METHOD FOR PRODUCING SEAMLESS PIPES

The invention relates to a method for producing seamless pipes of heated massive metal blocks, by means of a mandrel (4), which is fastened on a rolling rod (5), in the case of which a coating material is applied onto the inner side of the hollow block (3) during the forming process by means of the influence of the rolling rod (5) from the massive metal block to a hollow block (3), which is created during the forming.
METHOD FOR PRODUCING SEAMLESS PIPES

1. Field of the Invention

The invention relates to a method for producing seamless pipes of heated massive metal blocks, in particular comprising a cross-rolling mill, in the case of which the block is driven by means of the rollers, which are set at an angle, and is rolled via an inner tool, which consists of a mandrel, which is fastened on a rolling rod so as to be capable of being detached, if necessary.

During the rolling, the rolling rod thereby supports itself against a mandrel thrust block with its end, which faces away from the mandrel. A massive and mostly round metal block, which is heated to rolling heat, is pierced and is stretched in the further process to form a seamless pipe. The hole is hereby created in that the round block is driven by means of the rollers, which are set at an angle, and is rolled via a mandrel. It is thereby the object of the mandrel to pierce the core zone of the block, to smooth the inner surface of the created hollow block and to bring the wall thickness thereof to the desired measure.

Such a method as well as a device for carrying out the method is known from DE 1 96 04 969 C2, for example. This publication deals in particular with the wear of the forming tools and the necessity to cool them as well with the impact of the coolant on the rolling stock itself.

When the heated metal block is in contact with the atmospheric oxygen or oxygen from other sources, such as the cooling water, for instance, scale, which must ideally be detached prior to the further forming, but no later than during the forming so as to prevent surface errors at the inner side of the finally created seamless pipe, are created at the inner surface of the hollow block and also in deforming steps, which follow the first forming process, if necessary.

After the embodiment of the hollow block and prior to the further forming of the hollow block into a seamless pipe, the method, which is typically used for this, provides for the blow-off of already loosened scale by means of nitrogen or air as well as for the subsequent introduction of borate-containing powders, such as borax, for example. For the most part, this borax melts on the surface of the hollow block, loosens the scale to the extent that it can be blown out of the
interior of the hollow block reliably and converts the scale into a liquid form. The introduction of the borate-containing powders takes 4 to 10 seconds. Finally, the discharge, which may be necessary, of the scale, which has been softened, liquefied or loosened by the borate-containing powder, requires an additional 1 to 8 seconds.

The methods known from the state of the art thus not only result in an undesired delay of the production process as a whole, but also to a considerable discharge of borax and the burn-off thereof into the environment, due to the use of typically approximately 2 kg of borax for each ton of rolling stock. Finally, the temperature of the hollow block is also lowered in an undesirable manner by this method step, which was required until now.

To overcome the interfering influences of the mill scale downstream from the piercing process, JP 63-154207A additionally proposes the introduction of a lubricant made of graphite into the area between an elongator mandrel and the inner surface of the hollow block. The formation of scale, however, is not significantly prevented by this.

2. Object of the Invention

Based on the above-discussed state of the art, it was thus the object of the invention to specify a method for producing seamless pipes, which is able to reliably prevent the disadvantages known from the state of the art. In terms of the invention, this object is solved by means of a method, comprising the features of claim 1. Advantageous embodiments of the invention are presented in the dependent claims.

3. Summary of the Invention

The invention is based on the knowledge that the formation of scale on the inner surface of the hollow block and, if necessary, also on the inner side of the seamless pipe, which is later created from the hollow block, can then be prevented reliably when a coating material (so-called "Piercer Shell Inner Surface Treatment Product" or "Product" in short) is applied onto the inner side
of the hollow block already during the forming process under the influence of
the mandrel on the massive metal block and during the entire piercing process.

The formation of scale can be slowed down effectively, if not prevented
completely by means of the preferably complete coating of the inner surface of
the hollow block. In terms of the invention, it is made possible through this to
completely do without the step of loosening scale and the discharge thereof
from the formed hollow block, if necessary, without having to accept
disadvantages with reference to the quality of the inner surface of the hollow
block.

The use of borate-containing substances and the discharge thereof into the
environment can furthermore be limited to a minimum and can be prevented
completely, if necessary. When using borax as a component of the coating
material, the material usage and consequently also the discharge thereof into
the environment is only 10-20% as compared to the above-defined standard
methods, due to the required quantities, which are considerably smaller.

