operations and easily enhanced by the addition of new components. PIA

components can be customized by STB OEMs (original equipment
manufacturers), peripheral vendors and/or network operators.
One category of components that may be added or enhanced are bus

enumerators (see, e.g., 726 of FIG. 7). PIA can include various bus enumerators,

24

PCT/US01/29203

WO 02/27504 PCT/US01/29203

10

15

20

25

30

including a USB bus enumerator (USBSNOOP) and a 1394 bus enumerator.
These bus enumerator elements are responsible for detecting devices on the bus
and determining whether the proper device driver support exists to manage the
new device. Ifnot, a PIA enhanced bus enumerator could generate an INSTALL'
event to have the necessary device drivers retrieved and installed on the client,
without user intervention.

Device drivers (e.g., 3rd-party device drivers 730 of FIG. 7) are another
category of component that may benefit from PIA enhancements. Although this
is not generally required, some peripherals méy require attention during operation.
An example is a printer running low on ink or out of paper. A device driver that
is PIA-aware could generate a 'low ink' event that results in a navigation to an e-
commerce site to order ink cartridges specifically for that printer.

Both device drivers (e.g., 730 of FIG. 7) and bus enumerators (e.g., 726 of
FIG. 7) are considered clients of PIA. They make requests of PIA (by generating
an event) and may expect some type of response.

A further category of components that may be added are called event
handlers (e.g., PIA navigate event handler 708, PIA updaie event handler 716, and
other event handlers 710, each of which is shown in communication with PIA
Central Agent 712 in FIG. 7). In this practice of the invention, event handlers are
not intended to be clients of PIA. Rather, they extend the system's capabilities by
carrying out the functionality that corresponds to the events generated. For
example, PIA can provide an 'UPDATES' event handler that responds to the
'INSTALL' event by retrieving new software and installing it on the client.

Thus, in the embodiment shown in FIG. 7, PIA includes a single main
component that manages all the clients and event handlers. This is called the
Central Agent 712. The Central Agent is the focal point for the interaction that
occurs between components. As shown in FIG. 7, the Central Agent 712 is in
communications with device database 714, PIA update event handler 716, client
configuration agent (CCA) 718, MSTV server 720, PIA navigate event handler
708, other event handlers 710, PIA Ul control 706, MSTV browser 704,

25

WO 02/27504

10

15

20

25

30

35

40

USBSnoop/USB bus enumerator 726, USBHID class driver 728, USB 3rd-party
device drivers 730, USBD-USB device driver loader 724.
The structure, function, and interaction of each of these elements will next

be discussed.

1.2 Operational Flow

The following discussion describes the processing flow through the
components in the FIG. 7 embodiment of the PIA invention, with reference to
FIG. 8 and its illustrated example of the processing that occurs when an event is
generated. Referring now to FIG. 8, we examine what occurs when a newly
discovered (i.e., never-before configured) USB device is plugged into the STB.
The following steps occur (each depicted in FIG. 8 with the corresponding step

number):

1. USBD 724 detects a new device on the bus. Its responsibility is to load
the driver that corresponds to the new device. To do this, it first calls
USBSnoop 726.

2. USBSnoop 726, using the device information, checks the list of USB
drivers (e.g. in system registry database 738) to determine if a device
driver is present on the client to support the new device.

3. USBSnoop 726 determines that there is no existing device support. It
generates an 'INSTALL' event by calling the PIA Central Agent 712.

4. The PIA Central Agent 712 looks up the device and event information
(passed to it by USBSnoop 726) in its database 714 to determine if it can
process the event requested.

5. The PIA Central Agent 712 finds that it has an event handler (PIA Update
event handler 716) capable of processing the TNSTALL' event. It loads
the event handler and passes the install request to the event handler. Data
is passed with this request so the event handler can identify the component
needing to be installed.

6. The event handler 716 contacts the client configuration agent 718 (in this
example, CCA is a part of the known Microsoft TV Advanced Client) to
request retrieval and installation of the component.

7. The client configuration agent 718 establishes a connection to the client
configuration server (in this example, part of the known Microsoft TV
Advanced Server 720) and requests the download of the component.

8. The client configuration server responds to the client configuration agent
718 by allowing the download of the component.

9. Once the download is complete, the client configuration agent 718
processes the component by installing it into the proper location on the

26

PCT/US01/29203

WO 02/27504

10

15

20

25

30

35

STB (e.g., 202 of FIGS. 2 and 3). This may include registry entries and
other supporting modules in accordance with known STB techniques.
10. The client configuration agent 718 returns control to the event handler 716

with a successful installation response.
11. The event handler 716 returns control to the PIA Central Agent 712 with a

successful installation response.

12. The PIA Central Agent 712 returns control to USBSnoop 726 with a
successful installation response.

13. USBSnoop 726 returns control to the USBD 724, informing it to continue
to look for a driver to support the new device.

14. USBD 724 finds the newly installed driver in the list of supported drivers
and loads it to manage the new device.

The foregoing is an example of how synchronous events can be defined
and carried out through PIA. The update case may be somewhat more complex,
in that it is carried out as an asynchronous event. Accordingly, when the Central
Agent 712 determines that it can execute the request (Step 4), it spawns a thread
to proceed with the install (Step 5), and returns the main thread back to the caller.
The response to the caller (Step 12) then occurs through a callback mechanism.
The use of threads and callback mechanisms is well known in the art, and those

skilled in the art will appreciate how to implement them in the context of the

present invention.

1.3 PIA Database Overview

In the illustrated embodiments, the PIA system relies upon a database of
information to provide the instructions required to perform event handling. This
database describes the devices and events supported by PIA in the STB. In one
practice of the invention, the database is contained in an XML file that resides on
the client system. As described below, the database can be updated periodically
from the server to extend the list of supported devices, events and/or responses.

In this example, the database is comprised of two object trees, i.e., an event
object tree and a device object tree. The event object tree contains a list of event
handlers. These event handlers are responsible for carrying out the request made
when a PIA client generates an event. Information in the event tree is generic in

nature (no device specific or context information is defined in this object tree) and

27

PCT/US01/29203

WO 02/27504 PCT/US01/29203

10

15

20

25

30

simply contains a series of XML objects that identify the events each event
handler is capable of carrying out. Optionally, an event handler can be
categorized as an asynchronous event handler if that handler performs potentially
lengthy processing. |

Also in this example, the device object tree contains a list of devices.
Devices can be specific or general (e.g., Lexmark Z12 printer, or USB printers).
The general case can be used to categorize classes of devices. Each device object
contains a number of elements that identify the device (or device class) and
identify the events that the device could generate. A mapping exists between each
device/event in the device object tree and an event in the event object tree. This
mapping is used to determine which event handler is invoked in response to a
generated event for a given device. These device/events (or device class/events)
can contain data elements that PIA passes to the event handler. In addition, the
data elements can contain substitution parameters.

The combination of device/event objects can be thought of as a mechanism
to run scripts. When an event is generated by a certain device, this device/event
combination is retrieved from the database along with the event handling
instructions (and data elements) that apply to this device/event request, and the
request is carried out. If the data elements contain substitution parameters, these
parameters are replaced in line with the associated run time data. For example: A
“NAVIGATE’ event handler has a data element associated with it that is the URL
to navigate to. The unique identifier for the set top box may need to be embedded
in the URL to pass along to the server. This can be accomplished by specifying
the MACHINE_ID substitution parameter at the location in the URL where this
information is needed. Additional information regarding parameters supported

and database object and element definitions are set forth below.

1.4 Central Agent Overview
In the illustrated embodiments the Central Agent (712 of FIGS. 7 and 8) is a
Stream Interface device driver that provides an IOCTL interface used by its

clients to make requests. The Central Agent is responsible for managing the

28

WO 02/27504 PCT/US01/29203

10

15

20

25

30

interactions between its clients and event handlers. Clients are defined as any
component that makes a request of PIA. This usually consists of bus enumerators
and device drivers. The Central Agent’s name reflects its role in the system,
receiving requests from its clients and passing along these requests to other
components, i.e., the event handlers, to carry out the processing, as shown in
FIGS. 7 and 8.

Requests are typically made in the form of an event generation, although
there are supporting functions that do not result in event generation. For these
requests, clients are said to generate an event to PIA. (The term “generating an
event” is used instead of “making a request” since the client may not need to
know if any processing is carried out as a result of the event generation.) The
Central Agent receives the events and, using the information, performs a look up
in its database to determine whether event processing must occur in response to
the event. If so, the Central Agent retrieves the event handling instructions and
locates the specified event handler defined in the database. It will load the event
handler and issue the request to the handler in response to the event. In this
example of the invention, the Central Agent is not knowledgeable about specific
events, but treats them in this generic fashion, performing a lookup in its database
and carrying out the desired functionality. In this way, the list of devices and
events that the Central Agent can support is unrestricted.

In addition, the Central Agent’s event mechanism is extensible. As noted
above, the database can be updated periodically to enable this extensibility. The
Central Agent maintains no knowledge of event handlers in the system, so if an
update occurs to the database adding more event objects (and thus more event
handlers), the Central Agent will automatically make use of those new handlers
when an event is received that corresponds to them.

In addition to handling requests from its clients, the Central Agent may
need to initiate communication to its clients. When a client has generated an
asynchronous event (as specified in the event object tree), the client may be
notified, with the results, once that event processing has been completed or failed.

Clients also may need to be notified of system events. The Central Agent can

29

WO 02/27504 PCT/US01/29203

10

15

20

25

30

utilize either of two methods to initiate communication with its clients for such
notifications. The client chooses the method the Central Agent uses for
notification, by registeting with the Central Agent and passing its notification
mechanism. The first method is in the form of a registered callback. Clients
running in the same process space as the Central Agent may choose this method.
In the second method, the Central Agent signals a client-owned event object.
This approach is used primarily by clients running in a different process space,
since a direct callback is not possible in such instances. When a client is signaled
through its event object, the client responds b)} calling a specific IOCTL in the
Central Agent to retrieve the data that describes the reason for the notification.
With either mechanism, it is up to the client to determine the type of notification
that occurred and carry out any needed processing, or ignore the notification.

The Central Agent is also responsible for managing the packages (described
in greater detail below) that it installs on the client STB. Since STBs are
generally resource constrained, the Agent will support drivers that are installed on
a temporary basis. When the driver is not in use, it may be removed from the
system. However, the Central Agent will track the fact that the device was
configured on the system so the next time it is installed, it will not appear to the
user to be a first time installation. This is significant because PIA allows
processing based upon device events, and it would be efficient for certain
peripherals to distinguish between a first time installation (and its asséciated event
behavior) and subsequent enumerations (or installs) of the same device. The
driver or software components may also contain run time settings that persist even
if the software is installed on a temporary basis. Additional detail regarding
temporary device driver support is set forth below.

1.5 Events and Event Handlers Overview
As described in greater detail below, events are defined in an XML
database. Events can be generic, or device-specific. The database is extensible,

so that event support can be added over time as new functionality is required.

30

WO 02/27504 PCT/US01/29203

10

15

20

25

30

The function of the event handlers is to carry out specified processing in
response to a generated event. The Central Agent does not perform event
processing on its own, but invokes event handlers that , in turn, carry out the
processing.

In the illustrated examples, all event handlers support at least one class of
event, and within an event class they can support multiple event types. An
example of this is the PIA Update event handler. This handler supports the
“UPDATES’ event class. Within this class, two event types are specified, the
‘INSTALL?’ event type and the ‘REMOVE’ event type. Event handlers can also
support multiple event classes, and event types within each class, if needed.

When PIA clients generate events, they call a driver specific IOCTL in the
Central Agent, passing it the event type and device identifier. The event type for
this device identifier maps to an event class in the database. This event class is
used by the Central Agent to load the appropriate event handler. When an event
class is determined, its CLSID is used by the Central Agent to instantiate it. All
communication to event handlers is initiated by the Central Agent in response to
an event generation. The Central Agent communicates to event handlers through

a COM interface, known as IPIADevEvent, described below.

1.6 Bus Enumerators Overview

Bus enumerators (e.g. 726 of FIGS. 7 and 8) are primarily responsible for
detecting the addition and removal of devices on their bus. The illustrated
examples of PIA use bus enumerators to determine whether proper device support
is available as peripheral devices are dynamically plugged in to an STB or other
client. PIA supplies the USBSnoop component, a bus enumerator for the USB
stack. Its purpose is to identify a device that has just been plugged in, and
determine whether a device driver exists on the client STB that can manage the
device. If it cannot find a device driver that manages the device, it will generate
an ‘INSTALL’ event to the Central Agent. In particular, it generates an
‘INSTALL’ event (or any PIA event) by calling the IOCTL interface in the
Central Agent. If the Central Agent supports the device, it will go through the

31

WO 02/27504 PCT/US01/29203

10

15

20

25

30

necessary steps to locate and install the drivers and associated data. USBSnoop
will wait for the completion of the ‘INSTALL’ event to determine whether proper
support now exists on the STB for the new device. If so, it will continue its
normal processing that will result in the appropriate device driver being loaded.

In the illustrated examples, bus enumerators are not restricted to generating
only ‘INSTALL’ events. Bus enumerators may also generate other events useful
for the bus they manage. Other examples of common events are ‘REMOVE’ and
‘ENUMERATE’ events. On STBs that are particularly resource constrained,
‘REMOVE’ events can be used to unload drivers that have been temporarily
loaded into RAM (through an ‘INSTALL’ event) due to a lack of persistent
storage. It may also be desirable to perform some event handling when a device
is plugged in that is not new to a system. In that case, an ‘ENUMERATE’ event
could be used. Adding ‘ENUMERATE’ events to a bus enumerator is a quicker
task then adding ‘(ENUMERATE’ events to all the device drivers that an

-enumerator manages in a system.

1.7 Device Drivers Overview

Printers and other peripheral devices may require attention while running.
A printer may be run low on ink, or run out of paper. In such cases it would be
useful to notify the user that the event is occurring, so they can obtain more
supplies for their printer or other peripheral. The PIA significantly expands upon
this possibility. For example, in addition to simply generating (on the user's TV)
a message box alerting the user to the condition, the PIA could automatically
inform the associated browser 704 (FIG. 7) to navigate to a web site for
purchasing printer supplies. It could also pass up device information that could be
used by the web site to provide targeted content, offering to the user supplies
specific to their printer. Another application is the all-too-familiar paper jam.
The driver could generate a "paper jam" event that results in the playing of a
FLASH movie explaining to the user how to open to printer and clear the

stoppage.

32

WO 02/27504 PCT/US01/29203

10

15

20

25

30

Device drivers would generate these events in the same way that the bus
enumerators do, by calling the IOCTL interface in the Central Agent. The
universe of events that the Central Agent supports for a given device is
determined by the contents of the database, and thus can be defined for an
individual device driver as needed. The device driver simply generates the event
to the Central Agent, and is unaware of how the response is carried out. All
interfacing to the event handlers to process an event is carried out by the Central

Agent.

1.8 PIA Ul Control Overview

In the examples described in this document, the PIA UI Control is an
ActiveX control that provides a linkage between the PIA event architecture and
the browser. The PIA UI Control can performs a variety of functions. First, the
PIA UI Control is loaded in an HTML page when the browser is executed. When
this occurs, the Control is responsible for signaling an event to the Central Agent
so the Agent is aware that the boot process has completed. This enables PIA
clients to receive system notifications from the Central Agent when the boot cycle
completes. This process is further described in the POST_BOOT_EVENT
section below. Second, the PIAUI Control directs the browser to navigate to a
specific URL in response to a device event. In this case, the PIA UI Control is an

extension of the NAVIGATE event handler, also described below.

