

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2017341065 B2

(54) Title
Highly potent multimeric E-selectin antagonists

(51) International Patent Classification(s)
C07H 15/207 (2006.01) **A61P 35/00** (2006.01)
A61K 47/60 (2017.01) **C07H 15/26** (2006.01)

(21) Application No: **2017341065** (22) Date of Filing: **2017.10.06**

(87) WIPO No: **WO18/068010**

(30) Priority Data

(31) Number	(32) Date	(33) Country
62/405,792	2016.10.07	US
62/451,415	2017.01.27	US

(43) Publication Date: **2018.04.12**

(44) Accepted Journal Date: **2023.04.06**

(71) Applicant(s)
GlycoMimetics, Inc.

(72) Inventor(s)
Magnani, John L.;Peterson, John M.;Baek, Myung-Gi

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, Level 14 255 Elizabeth St, Sydney, NSW, 2000, AU

(56) Related Art
WO 2008/060378 A2
Winkler et al, "Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance", 2012, vol 18(11), pg. 1651-1657.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2018/068010 A1

(43) International Publication Date

12 April 2018 (12.04.2018)

(51) International Patent Classification:

A61K 47/60 (2017.01) *C07H 15/26* (2006.01)
C07H 15/207 (2006.01) *A61P 35/00* (2006.01)

Published:

- with international search report (Art. 21(3))
- with amended claims (Art. 19(1))

(21) International Application Number:

PCT/US2017/055648

(22) International Filing Date:

06 October 2017 (06.10.2017)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/405,792 07 October 2016 (07.10.2016) US
62/451,415 27 January 2017 (27.01.2017) US

(71) **Applicant:** GLYCOMIMETICS, INC. [US/US]; 9708 Medical Center Drive, Rockville, Maryland 20850 (US).

(72) **Inventors:** MAGNANI, John L.; 12819 Doe Lane, Gaithersburg, Maryland 20878 (US). PETERSON, John M.; 220 Post Road, Slate Hill, New York 10973 (US). BAEK, Myung-Gi; 18404 Tapwood Road, Boyds, Maryland 20841 (US).

(74) **Agent:** CHAPMAN, Ernest F. et al.; Finnegan, Henderson, Farabow, Garrett & Dunner, LLP, 901 New York Avenue, NW, Washington, District of Columbia 20001-4413 (US).

(81) **Designated States** (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(54) Title: HIGHLY POTENT MULTIMERIC E-SELECTIN ANTAGONISTS

(57) **Abstract:** Compounds, compositions, and methods for treatment and/or prevention of at least one disease, disorder, and/or condition by inhibiting binding of an E-selectin to an E-selectin ligand are disclosed. For example, highly potent multimeric E-selectin antagonist are desorbed and pharmaceutical compositions comprising at least one of the same.

Highly Potent Multimeric E-Selectin Antagonists

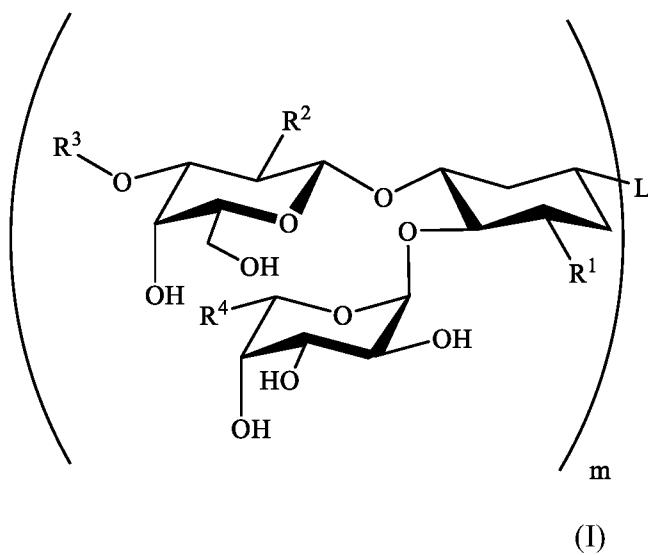
[0001] This application claims the benefit under 35 U.S.C. § 119(e) to U.S. Provisional Application Nos. 62/405,792 filed October 7, 2016 and 62/451,415 filed January 27, 2017, which applications are incorporated by reference herein in their entirety.

[0002] Compounds, compositions, and methods for treating and/or preventing at least one disease, disorder, and/or condition associated with E-selectin activity including, for example, inflammatory diseases and cancers, are disclosed herein.

[0003] When a tissue is infected or damaged, the inflammatory process directs leukocytes and other immune system components to the site of infection or injury. Within this process, leukocytes play an important role in the engulfment and digestion of microorganisms. The recruitment of leukocytes to infected or damaged tissue is critical for mounting an effective immune defense.

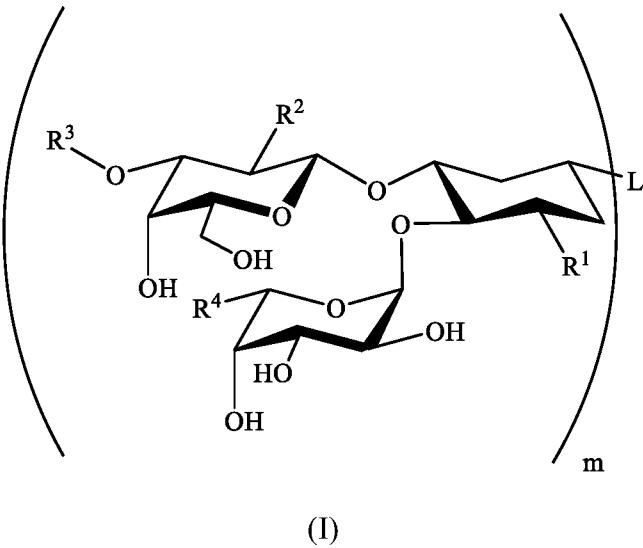
[0004] Selectins are a group of structurally similar cell surface receptors important for mediating leukocyte binding to endothelial cells. These proteins are type 1 membrane proteins and are composed of an amino terminal lectin domain, an epidermal growth factor (EGF)-like domain, a variable number of complement receptor related repeats, a hydrophobic domain spanning region and a cytoplasmic domain. The binding interactions appear to be mediated by contact of the lectin domain of the selectins and various carbohydrate ligands.

[0005] There are three known selectins: E-selectin, P-selectin, and L-selectin. E-selectin is found on the surface of activated endothelial cells, which line the interior wall of capillaries. E-selectin binds to the carbohydrate sialyl-Lewis^x (sLe^x), which is presented as a glycoprotein or glycolipid on the surface of certain leukocytes (monocytes and neutrophils) and helps these cells adhere to capillary walls in areas where surrounding tissue is infected or damaged; and E-selectin also binds to sialyl-Lewis^y (sLe^y), which is expressed on many tumor cells. P-selectin is expressed on inflamed endothelium and platelets, and also recognizes sLe^x and sLe^y, but also contains a second site that interacts with sulfated tyrosine. The expression of E-selectin and P-selectin is generally increased when the tissue adjacent to a capillary is infected or damaged. L-selectin is expressed on leukocytes. Selectin-mediated intercellular adhesion is an example of a selectin-mediated function.


[0006] Although selectin-mediated cell adhesion is required for fighting infection and destroying foreign material, there are situations in which such cell adhesion is undesirable or excessive, resulting in tissue damage instead of repair. For example, many pathologies (such as autoimmune and inflammatory diseases, shock and reperfusion injuries) involve abnormal adhesion of white blood cells. Such abnormal cell adhesion may also play a role in transplant and graft rejection. In addition, some circulating cancer cells appear to take advantage of the inflammatory mechanism to bind to activated endothelium. In such circumstances, modulation of selectin-mediated intercellular adhesion may be desirable.

[0007] Modulators of selectin-mediated function include the PSGL-1 protein (and smaller peptide fragments), fucoidan, glycyrrhizin (and derivatives), sulfated lactose derivatives, heparin and heparin fragments, sulfated hyaluronic acid, condroitin sulfate, sulfated dextran, sulfatides, and particular glycomimetic compounds (see, e.g., US RE44,778). To date, all but the glycomimetics have shown to be unsuitable for drug development due to insufficient activity, toxicity, lack of specificity, poor ADME characteristics, and/or availability of material.

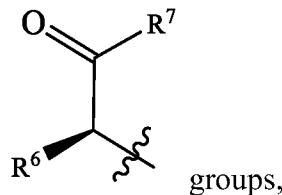
[0008] Accordingly, there is a need in the art for identifying inhibitors of selectin-mediated function, *e.g.*, of selectin-dependent cell adhesion, and for the development of methods employing such compounds. The present disclosure may fulfill one or more of these needs and/or may provide other advantages.


[0009] Compounds, compositions, and methods for treating and/or preventing (*i.e.*, reducing the likelihood of occurrence or reoccurrence) at least one disease, disorder, and/or condition in which inhibiting binding of E-selectin to one or more E-selectin ligands may play a role are disclosed.

[0010] Disclosed are highly potent multimeric E-selectin antagonists of Formula (I):

prodrugs of Formula (I), and pharmaceutically acceptable salts of any of the foregoing, wherein each R^1 , R^2 , R^3 , and R^4 are defined herein.