The invention is thus geared to reliably prevent the contact of the inner side of
the hollow block with oxygen, in particular the atmospheric oxygen. However, in
a particularly advantageous alternative of the method according to the
invention, an inert gas, preferably nitrogen, is used to displace the air within the
hollow block and/or the seamless pipe. This can take place, for example, in that
inert gas is guided into the interior of the hollow block together with the coating
material and via the same lines and openings.

However, an embodiment of the method according to the invention is also
preferred, in the case of which the inert gas, preferably nitrogen, is supplied via
separate lines and openings, whereby an uncoupling of nitrogen supply and
coating material supply is attained.

Finally, an embodiment is also preferred, in the case of which the inert gas,
preferably nitrogen, is supplied together with the coating material, and the
nitrogen is additionally supplied to any location in the interior of the hollow
block, if necessary, via separate lines and/or separate openings.
It is preferred when the coating material is applied onto the inner side of the hollow block at least almost immediately after the loosening of the inner side of the hollow block from the mandrel. The idea of the invention thus also comprises methods, in the case of which coating material is already introduced between the mandrel and the hollow block, even before the inner surface of the hollow block lifts itself from the mandrel, due to the shape of the mandrel, and causes the advance of the block against the mandrel. A contact of the oxygen with the inner side of the hollow block can be completely prevented through this.

However, a method, in the case of which the coating material is only applied after the loosening of the inner side of the hollow block from the mandrel, is also preferred. It goes without saying that the application of the coating material should take place as soon as possible in such a case, so that the formation of scale remains limited to a minimum, which is considered to be acceptable.

For the application of the coating material in the above-specified manner, it is preferred when openings in the mandrel and/or the rolling rod itself are attached such that the coating material can be applied to the inner side of the hollow block via these openings. A plurality of openings, which are arranged across the periphery of the tool, preferably in an equidistant manner, are hereby particularly preferred, so as to secure a complete and preferably even distribution of the coating material on the inner surface of the hollow block through this in cooperation with the rotation of mandrel and/or rolling rod relative to the hollow block.

Only a small number of minimum demands must be made on the coating material itself. It must be ensured that after the contact with the inner side of the hollow block, this coating material adheres at least to the extent that a coating is created, through which the formation of scale is attained at least considerably, preferably by at least 50%, more preferably by at least 80% as compared to the above-defined standard methods. For this, the formation of a continuous coating film comprising a minimum thickness of at least 1 μm is currently considered to be advantageous.

A method, in the case of which the coating material embodies an air-impermeable cover layer on the inner side of the hollow block as well as on the inner side of the seamless pipe, is particularly preferred. It is extremely
preferred hereby when the cover layer on the inner side of the hollow block has a thickness of less than 100 µm, particularly preferably of less than 10 µm on average. It is ensured through this that the contact of the inner side of the hollow block with the atmospheric oxygen, which may be present, or other oxygen, which enters into the process steps, is prevented reliably.

In a preferred embodiment of the method according to the invention, the coating material is applied onto the inner side of the hollow block in powder form by means of a carrier gas. Particularly preferably, pipelines, which lead to the opening through the rolling rod and possibly also through the mandrel, are used for this, so as to reliably ensure the application of the coating material onto the inner side of the hollow block through this. It is particularly preferred hereby when the mixture of carrier gas and coating material is introduced into the line at a pressure of less than 20 bar, but preferably 1-5 bar, so as to ensure a sufficient pressure at the openings through this.

It is particularly preferred when the grain size of at least 90% of the powder is less than 840 µm, preferably less than 250 µm and more preferably between 30 and 50 µm. It is ensured through this that no blockages are to be feared within the supply pipes or openings within the rolling rod or the mandrel, and that the formation of a continuous coating film comprising such grain sizes is supported in a particularly advantageous manner.

In an alternative and likewise preferred embodiment of the method according to the invention, the application of the coating material, however, takes place in liquid form, preferably as a powder, which is dissolved in water and/or mixed with water. Through this, the supply of the coating material onto the inner side of the hollow block through the rolling rod and the mandrel is designed so as to be particularly simple. Furthermore, the liquid form of the supply of the coating material also supports the formation of the coating film on the inner side of the hollow block in a particularly advantageous manner.

In a particularly preferred embodiment of this alternative of the method according to the invention, the volume fraction of the liquid, preferably of water, is 60-90% in the mixture or solution. It is furthermore particularly preferred when the coating material is supplied through the lines in liquid form at a pressure of 5-50 bar, more preferably 10-25 bar.
Provided that it is to contain borax, the coating material either consists of a mixture of borax and Sodium Tripolyphosphate (NaTTP), preferably together with soap and/or mica, or of borax and sodium sulfates, preferably by adding graphite. The individual, preferred portions of the respective components, in each case specified in percent by weight, are specified in the following table 1 together with the information with regard to the effect for the individual components.