2 PIA Central Agent
In the examples described herein, the Central Agent is a DLL (Dynamic
Link Library) with the following responsibilities: 4

e Act upon events generated from its clients and perform the
requested function via another component;

e Manage the local database of events and devices — this includes
handling updates of objects when a subset of the database is
updated from the server;

e Provide callers with information regarding support for events and
devices;

e Perform clean up of temporary drivers if configured for clean up;

33

WO 02/27504 PCT/US01/29203

10

15

20

25

30

e Maintains a database of registered clients to enable callbacks and
notifications to occur;

e Performs notifications of system events to its registered clients;

o ﬁ:intain registry entries for all devices for which it receives event
requests. These PIA devices may contain additional information
from or for other PIA components.

The Central Agent exists in the context of the familiar (in the Microsoft
Windows CE environment) DEVICE.EXE. Most drivers also run in this context.
(Not all do, however. For example, the 1394 driver stack runs in the
WDMDevice context.) In order to support clients running in different processes,
the system utilizes an IOCTL interface. While most of the Central Agent’s clients
are drivers, this is not a requirement or limitation, and clients can include ActiveX
controls and other applications.

Clients can communicate and register with the Central Agent primarily
through its IOCTL interface. The Central Agent maintains a list of registered
clients, and in order for a client to receive notifications, whether through a
registered callback or by signally a client-owned event object as described above,
the client must register with the Central Agent.

Additionally, the Agent communicates with a special ActiveX control to
provide support into the Browser. This UI Control exists in the Browser context
and also makes requests of the agent through the IOCTL interface. Since the UI
Control carries out browser requests on behalf of the agent, the communication

between these entities is more tightly coupled, as described below.

2.1 Central Agent Initialization

In the examples discussed herein, the Central Agent is loaded by device.exe
eatly in the boot process. However, the Central Agent may not be able to carry
out many of the device events early in the boot process. For example, a request
for software update requires a functioning TCP/IP stack. This requires that most
drivers be loaded. Additionally, requests for browser navigation cannot occur
until the browser is known to be running. To manage the timing of the boot

process, the Central Agent is notified when the browser first runs. This

34

WO 02/27504 PCT/US01/29203

10

15

20

25

30

notification is performed by the PIA UI Control, as described in further detail
below. Once the Central Agent receives the notification, it is able to notify its
registered clients of the event (either through a direct callback or through their
event objects), to allow them to perform any requests they could not carry out
earlier in the boot process. Further details of this event notification are provided
below.

The Central Agent maintains a list of devices (‘PTADevices’) in the system
registry. In particular, an entry for each device defined in the PIA database, for
which the Central Agent receives an event, is ‘maintained in this registry list.
These entries are expected to persist across boots. During its initialization, the
Central Agent enumerates the PIADevices sub-tree and updates each device’s
DeviceFlags entry (described in detail below in the Registry Usage section) to
specify that the device is not currently configured. This is used to help the
Central Agent track the usage of software, to manage the temporary installation of
these packages. When devices are subsequently configured, the Central Agent
then updates the device’s DeviceFlags to indicate that device configuration has
occurred (along with the LastAccessed value).

The Central Agent will also perform cleanup of temporary devices on a
periodic basis (if enabled in the CAFlags registry entry). It will determine
whether support for a device can be removed, and whether the device is not
configured but is installed (these settings are contained in the device’s
DeviceFlags registry entry); and then determine whether the software has expired

due to inactivity. The Central Agent determines whether the software has expired

_by checking the device specific AutoRemove value, or the global AutoRemove

value (Central Agent configuration) and comparing that against the device’s
LastAccessed value, to see whether the period of inactivity has been satisfied. If
all these conditions are true, the Central Agent will remove the software package
and update the DeviceFlags flag to maintain the current state of the
device/software support package. When the device is subsequently plugged in,
the Central Agent will know that the device is not being installed for the first

time, but that the package needs to be re-installed.

35

WO 02/27504 PCT/US01/29203

10

15

20

25

30

In addition to periodic cleanup, the Central Agent can also perform cleanup
on demand. This capability exists to handle the case when a new package
installation is needed, but the storage capacity is not available on the STB. In this
case, if the Central Agent could not free up sufficient capacity through expired
software, it would use an LRU (least recently used) algorithm to determine which
packages have had the longest period of inactivity, and remove those.

The Central Agent must load its XML master database before it can process
any IOCTL requests. This is not done at driver initialization time, since the
necessary system resources may not yet be avéilable. Upon receiving an IOCTL
(or subsequent IOCTLs if necessary), the Central Agent retrieves the location of
the XML master database from the registry. The Agent then reads and parses the
XML to create the object trees. If the Central Agent is successful at parsing the
master XML database, the Agent then enumerates the PIADevices subtree in the
system registry and updates the XML object tree in membry to add or update any
device specific changes. When the Central Agent gets subsequent IOCTL
requests, the Agent checks to see if the Master XML database has been updated
since it loaded it. If so, the Agent deletes the object hierarchy and re-processes

the Master XML database and any device specific updates.

2.2 Central Agent IOCTL interface - Syntax and Examples

As previously noted, the Central Agent provides communication through an
IOCTL interface. In the examples discussed herein, clients that wish to
communicate to the Central Agent call CreateFile for the PIA1: device and
perform the desired IOCTL function. This section describes IOCTL calls that the
Central Agent supports in one practice of the invention. (Other formats can be
utilized, and within the scope of the present invention.) In the present examples,

all calls follow the same format, and are made via the DeviceloControl call made

into the kernel. Additional details of this call format are set forth in the Windows

CE Platform Builder documentation publicly available from Microsoft
Corporation, Redmond, Washington, the teachings of which are incorporated in

their entirety herein by reference. The format of DeviceloControl is:

36

WO 02/27504

10

15

20

25

30

35

40

BOOL DeviceloControl(HANDLE hDevice, DWORD dwloControlCode,
LPVOID lpInBuffer, DWORD nlInBufferSize, LPVOID lpOutBuffer,
DWORD nOutBufferSize, LP DWORD IpBytesReturned,
LPOVERLAPPED, IpOverlapped);

hDevice — handle to the device returned from the CreateFile call.

IpOverlapped - set to NULL

Return Values - All calls return non-zero for success and zero for failure. In the
case of failure, the error code is retrieved with GetLastError. These error codes
are described in the specific IOCTL definitions where applicable.

The definitions for the other parameters for this call will vary based upon the
IOCTL call being made. The following discussion details the PIA-specific device
IOCTLs and the IOCTL-specific parameters.
2.2.1 PIA_IOCTL_REGISTER_EVENT_NOTIFICATION

As noted above, each caller registers its callback address or event object
with the Central Agent. Clients that register for notification include any callers
that generate asynchronous device events to the Central Agent, and/or clients that
are interested in system events. These typically include bus enumerators and

device drivers. The following mechanism are employed:

dwloControlCode - JOCTL function code is
PIA_IOCTL_REGISTER EVENT NOTIFICATION

IpInBuffer — Points to a PIARegistrationRequest packet
PIARegistrationRequest packet

PIA_CALLBACK *pfCallback

HANDLE hNotifyEvent

LPVOID pUserData

pfnCallback — Client callback function to receive event results and system event
notifications — the definition of PIA_CALLBACK is described below in the
discussion of 2.3 PIA Client Notification and System Events. This mechanism is

used for clients running within the device.exe process.

hNotifyEvent — Handle to the client-owned event notification object, if this is
non-NULL, the event object will be signaled instead of executing the callback

37

PCT/US01/29203

WO 02/27504 PCT/US01/29203

10

15

20

25

30

35

handler. This mechanism is used for clients not running in the device.exe process.
However, clients running in the device.exe process may use this method if
desired.

pUserData — Caller’s data that is passed back to the caller in the callback handler
in the PIACallbackPkt packet. This may be used to enable the client to receive a
pointer to its context data.

nInBufferSize — Size of the PIARegistrationRequest packet

1pOutBuffer — If successful, points to an identifier used by the agent to identify
this caller.

nOutBufferSize — sizeof (DWORD)
IpBytesReturned — sizeof (DWORD)

Error Codes
ERROR_INVALID PARAMETER if both pfaCallback and hNotifyEvent are
specified or if neither one is specified.
ERROR_NOT_ENOUGH_MEMORY if memory cannot be allocated to track this
client.
Remarks

The Central Agent tracks this data per client, generating a unique ID that it
uses to refer to this caller. If a callback handler is specified, the callback handler
is invoked when the Agent has a system event to broadcast, or upon completion of
an asynchronous event request from the caller. The callback should be accessible
for the duration of the registration. If the event object is specified, the object is
set to the signaled state when the Agent has a system event to broadcast or upon
completion of an asynchronous event request from the caller. If the client
receives its notification through the event object, the client should then perform

the PIA_IOCTL_GET _EVENT RESULTS IOCTL to obtain the details of the

notification.

2.2.2 PIA_IOCTL_DEREGISTER_EVENT_NOTIFICATION

The caller de-registers its callback mechanism with the central agent.

38

WO 02/27504

10

15

20

25

30

35

40

dwloControlCode - IOCTL function code is
PIA_IOCTL_DEREGISTER_EVENT NOTIFICATION

IpInBuffer — Points to agent generated identifier for this caller

nInBufferSize — sizeof (DWORD)

IpOutBuffer - NULL

nOutBufferSize — 0

IpBytesReturned — NULL

Error Codes ‘

ERROR INVALID PARAMETER if the agent cannot find the identifier for this

caller in its internal list

Remarks
The Central Agent performs a lookup of the caller and removes the caller

from the list of registered clients. Once the de-registration process occuts, the

Central Agent will no longer attempt to contact the caller for any events.

2.2.3 PIA_IOCTL_QUERY_DEVICE_EVENT
This call is used by any client to find out if a specific event is supported

for a given device.

dwloControlCode - IOCTL function code is
PIA _IOCTL_QUERY_DEVICE EVENT

IpInBuffer — Points to the PIAQueryDeviceEvent packet
PIAQueryDeviceEvent packet

TCHAR eventType[32]
TCHAR deviceldentifier[x]

eventType — EVENT TYPE for this device as specified in the device/events

. XML database (e.g. INSTALL, ENUMERATE; a list of standard eventTypes is

set forth below in the 4.2 Standard Event Handlers section).
deviceldentifier — String that uniquely identifies this device to the central agent —
this string is not a fixed size.

nInBufferSize — Size of the PIAQueryDeviceEvent packet and the expanded
deviceldentifier string.

39

PCT/US01/29203

WO 02/27504 PCT/US01/29203

10

15

20

25

30

35

IpOutBuffer - NULL
nOutBufferSize — 0
IpBytesReturned — NULL

Error Codes
ERROR_DEV_NOT._EXIST if device or device/event combination does not exist

Remarks
The Central Agent will check its database to first determine if the device

exists. If the device exists, the specific device sub-tree will be checked for the
existence of the specified event. This call is typically generated from bus
enumerators to determine whether a channel subscription exists on the server to
support this device. In this case, the bus enumerator would query for an
‘INSTALL’ event for the device in question. Some bus enumerators (e.g.
USBSnoop) may call this method several times before finding a driver that

satisfies the new device.

2.2.4 PIA_IOCTL_DEVICE_EVENT
This call informs the Agent that a specific device event has occurred so

the agent can invoke any necessary event processing in response to the event.

dwloControlCode - IOCTL function code is PIA_IOCTL_DEVICE EVENT

IpInBuffer — points to a PIADeviceEvent packet

PIADeviceEvent packet

DWORD dwClientID
TCHAR eventType[32]
TCHAR* deviceldentifier
DWORD dwEventDataLength
LPVOID eventData

dwClientID — Unique identifier used by the Agent to identify this caller. This is
obtained when the client registers a callback handler or event object. The caller

40

WO 02/27504 PCT/US01/29203

10

15

20

25

30

35

may specify 0 if no notification (upon completion of an asynchronous event) is
required.

eventType — String that identifies the event triggered for this device
deviceldentifier — Pointer to the string that uniquely identifies this device to the
central agent

dwEventDataLength — Length of the data pointed to by eventData — 0 if
eventData is NULL

eventData — Event specific data that is passed to the event handler. Detail is
provided below regarding how each event handler determines whether (and how)
eventData is used by the handler.

nInBufferSize — Size of the PIADeviceEvent packet
IpOutBuffer - NULL

nOutBufferSize — 0

IpBytesReturned — Ignored

Error Codes

ERROR _DEV_NOT _EXIST if the specified device (or event type for this device)
does not exist in the database

Remarks

In accordance with the mechanisms noted above, the Central Agent checks
its database to determine whether the specified device exists, and then the
eventType for the specified device. If true, the Central Agent invokes the event
handler that corresponds to this event, passing it the eventData from the
PIADeviceEvent packet as well as any argument data specified for this
device/event in the XML database. Additionally, the Central Agent will look up
the device in the registry and add/update entries for this device as needed, as
discussed in further detail below. Also described below are details regarding the
mapping of eventType to an event handler, and the manner in which the argument
data is specified for a given device or event.

The Central Agent handles event processing in a generic manner, with the
exception of the ‘INSTALL’ and ‘REMOVE’ events. When the Central Agent
receives a request for an ‘INSTALL’ of a device, the Agent awaits successful
completion of the device event handler and reads the registry entries for this

device. If a PIADeviceData value exists in the device specific key, the Central

41

WO 02/27504

10

15

20

25

30

35

Agent will read the XML file specified in PIADeviceData and update the XML
master database. When a ‘REMOVE’ request is made, the Agent retrieves any
device specific XML entries specified in the PIADeviceData file, and removes

them from the master XML database.

2.2.5 PIA_IOCTL_GET_EVENT_RESULTS

This call is made by a client to retrieve the results of an asynchronous
device event request or system event information from the Agent. The client will
perform this call when its registered event notification object has been set to the
signaled state. Clients using the callback method of notification will not need to
perform this call, since this data is passed directly to the callback handler.

dwloControlCode - IOCTL function code is
PIA_IOCTL_GET EVENT RESULTS

IpInBuffer — Points to agent generated identifier for this caller
nInBufferSize — sizeof (DWORD)

IpOutBuffer — Pointer to the buffer that receives the pending event specific
results, see the section on 2.3 PIA Client Notification and System Events for the
packet descriptions.

nOutBufferSize — Size of the IpOutBuffer — the format and size of this buffer
will vary based upon the type of event results received

IpBytesReturned — If the results are placed in the lpOutBuffer this size of the
data is returned here

Error Codes
ERROR_INVALID USER_BUFFER if the output buffer is not large enough to
contain the data, in this case lpBytesReturned specifies the size needed
Remarks

The Central Agent maintains a link list of event results for those clients that
use the notification object as their method of notification. (Clients using the
callback method receive the data directly through their callback handler.) The
Agent checks its list'of registered clients, removes the first entry in the list of

event results for this client and updates the IpOutBuffer with those results.