[0010a] According to a first aspect, the present invention provides at least one compound chosen from glycomimetic E-selectin antagonists of Formula (I):

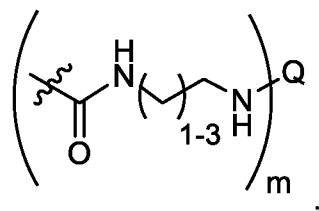


and pharmaceutically acceptable salts thereof,
wherein

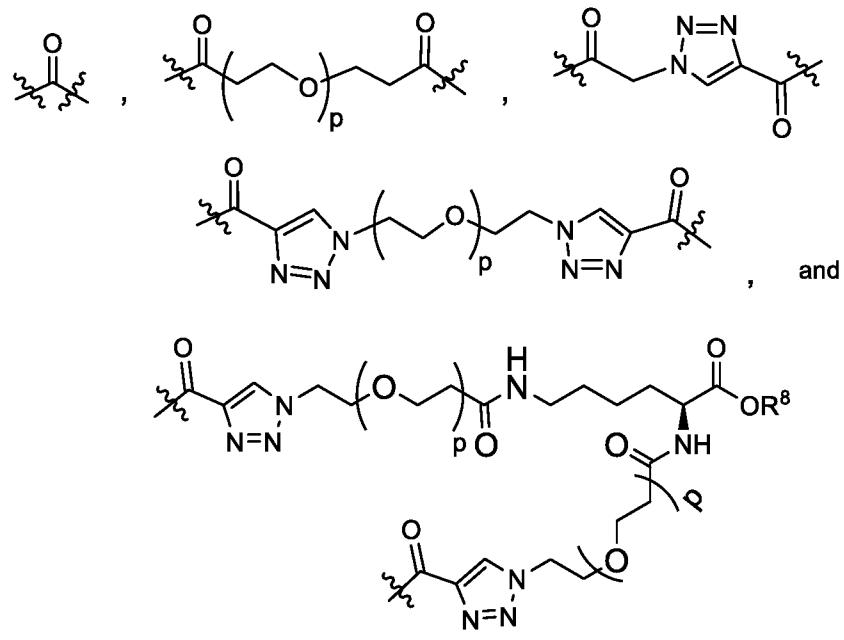
each R^1 , which may be identical or different, is independently chosen from C₁₋₁₂ alkyl;

each R^2 , which may be identical or different, is independently chosen from $-NHC(=O)Y^1$ groups, wherein each Y^1 , which may be identical or different, is independently chosen from C_{1-12} alkyl groups;

each R^3 , which may be identical or different, is independently chosen from



wherein each R^6 , which may be identical or different, is independently chosen from C_{1-12} alkyl groups, and wherein each R^7 , which may be identical or different, is independently chosen from $-OY^3$ and $-NY^3Y^4$ groups, wherein each Y^3 and each Y^4 , which may be identical or different, are independently chosen from H and C_{1-8} alkyl groups, wherein Y^3 and Y^4 may join together along with the nitrogen atom to which they are attached to form a ring;


each R^4 , which may be identical or different, is independently chosen from C_{1-4} alkyl groups;

m is 2; and

L is chosen from

wherein Q is chosen from

wherein R⁸ is chosen from H and benzyl, and wherein each p, which may be identical or different, is independently chosen from integers ranging from 0 to 30.

[0010b] According to a second aspect, the present invention provides a composition comprising at least one compound according to the first aspect and at least one additional pharmaceutically acceptable ingredient.

[0010c] According to a third aspect, the present invention provides method for treatment and/or prevention of at least one disease, disorder, and/or condition where inhibition of E-selectin mediated functions is useful, the method comprising administering to a subject in need thereof an effective amount of at least one compound according to the first aspect or a composition according to the second aspect.

[0010d] According to a fourth aspect, the present invention provides method for treatment and/or prevention of at least one inflammatory disease, disorder, and/or condition, the method comprising administering to a subject in need thereof an effective amount of at least one compound according to the first aspect or a composition according to the second aspect.

[0010e] According to a fifth aspect, the present invention provides method for treatment and/or prevention of metastasis of cancer cells, the method comprising

administering to a subject in need thereof an effective amount of at least one compound according to the first aspect or a composition according to the second aspect.

[0010f] According to a sixth aspect, the present invention provides method for inhibiting infiltration of cancer cells into bone marrow, the method comprising administering to a subject in need thereof an effective amount of at least one compound according to the first aspect or a composition according to the second aspect.

[0010g] According to a seventh aspect, the present invention provides method for inhibiting adhesion of a tumor cell that expresses a ligand of E-selectin to an endothelial cell expressing E-selectin, the method comprising contacting the endothelial cell with an effective amount of at least one compound according to the first aspect or a composition according to the second aspect.

[0010h] According to an eighth aspect, the present invention provides method for treatment and/or prevention of thrombosis, the method comprising administering to a subject in need thereof an effective amount of at least one compound according to the first aspect or a composition according to the second aspect.

[0010i] According to a ninth aspect, the present invention provides method for treatment and/or prevention of cancer, the method comprising administering to a subject in need thereof (a) an effective amount of at least one compound according to the first aspect or a composition according to the second aspect and (b) at least one of therapy chosen from (i) chemotherapy and (ii) radiotherapy.

[0010j] According to a tenth aspect, the present invention provides method for enhancing hematopoietic stem cell survival, the method comprising administering to a subject in need thereof an effective amount of at least one compound according to the first aspect or a composition according to the second aspect.

[0010k] According to an eleventh aspect, the present invention provides method for treatment and/or prevention of mucositis, the method comprising administering to a subject in need thereof an effective amount of at least one compound according to the first aspect or a composition according to the second aspect.

[0010] According to a twelfth aspect, the present invention provides method for mobilizing hematopoietic cells from the bone marrow, the method comprising administering to a subject in need thereof an effective amount of at least one compound according to the first aspect or a composition according to the second aspect, in combination with at least one mobilizing agent.

[0010m] According to a thirteenth aspect, the present invention provides use of a compound a according to the first aspect in the manufacture of a medicament for treatment and/or prevention of at least one disease, disorder, and/or condition where inhibition of E-selectin mediated functions is useful, for treatment and/or prevention of at least one inflammatory disease, for disorder and/or condition, treatment and/or prevention of metastasis of cancer cells, for treatment and/or prevention of metastasis of cancer cells, for inhibiting infiltration of cancer cells into bone marrow, for inhibiting adhesion of a tumor cell that expresses a ligand of E-selectin to an endothelial cell expressing E-selectin; for treatment and/or prevention of thrombosis, for treatment and/or prevention of cancer, for enhancing hematopoietic stem cell survival, for treatment and/or prevention of mucositis or for mobilizing hematopoietic cells from the bone marrow.

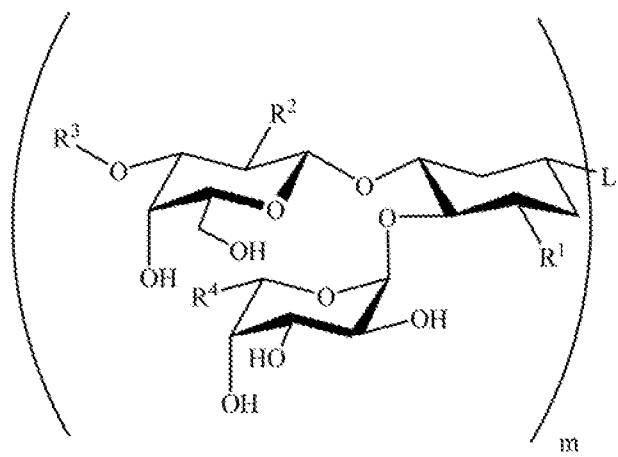
[0011] As used herein, ‘compound of Formula (I)’ includes multimeric E-selectin antagonists of Formula (I), pharmaceutically acceptable salts of multimeric E-selectin antagonists of Formula (I), prodrugs of multimeric E-selectin antagonists of Formula (I), and pharmaceutically acceptable salts of prodrugs of multimeric E-selectin antagonists of Formula (I).

[0012] In some embodiments, pharmaceutical compositions comprising at least one compound of Formula (I) and optionally at least one additional pharmaceutically acceptable ingredient are presented.

[0013] In some embodiments, a method for treatment and/or prevention of at least one disease, disorder, and/or condition where inhibition of E-selectin mediated functions is useful is disclosed, the method comprising administering to a subject in need thereof an effective amount of at least one compound of Formula (I) or a pharmaceutical composition comprising at least one compound of Formula (I).

[0014] In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments. However, one skilled in the art will understand that the disclosed embodiments may be practiced without these details. In other instances, well-known structures have not been shown or described in detail to avoid

unnecessarily obscuring descriptions of the embodiments. These and other embodiments will become apparent upon reference to the following detailed description and attached drawings.