As to the mica, this is understood to be silicates, particularly layered silicates, having the general chemical formula \( \text{DG}_{2.3}\text{[T}_4\text{O}_{10}\text{]}\text{X}_2 \) wherein D means 12-coordinated cations (K,Na,Ca,Ba,Rb,Cs,NH\(^{4+}\), G means 6-coordinated cations (Li,Mg,Fe\(^{2+}\),Mn,Zn,Al,Fe\(^{3+}\),Cr,V,Ti), T means 4-coordinated cations (Si,Al,Fe\(^{3+}\),B,Be) and X means anions (OH\(^-\),Cl\(^-\),O\(^{2-}\),S\(^{2-}\)).

According to the invention, mica having Sodium and/or Potassium as well as Calcium and/or Barium and Silicon and/or Aluminium and/or Iron and/or Titanium as the main components are preferred.

<table>
<thead>
<tr>
<th>No.</th>
<th>Component</th>
<th>Portion in the Mixture %</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>soap</td>
<td>0-10</td>
<td>wetting</td>
</tr>
<tr>
<td></td>
<td>borax</td>
<td>52-80</td>
<td>scale loosening</td>
</tr>
<tr>
<td></td>
<td>NaTTP</td>
<td>20-40</td>
<td>scale loosening + surface coverage</td>
</tr>
<tr>
<td></td>
<td>mica</td>
<td>0-20</td>
<td>lubrication</td>
</tr>
<tr>
<td>2</td>
<td>graphite</td>
<td>0-35</td>
<td>lubrication</td>
</tr>
<tr>
<td></td>
<td>borax</td>
<td>25-65</td>
<td>scale loosening</td>
</tr>
<tr>
<td></td>
<td>sodium sulfates</td>
<td>20-60</td>
<td>wetting + surface coverage</td>
</tr>
</tbody>
</table>
In the event that the coating material, however, is to be completely free from borate, which is particularly preferred, the mixture for the coating material consists substantially of Sodium Tripolyphosphate (NaTTP) and Sodium N-metaphosphate, preferably Phoskadent M®, in which the main component consists of Sodium dimetaphosphate, to which graphite is also added in a particularly advantageous manner. The individual portions for the percent by weight, which are in each case specified for the components, are specified in the below-specified table 2 together with the effects of the individual components.

**Table 2**

<table>
<thead>
<tr>
<th>Component</th>
<th>Portion in the Mixture %</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>graphite</td>
<td>0-10</td>
<td>lubrication</td>
</tr>
<tr>
<td>NaTTP</td>
<td>20-50</td>
<td>scale loosening + surface coverage</td>
</tr>
<tr>
<td>Phoskadent M®</td>
<td>10-56</td>
<td>scale loosening + coverage</td>
</tr>
</tbody>
</table>

It can be seen through this that the coating material according to the invention must not necessarily render a lubricating effect, even if this can indeed be considered to be advantageous. In particular, the lubricating effect of a suitably composed coating film for subsequent process steps, in particular the production of the seamless pipe from the hollow block, can be useful.

A method, in the case of which the coating film remains in the hollow block once it has been applied during the production of the hollow blocks, and reliably prevents the appearance of scale in the entire production process for seamless pipes.
4. Brief Description of the Figures

The invention will be defined in detail below with reference to Figure 1.

Figure 1 shows a schematic view of a device for the supply of nitrogen through the rolling rod and for the supply of coating material through the rolling rod. The coating material is applied by means of a PLC-controlled application system using an adjustable metering device.