42

PCT/US01/29203

WO 02/27504 PCT/US01/29203

10

15

20

25

30

35

2.3 PIA Client Notification and System Events

As noted above, the Central Agent must communicate with its clients. For
example, when a client has requested an asynchronous event (determined by the
EVENT CLASS for the event the client is requesting), the client may be notified
with the results, once that request has been completed or failed. The client may
also require notification of certain system events. The Central Agent initiates
communication with its clients for these events, using either of two methods
selected by the client when the client calls
PIA_IOCTL_REGISTER_EVENT_NOTIFICATION. The first method is a
registered callback. Clients that are running under device.exe may choose to
register a callback entry point for notifications. The syntax for the callback

handler is:

void PIACallback (LPPIACallbackPkt IpPIACallbackPkt);
IpPIACallbackPkt — Contains a pointer to the PIACallbackPkt structure
PIACallbackPkt packet — Minimally contains:

LPVOID pUserData
BOOL bSuccess
TCHAR eventType[32]
TCHAR¥* deviceldentifier

pUserData — Contains a pointer to the caller’s context data

bSuccess — Success or failure it this is a response to a request

eventType - Contains the reason for the callback event

deviceldentifier — Pointer to a string that uniquely identifies the device related to
this event, if this is a system event, this will be NULL.

The PIACallbackPkt structure may contain additional members (but will
at least contain the above base packet structure) based upon the type of callback

~ being performed. If additional members are required, they will immediately

follow the base packet structure in memory. This is described in the specific

system event definition or event handler definition (since the return data would be

43

WO 02/27504 PCT/US01/29203

10

15

20

25

30

specific to the event handler that was invoked) in the case of asynchronous
IOCTL events.

As noted above, the second method used by the Central Agent to notify its
clients is to signal a client-owned event object. The client creates this object and
registers it with the Central Agent. When the client is signaled, the client should
respond by calling the IOCTL PIA_IOCTL_GET_EVENT_RESULTS. This
approach is used primarily by clients running in a different process space, since a
direct callback is not possible.

With either type of notification, it is ub to the client to determine the type
of notification (from the eventType) that is occurring and carry out any needed
processing or ignore the notification. A number of system event notifications can

be utilized, of which the following is an example:

2.3.1 POST_BOOT_EVENT

The Central Agent broadcasts this system event to registered clients once
the OS (operating system) has booted and the browser initially invoked. This is
useful to clients that are waiting to generate an event request that requires the boot
cycle to complete, or the browser to be running. For example, bus enumerators
that have detected devices at boot time (that do not have supporting drivers
present), may need to monitor for this event (since the full TCP/IP stack may not
be running at the bus enumerator’s init time). This would allow the OS to
complete its boot, and then enable the bus enumerator to try once again to contact

the agent and configure the device.
PIA CallbackPkt specifics -
eventType - PIA POST_BOOT_EVENT
3 XML Master Database
In the examples described in this document, the XML Master Database is
used to define the devices and events supported by the PIA architecture. These

devices and events are defined in the PIADevice.xml file. The XML describes

the hierarchy of the objects and provides an extensible framework by adding new

44

WO 02/27504 PCT/US01/29203

10

15

20

25

30

objects to the XML, including event handlets to carry out the specific event
functionality. The Central Agent is the sole consumer of the XML Master
Database. The Central Agent reads and parses the database to generate the device
and event object trees to which it refers when processing device events generated
by its clients. Using these objects, it generates a mapping between a specific
device/event object and an event object, to invoke the appropriate event handler in
response to a client’s device event generation.

The event object tree is intended to be general, in that it only specifies what

‘events a handler will support, without specifying any context data required by the

handler. The device/event object tree is intended to represent a specific
instantiation of an event handler, including the context data appropriate for that
device/event combination.

Although XML is widely used and understood, a brief discussion of XML
data representation will be useful to facilitate proper structuring of the database
with the information specific to a given platform and set of devices. In particular,
XML consists of two types of information, markup and character data. The
markup describes the structure of the data. The character data is the actual data
contained in the markup structure. Elements, which are used to define the
structure, are specified with opening and closing angle brackets and have start and
end tags similar to HTML. For example: <EVENT> is the start of an EVENT
element and </EVENT> specifies the end of the EVENT element. Character data
can be contained within that element. Elements can also contain other elements
and their character data. The term "object" is used to encapsulate an element and
any elements that it contains (for example: the <EVENT> object contains several
<EVENT PROC> objects). Using this approach, a hierarchy of objects is easily

created to represent the devices, events and responses used by the PIA

. architecture described and illustrated in this document. Thus, the following is a

sample of the PIADevice.xml.

<PIA_DEVICE_DATABASE>

<EVENT>
<EVENT PROC>

45

WO 02/27504

10

15

20

25

30

PCT/US01/29203

<EVENT CLASS>NAVIGATE</EVENT_CLASS>
<CLSID>XXX-XX-XXX-XXX</CLSID>
</EVENT_PROC >

<EVENT _PROC>
<EVENT CLASS>EXECUTE</EVENT_CLASS>
<CLSID>XXX-XX-XXX-XXX</CLSID>
</EVENT_PROC >

<EVENT _PROC>
<EVENT_CLASS
ASYNC="true”>EXECUTE_WAIT</EVENT_CLASS>
<CLSID>XXX-XX-XXX-XXX</CLSID>
</EVENT PROC >

<EVENT PROC>
ZEVENT_CLASS ASYNC="true”>UPDATES</EVENT_CLASS>
<CLSID>XXX-XX-XXX-XXX</CLSID>

</EVENT PROC >

<EVENT_PROC>
<EVENT CLASS>LOGGING</EVENT_CLASS>
<CLSID>XXX-XX-XXX-XXX</CLSID>
</EVENT_PROC >

<EVENT _PROC>
<EVENT CLASS>SERVER</EVENT_CLASS>
<CLSID>XXX-XX-XXX-XXX</CLSID>
</EVENT PROC >

</ EVENT >

<DEVICE>

35

40

45

30

35

<DEVICE INFO>
<ID>USB\1114 20481 256</ID>
<PIA_EVENT>
<EVENT_TYPE>INSTALL</EVENT TYPE>
<EVENT CLASS>UPDATES</EVENT_CLASS>
<EVENT DATA>
<ARG1> RIO 600 MP3</ARG1>
</EVENT DATA>
</ PIA_EVENT>
<PIA_EVENT> .
<EVENT_TYPE>REMOVE</EVENT_TYPE>
<EVENT_CLASS>UPDATES</EVENT CLASS>
<EVENT_DATA>
<ARG1> RIO 600 MP3</ARG1>
</EVENT DATA>
</ PIA_EVENT>
<PIA_EVENT>
<EVENT _TYPE>ENUMERATE</EVENT_TYPE>
<EVENT _CLASS>NAVIGATE</EVENT CLASS>
<EVENT DATA>
<ARG1>http://TV Test0//interact//getuser.asp?device
ID=</ARGI1>
<ARG1
SUBSTITUTE="true”>DEVICEID</ARG1>

46

WO 02/27504

10

15

20

25

30

35

40

45

50

55

PCT/US01/29203

<ARG1>&SiliconNum=<ARG1>
<ARG1
SUBSTITUTE="true”>SILICONID</ARG1>
</EVENT DATA>
</PIA_EVENT>
</DEVICE INFO>

<DEVICE_INFO>
<ID>printer device ID string</ID>
<PIA_EVENT>
<EVENT TYPE>INSTALL</EVENT TYPE>
<EVENT CLASS>UPDATES</EVENT_CLASS>
<EVENT DATA>
<ARG1> HP LaserJet </ARG1>
</EVENT_DATA>
</ PIA_EVENT>
<PIA_EVENT>
<EVENT TYPE>REMOVE</EVENT TYPE>
<EVENT CLASS>UPDATES</EVENT_CLASS>
<EVENT _DATA>
<ARG1> HP LaserJet </ARG1>
</EVENT DATA>
</PIA_EVENT>
<PIA EVENT>
<EVENT TYPE>ENUMERATE</EVENT_TYPE>
<EVENT CLASS>NAVIGATE</EVENT CLASS>
<EVENT DATA>
<ARG1>http://TV Test0//printeract//inksupply.htmi</
ARGI>
</EVENT _DATA>
</PIA_EVENT >
<PIA_EVENT>)
<BEVENT_TYPE>DIAGNOSTIC</EVENT_TYPE>
<EVENT_CLASS>EXECUTE</EVENT_CLASS>
<EVENT DATA>
<ARG1>file://System//HPDiag.exe</ARG1>
<ARG2>/v /s </ARG2>
</EVENT DATA>
</PIA_EVENT >
</ DEVICE_ INFO >
<DEVICE_INFO>
<ID>USB\PRINTERS</ID>
<PIA_EVENT>
<EVENT_TYPE>NO_SUPPORT</EVENT TYPE>
<EVENT CLASS>NAVIGATE</EVENT CLASS>
<EVENT_DATA>
<ARG1>file://content//printers html</ARG1>
</EVENT DATA>
</PIA_EVENT>
</ DEVICE _INFO>
<DEVICE_INFO>
<ID>GENERIC_UPDATE</ID>
<PIA_EVENT>
<EVENT _TYPE>INSTALL</EVENT_TYPE>
<EVENT _CLASS>UPDATES</EVENT CLASS>
<EVENT DATA>

47

WO 02/27504 PCT/US01/29203
<ARG1></ARG1>
</EVENT DATA>
</ PIA_EVENT>
</DEVICE INFO>
5
</DEVICE>

10

15

20

25

30

35

</PIA_DEVICE_DATABASE>

The above sample illustrates 6 classes of event handlers and 4 devices
referencing a total of 3 different classes of event handlers. Given this
background, the following discussion focuses on the descriptions of the individual
objects and elements within the XML database, and how they relate to the object
hierarchy. Reference should be made to the above sample while reviewing the

following object descriptions.

3.1 EVENT
The EVENT sub-tree defines the possible events supported by PIA and the
external event components that carry out the event handling. A single EVENT

element is required to encapsulate all the events within it.

3.1.1 EVENT_PROC

The EVENT PROC element is used to define a single class of event. At
least one EVENT PROC element is required in the EVENT element.

A single EVENT CLASS is required in an EVENT_PROC whose data is
used as an identifier for this event. The EVENT CLASS element niay also
contain the ASYNC attribute. The attribute is optional, with only the values ‘true’
and ‘false’ accepted. By default, ‘false’ is assumed, so one need only specify the
attribute if setting it to ‘true”. In the examples described in this document, setting
ASYNC to ‘true’ causes the Central Agent to spawn a separate thread to execute
the handler, since the operation is a lengthy one.

A single CLSID element is required in an EVENT PROC whose data
identifies the actual COM component that carries out the event handling. The
Central Agent uses the CLSID to invoke the COM object. This object must
implement the IPIADevEvent interface. Further detail is provided in the PIA

Device Event Handlers section of this description.

48

WO 02/27504 PCT/US01/29203

10

15

20

25

30

3.2 DEVICE
The DEVICE sub-tree defines the possible devices supported by PIA and
the events supported for each device. A single DEVICE element is required to

encapsulate all the devices (and their events) within it.

3.2.1 DEVICE_INFO

The DEVICE _INFO element is used to define a single device. At least
one DEVICE_INFO element is required in the DEVICE element.

A single ID element is required in a DEVICE_INFO whose data is used as
a unique identifier for this device. In some instances, this might be a "plug n
play" device ID. In the case of USB, this is defined as ‘USB\’ followed by the
data used to locate the driver in the registry (trailing ‘Default’s are unnecessary).
Additional detail regarding USB device IDs is set forth in the previously-
referenced Microsoft Windows CE documentation section regarding USB registry
usage and the LoadClients sub-tree.) This ID is passed (by the client) into the
deviceIndentifier member of the IOCTL packet for those IOCTLs that are device
specific.

At least one PIA_ EVENT element is required in a DEVICE_INFO -
element and encapsulates a single event (and associated data) supported for this
device.

A single EVENT TYPE is required in a PIA_EVENT whose data is the
name of this event. This EVENT TYPE string is passed into the eventType
member of the IOCTL packet for the PIA_IOCTL_DEVICE_EVENT and
PIA IOCTL_QUERY_DEVICE_EVENT IOCTLs.

A single EVENT CLASS is required in a PIA_ EVENT whose data
creates a mapping between this event and an event handler specified in the
EVENT sub-tree (also specified as EVENT_CLASS).

An optional EVENT DATA element may exist in a PIA_EVENT to
encapsulate the data associated with the device event. The EVENT_DATA
allows for the definition of static and dynamic data that is passed to the event

49

WO 02/27504 PCT/US01/29203

10

15

20

25

30

handlers. There is no maximum to the number of data arguments that the Central
Agent will pass to the event handlers. However, each handler specifies the
number of arguments that it uses.

At least one ARGx element is required in an EVENT_DATA element to
contain the data passed to the event handler. These arguments are specified as
ARG, starting with ARG1 as the first argument, up to ARGn, where ‘n’ is the
total arguments supported by a given event handler. Also, it may be necessary to
break any argument into sub strings, to specify inline parameter substitution. This
is specified in an argument by adding the SUBSTITUTE attribute. The attribute
is optional, with only the values ‘true’ and ‘false’ accepted. By default, ‘false’ is
assumed, so one need only specify the attribute if setting it to 'true'. Setting
SUBSTITUTE to 'true' informs the Agent to perform parameter substitution on
the data at the point where SUBSTITUTE is specified.

As noted above, devices specified in the XML can be either general, or very
specific. The preceding example illustrates a general device case. The
DEVICE_INFO ID that is specified as USB\Printers specifies a generic printer
class. In addition, however, the PIA_EVENT specified as NO_SUPPORT
illustrates how a USB bus enumerator could generate an event when a new printer
is encountered that cannot be supported at all. In this example, a navigation
occurs to a web page that specifies he brand of printers supported on the STB.
This is a significant advantage of the invention, in that the PIA system can

provide support for previously un-encountered peripheral devices/events.

3.3 Parameter Substitution
The Central Agent will perform parameter substitution on the argument data
(ARGx) within the DEVICE database if specified through the SUBSTITUTE

attribute. The Central Agent checks the content data within the ARGX to verify

whether it is a parameter for which it can substitute appropriate data. If the
parameter is a supported one, the Agent will perform the substitution at the time

of generating the call to the event handler, and substitute the run time data in its

50

WO 02/27504 PCT/US01/29203

10

15

20

25

30

place within the arguments, as described below in connection with
PIAProcessEvent.

The XML example set forth above contains one case in which ARGl is
specified multiple times for this purpose. When this occurs, the ARG1 content is
concatenated together in the order that it appears in the XML tree, to form the
complete ARG1 data string passed to the event handler. During this process,
when the SUBSTITUTE attribute is encountered, the parameter to be substituted
(DEVICEID and SILICONID in this example) is replaced in line with the run
time data associated with this parameter. |

By way of example, SILICONID is the unique machine identifier retrieved
from GetUniqueMachineID. There are many uses for passing the siliconID in a
URL. This ID can be used by the server to manage conditional access, or interact

with a back end billing agent for a specific STB.

4 PIA Device Event Handlers
In the examples described herein, the device event handlers are instantiated
by the Central Agent when a client generates a specific device event. The device

event handlers have the following responsibilities:

e Follow a specific format that all event handler modules must
support to accomplish the goal of extensible handlers; and
e Carry out the event processing needed to satisfy the request.
Device Event handlers are in proc COM objects, each developed to
accomplish a specific device event action. The handlers are instantiated through
the CLSID specified in the XML database. These objects are not intended to be
scriptable; thus permitting them to be compact and efficient. Each handler
supports the IPTADevEvent interface to provide a generic interface to all handlers.
An event handler whose event processing can be lengthy should specify the
ASYNC attribute in its EVENT CLASS in the EVENT database. The event
handler does not need to spawn a separate thread to perform lengthy operations,

but can perform its functions synchronously. It is the responsibility of the Central

51

WO 02/27504

10

15

20

25

30

35

Agent to spawn a separate thread for asynchronous operations and handle the
notification issues upon completion.