BRIEF DESCRIPTION OF THE DRAWINGS

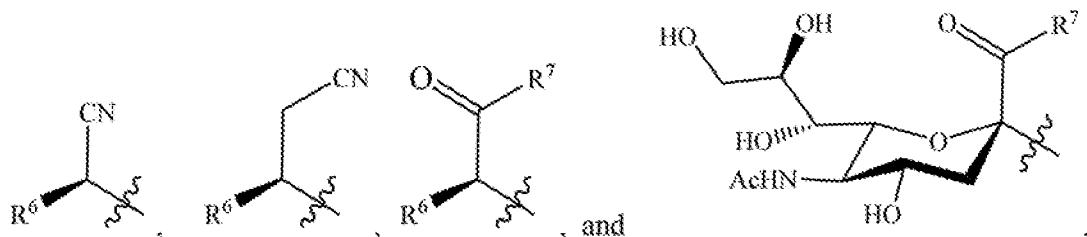
- [0015] Figure 1 is a diagram illustrating the synthesis of intermediate 2.
- [0016] Figure 2 is a diagram illustrating the synthesis of intermediate 7.
- [0017] Figure 3 is a diagram illustrating the synthesis of intermediate 9.
- [0018] Figure 4 is a diagram illustrating the synthesis of compound 11.
- [0019] Figure 5 is a diagram illustrating the synthesis of compound 20.
- [0020] Figure 6 is a diagram illustrating the synthesis of compound 27.
- [0021] Figure 7 is a diagram illustrating the synthesis of compound 29.
- [0022] Figure 8 is a diagram illustrating the synthesis of compound 31.
- [0023] Figure 9A is a diagram illustrating the synthesis of compound 32.
- [0024] Figure 9B is a diagram illustrating an alternative synthesis of compound 32.
- [0025] Figure 10 is a diagram illustrating the synthesis of compound 35.
- [0026] Figure 11 is a diagram illustrating the synthesis of compound 38.
- [0027] Figure 12 is a diagram illustrating the synthesis of compound 42.
- [0028] Figure 13 is a diagram illustrating the synthesis of compound 44.
- [0029] Figure 14 is a diagram illustrating the synthesis of compound 45.
- [0030] Disclosed herein are highly potent multimeric E-selectin antagonists, pharmaceutical compositions comprising the same, and methods for inhibiting E-selectin-mediated functions using the same. The compounds and compositions of the present disclosure may be useful for treating and/or preventing at least one disease, disorder, and/or

condition that is treatable by inhibiting binding of E-selectin to one or more E-selectin ligands.

[0031] The compounds of the present disclosure have been found to be highly potent multimeric E-selectin antagonists, the potency being many times greater than the monomer. The compounds of the present disclosure may also have at least one improved physicochemical, pharmacological, and/or pharmacokinetic property.

[0032] In some embodiments, presented are highly potent multimeric E-selectin antagonists of Formula (I):

(I)

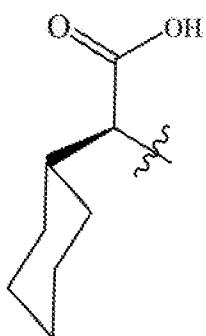

prodrugs of Formula (I), and pharmaceutically acceptable salts of any of the foregoing, wherein

each R¹, which may be identical or different, is independently chosen from H, C₁₋₁₂ alkyl, C₂₋₁₂ alkenyl, C₂₋₁₂ alkynyl, and -NHC(=O)R⁵ groups, wherein each R⁵, which may be identical or different, is independently chosen from C₁₋₁₂ alkyl, C₂₋₁₂ alkenyl, C₂₋₁₂ alkynyl, C₆₋₁₈ aryl, and C₁₋₁₃ heteroaryl groups;

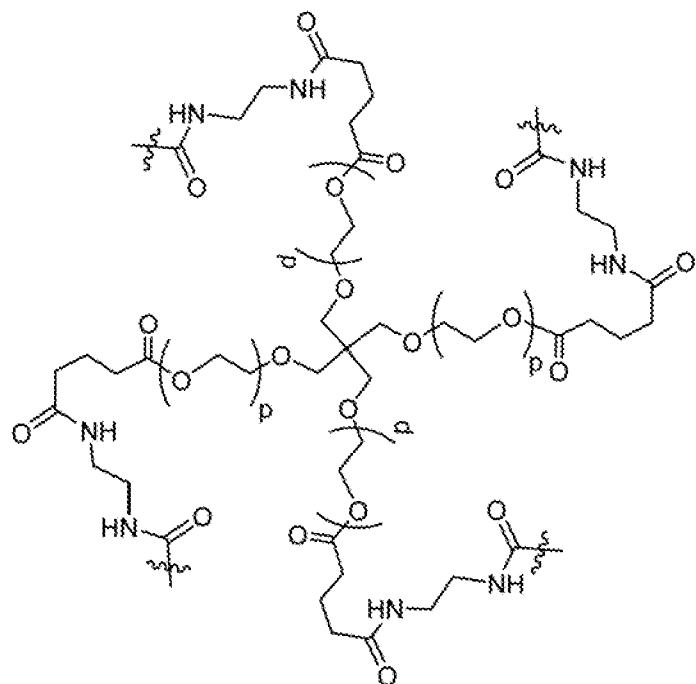
each R², which may be identical or different, is independently chosen from halo, -OY¹, -NY¹Y², -OC(=O)Y¹, -NHC(=O)Y¹, and -NHC(=O)NY¹Y² groups, wherein each Y¹ and each Y², which may be identical or different, are independently chosen from H, C₁₋₁₂ alkyl, C₂₋₁₂ alkenyl, C₂₋₁₂ alkynyl, C₁₋₁₂ haloalkyl, C₂₋₁₂ haloalkenyl, C₂₋₁₂ haloalkynyl, C₆₋₁₈ aryl,

and C₁₋₁₃ heteroaryl groups, wherein Y¹ and Y² may join together along with the nitrogen atom to which they are attached to form a ring;

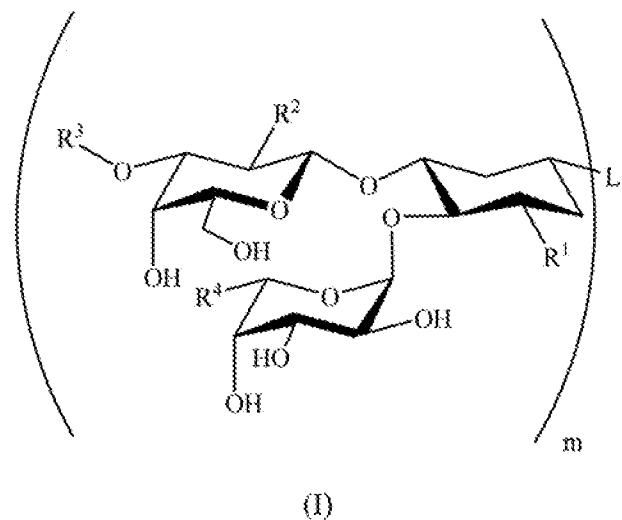
each R³, which may be identical or different, is independently chosen from


wherein each R⁶, which may be identical or different, is independently chosen from H, C₁₋₁₂ alkyl and C₁₋₁₂ haloalkyl groups, and wherein each R⁷, which may be identical or different, is independently chosen from C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, -OY³, -NHOH, -NHOCH₃, -NHCN, and -NY³Y⁴ groups, wherein each Y³ and each Y⁴, which may be identical or different, are independently chosen from H, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₈ haloalkyl, C₂₋₈ haloalkenyl, and C₂₋₈ haloalkynyl groups, wherein Y³ and Y⁴ may join together along with the nitrogen atom to which they are attached to form a ring;

each R⁴, which may be identical or different, is independently chosen from -CN, C₁₋₄ alkyl, and C₁₋₄ haloalkyl groups;


m is chosen from integers ranging from 2 to 256; and

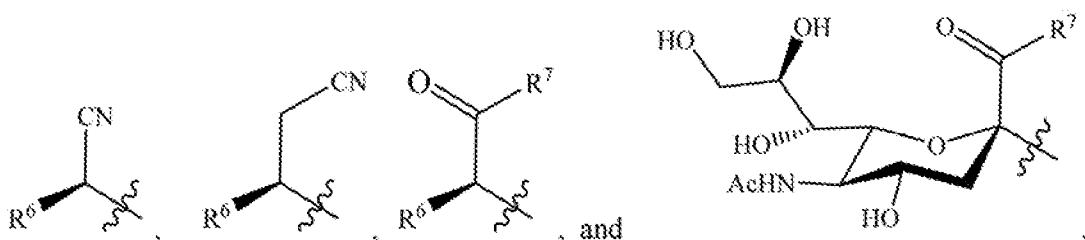
L is chosen from linker groups;


with the proviso that when m is 4, each R¹ and each R⁴ is methyl, each R² is -OC(=O)Ph, and each R³ is

then the linker groups are not chosen from

[0033] In some embodiments, at least one compound is chosen from compounds of Formula (I):

(I)

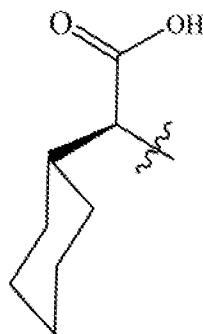

prodrugs of Formula (I), and pharmaceutically acceptable salts of any of the foregoing, wherein

each R¹, which may be identical or different, is independently chosen from H, C₁₋₁₂ alkyl, C₂₋₁₂ alkenyl, C₂₋₁₂ alkynyl, and $-\text{NHC}(=\text{O})\text{R}^5$ groups, wherein each R⁵, which may be identical or different, is independently chosen from C₁₋₁₂ alkyl, C₂₋₁₂ alkenyl, C₂₋₁₂ alkynyl, C₆₋₁₈ aryl, and C₁₋₁₂ heteroaryl groups;