5. Detailed Description of the Invention

Figure 1 shows a piercing mill, in the case of which a hollow block 3 is driven between an upper roller 1, which is set at an angle, and a lower roller 2, which is set at an angle, via a mandrel 4, which is fastened on a rolling rod 5 so as to be capable of being detached, in a schematic view. The forming of a massive metal block into a hollow block 3 takes place hereby viewed from left to right in the figure, wherein the hollow block shell 3a detaches from the mandrel 4 in the forming process and forms an air gap between the rolling rod 5 and the inner side of the hollow block 6. In terms of the invention, the supply of coating material takes place from a coating material bunker 9 via a metering device 10 and a supply line 8 for the coating material through the rolling rod and the mandrel, if necessary, towards the inner side of the hollow block 6, so as to effect a complete sealing of the inner side of the hollow block 6 through this. The powdery coating material is applied onto the inner side of the hollow block 6 together with nitrogen in a controlled manner at a pressure of 1.5 bar through the supply line 8 and the rolling rod 5. The atmospheric oxygen is already displaced almost completely from the hollow block 3 by means of the excess of nitrogen, which does not react with the red-hot metal of the hollow block 3 and which has been introduced herein through the rolling rod 5 and the inner side of the hollow block 6. If necessary, additional nitrogen can be added into the interior of the hollow block 3 via further (non-illustrated) supply lines.
PATENT CLAIMS

1. A method for producing seamless pipes of heated massive metal blocks by means of a mandrel, which is fastened on a rolling rod, in the case of which a coating material is applied onto the inner side of the hollow block during the forming process by means of the influence of the rolling rod from the massive metal block to a hollow block, which is created during the forming.

2. The method according to claim 1, characterized in that coating material is applied onto the inner side of the hollow block at least almost immediately after the loosening of the inner side of the hollow block from the mandrel.

3. The method according to one of the preceding claims, characterized in that the coating material is applied onto the inner side of the hollow block via openings, which are arranged in the mandrel and/or in the rolling rod.

4. The method according to one of the preceding claims, characterized in that the coating material embodies a preferably air-impermeable cover layer on the inner side of the hollow block and on the inner side of the seamless pipe.

5. The method according to claim 4, characterized in that the cover layer on the inner side of the hollow block has a thickness of less than 100 µm, preferably of less than 10 µm on average.

6. The method according to one of the preceding claims, characterized in that inert gas, preferably nitrogen, is guided into the hollow block and preferably also the seamless pipe during the forming process.

7. The method according to one of the preceding claims, characterized in that the coating material is applied onto the inner side of the hollow block in powder form by means of a carrier gas, preferably nitrogen.

8. The method according to claim 7, characterized in that the carrier gas is used with a pressure of less than 20 bar, preferably 1 to 5 bar.
9. The method according to one of claims 7 or 8, characterized in that the grain size of at least 90% of the powder is less than 840 \( \mu \text{m} \), preferably less than 250 \( \mu \text{m} \), in particular between 30 and 50 \( \mu \text{m} \).

10. The method according to one of claims 1 to 6, characterized in that the coating material is applied to the inner side of the hollow block in liquid form, preferably as powder, which is dissolved in water or mixed with water.

11. The method according to claim 10, characterized in that the volume fraction of the liquid, preferably of the water, is 60-90% of the mixture or solution.

12. The method according to one of claims 10 or 11, characterized in that the coating material is supplied in liquid form at a pressure of 3 to 40 bar, preferably 5 to 20 bar.

13. The method according to one of the preceding claims, characterized in that the coating material is a mixture of (a) borax and Sodium Tripolyphosphate (NaTPP), preferably together with soap and/or mica, or (b) borax and sodium sulfates, preferably together with graphite.

14. The method according to one of claims 1 to 12, characterized in that the coating material is a mixture of Sodium Tripolyphosphate (NaTTP) and Sodium N-metaphosphate, which is preferably free from borate, preferably together with graphite.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. B21B17/02 B21B25/04 B21B45/04

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B21B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>wo 91/01824 Al (TUBEMI LL S A [LU]) 21 February 1991 (1991-02-21)</td>
<td>1,3-12</td>
</tr>
<tr>
<td>Y</td>
<td>page 7, line 14 - line 25; figure 8</td>
<td>13,14</td>
</tr>
<tr>
<td>Y</td>
<td>abstract; figures 1,2,5</td>
<td>13,14</td>
</tr>
<tr>
<td>Y</td>
<td>GB 1 074 958 A (CONTUBIND SA; LORNAINE ESCAUT SA) 5 July 1967 (1967-07-05)</td>
<td>13,14</td>
</tr>
<tr>
<td></td>
<td>page 6, line 21 - line 26</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. X See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"A" document member of the same patent family

Date of the actual completion of the international search

14 October 2011

Date of mailing of the international search report

24/10/2011

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV RIJSWIJK
Tel. (+31-70) 340-2040,
Fax. (+31-70) 340-3016

Authorized officer

Frisch, Ulrich
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CN 1049618 A</td>
<td>06-03-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2029402 B</td>
<td>29-06-1990</td>
</tr>
<tr>
<td>GB 1074958 A</td>
<td>05-07-1967</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>