The following discussion illustrates the interface used by the Central Agent
to communicate with the device event handlers, and provides further examples of

device handlers and their representations in the database.

4.1 IPIADevEvent
The Central Agent uses this interface to communicate with the event

handlers. This interface contains the methods next described.

4.1.1 PlAlnitEventHandler

The event handler performs any of its internal initialization at this time.

HRESULT PIAInitEventHandler();

Return Values
This method returns S_OK for success and S_FALSE on failure.

Remarks
When the Central Agent instantiates the event handler, this method will be called
to allow the handler to perform any needed operations prior to the specific event

request.

4.1.2 PIAProcessEvent
This method is called by the Central Agent to carry out event processing
(in response to a client calling the PIA_IOCTL_DEVICE_EVENT IOCTL).

HRESULT PIAProcessEvent([in] LPVOID * argDataPacket, [in] LPVOID

- eventData, [in] DWORD eventDataSize, [in] TCHAR * eventClass, [in]

TCHAR * eventType, [in] TCHAR * deviceldentifier, [in, out] LPVOID *
outputBuff);

argDataPacket — Pointer to a packet that specifies the argument data. The

argument data is retrieved from the XML database for the device/event. This
parameter may be NULL if no arguments are specified in the XML. Since
argument usage varies per event handler, this packet is further defined in each of
the event handlers. The structure of the packet is:

52

PCT/US01/29203

WO 02/27504

10

15

20

25

30

35

40

argDataPacket

DWORD argCount
TCHAR * argPointerl

TCHAR * argPointerN

argCount — Count of argument pointers that follow in this packet.

argPointer] — This is the first in an array of argument pointers. Each argument
pointer points to a string of data specified in the XML file. If the event handler
specifies an optional argument that is not meaningful to a specific device/event
combination, the placeholder for the argument should remain in the packet and be
set to NULL (and the argument should exist in the XML as an empty element).
For example, if 4 arguments are specified for a handler, but argument 3 is not
used in a specific case, the 4 arguments should exist in the packet with the third
argument equal to NULL, and argCount will equal 4.

eventData — Pointer to data that accompanies the device event IOCTL (this data
is passed in the eventData member of the PIADeviceEvent packet). Since
eventData usage varies per event handler, this is further defined in each of the
event handlers.

eventDataSize — Size of eventData or 0 if eventData not supported

eventClass — Pointer to the eventClass of this eventType as defined in the
database. This allows a single event handler to handle multiple events through the
same interface. :

eventType — Pointer to the eventType that accompanies the device event [IOCTL
(this data is passed in the eventType member of the PIADeviceEvent packet).

deviceldentifier — Pointer to the deviceldentifier that accompanies the device
event IOCTL (this data is passed in the deviceldentifier member of the
PIADeviceEvent packet).

Return Values
This method returns S_OK for success and S_FALSE on failure.
Remarks

If this a lengthy request (as determined by the ASYNC attribute set to ‘true’
in the EVENT CLASS defined in the XML file for this device event handler), the
Central Agent will spawn a separate thread to handle this request. The event
handler will not return from this call until the request has been carried out or
failed.

53

PCT/US01/29203

WO 02/27504 PCT/US01/29203

10

15

20

25

30

4.2 Standard Event Handlers

In the embodiments described in this document, the PIA system contains
frequently-used event handlers that implement device event functionality, each
defined as an EVENT PROC in the EVENT database. These built-in handlers
are implemented as COM objects and support the IPTADevEvent interface. Since
the list of event handlers is extensible, custom event handlers may also be
developed and added to the database for inclusion in an OEM’s implementation of
the PIA system. ‘

When the Central Agent receives a device event from a client (through the
PIA_IOCTL_DEVICE_EVENT), the Central Agent confirms that the
device/event combination exists in the DEVICE database and then maps the
specified event to an event handler in the EVENT database. The Central Agent
then retrieves the event data from the device/event in the database and invokes the
appropriate event handler with the specified data. The following are examples of

event handlers:

4.2.1 UPDATES

This event handler is specified in the EVENT database as the UPDATES
EVENT _CLASS. This EVENT_CLASS should have the ASYNC attribute set to
‘true’. This event class supports two EVENT_TYPEs in the device database, the
INSTALL and REMOVE event types. A PIA client calls the
PIA_IOCTL DEVICE_EVENT with the eventType (in the PIADeviceEvent
packet) set to INSTALL or REMOVE to perform a software update.

This event handler communicates with the Client Configuration Agent
(CCA) on the STB to request (INSTALL) or remove (REMOVE) a subscription
for the specified device. CCA in turn will contact CCS to request/remove the

subscription support for this device. If the request is for an INSTALL, CCA will

receive an archive from CCS and then perform the installation of packages
received. In the case of removal, CCA will receive the approval to remove the

subscription and perform the removal process of the associated packages.

54

WO 02/27504 PCT/US01/29203

10

15

20

25

30

35

The PIAProcessEvent method arguments have the following definition for
this call:

argDataPacket contains —

argCount -1

argPointer] - Pointer to ARG1 data in the device/event database — this data is the
channel alias used to pass to CCA. The channel alias is the subscription for the
device being added or removed.

eventData — Used only if the caller specifies the channel alias directly, otherwise
this should be NULL '

eventDataSize — Size of the eventData string if specified or 0 if not.
eventClass — UPDATES

eventType — INSTALL or REMOVE

deviceldentifier — ignored

Return Values
This method returns S_OK for successful installation or removal of the specified
channel or S_FALSE on failure. GetLastError can be called on failure to retrieve
the CCA failure code.
4.2.2 NAVIGATE

The NAVIGATE event handler is not implemented as a separate handler,
but is described here as an example of the functionality and definition of the
argument data. This event handler is specified in the EVENT database as the
NAVIGATE EVENT CLASS. This event class does not alter its processing
based upon the eventType. In this case, the EVENT_TYPE in the device/event
database is used to distinguish between different URLs to navigate to for different

circumstances. This event handler will communicate with the UI Control to

 request browser navigation to the specified URL. The UI Control will be signaled

through its event notification object. Execution will then return back to the
Central Agent (and its client). The PIAProcessEvent method arguments have the
following definition for this call:

55

WO 02/27504

10

15

20

25

30

35

40

argDataPacket contains —

argCount - 1
argPointer] - Pointer to ARG1 data in the device/event database — this data
contains the full URL that the browser will navigate to.

eventData — Ignored

eventDataSize — Ignored

eventClass - NAVIGATE

eventType — eventType as described above
deviceldentifier — Ignored

Return Values
This method returns S_OK if the UI Control is signaled S_FALSE if not.
4.2.3 EXECUTE

This event handler will run a program on behalf of the caller. This event
handler is specified in the EVENT database as the EXECUTE EVENT_CLASS.
This event class does not alter its processing based upon the eventType. In this
case, the EVENT TYPE in the device/event database is used to distinguish
between different programs to execute based up the circumstances. The

PIAProcessEvent method arguments are defined as follows for this call:

argDataPacket contains —

argCount -2

argPointer] - Pointer to ARG1 data in the device/event database; this data
specifies the program to execute. This may be either a fully qualified
path/program name or simply the program name that is used to invoke
CreateProcess.

argPointer2- Pointer to ARG2 data in the device/event database; this data is the
command line arguments passed to CreateProcess.

eventData — If specified, this is an override to the command line arguments
passed to CreateProcess. If this is non-NULL, this will be substituted for
arg2Pointer data.

eventDataSize — Size of the eventData string if specified or 0 if not.

56

PCT/US01/29203

WO 02/27504 PCT/US01/29203

10

15

20

25

30

35

40

eventClass — EXECUTE
eventType — eventType as described above
deviceldentifier — ignored

Return Values :
This method returns S_OK if the CreateProcess succeeded S_FALSE if not.

4.2.4 EXECUTE_WAIT

This event handler will run a program on behalf of the caller. This event
handler is specified in the EVENT database as the EXECUTE_WAIT
EVENT CLASS. This event class does not alter its processing based upon the
eventType. In this case, the EVENT_TYPE in the device/event database is used
to distinguish between different programs to execute based up the circumstances.

This EVENT CLASS should have the ASYNC attribute set to ‘true’. The
event handler monitors the application until it terminates.

The PIAProcessEvent method arguments have the following definition for
this call:

argDataPacket contains —

argCount - 2

argPointer1 - Pointer to ARG data in the device/event database; this data
specifies the program to execute. This may be either a fully qualified
path/program name or simply the program name that is used to invoke
CreateProcess.

argPointer2- Pointer to ARG2 data in the device/event database; this data is the
command line arguments passed to CreateProcess.

eventData — If specified, this is an override to the command line arguments
passed to CreateProcess. If this is non-NULL, this will be substituted for
arg2Pointer data.

eventDataSize — Size of the eventData string if specified or 0 if not.

eventClass — EXECUTE _WAIT

eventType — eventType as described above

57

WO 02/27504 PCT/US01/29203

10

15

20

25

30

35

deviceldentifier — ignored

Return Values
This method returns S_OK if CreateProcess was successful S_FALSE on failure.

5 PIA Bus Enumerators

In the examples described in this document, the bus enumerators have the

following responsibilities:

e To determine if the appropriate software is installed on the client to
support a given device; '

e To generate an ‘INSTALL’ device event to request software to
support a new device;

e To generate a ‘REMOVE’ device event when devices are removed
to potentially support temporary device installations; and

e To notify the Central Agent of any other events that are specific to
this bus.

Bus enumerators communicate with the Central Agent via an IOCTL
interface. Further detail is provided above in the Central Agent IOCTL Interface
section. Bus enumerators typically generate calls to the Central Agent to request
software updates. Additionally, bus enumerators may be tasked to monitor
system events. In either case, the bus enumerator will need to register a callback
mechanism to be notified of these system events or when a software update has
completed. In order to do this, the bus enumerator should perform a
PIA_IOCTL_REGISTER _EVENT NOTIFICATION call to register its callback
mechanism. It will receive its notifications through the mechanism it registers,
either the direct callback or the event object.

When a bus enumerator detects a new device, it will determine if the
device has software already resident on the client to support the device. If the

software does not exist to support the device, the bus enumerator will invoke the

' PIA_IOCTL_QUERY_DEVICE_EVENT IOCTL to determine if software is

available to handle this device. Some bus enumerators (e.g. USBSnoop) may
have several classes of devices (and device names) that describe a given device.
In this case, multiple calls may be necessary to determine device support. Once

the bus enumerator determines device support, the enumerator calls the

58.

WO 02/27504 PCT/US01/29203

10

15

20

25

30

PIA_IOCTL_DEVICE_EVENT IOCTL with the eventType set to ‘INSTALL’ to
request the software update. The bus enumerator will wait until it receives
notification back through its notification mechanism on the update before
proceeding with the load of the driver or failing the device enumeration.

When a bus enumerator detects the removal of a device, the enumerator
calls the PIA_IOCTL_DEVICE_EVENT IOCTL with the eventType set to
‘REMOVE’ to potentially remove the software. This will occur only if the
Central Agent determines that it is a temporary device that should result in the
immediate removal of its supporting software; The bus enumerator simply makes
the call to enable a removal and doesn’t need to perform any further processing.

Bus enumerators may also be tasked to monitor for the
POST BOOT_EVENT system event. This is important if a bus enumerator
detects a new device at boot time and it needs to request a software install to
support the device. As noted above, the TCP/IP stack is not fully functional until
late in the boot process. If the bus enumerator executes earlier in the process (as
is the case with USB) and detects the device, it will fail at requesting a software
update at that time. In this case, if it monitors for the POST_BOOT_EVENT
(through the registered callback mechanism), it can re-try the INSTALL request
when the boot process completes.

Bus enumerators have very little PIA requirements placed on them other
than the basic communication method described above. Full bus enumerators are
implemented in a manner that is consistent with the driver architecture with which
they are associated. The mechanism to load them and determine device support
(through already installed software) is specific to each bus enumerator and is well
within the skill of implementers.

The names used for deviceldentifiers must be coordinated with the

. database contents that the Central Agent uses to check for software support. This

will be in the form of the XML data file that exists on the client (that can be
updated by the server as new software if added) but is coordinated with the server
content so a mapping occurs between these deviceldentifiers and their associated

software. In reviewing the XML database, the deviceldentifiers that are passed in

59

WO 02/27504 PCT/US01/29203

the IOCTL calls to the Central Agent, should map directly to the ID element
within a specific DEVICE_INFO element in the DEVICE database.

6 PIA Device Drivers

5 The device drivers have the following responsibilities:

¢ To notify the Central Agent when a device has been successfully
enumerated; and
e To notify the Central Agent of any other events that are specific to
10 this device. :
Device drivers communicate with the Central Agent via an IOCTL
interface, as described in the Central Agent IOCTL Interface section. Once a
device has been successfully enumerated (configured by the driver) the device
15 driver will call PIA_IOCTL_DEVICE_EVENT (generally with an eventType of
“ENUMERATE”) to notify the agent that a new device is present in the system.
A device driver may need to generate other events specific to the device it
supports. The is especially useful if the device may require user interaction while
its running. "Printer Low Ink" or "Out of Paper" are common examples, which
20 require the user to be alerted to the problem. Another application is to alert the
user to perform some maintenance on a device, which in the PIA system, could
result in the user being instructed on how to perform the maintenance. In each
instance, the device driver needs to generate the specific event to the Central
Agent; and the XML database must contain the DEVICE_INFO to specify this
25 device, along with the PIA_EVENTS (and associated elements) that the device
driver will be generating. If the processing required to handle the event is
available through a standard event handler, only the device-specific data need be
specified to carry out the functionality. In some cases, a device may require some
special processing in response to a device event (e.g. run this diagnostic). In this
30 case, a device specific event handler should be developed, added to the EVENT
database and referenced in the device specific DEVICE_INFO elements.
If a device driver is tasked with monitoring system events, or will be

generating asynchronous events and wants to be notified of the results, it must

60

WO 02/27504

10

15

20

25

30

register a callback mechanism. To do this, the device driver should perform a
PIA_IOCTL REGISTER _EVENT NOTIFICATION call to register its callback
mechanism.

Device drivers have very little PIA requirements placed on them other
than the basic communication method described above. Device drivers are
implemented in a manner that is consistent within the driver architecture that they

are associated with.

7 PIA Ul Control

In the examples described in this document, the UI Control is an ActiveX
control instantiated through HTML and the Browser. This occurs in an HTML
page called PIALoad.html. TVFullScreenBoot.html creates a layer called
“PIA_layer” and opens PIALoad.html in it. This page need not have any UI
components, but simply is responsible for instantiating the UI Control and
fielding the events fired from the control. The UI Control has the following

responsibilities:

¢ Notify the Central Agent upon initialization;
Notify the Browser to navigate to a new URL;
e Notify the Central Agent when a new channel subscription is

desired from PIA;

e Notify the Browser when the update process has completed or
failed; and

e Manage the Ul navigation requests as changes occur.