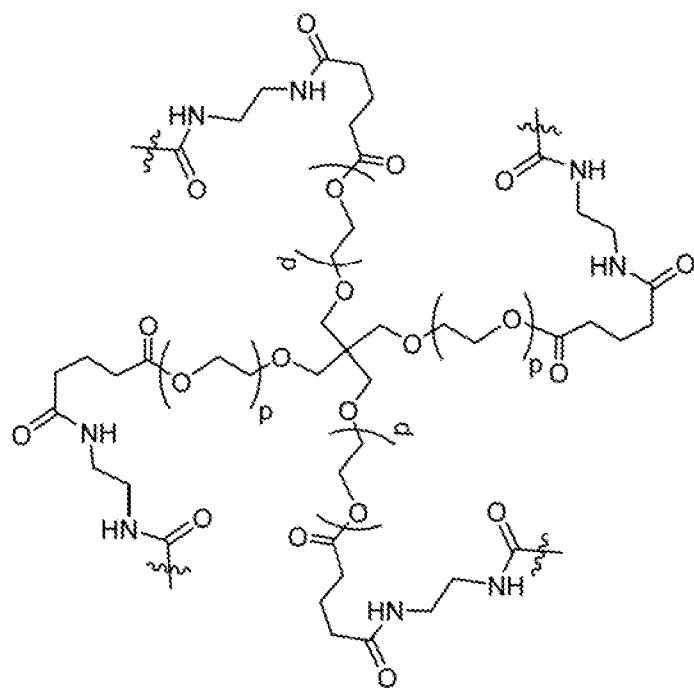
each R^2 , which may be identical or different, is independently chosen from halo, $-OY^1$,

$-NY^1Y^2$, $-OC(=O)Y^1$, $-NHC(=O)Y^1$, and $-NHC(=O)NY^1Y^2$ groups, wherein each Y^1 and each Y^2 , which may be identical or different, are independently chosen from H, C_{1-12} alkyl, C_{2-12} alkenyl, C_{2-12} alkynyl, C_{1-12} haloalkyl, C_{2-12} haloalkenyl, C_{2-12} haloalkynyl, C_{6-18} aryl, and C_{1-13} heteroaryl groups, wherein Y^1 and Y^2 may join together along with the nitrogen atom to which they are attached to form a ring;

each R^3 , which may be identical or different, is independently chosen from:


wherein each R^6 , which may be identical or different, is independently chosen from H, C_{1-12} alkyl and C_{1-12} haloalkyl groups, and wherein each R^7 , which may be identical or different, is independently chosen from C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, $-OY^3$, $-NHOH$, $-NHOCH_3$, $-NHCN$, and $-NY^3Y^4$ groups, wherein each Y^3 and each Y^4 , which may be identical or different, are independently chosen from H, C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{1-8} haloalkyl, C_{2-8} haloalkenyl, and C_{2-8} haloalkynyl groups, wherein Y^3 and Y^4 may join together along with the nitrogen atom to which they are attached to form a ring;

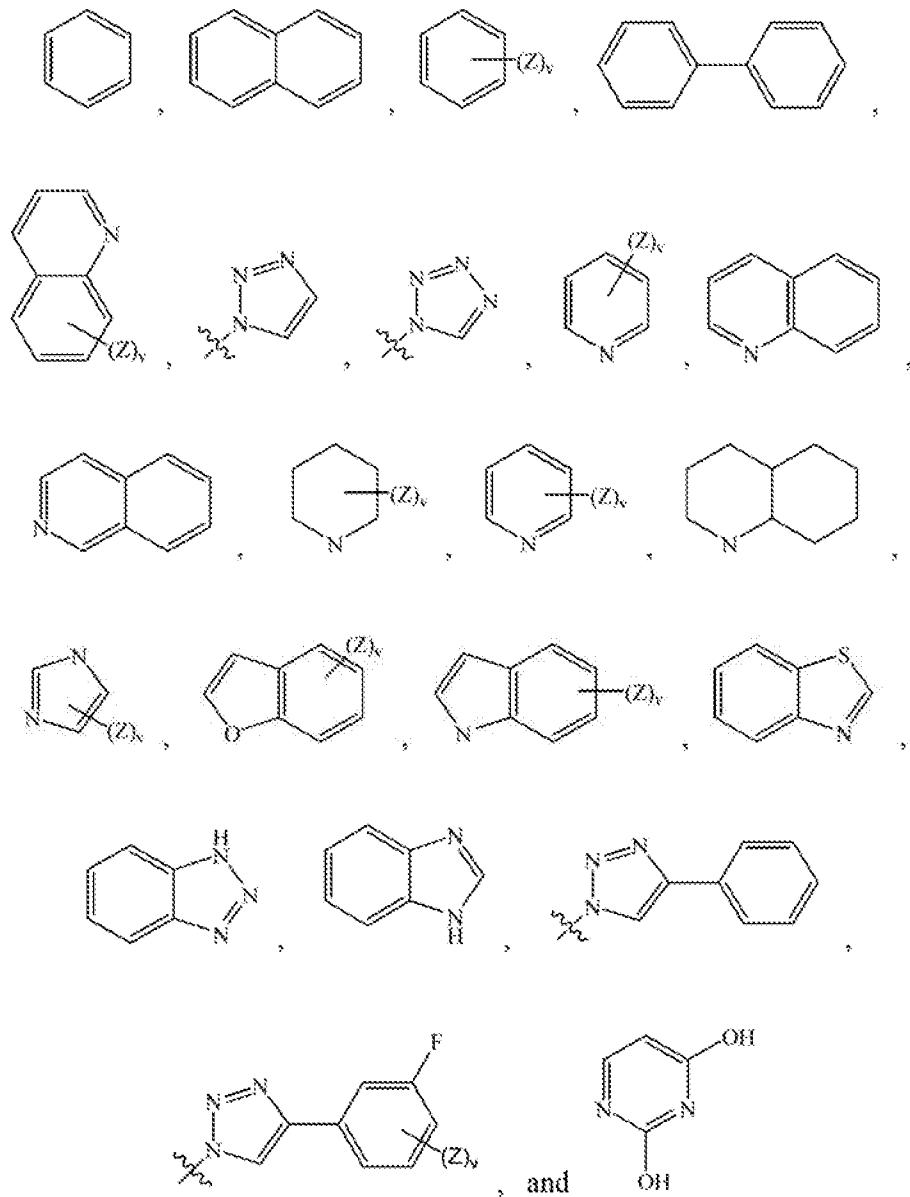
each R^4 , which may be identical or different, is independently chosen from $-CN$, C_{1-4} alkyl, and C_{1-4} haloalkyl groups;


m is chosen from integers ranging from 2 to 256; and

L is chosen from linker groups;

with the proviso that when m is 4, each R^1 and each R^4 is methyl, each R^2 is $-OC(=O)Ph$, and each R^3 is

then the linker groups are not chosen from


wherein p is chosen from integers ranging from 0 to 250.

[0034] In some embodiments, at least one R^1 is H. In some embodiments, at least one R^1 is chosen from C_{1-12} alkyl groups. In some embodiments, at least one R^1 is chosen from C_{1-6} alkyl groups. In some embodiments, at least one R^1 is methyl. In some embodiments, at least one R^1 is ethyl.

[0035] In some embodiments, each R^1 is H. In some embodiments, each R^1 , which may be identical or different, is independently chosen from C_{1-12} alkyl groups. In some embodiments, each R^1 , which may be identical or different, is independently chosen from C_1 .

R^1 alkyl groups. In some embodiments, each R^1 is identical and chosen from C_{1-6} alkyl groups. In some embodiments, each R^1 is methyl. In some embodiments, each R^1 is ethyl.

[0036] In some embodiments, at least one R^1 is chosen from $-\text{NHC}(=\text{O})\text{R}^5$ groups. In some embodiments, each R^1 is chosen from $-\text{NHC}(=\text{O})\text{R}^5$ groups. In some embodiments, at least one R^5 is chosen from H, C_{1-8} alkyl, C_{6-18} aryl, and C_{1-13} heteroaryl groups. In some embodiments, each R^5 is chosen from H, C_{1-8} alkyl, C_{6-18} aryl, and C_{1-13} heteroaryl groups. In some embodiments, at least one R^5 is chosen from

groups, wherein each Z is independently chosen from H, -OH, Cl, F, N₃, -NH₂, C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₆₋₁₄ aryl, -OC₁₋₈ alkyl, -OC₂₋₈ alkenyl, -OC₂₋₈ alkynyl, and -OC₆₋₁₄ aryl groups, wherein v is chosen from integers ranging from 0 to 3.

[0037] In some embodiments, at least one R² is chosen from halo groups. In some embodiments, at least one R² is fluoro. In some embodiments, at least one R² is chloro. In some embodiments, at least one R² is chosen from -OY¹ groups. In some embodiments, at least one R² is -OH. In some embodiments, at least one R² is chosen from -NY¹Y² groups. In some embodiments, at least one R² is chosen from -OC(=O)Y¹ groups. In some embodiments, at least one R² is chosen from -NHC(=O)Y¹ groups. In some embodiments, at least one R² is chosen from -NHC(=O)NY¹Y² groups.

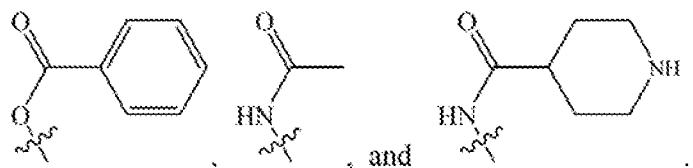
[0038] In some embodiments, each R², which may be identical or different, is independently chosen from halo groups. In some embodiments, each R² is fluoro. In some embodiments, each R² is chloro. In some embodiments, each R², which may be identical or different, is independently chosen from -OY¹ groups. In some embodiments, each R² is -OH. In some embodiments, each R², which may be identical or different, is independently chosen from -NY¹Y² groups. In some embodiments, each R², which may be identical or different, is independently chosen from -OC(=O)Y¹ groups. In some embodiments, each R², which may be identical or different, is independently chosen from -NHC(=O)Y¹ groups. In some embodiments, each R², which may be identical or different, is independently chosen from -NHC(=O)NY¹Y² groups. In some embodiments, each R² is identical and chosen from -OY¹ groups. In some embodiments, each R² is identical and chosen from -NY¹Y² groups. In some embodiments, each R² is identical and chosen from -OC(=O)Y¹ groups. In some embodiments, each R² is identical and chosen from -NHC(=O)Y¹ groups. In some embodiments, each R² is identical and chosen from -NHC(=O)NY¹Y² groups.