The UI Control provides a dispinterface to allow it to be controlled from
Javascript. The UI Control is instantiated through the PIAUIControl object and
the IPIAUIControl interface is used by Javascript to communicate with it. The
IPIAUIControlEvents event interface is used by the UI Control to communicate
events into the Browser. The PIAUIControl object is a Singleton object, and thus
multiple pages instantiating this object will result in a single object accessible by

all who reference it.

61

PCT/US01/29203

WO 02/27504 PCT/US01/29203

10

15

20

25

30

35

7.1 IPIAUIControl Interface

The PIA UI Control has the ability to request the addition or removal of
subscriptions from the Central Agent just as a driver wduld. Also, the PIA Ul
Control has the ability to override the navigation requests that are generated due
to device events. The IPTAUIControl interface is called by Javascript carry out
these functions. The IPIAUIControl interface contains the following methods:

7.1.1 PlAlnit
This method enables the UI Control to perform its initialization.

HRESULT PIAInit();

Return Values
This method returns S_OK for success and S_FALSE on failure.

Remarks

This call is performed once upon initialization of the Browser. The

PIALoad.html page performs this call.

7.1.2 PIARequestSubscription

This method is called to request a subscription to a channel from an
HTML page.
HRESULT PIARequestSubscription([in] BSTR channelAlias);

channelAlias — String that identifies the channel that is associated with the
request.

Return Values
This method returns S_OK for success and S_FALSE on failure.

~ Remarks

The UI Control will communicate this request to the Central Agent (by calling the
PIA_IOCTL_DEVICE_EVENT for eventType INSTALL). It is expected that the
channelAlias is known since the HTML page is probably delivered from the

62

WO 02/27504 PCT/US01/29203

10

15

20

25

30

35

server. This method will return immediately and the results posted to the

appropriate IPIAUIControlEvents handler.

7.1.3 PIARemoveSubscription

This method is called to request the removal of a channel subscription

from an HTML page.

HRESULT PIARemoveSubscription([in] BSTR channelAlias);

channelAlias — String that identifies the channel that is associated with the
request.

Return Values

This method returns S_OK for success and S_FALSE on failure.

Remarks

The UI Control will communicate this request to the Central Agent (by calling the
PIA_IOCTL DEVICE EVENT for eventType REMOVE). It is expected that the
channelAlias is known since the HTML page is probably delivered from the
server. This method will return immediately and the results posted to the
appropriate IPIAUIControlEvents handler.

7.1.4 PIAUpdateURL
This method is called to change the normal navigation behavior for a

given device from an HTML page.

HRESULT PIAUpdateURL([in] BSTR eventType, [in] BSTR deviceID, [in]
BSTR urlData, [in] BOOL enableNavigation);

eventType — String that identifies the eventType to change the navigation
behavior of. If the eventType = “GLOBAL?”, all events will navigate to this URL

if enableNavigation is true. If the eventType = “GLOBAL”, and

enableNavigation is false, all navigation for this device will be disabled.
deviceID — Device ID used to uniquely identify this device in the registry under
the PIADevices sub-tree

urlData — New URL to navigate to when this event occurs

enableNavigation — True enables navigation to this URL for this event, false
disables navigation for this event for any URL.

63

WO 02/27504

10

15

20

25

30

35

Return Values

This method returns S_OK for success and S_FALSE on failure.

Remarks

The UI Control will add or update the registry entries in the PIADevices sub-tree
for this device. Additional detail regarding registry entries affected by this call is
set forth in the PIA UI Control section.

7.2 IPIAUIControlEvents Interface '
The UI Control communicates to Javascript through these events. This

interface contains the following methods that are implemented in the Javascript:

7.2.1 OnNavigate
This event instructs the browser to navigate to a URL.

HRESULT OnNavigate([in] BSTR newURL);
newURL — new URL to navigate to when this event occurs

Return Values

This method returns S_OK for success and S_FALSE on failure.

Remarks

This event is fired whenever the UI Control has received a request from the
Central Agent to navigate to a specific URL. The UI Control looks up the device
in the PIADevices sub-tree in the registry to determine whether navigation is
enabled for this device/event and also to determine if the URL has changed from
the instructions in the master database. The UI Control will only fire this event if
it has determined that navigation is enabled for this device/event (or not

overridden).

- 7.2.2 OnSubscribeOK

This event informs the browser that its request to subscribe to a new

channel has completed successfully.

HBRESULT OnSubscribeOK(Jin] BSTR channelAlias);

64

PCT/US01/29203

WO 02/27504

10

15

20

25

30

35

channelAlias — String that identifies the channel that is associated with the
request.

Return Values
This method returns S_OK for success and S_FALSE on failure.

Remarks
This event is fired when a channel subscription has been completed successfully

and the software is installed.

7.2.3 OnSubscribeFail
This event informs the browser that its request to subscribe to a new

channel has failed.

HRESULT OnSubscribeFail([in] BSTR channelAlias);

channelAlias — String that identifies the channel that is associated with the
request.

Return Values
This method returns S_OK for success and S_FALSE on failure.

Remarks
This event is fired when a request to subscribe to a channel has failed. The

Javascript may then choose to subscribe to a different channel.

8 PIA Agent and Control Communication

In the illustrated examples, the communication between the Central Agent
and the UI Control makes use of synchronization objects. Events are used to
signal communication between the two components. Additionally, the UI Control
may call the IOCTL interface in the Central Agent.

8.1 Event Object Communication

The following named events are defined:

65

PCT/US01/29203

WO 02/27504 PCT/US01/29203

10

15

20

25

30

8.1.1 “PIA Ul Connect”
Created by the Central Agent; this event notifies the Agent that the control

is running.

8.1.2 “PIA Ul Event”
Created by the UI Control; this event notifies the Control when data is

available.

8.2 Initialization

Upon Initialization, the Central Agent creates the “PIA UI Connect” event
in the non-signaled state. When the UI Control initializes, it creates the “PIA Ul
Event” event in the non-signaled state. After creating this event, the Ul control
then signals the “PIA UI Connect” event notifying the Central Agent of its
existence. This is primarily used to inform the Agent that the boot process has
completed. Once the UI Control has signaled the Central Agent, the Agent is
ready to receive subscription requests from the Control and the Control is ready to

receive navigation directions from the Agent.

8.3 Navigation Request

When a navigation event request occurs (i.e., when a client calls the
PIA JOCTL_DEVICE_EVENT IOCTL for an eventType that has a
NAVIGATION EVENT CLASS defined in the XML file), the PIACallbackPkt is
constructed by the Central Agent with data to pass the information to the UI
Control regarding the navigation request. The “PIA UI Event” event is signaled
by the Central Agent. The UI Control then follows up by calling the
PIA IOCTL_GET _EVENT RESULTS to retrieve the information regarding the
event. These packets are queued in the agent until they are retrieved by the Ul

- Control. The format of the PIACallbackPkt is expanded to include:

TCHAR url

url — The URL to specify to the browser for navigation

66

WO 02/27504 PCT/US01/29203

10

15

20

25

30

35

The UI Control reads the registry entry for the device, and, based upon the
eventType, determines whether the navigation URL is overtidden by a URL of
this type in the registry. The UI Control then orders the Browser to navigate to
the specified or overridden URL.

8.4 Subscription Request

The UI Control can register an event mechanism as any other client would.
When the UI Control receives a request from the Browser to
subscribe/unsubscribe to a channel, the UI Control calls the
PIA_IOCTL_DEVICE_EVENT IOCTL setting the eventType to INSTALL or
REMOVE. It sets the deviceldentifier to GENERIC_UPDATE and passes the
channel alias data in the eventData parameter. When the update is complete, the
Central Agent signals the registered event object to notify the UI Control that the
request is complete. The UI Control then calls the
PIA_IOCTL_GET_EVENT RESULTS IOCTL to retrieve the response.

9 PIA Registry Usage
The registry key under which the InterAct data is organized is:

HKEY LOCAL MACHINE\Software\Rachis\InterAct

The following describes examples of registry entries used by each component of
PIA.

9.1 PIA Central Agent
The Central Agent makes use of the following data values under the
InterAct key:

DataBasePath — A string value that is the path to the piadevice.xml master
database. This is a required value.

CAFlags — A DWORD bit mask that allows configuration of options for the
central agent. The following bit definitions exist:

Bit 0 — CACleanup - enable/disable Central Agent driver cleanup

0 = Central Agent does not perform any cleanup
1 = Central Agent performs cleanup at the time specified in

67

WO 02/27504

10

15

20

25

30

35

40

PeriodicCleanup

PeriodicCleanup — A DWORD that specifies the frequency (in seconds) that the
Central Agent attempts cleanup of packages that are expired (their period of
inactivity has been reached).

AutoRemove — A DWORD that specifies the duration of inactivity (in seconds)
required before the Central Agent will remove PIA installed drivers. If this is set
to 0, the Central Agent will remove the driver when the device is removed, or the
next time it performs a clean up if the device is not present. This value may be
overridden by a device specific value under the PIADevices sub-tree.

The above required registry entries are utilized by the Central Agent and
PIA for the functions described herein. The optional values can also be specified
to configure the Central Agent as desired.

The Central Agent creates a subkey to organize its devices under. It
maintains registry entries for any device in its database that it receives an event

request for. If the entries don’t exist, the agent will add them when it receives a

PIA_IOCTL_DEVICE_EVENT event.
PIADevices — The subkey under which the Central Agent organizes its devices.
PIADevices\Device ID — Contains the data for this device where “Device ID” is

the identifier passed to the PIA_IOCTL_DEVICE_EVENT event.

The following data values are found under each PIADevices\Device ID
key and are created/updated by the Central Agent:

LastAccessed — The time/date that this component was last used. This is updated
by the central agent when an ENUMERATE or REMOVE event is received from
aclient. This is updated even if Central Agent cleanup is disabled, to allow an
external component to perform some intelligent cleanup.

DeviceFlags — A DWORD bit mask that specifies options regarding this device.

- The following bit definitions exist:

Bit 0 — PersistConfig - specifies if the driver is installed in persistent
storage, this
flag comes from the XML database
0 = when installed, this package is installed in RAM
1 = when installed, this package is installed in persistent storage

68

PCT/US01/29203

WO 02/27504

10

15

20

25

30

35

40

Bit 1 — DeviceCleanup - specifies if this driver is available for cleanup,
this flag
comes from the XML database
0 = this driver should never be removed, it may support non PIA
devices
1 = this driver may be removed if expired
Bit 2 — DriverInstall - specifies if the driver is currently installed on the

client

0 = the driver was installed as a temporary driver but is no longer
present

1 = the driver is currently installed on the client box

Bit 3 — DeviceConfig - specifies if the device is currently configured

0 = the device is not configured — the Central Agent clears this at
boot

1 = the device is configured — the Central Agent sets this at
enumeration

These entries are also accessed by the Central Agent but not created by it.

AutoRemove — A DWORD that specifies the duration of inactivity (in seconds)
required before this device is considered expired and available for cleanup. If this
is set to 0, this device is expired upon removal, and therefore a candidate for
immediate cleanup.

FriendlyName — A string that may be used by a Ul display to refer to this device.
DeviceClass — The category of devices to which this device belongs.

PIADeviceData — The path to any device specific XMLdata file. This data is
used to override any data for this device that exists in the master XML database.

SubscriptionAlias — The data string that identifies the package name used for
removal. This is passed to the Client Configuration Agent to request the removal.

9.2 Device Drivers
Device drivers have device specific data associated with them that is

maintained in the registry under the InterAct\PIADevices\Device ID key. This

- information should be populated as part of the installation process for each

device. The following data values are found under each device specific key:

FriendlyName — A string that may be used by a Ul display to refer to this device.

DeviceClass — The category of devices to which this device belongs.

69

PCT/US01/29203

WO 02/27504 PCT/US01/29203

10

15

20

25

30

35

PIADeviceData — The path to any device specific XMLdata file. This data is
used to override any data for this device that exists in the master XML database.

SubscriptionAlias — The data string that identifies the package name used for
removal. This is passed to the Client Configuration Agent to request the removal.

9.3 PIA Ul Control

In the examples described in this document, the UI Control can make use of
various registry entries, and the UI Control may make updates to the device-
specific registry keys. The UI Control may get requests from the browser to
change the navigation URL for specific event types that pertain to a device. This

information can be maintained under the device-specific key as:

EventType — The event type to override navigation for (e.g. ENUMERATE). If
the EventType is ‘GLOBAL’, all events will result in a navigation to this URL if
GLOBAL _Flags has the appropriate bit set.

. EventName — The URL to which to navigate for this event (EventName is

specified in EventType).
EventName Flags — Flags for this event type. The following bit definitions
exist:

Bit 0 — enable/disable navigation for the eventType
0 = disable
1 =enable

For example:

PIADevices\USB\1114_20481_256
EventType = ENUMERATE A
ENUMERATE = http://TVTest0
ENUMERATE_Flags = 0x01

This example enables the navigation request of type ENUMERATE for device
USB\1114 20481 256 to the http://TVTest0..... url.

70

WO 02/27504

10

15

20

25

30

Section IV. PIA Server Architecture

1 PIA Server Overview

The following discussion provides examples of the functions and
architecture of the PIA Server and an application referred to herein as InterAct!
The discussion utilizes, inter alia, terminology employed in publicly available

documentation of Microsoft Corporation’s MSTV client and server functionality:

e CCS/CCA: the client configuration service (CCS) on the MSTV
Server, and the corresponding agent (CCA) on the client; and

o Logging facilities on the client and the server.

The PIA Server receives client messages from a number of different
sources. It uses a data-driven lookup table to route the messages. A significant
use of this message reader is to initiate a t-commerce (television commerce) or e-
commerce transaction. The PIA Server can be implemented as an interactive
application, Windows 2000 Service, a module in Microsoft SQL Server DTS
(Data Transformation Services), or as a Web application. This wide range of
possible implementations provides the operator with flexibility to process
different kinds of t-commerce transactions in different ways.

Additional information regarding STB client and server configuration is
available in the following documentation published by Microsoft Corporation of
Redmond, Washington: STB Client Configuration (“Microsoft TV Advanced 1.0
Help” 28 Feb. 2001, Rev. MSTVA-BASE-1.0C-01-02-28-1618), and Server
Client Configuration (“Microsoft TV Server 1.0 Help”, 9 Apr. 2001, Rev.
MSTVS-1.0C-01-04-09-1636), the teachings of which are incorporated in their
entirety herein by reference.

In the embodiments discussed in this document, the PIA server is a suite
of utility applications, which implements a “zero-click” initiator of t-commerce --
i.e., a system that initiates e-commerce or t-commerce transactions automatically,
without intervention by a user of a peripheral device or STB. In particular, the

PIA client can generate t-commerce entries that are transmitted to the server,

71

PCT/US01/29203

WO 02/27504 PCT/US01/29203

10

15

20

25

30

either through MSTV client log facilities or by other means (discussed below).
The PIA server, in turn, permits the operator to specify a filter that selects log
entries corresponding to t-commerce (or e-commerce) transactions. Once
selected, the PIA server acts on those transactions. The corresponding actions
may include, for example, completion of a commerce event, as represented by a
signal into a billing database that Customer X has generated a charge of §Y.

Thus, the PIA server, as discussed in greater detail below, supports a
“zero-click” functionality in which a client event, such as the push of a scanner
button, can cause a transaction to be posted to'a logging area (either through the
PIA Action Dictionary described below, or other means). The PIA server acts as
the processor of these transactions, using them to insert an event into a database
(or equivalent element) that recognizes the event as a revenue event, and
aggregates the charge into the account of the client who generated the event.

The following discussion also details the storage and delivery of the PIA
Master Channel, which is the container for the PIA Central Agent’s main
dictionary. It is expected that cable operators and other providers will connect the
PIA server with their existing, conventional billing programs, and thus, the

workings of billing systems are not described herein.

1.1 Support transactional nature

As noted above, PIA provides a means for keeping the STBs in a network
up to date, and also for initiating e-commerce and t-commerce. The PIA Server
described in this section can identify and process any kind of transaction that an
STB generates, and is not limited to PIA transactions. - This flexibility is enabled
by techniques described in greater detail below, for filtering input transactions and
dynamically dispatching selected transactions to a database.

One component of the PIA Server is a general purpose log file filter that
can be used by different applications. Log entries contain many different kinds of
data, which can be used, for example, to populate a database of installations,

catalog all installations, and list the hardware and software modules present in an
STB.

72

WO 02/27504 PCT/US01/29203

10

i5

20

25

30

35

1.2 Package Container

As noted above, the MSTV server uses a Client Configuration Server
(CCS) facility to define channels that contain packages. (Packages are described
in greater detail in the Microsoft Server Client Configuration documentation cited
above, and incorporated herein by reference.) In the examples described herein, a
package can contain any combination of OS upgrade, application code or device
driver that is required in PIA, or to operate a peripheral that PIA detects. This
packaging method is a standard part of the MSTV server, and the PIA server
operator can manually create channels and packages using the MSTV Server

facilities.

2 PIA Server Architecture

21 Master Channel and Download

An MSO’s Set Top Box maintenance team is responsible for defining the
format, contents, and usage of a “master channel archive.” The master channel
archive is a package (as defined in the Package Container discussion above)that

contains:

e A mapping of devices that PIA supports to CCS Channel aliases
(described in detail in the Microsoft Server Client Configuration
documentation);

e Any additional software that PIA may wish to install, including extra
installation kits, such as registry settings, install scripts, backup and
restore facilities. This could be extended to include PIA itself, so that
it is provided as a premium (extra-cost option).

e Any additional data needed to complete the installation (this may be a
URL that specifies the server location of an install report.)

¢ Any additional information, such as a URL, that the client system
accesses as part of the PIA system.

The master channel format, maintenance and usage are defined in the
Microsoft Server Client Configuration documentation incorporated herein by

reference.

73

WO 02/27504 PCT/US01/29203

10

15

20

25

30

2.2 Active Logging
PIA utilizes a technique known as Active Logging to capture significant

events generated by the STB, and use them to populate a database. A schematic
representation of the Active Logging architecture, including the PIA Server 902
and elements of STB 926, is set forth in FIG. 9. As shown therein, the Active
Logging architecture includes active logging module 914 (which itself includes
Extract item 916 and XForm item 918), instant logging Web application 912,
client log files 910, parameters 920, and databases 904, 906 and 908. Within the
STB 926, the Active Logging elements include PIA Agent 712, Install reports
924, and CCA Agent 928 (which itself includes CCA Install element 930). Each
of these aspects is discussed below.

Active Logging enables a user to control all the significant aspects of data
collection, including frequency, filtering and output disposition. In particular, as
shown in FIG. 9, the PIA server 902 logs pre-defined transactions into one or
more databases 904, 906, 908, by reading from one of several input sources. In
the example shown in FIG. 9, two such sources are illustrated: a Client Log file

910, and a Web site or application 912.

3 PIA Server Functional Specification
3.1 Input Sources

3.1.1 Install reports (by MSTV client)

The CCA installation process that PIA can initiate creates reports in
accord with the format described above in the PIA Client Server Architecture
section of this document. This is an XML file that coﬁtains message types
including WARNING, ERROR, TRACE, and DUMP. The source of these
reports is the set of client machines. The reports and logs are not written directly,
but passed through an API that formats the XML output, and provides it with
time, date, and other relevant information. By writing an appropriate filter
specification, the end-user can comb the install reports for PIA transactions or any

other desired record.

74

WO 02/27504 PCT/US01/29203

10

15

20

25

3.1.2 Special Reports (by InterAct!)
Set Top Box application developers can use a standard MSTV client

interface, known as CCLOG, in the PIA Agent, to create log entries dynamically.
PIA can use this interface to deliver billing or other messages from the client to
any receiver on the server. There can be multiple supported paths from the client

to the host, which can be used independently, as will next be described.

3.1.2.1 Client Log Upload

The Set Top Box application will write a message to a log file on the PIA
Client. Periodically, a ‘Client log upload’ (defined below in the Client Log
Channel) service will upload these log files to a central location (shown as

‘Client Log Files’) for subsequent processing by Active Logging module.

3.1.2.2 Web navigation
The PIA Client has the capability to send log messages to a Web

application, referred to as the log server, as they occur, instead of waiting for the
client logs to be uploaded as described above. This log server Web application
appends the message to a log file, shown as ‘Client Log Files’, for subsequent

processing by the Active Logging module.

3.1.2.3 Instant Logging

The two methods noted above offer the advantages of low CPU and
network usage. There will be a brief, limited transaction between the PIA Client
and Server, and the rest of the back-end processing is deferred until a slack time.
This may suffice for most billing or notification situations where the event can be
recorded after the fact. For some situations, however, an instant message may be
required. The Instant Logging technique next described meets this need.

Referring again to FIG. 9, there is shown the Instant Logging facility
within the PIA architecture. Instant Logging is a component of a Web server that
accepts input from a Web client. Instead of an extractor reading static disk files
(as in the “Extraction” method described below), the Instant Logging facility will

react to a PIA transaction as it arrives at the Web server (IIS) that is hosting

75

WO 02/27504 PCT/US01/29203

10

15

20

25

30

Instant Logging. Thus, Instant Logging replaces the extraction step as part of the
processing of a URL request from a client. In particular, the PIA Client invokes
the page, and pas:ses the arguments the page requires. The Instant Logging
module responds with an “empty” page, or one that requires no action or display
elements. The Web input module provides real-time signaling and billing.
Instant Logging is useful for applications that require instantaneous
notification of PIA events. It requires more network and CPU resources than
batch processing, but it can be offloaded from the main MSTV server onto a

dedicated server.

3.2 Active Logging Server (ALS)

The Active Logging Server processes log files after the ClientLog facility
has uploaded them, or it can process them as they arrive from the Instant Logging
source. The ALS utilizes XML data as its input. It provides a framework to
transform the files into any number of different databases, with specifiable inputs
and outputs. The input can be filtered, and the output destination can be specified
through the ‘Parameters’ item 920 shown in FIG. 9. The Active Logging Server
(ALS) module 914 can run continuously, be invoked manually, or be programmed
to be run by the Microsoft Windows 2000 host batch processing facilities.
Microsoft’s SQL Server’s DTS (Data Transformation Services) may be used to
initiate the process.

The ALS 914 also is responsible for directing input records to some kind
of database. It provides tools for the operator to specify which incoming reports
contain data that ALS is to process; which elements of the data are to be
extracted; which actions are to be performed on the output records; and how it the
input is to be transformed on output.

As shown in FIG. 9, the ALS 914 consists of two main components,

referred to as Extractor 916 and Transformation Module 918.

3.2.1 Extractor
The ALS Extractor 916 is responsible for locating the data files that are to

be read, and extracting the desired records from them. It will leave the input data

76

WO 02/27504 PCT/US01/29203

10

15

20

25

30

intact, and create a series of data structures in a normal form that can be imported
into a billing database. The extractor will be able to accept the following
parameters as input:

e Input file specification, including location of the files, and a time span

within those files; and

o A filter specifying the kinds of records to identify and isolate.

The filter can be implemented as an eXtensible Stylesheet Language
(XSL) stylesheet. XSL is a language for, among other functions, expressing
stylesheets. It consists of two parts: a language for transforming XML
documents, and an XML vocabulary for specifying formatting semantics. It
developed from a World Wide Web Consortium (W3C) draft standard that
Microsoft proposed in 1997, the teachings of which are incotporated by reference
herein. Originally intended as a means to transform XML into HTML, it can also
transform XML into new XML. XSL provides for powerful search facilities that
allow retrieval of XML nodes that match specific data patterns.

The Extractor can be provided as a binary code module programmed by an

operator who creates XSL stylesheets that define elements of interest.

3.2.2 Transformation Module

In the illustrated embodiments, the ALS Transformation Module,
denominated ‘XForm’ (918) in FIG. 9, is a general-purpose transformation of its
input data into a variety of output types. It can be programmed to map the input
report into a number of diff"erent output formats. For example, it can use, but is
not limited to, the Service Profile Object interface to access an MSTV Profile.

The ALS Transformation Module 918 should be able to detect not only
certain record types, but will use a human-readable map to specify the
relationship between input data and output data. For example, it should know
that, in a report of class: BUYING_EVENT, that the report element SILICON_ID
is the field that represents the user, and that it applies the transformation named
“UserProfile(“get_user_from_deviceID”)’ to acquire the user object. The user
and other fields can then be mapped into the Billing Database by another

transform.

77

WO 02/27504 PCT/US01/29203

10

15

20

25

30

3.2.3 Monolithic filter and transformation
XSL itself provides a means to integrate both the filtering and output
disposition of incoming XML. In addition, ASL will provide a means for the

filter to automatically invoke the output disposition module.

4 Interaction with Other Technologies

4.1 Internet Information Server components

In the examples described herein, the PIA Web Server consists of a Web
application implemented as Active Server Pages (ASP). ASP, a widely-used
technology, allows rapid development of prototype applications by executing
VBScript in the context of a Web server. VBScript (Microsoft Visual Basic
Scripting Edition, a subset of Microsoft’s Visual Basic programming language)
enables easy access to MSTV Server objects. However, the underlying system
architecture permits development in other programming languages that support
Microsoft COM (Component Object Model) and the like.

4.2 Service Profile Objects

SPOs are the MSTYV server abstraction of database objects. They are
maintained through the MSTV Server application ‘Profile Dictionary,” an MMC
(Microsoft Management Console) snap-in. The user follows certain rules that
cause representations of specific SQL Server database objects in an SQL~free
manner. The main benefit of SPOs is their mapping of database objects into
VBScript objects for easy access. ’

In the examples described here, the PIA Server Web server uses SPOs
through IIS as the access to the MSTV Server data base. It also contains a new

SPO to write billing events into another external database.

4.3 Service Configuration Objects
An SCO is the “file system” underneath an SPO, whereby each SPO node
accesses its underlying data through an SCO. In the examples described, the PIA

78

WO 02/27504 PCT/US01/29203

10

15

20

25

30

Web Application uses the SQL Server SCO for subscriber, device and other
SPOs, and can use the SQL SCO to maintain a database of synthesized device

events.

4.4 ISAPI extensions

ISAPI (Internet Server API) is a W3C standard for the manner in which an
Internet Server can include binary extensions that provide application
functionality. ISAPI is essentially an argument-marshalling protocol that allows
IIS to pass data between itself and a Win32 DLL. The DLL, in turn, writes the
HTML that the browser sees back through IIS. ISAPI extensions can provide a
highly scalable and robust technology. It can be implemented in a system-level
language (C++) and can provide fine control over the resources it uses, such as
IIS threads.

5. PIA Server as a Configurable Intermediary

5.1 Notational conventions

The following discussion, which refers to the flowchart of FIG. 10,
describes a typical case of an Operator, ‘o’ provisioning a PIA system to react
when device ‘@’ is activated on STB ‘s.” Other entities in the system can include:
the subscriber ID “u’ for the user who owns s; the PIA server ‘p’ who processes
the PIA transaction; a possible accompanying server ‘w’; and a final e-commerce

transaction server ‘e’.

5.2 Preparation
The following is a description of the preparation of the data files that drive

the PIA client and server.

- 5,21 Step 1

The operator, o adds an entry to handle d’s insertion into s into
PIADevice.xml. O updates the MSTV Server’s CCS system to ensure that the

new instructions are sent to participating STBs in the network.

79

WO 02/27504

10

15

20

25

30

5.2.2 Step 2

5.2.2.1 Non-interactive Example

In a non-interactive example, o prepares the Extractor XSL (916‘of FIG.
9) stylesheet. O defines how the STB ID is transformed into a user ID, and adds
any other details that the non-interactive Billing Event processor w needs to

complete a billing transaction.

5.2.2.2 Interactive Example

In an interactive case (i.e., utilizing access to a URL to obtain additional
software or data), o prepates the Transformer XSL (918 of FIG. 9) stylesheet
discussed above. The preparation may contain the steps noted above in the non-
interactive example, with the addition of the URL of a Web site that the PIA

Server will connect with the STB.

5.3 Operation
The following describes the steps executed in typical operation of a PIA

Server.

5.3.1 Steps 3-5, Non-interactive Example

5.3.1.1 Step 3

On d activation, the PIA client assembles that data and message structure

that the PIADevice.xml case for the particular device and event specifies,. It

sends the message according to the format that PIADevice specifies (for example,
a message type of POST, or LOG, where the message is POSTed to a server, or
logged to an STB file.)

. 5.3.1.2 Step 4

The server s receives the message and creates a user record by applying
the rules in the XSL Transformation database for mapping data sources. This step

prepares everything that e requires to process the transaction.

80

PCT/US01/29203

WO 02/27504 PCT/US01/29203

10

15

20

25

30

5.3.1.3 Step 5

S disposes of the record by forwarding it to e. E enters the transaction in

its own processor.

5.3.2 Steps 3-4, Interactive Example
The following steps are executed when the PIA Server initiates an
interactive session between an e-commerce (or t-commerce) system and the user

on an STB.

5.3.2.1 Step 3

PIADEVICE.xml contains, for d’s activation on s, a NAVIGATE directive
that directs the packaging of arguments (as in the non-interactive example
discussed above). In this case, the request is in the standard HTTP format, to a

Web server.

5.3.2.2 Step 4

The Web server creates a customer record from the data sent up in the
previous step. As in the non-interactive example, the server uses the XSL
Transformation Style sheet to prepare the record. W can either contain all the
necessary processing itself, or can use HTTP facilities to connect an interactive

application on e to 5, sending to e the initial data it transformed.

6 InterAct! Server

6.1 Overview

InterAct! Server is a Web application for the PIA environment that
provides interactive e-commerce (and t-commerce) by enabling a user or
customer to choose from a selection of categories, and then registering their
purchases of items from those categories. Examples of features of the InterAct!
Server functionality are depicted in FIGS. 13-18, which depict displays generated
by the system.

81

10

15

20

25

30

WO 02/27504 PCT/US01/29203

6.2 Architecture

6.2.1 Operating Environment

In the illustrated examples, InterAct! Server is implemented as a
Microsoft Active Server Pages (ASP) application. In this environment, the
operator uses Microsoft Internet Information Server (IIS) controls to designate all
the files in a given directory as a Web application. This allows all the Web page
files in that directory to share data inside IIS. It also allows for application-wide
initialization of variables shared by the pages..

InterAct! Server can be implemented in the VBScript language, and use
objects provided by Microsoft TV Server (MSTV Server).

The illustrated examples of the InterAct! Server also contain a custom
billing module, implemented as a Service Profile Object (SPO). As noted above,
an SPO is an MSTV Server facility for creating custom back-ends to MSTV
Server. The InterAct! Server uses a customized dictionary to provide the
categories from which a user may choose, the data associated with each category,

and the price of the items therein.