[0039] In some embodiments, at least one Y¹ and/or at least one Y² is chosen from H, C₁₋₁₂ alkyl, C₆₋₁₈ aryl, and C₁₋₁₃ heteroaryl groups. In some embodiments, at least one Y¹ and/or at least one Y² is H. In some embodiments, at least one Y¹ and/or at least one Y² is chosen from C₁₋₁₂ alkyl groups. In some embodiments, at least one Y¹ and/or at least one Y² is chosen from C₁₋₈ alkyl groups. In some embodiments, at least one Y¹ and/or at least one Y² is chosen from C₁₋₃ alkyl groups. In some embodiments, at least one Y¹ and/or at least one Y²

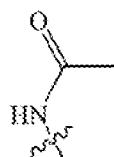
Y^2 is chosen from C_{6-18} aryl groups. In some embodiments, at least one Y^1 and/or at least one Y^2 is chosen from C_{6-12} aryl groups. In some embodiments, at least one Y^1 and/or at least one Y^2 is chosen from C_{6-10} aryl groups. In some embodiments, at least one Y^1 and/or at least one Y^2 is chosen from C_{1-13} heteroaryl groups. In some embodiments, at least one Y^1 and/or at least one Y^2 is chosen from C_{1-9} heteroaryl groups. In some embodiments, at least one Y^1 and/or at least one Y^2 is chosen from C_{1-5} heteroaryl groups. In some embodiments, at least one Y^1 and/or at least one Y^2 is chosen from C_{1-3} heteroaryl groups.

[0040] In some embodiments, each Y^1 , which may be identical or different, is independently chosen from H, C_{1-12} alkyl, C_{6-18} aryl, and C_{1-13} heteroaryl groups. In some embodiments, each Y^1 is H. In some embodiments, each Y^1 , which may be identical or different, is independently chosen from C_{1-12} alkyl groups. In some embodiments, each Y^1 , which may be identical or different, is independently chosen from C_{1-8} alkyl groups. In some embodiments, each Y^1 , which may be identical or different, is independently chosen from C_{1-4} alkyl groups. In some embodiments, each Y^1 , which may be identical or different, is independently chosen from C_{6-18} aryl groups. In some embodiments, each Y^1 , which may be identical or different, is independently chosen from C_{6-12} aryl groups. In some embodiments, each Y^1 , which may be identical or different, is independently chosen from C_{6-10} aryl groups. In some embodiments, each Y^1 , which may be identical or different, is independently chosen from C_{1-13} heteroaryl groups. In some embodiments, each Y^1 , which may be identical or different, is independently chosen from C_{1-9} heteroaryl groups. In some embodiments, each Y^1 , which may be identical or different, is independently chosen from C_{1-5} heteroaryl groups. In some embodiments, each Y^1 , which may be identical or different, is independently chosen from C_{1-3} heteroaryl groups.

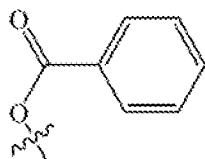
[0041] In some embodiments, each Y^2 , which may be identical or different, is independently chosen from H, C_{1-12} alkyl, C_{6-18} aryl, and C_{1-13} heteroaryl groups. In some embodiments, each Y^2 is H. In some embodiments, each Y^2 , which may be identical or different, is independently chosen from C_{1-12} alkyl groups. In some embodiments, each Y^2 , which may be identical or different, is independently chosen from C_{1-8} alkyl groups. In some embodiments, each Y^2 , which may be identical or different, is independently chosen from C_{1-4} alkyl groups. In some embodiments, each Y^2 , which may be identical or different, is independently chosen from C_{6-18} aryl groups. In some embodiments, each Y^2 , which may be identical or different, is independently chosen from C_{6-12} aryl groups.

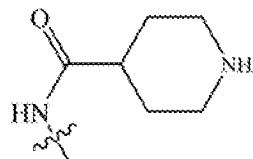

identical or different, is independently chosen from C₆₋₁₂ aryl groups. In some embodiments, each Y², which may be identical or different, is independently chosen from C₆₋₁₀ aryl groups. In some embodiments, each Y², which may be identical or different, is independently chosen from C₁₋₁₃ heteroaryl groups. In some embodiments, each Y², which may be identical or different, is independently chosen from C₁₋₉ heteroaryl groups. In some embodiments, each Y², which may be identical or different, is independently chosen from C₁₋₅ heteroaryl groups. In some embodiments, each Y², which may be identical or different, is independently chosen from C₁₋₃ heteroaryl groups.

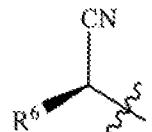
[0042] In some embodiments, each Y¹ is identical and chosen from H, C₁₋₁₂ alkyl, C₆₋₁₈ aryl, and C₁₋₁₃ heteroaryl groups. In some embodiments, each Y¹ is identical and chosen from C₁₋₁₂ alkyl groups. In some embodiments, each Y¹ is identical and chosen from C₁₋₈ alkyl groups. In some embodiments, each Y¹ is identical and chosen from C₁₋₄ alkyl groups. In some embodiments, each Y¹ is identical and chosen from C₆₋₁₈ aryl groups. In some embodiments, each Y¹ is identical and chosen from C₆₋₁₂ aryl groups. In some embodiments, each Y¹ is identical and chosen from C₆₋₁₀ aryl groups. In some embodiments, each Y¹ is identical and chosen from C₁₋₁₃ heteroaryl groups. In some embodiments, each Y¹ is identical and chosen from C₁₋₉ heteroaryl groups. In some embodiments, each Y¹ is identical and chosen from C₁₋₅ heteroaryl groups. In some embodiments, each Y¹ is identical and chosen from C₁₋₃ heteroaryl groups.

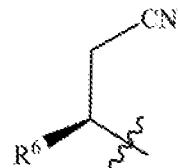

[0043] In some embodiments, each Y² is identical and chosen from H, C₁₋₁₂ alkyl, C₆₋₁₈ aryl, and C₁₋₁₃ heteroaryl groups. In some embodiments, each Y² is identical and chosen from C₁₋₁₂ alkyl groups. In some embodiments, each Y² is identical and chosen from C₁₋₈ alkyl groups. In some embodiments, each Y² is identical and chosen from C₁₋₄ alkyl groups. In some embodiments, each Y² is identical and chosen from C₆₋₁₈ aryl groups. In some embodiments, each Y² is identical and chosen from C₆₋₁₂ aryl groups. In some embodiments, each Y² is identical and chosen from C₆₋₁₀ aryl groups. In some embodiments, each Y² is identical and chosen from C₁₋₁₃ heteroaryl groups. In some embodiments, each Y² is identical and chosen from C₁₋₉ heteroaryl groups. In some embodiments, each Y² is identical and chosen from C₁₋₅ heteroaryl groups. In some embodiments, each Y² is identical and chosen from C₁₋₃ heteroaryl groups.

[0044] In some embodiments, at least one Y^1 is methyl. In some embodiments, at least one Y^1 is phenyl. In some embodiments, each Y^1 is methyl. In some embodiments, each Y^1 is phenyl. In some embodiments, at least one Y^1 is methyl and at least one Y^2 is H. In some embodiments, at least one Y^1 is phenyl and at least one Y^2 is H. In some embodiments, each Y^1 is methyl and each Y^2 is H. In some embodiments, each Y^1 is phenyl and each Y^2 is H.

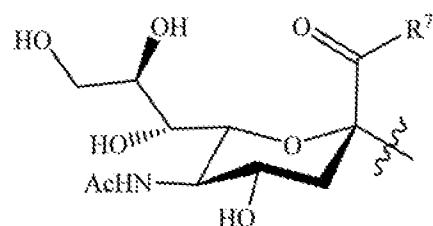

[0045] In some embodiments, at least one R^2 is chosen from

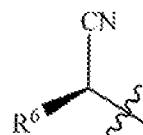

[0046] In some embodiments, each R^2 is

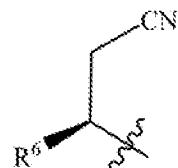

[0047] In some embodiments, each R^2 is

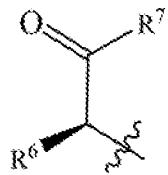

[0048] In some embodiments, each R^2 is

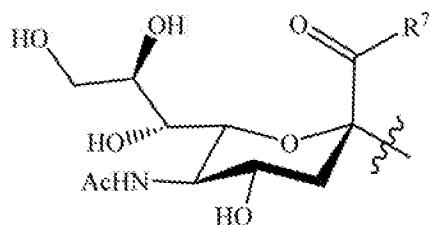
[0049] In some embodiments, at least one R^3 , which may be identical or different, is independently chosen from

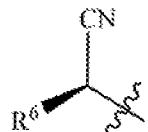

[0050] In some embodiments, at least one R^3 , which may be identical or different, is independently chosen from

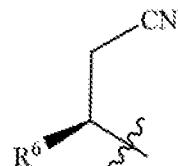

[0051] In some embodiments, at least one R^3 , which may be identical or different, is independently chosen from

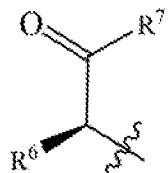

[0052] In some embodiments, at least one R^3 is


[0053] In some embodiments, each R^3 , which may be identical or different, is independently chosen from


[0054] In some embodiments, each R^3 , which may be identical or different, is independently chosen from