6.2.2 Application Architecture
The InterAct! Server allows the operator to specify:
e The data source, or catalog, of items to be offered (please refer to
§6.3.7, ‘XML File’ for the format of the catalog)
e The source for images on the resulting web page.
These variant display elements are determined by the arguments sent to
the Web Server when the InterAct! client requests the page. The example in §6.3
shows InterAct! invoked with a catalog of (duly licensed and authorized) songs
that the user orders for download to their player.

6.3 Functional Description

Referring now to FIGS. 11-16, the following discussion illustrates the
processing of each page in the InterAct! System.

82

WO 02/27504 PCT/US01/29203

10

15

20

25

30

6.3.1 Processing common to all pages

The InterAct! server uses the VBScript language (under the ASP
component of IIS) to generate the HTML that the client STB displays. The server
includes in that HTML programming instructions and associated data in
JavaScript, a script language the client can process.

The server extracts from a database the séng catalog, and any other
variant display elements (specific to the kind of device that the InterAct! server
processes). It includes a transformation of that data, as well as other necessary
programming directives, in the output page. Other code necessary to execute the
output page properly is stored in a file that the output page includes by reference.

The purpose is to allow the client to scroll through the display of the
catalog and select items from it without having to re-invoke the server for every
refresh of the screen. The scrolling is invoked from control buttons that the

InterAct! server includes on each page.

6.3.2 Getuser.asp

Arguments:

SiliconID: An unformatted alphanumeric string that uniquely identifies the
hardware of the STB that is invoking InterAct!

Functional Description:

Getuser.asp creates the MSTV object “Client. WtvBroker” to gain access to the
MSTYV Server database. It queries the database for the user object corresponding
to the SiliconID. It stores that user object in the applipation global space. It then
creates an XML document with the “Microsoft. XMLDOM?” object. It initializes
the document from a disc file that the user configures for each application (a

sample is provided in the discussion below of XML files). Referring now to FIG.

" 11, Getuser.asp reads and parses the “OnBoardSongs” tree in the XML document

and displays the selected fields to the user. Note, in FIG. 11, the user name 1114
(“Jane Whalen”) personalizing the screen 1102. This user name is extracted from
the “Client.WtvBroker” object. The user then selects and “clicks” on one

or more of the categories 1103, using the checkboxes 1106 provided on the form

83

WO 02/27504

10

15

20

25

30

and depicted in FIG. 11. In the example of FIG. 11, the user has selected "Blues"
and "Jazz". Pressing the ‘Shop’ button 1108 shown in FIG. 11 invokes the
‘ShowAvailable.asp’ screen. (An Exit' button 1110 is provided for terminating
the session; and the user can scroll up or down through categories displayed in
menu area 1104, using conventional navigation buttons 1105 and 1107.)
Getuser.asp uses the ID node of the Song tree for each selected item, and
concatenates the ID nodes into a list that HTTP passes to the next screen, using

the HTTP POST protocol.

6.3.3 ShowAvailable.asp

Arguments:

OnBoardSongs: A list of numbers that represent the IDs of the items selected by
Getuser.asp. (e.g. ‘1 5°).

Processing:

ShowAvailable.asp creates a list of all the “OnboardMapping” entries in the
“OnboardMapping” tree whose ‘KeySong’ attribute matches an entry in the list
passed in the OnBoardSongs. From each OnboardMapping, it extracts the
RemotelD value. It eliminates duplicates and sorts the resulting union of the
RemoteIDs. The function uses this canonical list to fetch all the nodes in the
“AvailableSongs” collection that have an ‘ID’ node that is in the list, and displays
it in the resulting screen, e.g., screen 1102 of FIG. 12. As shown therein, the user
has selected using the checkboxes; and a list of the IDs of the selected songs is
prepared and displayed. In the example shown, the list includes song, artist and
price information, and the user has selected Stevie Ray Vaughn's "Little Wing",
Weather Report's "Birdland" and Enya's "Orinoco Flow".

6.3.4 ConfirmOrder.asp

Arguments:

Songs: A collection of IDs that represent the selected items in Getuser.asp. They
are used as the IDs of the entries in the “AvailableSongs” tree that the user wishes

to purchase.

84

PCT/US01/29203

WO 02/27504

10

15

20

25

30

Processing:

ConfirmOrder.asp allows the user to review the total price of all the items
selected, as illustrated in the display 1102 of FIG. 13 ("Order Confirmation for
Jane Whalen"). The owner of InterAct! can add other charges here if desired. As
shown in FIG. 13, ConfirmOrder displays the item descriptions and prices, and
presents the user with a text entry box 1128 in which they can enter their
authorization code ("Please enter your shopping password"). (Also provided are
"View Cart" and "Cancel" buttons 1120, 1126 having well-known functions.)
ConfirmOrder.asp also passes the IDs and Prices of the items selected to the next
page in HTML INPUT elements that have the HIDDEN attribute. They are

passed as arguments by the text of the page itself, without user intervention.

6.3.5 Downloading.asp

Arguments:

SongID: A collection of integers that are the IDs of the selected songs.
SongPrice: A collection of decimal numbers that are the prices of the selected

songs.

Processing:

Downloading.asp has several functions that will now be described in order of
execution. Downloading first prepares the billing event. It uses the subscriber
object that Getuser . asp saved into application memory and retrieves its
subscriberid property. It then requests the Client.WtvBroker object
to create a BillingEvent profile object. It populates the

BillingEvent’s properties as follows:

Subscriberid - The 64-bit GUID representing the subscriber. The
value of this field is generated when the MSTV Server creates the user.

BillingEventType - Downloading.asp populates this with a string
of the IDs of the selected songs.

CardNum - This is the name of the field that contains the credit card
number or other identifier to be used in the transaction.

85

PCT/US01/29203

WO 02/27504 PCT/US01/29203

10

15

20

25

30

BillingEventAmount - This field is the total amount billed to the
customer.

Tt then uses the SPO library to update the billing database, and display the
relevant information. Downloading.asp also populates some application global
variables that a transaction monitor listens for, as described elsewhere in this
document. The application then invokes a client side Javascript that loops over
the titles of the downloaded songs and displays the song in the status bar of the
browser. A sample display 1102 is shown in FIG. 14. Note, for example, the
display of "MusicMatch Jukebox 6.6; "Weather Report - - ‘Birdland™ at 1104 and
the status bar display of "Processing ..." at 1114.

6.3.6 Listenframe.htm

This function of the InterAct! application, described below with reference
to FIGS. 15 and 16, is a separate web page 1500 consisting of a frame 1502 that
contains two ASP pages 1504, 1506: Listen.asp and BillingEventsTable.asp. It is
not called directly from the other pages, and is instead started in a separate
context. In the examples discussed herein, these pages do not use any MSTV

Server code.

6.3.6.1 Listen.asp

Referring now to FIGS. 15 and 16, in the illustrated examples, Listen.asp
controls the upper frame 1504 in the window 1500, denominated the “Rachis
eCommerce Detector.” It monitors the ASP application variables for
Download.asp’s changes. When it detects them, it changes its initial
display, as shown in FIG. 15 (“Rachis eCommerce Détector - No recent
Activity™) to a display of the user’s name, order amount, credit card number or
other identifier, and the date and time of the transaction, as shown in FIG. 16
(“Lin Casals bought <item number> for $<price> using <credit card number> on
<date, time>").

Conventional browser window features can also be provided, including

address bar 1503, navigation buttons 1508, 1510, and status bar 1522.

86

WO 02/27504 PCT/US01/29203

10

15

20

25

6.3.6.2 BillingEventsTable.asp

This ASP uses Microsoft’s Active Data Objects (ADO) technology to
create and update a table of the billing events. As shown in FIGS. 15 and 16, it
uses the lower frame 1506 in the window 1500 (“Billing Events Log”) to display
the fields of the table 1530, and provides navigation tools 1512, 1514, 1516, 1518,
1520 so the user can scan the entire contents of the database.

In the illustrated examples, the operations of these two windows 1504,
1506 (controlled respectively by Listen.asp and BillingEventsTable.asp) are
completely independent of each other, and the user can respond to each one as if
they were in separate browser windows. (This is a property of the FRAME
HTML element.)

Thus, FIG. 15 shows the initial state of Listenframe.htm The “Rachis
eCommerce Detector” has not yet detected any purchases, and the user has not
clicked the button. Then, in FIG. 16, the eCommerce Detector has detected a
transaction and displayed it. In the lower window, the user has elected to view
some of the data. FIGS. 15 and 16 accordingly illustrate an e-commerce (or t-

commerce) interface provided for the user in accordance with the PIA system.

6.3.7 XML file

The following discussion illustrates an example of the XML data source
that the InterAct! application can employ. The XML code set forth below is
directed to a music system, but it can be used for any system in which a list of
categories, represented here as the “OnBoardSongs” tree, can be used to lookup a
set of resources (the “Available Songs” tree), using the “OnBoardSongMappings”
tree as a lookup table.

87

WO 02/27504

10

15

20

25

30

35

40

45

50

55

<?xml version="1.0"?>
<l=-
<%
1

PCT/US01/29203

' Copyright (c) 2000-2001 Rachis Corporation. All rights reserved.
' This product is protected by international agreement and treaty

' Unauthorized use is forbidden.
]
%>
<Song>
<ID></ID>
<Title></Title>
<Artist></Artist>
<URL></URL>
<Price></Price>
</Song>
-—>
<SongData>
<OnBoardSongs>
<Song>
<ID></ID>
<Title></Title>
<Artist></Artist>
<URL></URL>
<Price></Price>
</Song>
<Song>....</Song>
<Song>...</Song>
<Song>...</Song>
</OnBoardSongs>

<AvailableSongs>
<Song>
<ID></ID>
<Title></Title>
<Artist></Artist>
<URL></URL>
<Price></Price>
</Song>
<Song>...</Song>
<Song>...</Song>
<Song>....</Song>
</AvailableSongs>

<OnBoardMappings>

<OnBoardMapping KeySong="x>
<RemotelD>a</RemotelID>
<RemotelD>b</RemotelD>
<RemoteID>c</RemotelD>

</OnBoardMapping>
<OnBoardMapping KeySong="x>
<RemotelID>a</RemotelID>
<RemotelID>d</RemoteID>
<RemoteID>f</RemotelID>

</OnBoardMappings>

</SongData>

88

WO 02/27504 PCT/US01/29203

10

15

20

25

30

6.3.8 BillingEvents Profile

Service Profiles are a MSTV Server facility. They provide a means for an
implementer to create MSTV Server entities that have a unique interface, but
without all the overhead of COM objects. Service Profiles are entries in an SQL
Server database named the Profile Dictionary. The profile dictionary has a GUI
that allows a user to create a profile using interactive tools. 'Since the profile
dictionary is a simple SQL Server database, new profiles can be added by creating
SQL Scripts that create table entries with the appropriate properties. The InterAct!
application suite described herein includes SQL Server scripts that add the Billing
Events Profile to the Profile dictionary.

6.3.9 BillingEvents Database

The BillingEvents Profile is simply a way for a client application such as
InterAct! to access a database without having to use a SQL Server interface. That
interface is beneath the Client . WtvBroker object that the client calls. The
actual database that the Billing Events profile references is the Billing Events
database. InterAct!’s installation software can include SQL Server script to

initialize this database.

6.4 InterAct! Installation

InterAct! can be installed as a set of two Kits, each in the format of a
Microsoft Windows installer. The InterAct! web site can be installed with an
InterAct.msi file available from Rachis Corp., the assignee hereof. The
installation may include Billing Database creation and Billing Events Service
profile creation, referred to as Rachis Extensions. These are SQL scripts that are
installed into an appropriate directory. The user then runs the scripts manually.

These extensions can be installed by running the Rachis Extensions.msi

~ file.

Those skilled in the art will appreciate that the methods and systems
described herein can be implemented in devices, systems and software other than

Microsoft TV and CCS/CCA, that the examples set forth herein are provided by

89

WO 02/27504 PCT/US01/29203

way of illustration rather than limitation, and that the scope of the invention is

defined by the following claims.

90

WO 02/27504 PCT/US01/29203

10

15

20

25

30

We claim:

1. A method of invoking retrieval of software or data from a first source to a
peripheral device capable of communicating with the first source, the method
comprising:

detecting a device event generated by the peripheral device,

transmitting to the first source, in response to detection of a device event,
a request to obtain the software or data from the first source, and

receiving the software or data from the first source, the software or data
having been selected to be appropriate for the peripheral device in response to the
event generated by the peripheral device,

wherein the steps of detecting, transmitting, and receiving are performed
automatically when a device event is detected, without intervention by the user of
the peripheral device.
2. The method of claim 1 wherein

the peripheral device is in communication with a client system, and

the detecting, transmitting and receiving steps can be executed even when
the client system contains no device driver to support the peripheral device.
3. The method of claim 2 wherein the software or data from the first source
includes a device driver appropriate for the peripheral device.
4. The method of claim 2 wherein the request to obtain software or data
includes a code identifying a device type of the peripheral device.
5. The method of claim 2 wherein the first source is a local source on the
client system.
6. The method of claim 2 wherein

the first source is specified by an identifier designating an entry in a
database on_a remote processor capable of communicating with the client system
via a communications channel, and

the request is transmitted to the remote processor via the communications
channel.
7. The method of claim 6 wherein the communications channel includes the
Internet or World Wide Web.

91

WO 02/27504 PCT/US01/29203

10

15

20

25

30

8. The method of claim 2 further including:

causing the obtained software to be installed on the client system without a
user of the client system manually installing the software.
9. The method of claim 2 wherein the event is generated upon user
interaction with the peripheral device.
10. The method of claim 9 wherein the event can include actuating a device
START button.
11. The method of claim 1 wherein transmitting a request for the software or
data includes opening, in response to detection of a device event, a
communications channel with the first source, to enable access to any of libraries,
packaging or configuration data on the first source to establish a repository of
device drivers and supporting applications suitable for the peripheral device.
12. The method of claim 11 wherein receiving the software or data from the
first source includes receiving a package containing any of data, script files or
software to augment a local database to enable handling of previously
unsupported devices.
13. The method of claim 1 further including:

responding to events originating on a home network operating in
accordance with a home network standard.
14. The method of claim 13 wherein the home network standard is the
American National Standards Institute (ANSI) home network standard.
15. The method of claim 2 wherein the step of responding to peripheral
devices is defined by a package resident on the client system, or on the first
source.
16. The method of claim 15 wherein the package can be resident in the client
system or obtained from the first source after detection of the device event.
17. The method of claim 2 wherein the responding includes:

navigating to a default web page when no software can be obtained from
the first source to support the device.
18. The method of claim 2 further including:

utilizing a standard format to define device driver packages.