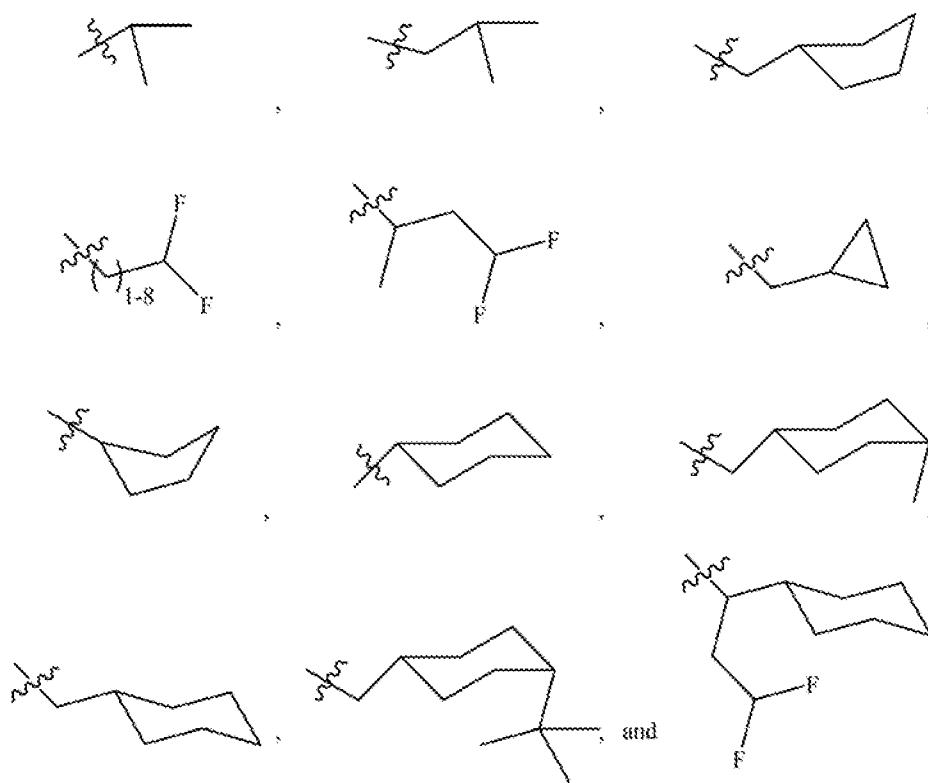

[0055] In some embodiments, each R³, which may be identical or different, is independently chosen from


[0056] In some embodiments, each R³ is


[0057] In some embodiments, each R³ is identical and chosen from

[0058] In some embodiments, each R³ is identical and chosen from

[0059] In some embodiments, each R³ is identical and chosen from

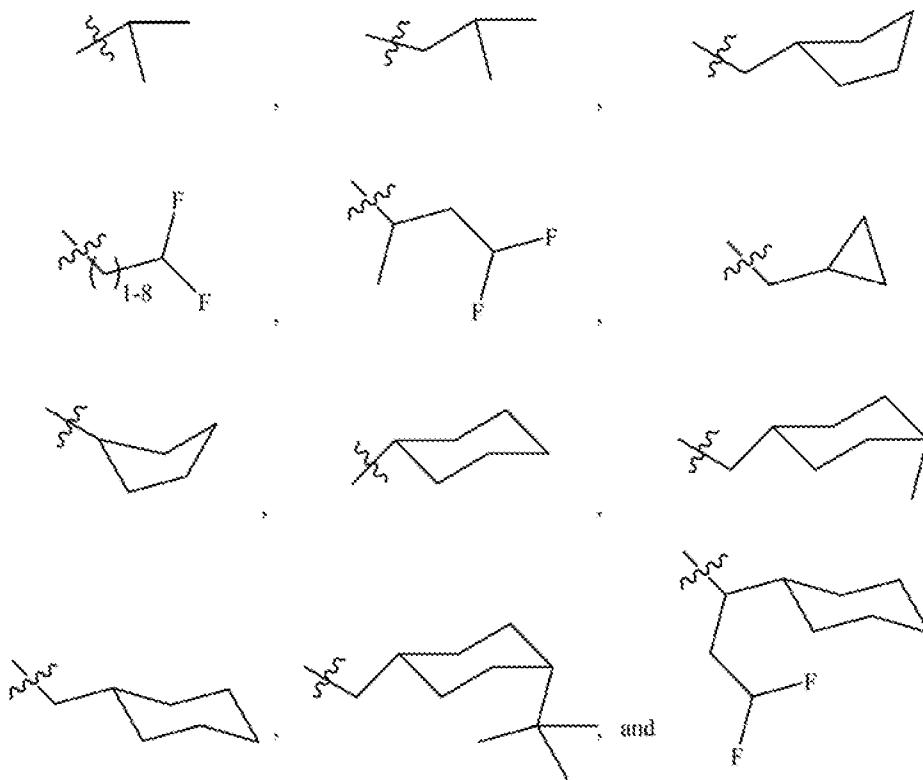


[0060] In some embodiments, each R⁶, which may be identical or different, is independently chosen from C₁₋₁₂ alkyl and C₁₋₁₂ haloalkyl groups. In some embodiments, each R⁶, which may be identical or different, is independently chosen from C₁₋₁₂ alkyl groups.

In some embodiments, each R⁶, which may be identical or different, is independently chosen from C₁₋₈ alkyl groups. In some embodiments, each R⁶, which may be identical or different, is independently chosen from C₁₋₅ alkyl groups. In some embodiments, each R⁶, which may be identical or different, is independently chosen from C₂₋₄ alkyl groups. In some embodiments, each R⁶, which may be identical or different, is independently chosen from C₂₋₇ alkyl groups. In some embodiments, each R⁶, which may be identical or different, is independently chosen from C₁₋₁₂ haloalkyl groups. In some embodiments, each R⁶, which may be identical or different, is independently chosen from C₁₋₈ haloalkyl groups. In some embodiments, each R⁶, which may be identical or different, is independently chosen from C₁₋₅ haloalkyl groups.

[0061] In some embodiments, each R⁶ is identical and chosen from C₁₋₁₂ alkyl and C₁₋₁₂ haloalkyl groups. In some embodiments, each R⁶ is identical and chosen from C₁₋₁₂ alkyl groups. In some embodiments, each R⁶ is identical and chosen from C₁₋₈ alkyl groups. In some embodiments, each R⁶ is identical and chosen from C₁₋₅ alkyl groups. In some embodiments, each R⁶ is identical and chosen from C₂₋₄ alkyl groups. In some embodiments, each R⁶ is identical and chosen from C₂₋₇ alkyl groups. In some embodiments, each R⁶ is identical and chosen from C₁₋₁₂ haloalkyl groups. In some embodiments, each R⁶ is identical and chosen from C₁₋₈ haloalkyl groups. In some embodiments, each R⁶ is identical and chosen from C₁₋₅ haloalkyl groups.

[0062] In some embodiments, at least one R⁶ is chosen from


[0063] In some embodiments, at least one R^6 is

[0064] In some embodiments, at least one R^6 is

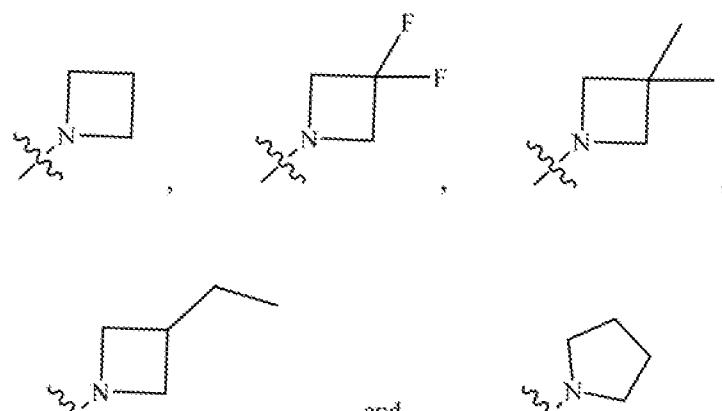
[0065] In some embodiments, each R^6 is chosen from

[0066] In some embodiments, each R^6 is

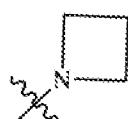
[0067] In some embodiments, each R^6 is

[0068] In some embodiments, at least one R^7 is --OH . In some embodiments, at least one R^7 is chosen from --NHY^3 groups. In some embodiments, at least one R^7 is chosen from --NY^3Y^4 groups. In some embodiments, each R^7 , which may be identical or different, is independently chosen from --NHY^3 groups. In some embodiments, each R^7 , which may be identical or different, is independently chosen from --NY^3Y^4 groups. In some embodiments, each R^7 is identical and chosen from --NHY^3 groups. In some embodiments, each R^7 is identical and chosen from --NY^3Y^4 groups. In some embodiments, each R^7 is --OH .

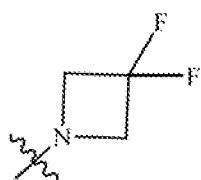
[0069] In some embodiments, at least one Y^3 and/or at least one Y^4 is chosen from C_{1-8} alkyl and C_{1-8} haloalkyl groups. In some embodiments, at least one Y^3 and/or at least one Y^4 is chosen from C_{1-8} alkyl groups. In some embodiments, at least one Y^3 and/or at least one Y^4 is chosen from C_{1-8} haloalkyl groups. In some embodiments, each Y^3 and/or each Y^4 , which may be identical or different, are independently chosen from C_{1-8} alkyl and C_{1-8} haloalkyl groups. In some embodiments, each Y^3 and/or each Y^4 , which may be identical or different, are independently chosen from C_{1-8} alkyl groups. In some embodiments, each Y^3 and/or each Y^4 , which may be identical or different, are independently chosen from C_{1-8} haloalkyl groups.

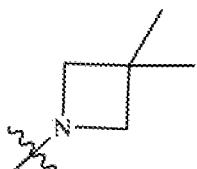

[0070] In some embodiments, each Y^3 is identical and chosen from C_{1-8} alkyl and C_{1-8} haloalkyl groups. In some embodiments, each Y^3 is identical and chosen from C_{1-8} alkyl groups. In some embodiments, each Y^3 is identical and chosen from C_{1-8} haloalkyl groups.

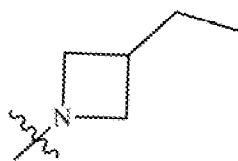
[0071] In some embodiments, each Y^4 is identical and chosen from C_{1-8} alkyl and C_{1-8} haloalkyl groups. In some embodiments, each Y^4 is identical and chosen from C_{1-8} alkyl groups. In some embodiments, each Y^4 is identical and chosen from C_{1-8} haloalkyl groups.


[0072] In some embodiments, at least one Y^3 and/or at least one Y^4 is methyl. In some embodiments, at least one Y^3 and/or at least one Y^4 is ethyl. In some embodiments, at least one Y^3 and/or at least one Y^4 is H. In some embodiments, each Y^3 and/or each Y^4 is methyl. In some embodiments, each Y^3 and/or each Y^4 is ethyl. In some embodiments, each Y^3 and/or each Y^4 is H.

[0073] In some embodiments, at least one Y^2 and at least one Y^3 join together along with the nitrogen atom to which they are attached to form a ring. In some embodiments, each Y^2 and each Y^3 join together along with the nitrogen atom to which they are attached to form a ring.

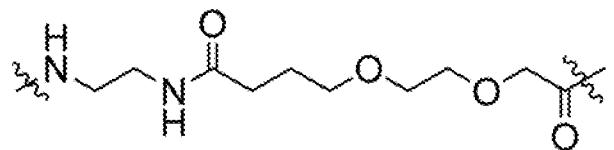

[0074] In some embodiments, at least one R^7 is chosen from

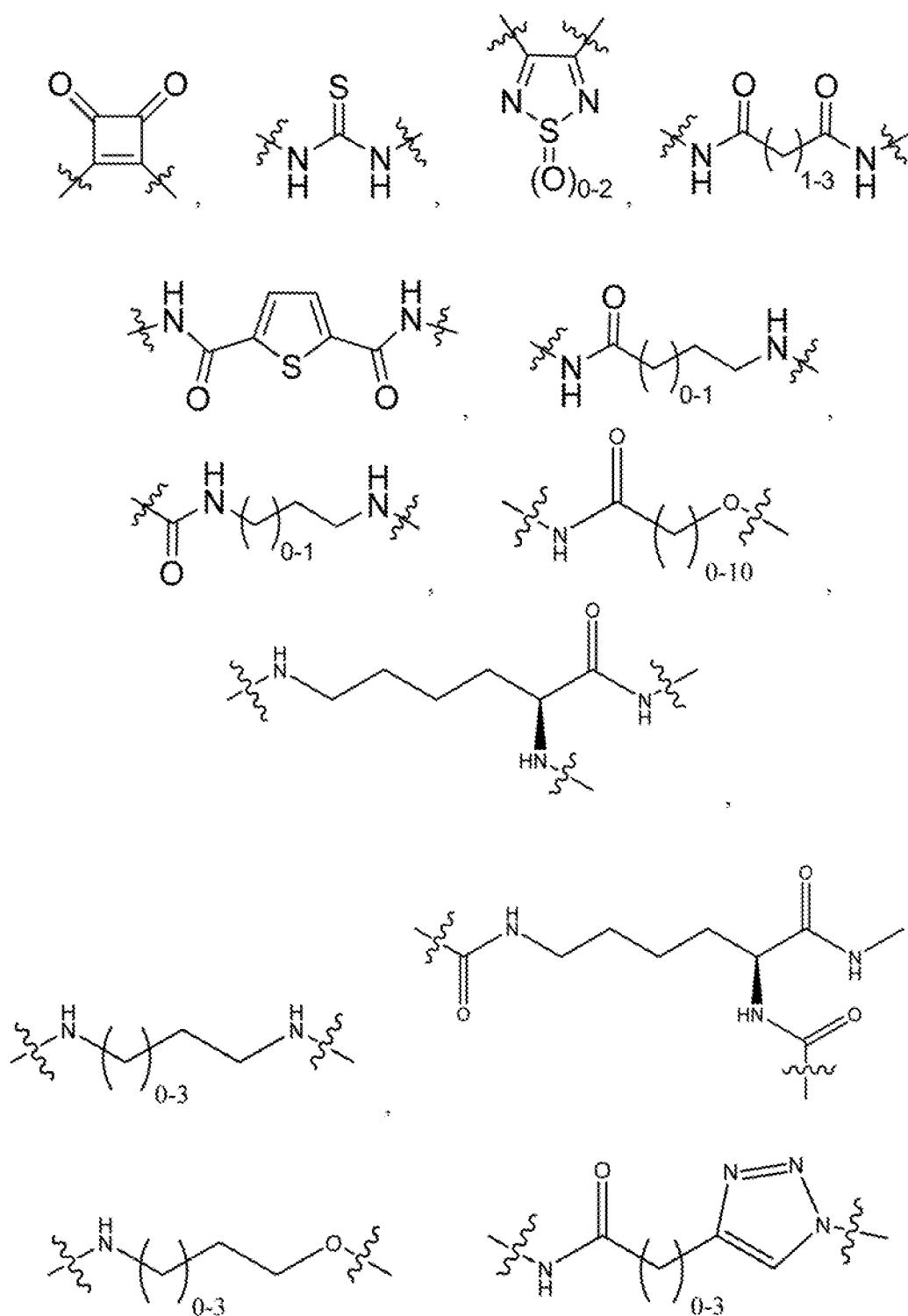

[0075] In some embodiments, each R^7 is

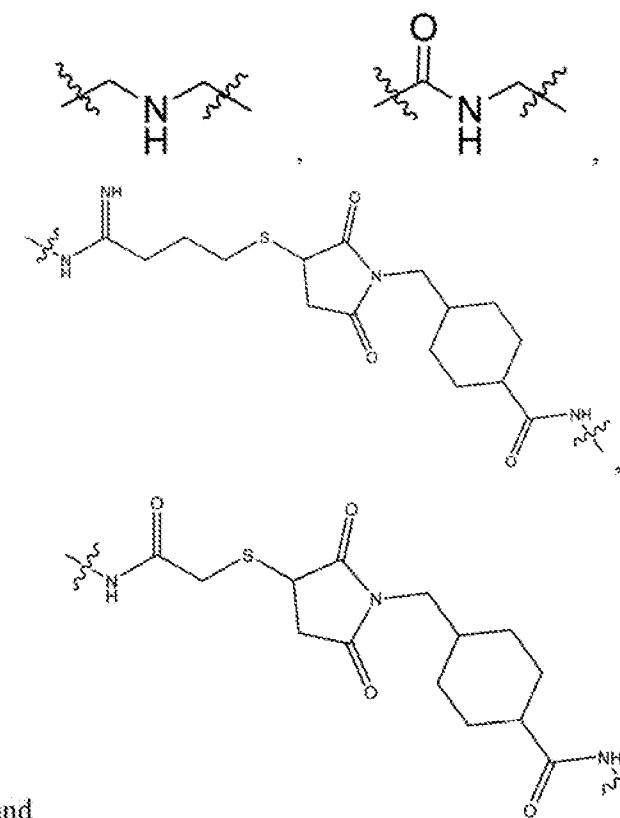

[0076] In some embodiments, each R^7 is

[0077] In some embodiments, each R^7 is

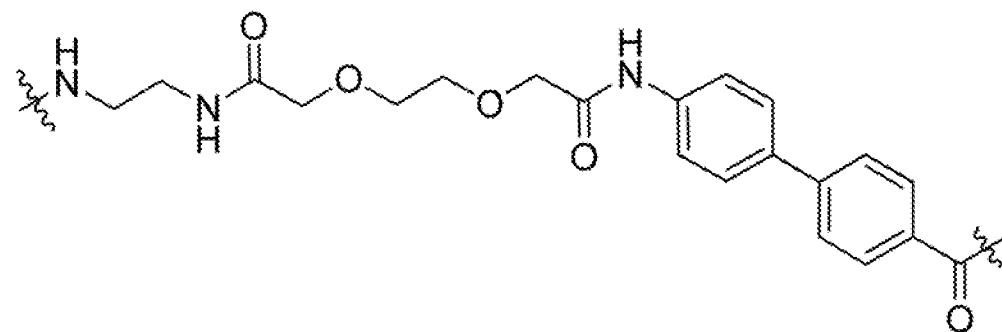
[0078] In some embodiments, each R^7 is

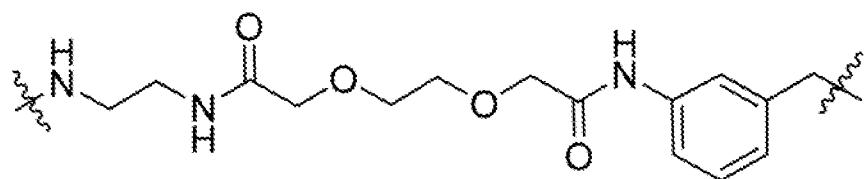

[0079] In some embodiments, each R^7 is


[0080] In some embodiments, at least one R⁴ is chosen from halomethyl groups. In some embodiments, at least one R⁴ is CF₃. In some embodiments, at least one R⁴ is CH₃. In some embodiments, at least one R⁴ is CN. In some embodiments, each R⁴, which may be identical or different, is independently chosen from halomethyl groups. In some embodiments, each R⁴ is identical and chosen from halomethyl groups. In some embodiments, each R⁴ is CF₃. In some embodiments, each R⁴ is CH₃. In some embodiments, each R⁴ is CN.