92

WO 02/27504 PCT/US01/29203

1/21

100

102 www
SERVER

104 MSTV | 106
INTERNET SERVER

108— COMM.
DEVICE

| MsTV
110 CLIENT

FIG. 1

WO 02/27504 PCT/US01/29203

2/21
204
(
110 (A
N~
TV
L)
208—| 2?2
SR . DATA
o o
A A
IR
AC
R
o
o —
REMOTE
%)
&
v~206

FIG. 2

SUBSTITUTE SHEET (RULE 26)

PCT/US01/29203

WO 02/27504

3/21

€ Old

(SINALSAS
=IRe N ONISSTO0Hd (S)TvyaHdINAd
NOYA ALOL J10NTY WOH4/0L WOH4/oL
m_ A A
ol viva —9L¢
[
“
A \i
JOV443LNI ova H3AODNS JOIAIA
S oliany O3daIA NOD
| w ,
00¢ 80€ oLe
u
¥0€
vLE rAR> z0¢
] | d
NV NOY NndD
ga1s

SUBSTITUTE SHEET (RULE 26)

PCT/US01/29203

WO 02/27504

4/21

¥ Old

1IANYILNI ‘SHIAYTS

NALSN H3FHL1O OL
A

o/

clv

o/

4%%

30IA3d
WOD

olv

Y

A

JOVHOLS
SSVYIN

YIAYIS ALSW g

)
oF

NWvYd

90¥

WOH

Ndo

140%

0¥y

@9\\

SUBSTITUTE SHEET (RULE 26)

WO 02/27504 PCT/US01/29203

5/21

TO/FROM
INTERNET

T 502

(
PERIPHERAL

STB
202

110

TOTV

FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 02/27504 PCT/US01/29203

6/21

602
DETECT DEVICE EVENT, 604

l

TRANSMIT REQUEST TO OBTAIN
SOFTWARE OR DATA, 606

!

SELECT SOFTWARE OR DATA
FROM FIRST SOURCE, 608

'

RECEIVE SELECTED SOFTWARE
OR DATA FROM FIRST SOURCE, 610

FIG. 6A

SUBSTITUTE SHEET (RULE 26)

WO 02/27504 PCT/US01/29203

7121

612
DETECT DEVICE EVENT, 614

l

TRANSMIT REQUEST TO OBTAIN
SOFTWARE OR DATA, 616

.

SELECT SOFTWARE OR DATA
FOR PERIPHERAL DEVICE, 618

L

RECEIVE SOFTWARE
OR DATA FROM FIRST SOURCE, 620

FIG. 6B

SUBSTITUTE SHEET (RULE 26)

WO 02/27504 PCT/US01/29203

8/21

622

DETECT DEVICE EVENT, 624

,

EXECUTE CORRESPONDING FUNCTION, 625

FIG. 6C

SUBSTITUTE SHEET (RULE 26)

WO 02/27504 PCT/US01/29203

9/21

626

RECEIVE PERIPHERAL DEVICE SIGNAL, 628

l

PROCESS SIGNAL TO GENERATE
INTERMEDIARY SIGNAL, 630

'

TRANSMIT INTERMEDIARY SIGNAL
TO DIGITAL PROCESSING SYSTEM, 632

FIG. 6D

SUBSTITUTE SHEET (RULE 26)

WO 02/27504 PCT/US01/29203

10/21

634
RECEIVE PERIPHERAL DEVICE SIGNAL, 636

:

PROCESS PERIPHERAL DEVICE SIGNAL, 638

'

EXECUTE CORRESPONDING FUNCTION, 640

.

OPEN COMMUNICATIONS CHANNEL BETWEEN
CLIENT AND DATA/SOFTWARE SOURCE, 642

FIG. 6E

SUBSTITUTE SHEET (RULE 26)

WO 02/27504 PCT/US01/29203

11/21

CLIENT SERVER

DETECT INSTALLATION OR OTHER
EVENT FROM PERIPHERAL DEVICE, 644

DETERMINE BROWSER CONTENT
AND/OR CONTROL REQUIRED, 646

INSTRUCT BROWSER TO NAVIGATE
TO E-COMMERCE OR OTHER URL, 648

PROMPT USER AS REQUIRED, 650

l

TRANSMIT E-COMMERCE OR
OTHER DATA TO SERVER, 652

RECEIVE E-COMMERCE OR
OTHER DATA FROM CLIENT, 654

'

DETERMINE APPROPRIATE
RESPONSE, 656

l

DOWNLOAD E-COMMERCE OR

/ OTHER DATA TO CLIENT, 658

RECEIVE E-COMMERCE OR
OTHER DATA FROM SERVER, 660

FIG. 6F

SUBSTITUTE SHEET (RULE 26)

WO 02/27504 PCT/US01/29203

12/21

702
i
MSTV |
BROWSER 704 799
X)
v OHCI
AU USB DEVICE
CONTROL |~ 706 | 7%4
708 A A
) USBD - USB
PIA NAVIGATE DEVICE DRIVER LOADER
EVENT
HANDLER
710 71)2
\ Y
OTHER EVENT | PIA CENTRAL USBSnoop
HANDLERS AGENT - USB BUS
ENUMERATOR
716 Y AN
N PIA UPDATE / USBHID - 726
EVENT CLASS DRIVER
HANDLER DEVICE |
DATABASE v N
71 6 T 728
USB - 3" PARTY [730
CLIENT 714 DEVICE DRIVER
CONFIGURATION
AGENT
) 739 _| PIA
COMPONENTS
— 720 COMPONENTS
=||| mMsTV
SERVER 736 | MSTV
COMPONENTS

77—\

FIG. 7

SUBSTITUTE SHEET (RULE 26)

PCT/US01/29203

WO 02/27504

13/21

3Svav.Lvd
AULSIO3Y
W3LSAS

SININOJWNOD
ALSIW 9€s
SININOdWOD |
30 SMOaNIm | Y&l
SININOJWOD
vid 49

8 Ol

o

3Svaviva

J0IA4Q

HIAAYES
ALSW | ||=

_ A

8d3lS || Ld3lS
« 8l.

02—

6 d31S INTOV
NOILYENOIANOD N3O

|)

Z LS P obdals | | 9qals
_ [Y
HOLYRBNNN SN3 851 €dils —> N3OV GdAlS ™™ y31aNVH INIAT
oousgsn 71 daLS IVHIN3O Vid < L d3lS 31vaddn vid
/ A]]
9cL ¥3ANA 30IA3C 49 9LL
e} dals L d31S ALYV i€ - 83N
A)
bl d31S o€l ~
. : 201

¥z/—1 Y3AVOTY3AIMA F0IA3A &SN - aasn

SUBSTITUTE SHEET (RULE 26)

PCT/US01/29203

WO 02/27504

14/21

9¢6—1

S04y
INIOV TIVLSNI v VLS INFDY
v90 V20 vid
1 V6
|
) 06 ve6 |
876 AN
HIAYISOOT
avoldn
90T "AYN
als 2€6 — IN3D 83 Tgeq
SYALINVEYd wwmmm -
asvaviva 0c6 N -
] L
80— 016~
A
38vav.vda / Sé_ﬂ
= WHOAX \-y3,/
906
% ONI99OTINLIY || NOIvoriddv am
06 T 216~ | 2NID9O0T INVISNI
YIS Vid V16
206 —

006

SUBSTITUTE SHEET (RULE 26)

WO 02/27504 PCT/US01/29203

15/21

NON-INTERACTIVE:

STEP 1: O ADDS ENTRY TO HANDLE ds
INSERTION INTO s INTO PIADevice.xml,.
AND UPDATES CCS

STEP 2: O PREPARES EXTRACTOR XSL STYLESHEET,
DEFINES HOW STB ID IS TRANSFORMED INTO USER ID,
ADDS OTHER DETAILS W NEEDS TO COMPLETE TRANSACTION

l

STEP 3: CLIENT ASSEMBLES DATA AND MESSAGE
STRUCTURE, SENDS MESSAGE

l

STEP 4: S RECEIVES MESSAGE AND CREATES USER RECORD

STEP 5: S FORWARDS RECORD TO E;
E ENTERS TRANSACTION IN ITS PROCESSOR

INTERACTIVE:

STEP 1: O ADDS ENTRY TO HANDLE ds
INSERTION INTO s INTO PlADevice.xml,.
AND UPDATES CCS

STEP 2: O PREPARES TRANSFORMER XSL STYLESHEET
(W/ URL OF WEBSITE WHERE APPROPRIATE)

:

STEP 3: PIADEVICE.xml CONTAINS, FOR d's ACTIVATION ON s,
NAVIGATE DIRECTIVE TO DIRECT PACKAGING OF ARGUMENTS;
REQUEST IN HTTP TO WEB SERVER

l

STEP 4: WEB SERVER CREATES CUSTOMER RECORD, USES XSL TRANSFORMATION
STYLESHEET TO PREPARE RECORD, AND WHERE APPROPRIATE, w CONNECTS INTERACTIVE
APPLICATION ON e TO s, SENDING e THE INITIAL DATA IT TRANSFORMED

FIG. 10

SUBSTITUTE SHEET (RULE 26)

PCT/US01/29203

WO 02/27504

16/21

L1 "Old

L
m_ usjeUM ouep v.e)] 0} BLOodjEM
1011
A OLLL
Yooy oIsse|D S0.61] ‘
zzer Q0LL—A e
el €oLL
»OLL 300y 018SEID sogel 1| doys
ne Z err
~
GoLl
BNvEny Mﬁzé
SISl

coll

SUBSTITUTE SHEET (RULE 26)

PCT/US01/29203

WO 02/27504

17/21

¢l Old
\S, Ll
m Bojejen Buog j10y.Ia)u] siyoey
L0}1
A
611 MO[4 030UlIQ eAug A
68’ puejpilg HodsY lauyiespy A
yoLlL Jo eseg ped uybnep i g
CYARRS Buim i Aey s1Ae)s i dg/
~ oLt
GoLl
[
STHS W
E
coLl

SUBSTITUTE SHEET (RULE 26)

PCT/US01/29203

WO 02/27504

18/21

¢l old

L

m_ US[BUAA BUE(JO} UOIBWIYUOD JBpIO

piomssed Buiddous
1noA l1sjua ases|d

L0L1 - 8CL1
“A [
611 MO[4 090ULIQ eAug (1soue] 9cll
ia‘ 68 coLL puejpig Hodey hmﬁmmm>> E{l\\ AN
uybnep
61°1$ Buim emi Aey anelg E/l\\\om Ll
~ 18°¢€ st [ej0} J.:&o JnoA
SoLl 0SLL
[Fa\yE]
SIASw]

cOtl

SUBSTITUTE SHEET (RULE 26)

PCT/US01/29203

WO 02/27504

19/21

vl Old

14135
Tt m:_m%oo,_n_

| +zeLl
e CrE -
pue|plig Hodey] Jayjeap
ALY
SIHDWwA
,
Z0L L

SUBSTITUTE SHEET (RULE 26)

PCT/US01/29203

WO 02/27504

20/21

Gl oOld

NNm l
v seuenul jeoo gl | : auoq [3]
d109 siyaed 0002 @
_ obed 1587 _ abed 1xeN _ abed snoinald abed is14 *// vLGL
90G L1 omm_‘ 8 rm_‘ o_‘m« _ islueAz Builig 998 T/N ™

Bjep ay) 88s 0] Mojag uonng s} 1o

B0 sjueng Buiig
0161 W

INd 80:62:2 0002/6L/2)L A)AIOY Jusda.1 ON

T
2061 1010919 (] ©2J8WILLIODS siyoey $0G 1

8051 [=

«suf| oo [2]

7S B A & & [hosn © powored[J wros O] & B @ =d== wea=d

wyy-sweyusisisoessiuyysey/dpy ()] :ssaippy |

A

€051 dieH s|00L o)lloABd MeiA UPT el E

XOE

Joi0jdX3 Jauleju| JOSOIDIA ~ W)Y SWEIUS)SI|AOBIIUI/0ISAINY/:dRY @_

SUBSTITUTE SHEET (RULE 26)

WO 02/27504 PCT/US01/29203
21/21
1500
1 593
E7http://tviestOfinteract/listenframe.htm - Microsoft Interneﬁ‘ Explorer EIEX
| File Edit View Favorite Tools Help / . [[&] @
| Back vab~ ®OR A IQSearch r_—lFa/ornes C) Hlstoryl%v GOE <Q
ﬂAddress: Ehﬂp:IIlvlestOﬁnleract/lislenframehtm / E @Go HLinks »
=H—-1508
Rachis eCommerce Detector
1502
1524 - Check Again
1526 J}-Lin Casds bought a23
for $3.25 using 815 on 12/19/2000 1:32:16 PM ||
L1510
Billing Events Log
Click the button below to see the data
1512 ‘[See Billing Events! I
(||[subscriberid |[BillingEventType||Weesa |[BillingEventAmount|
g;égsc3353§é§1912-4999-5c;60- 27 318 67.300998
914BC332-2192-4999-BC60-

15304 ||||s367835D5241 27 239 67.309998
g;ésé:?’assgé%ﬁz-mgg-Bceo- 27 677 67.309998
914BC332-2192-4999-BC60-

||[L8367835D5241 16 714 157.7
1514 J{ First Page l Previous Page | Next Page I Last Page |
‘ X AN <
© 2000 Rachis Com
: 1516 1518 1520
-+ 1506
[€] bone / L[{lt#8 Local Intranet: 72
{
1522

FIG. 16

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT Inte onal application No.
PCT/US01/49208

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) : GOGF 13/00
US CL :709/221
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

US. : 709/200,201,208,208.209,217,218,220,921,292

Documentation searched other than minimum documentation to the extent that such documents are included in the fields

sengse

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
gory pprop passag

X US 6,023,585 A (PERLMAN et al.) 08 February 2000, 1-18NO
see Abstract, figures 1-6, col. 1 (line 55-et seq.), and col. 5 (line
51-et seq.).

A US 6,003,097 A (RICHMAN et al.) 14 December 1999 1-18
see Abstract, figures 1-19B, and col. 3 (line 29-et seq.).

A US 5,940,074 A (BRITT, JR. et al.) 17 August 1999, 1-18
see Abstract, figures 1-15, and col. 2 (line 20-et seq.).

Further documents are listed in the continuation of Box C. r_—l See patent family annex.

* Special categories of cited documents: " later document published after the international filing date or priority
date and not in conilict with the application but cited to understand

"A" docu.ment defining the general state of the art which is not the principle or theory underlying the invention
considered to be of particular relevance
.- "X document of particular relevance; the claimed invention cannot be
g Jier . . . ’
E earlier document published on or after the international filing date considered novel or cannot be considered to involve an inventive step -
"L document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other on R . . .)
special reason (as specified) Y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
"o" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means Leing obvious to a person skilled in the art
"p" document p_ub}ished prior to the international filing date but later wgn document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
07 DECEMBER 2001 0 2 JAN 2002
Name and mailing address of the ISA/US Authorized officer
Commissioner of Patents and Trademarks
Box PCT ROBERT B pa. H. Gﬁé@fg
Washington, D.C. 20281 . HA
Facsimile No. (703) 305-3230 Telephone No. (703) 305-9692

Form PCT/ISA/210 (second sheet) (July 1998)%

INTERNATIONAL SEARCH REPORT Int_._.._>nal application No.

PCT/US01/29203
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 5,787,246 A (LICHTMAN et al.) 28 July 1998, 1-18
see Abstract, figures 1-13, and col. 8 (line 17-et seq.).
A US 5,655,148 A (RICHMAN et al.) 05 August 1997, 1-18

see Abstract, figures 1-19B, and col. 8 (line 24~-et seq.).

Form PCT/ISA/210 (continuation of second sheet) (July 1998)%

INTERNATIONAL SEARCH REPORT Ini tional application No.
PCT/US01/29203

B. FIELDS SEARCHED
Electronic data bases consulted (Name of data base and where practicable terms used):

WEST
search terms: (((down adj1 load$) or download$) near1 (software$ or programs or ((device or peripheral) adj1
driver$))) and internet and upgrad$

Form PCT/ISA/210 (extra sheet) (July 1998)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