[0081] In some embodiments, m is chosen from integers ranging from 2 to 128. In some embodiments, m is chosen from integers ranging from 2 to 64. In some embodiments, m is chosen from integers ranging from 2 to 32. In some embodiments, m is chosen from integers ranging from 2 to 16. In some embodiments, m is chosen from integers ranging from 2 to 8. In some embodiments, m is chosen from integers ranging from 2 to 4. In some embodiments, m is 4. In some embodiments, m is 3. In some embodiments, m is 2.

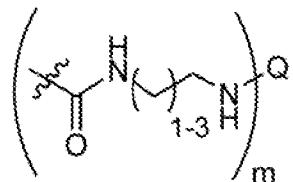
[0082] In some embodiments, linker groups may be chosen from groups comprising spacer groups, such spacer groups as, for example, -(CH₂)_p- and -O(CH₂)_p-, wherein p is chosen from integers ranging from 1 to 250. Other non-limiting examples of spacer groups include carbonyl groups and carbonyl-containing groups such as, for example, amide groups. A non-limiting example of a spacer group is

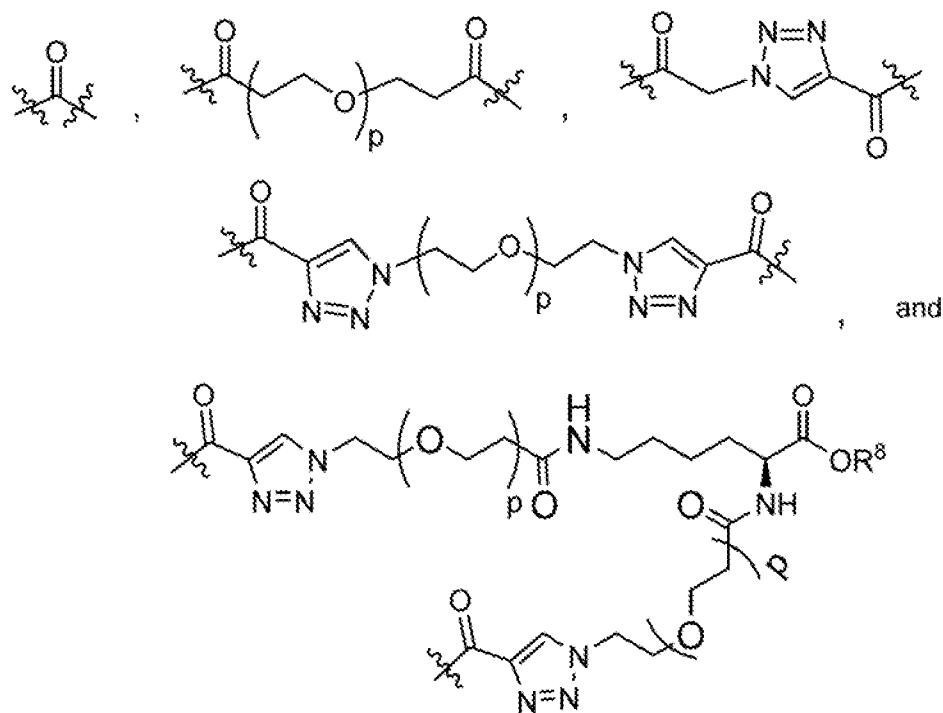

[0083] In some embodiments, the linker group is chosen from



[0084] Other linker groups, such as, for example, polyethylene glycols (PEGs) and $-\text{C}(=\text{O})\text{-NH-}(\text{CH}_2)_p\text{-C}(=\text{O})\text{-NH-}$, wherein p is chosen from integers ranging from 1 to 250, will be familiar to those of ordinary skill in the art and/or those in possession of the present disclosure.

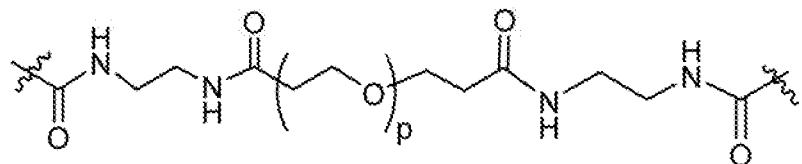
[0085] In some embodiments, the linker group is


[0086] In some embodiments, the linker group is

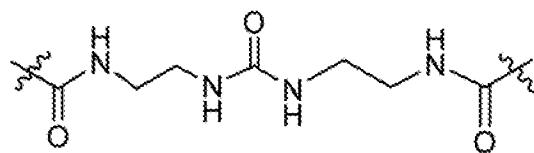

[0087] In some embodiments, the linker group is chosen from $-\text{C}(=\text{O})\text{NH}(\text{CH}_2)_2\text{NH}-$, $-\text{CH}_2\text{NHCH}_2-$, and $-\text{C}(=\text{O})\text{NHCH}_2-$. In some embodiments, the linker group is $-\text{C}(=\text{O})\text{NH}(\text{CH}_2)_2\text{NH}-$.

[0088] In some embodiments, L is chosen from dendrimers. In some embodiments, L is chosen from polyamidoamine (“PAMAM”) dendrimers. In some embodiments, L is chosen from PAMAM dendrimers comprising succinamic. In some embodiments, L is PAMAM G0 generating a tetramer. In some embodiments, L is PAMAM G1 generating an octamer. In some embodiments, L is PAMAM G2 generating a 16-mer. In some embodiments, L is PAMAM G3 generating a 32-mer. In some embodiments, L is PAMAM G4 generating a 64-mer. In some embodiments, L is PAMAM G5 generating a 128-mer.

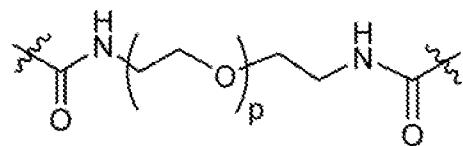
[0089] In some embodiments, L is chosen from



wherein Q is a chosen from

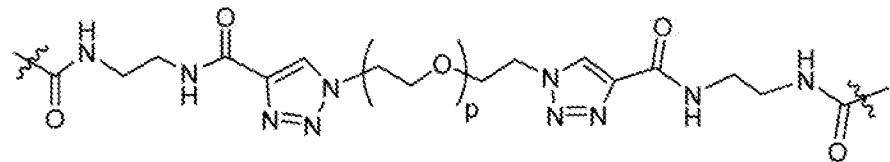

wherein R^8 is chosen from H, C₁₋₈ alkyl, C₆₋₁₈ aryl, C₇₋₁₉ arylalkyl, and C₁₋₁₃ heteroaryl groups and each p, which may be identical or different, is independently chosen from integers ranging from 0 to 250. In some embodiments, R^8 is chosen from C₁₋₈ alkyl. In some embodiments, R^8 is chosen from C₇₋₁₉ arylalkyl. In some embodiments, R^8 is H. In some embodiments, R^8 is benzyl.

[0090] In some embodiments, L is chosen from

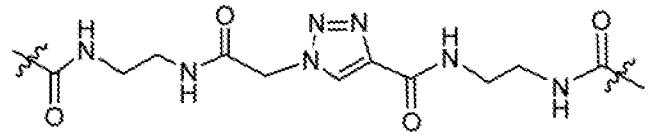


wherein p is chosen from integers ranging from 0 to 250.

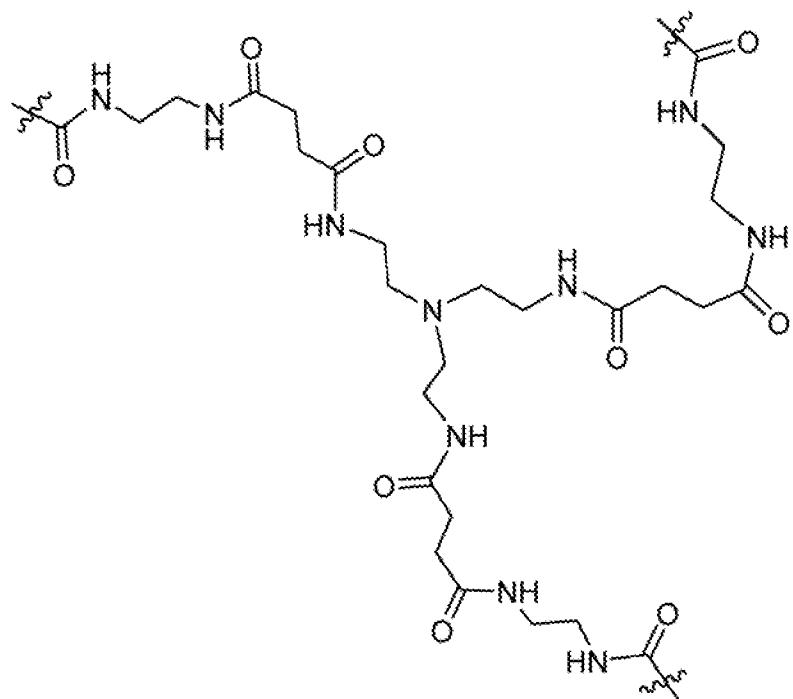
[0091] In some embodiments, L is chosen from



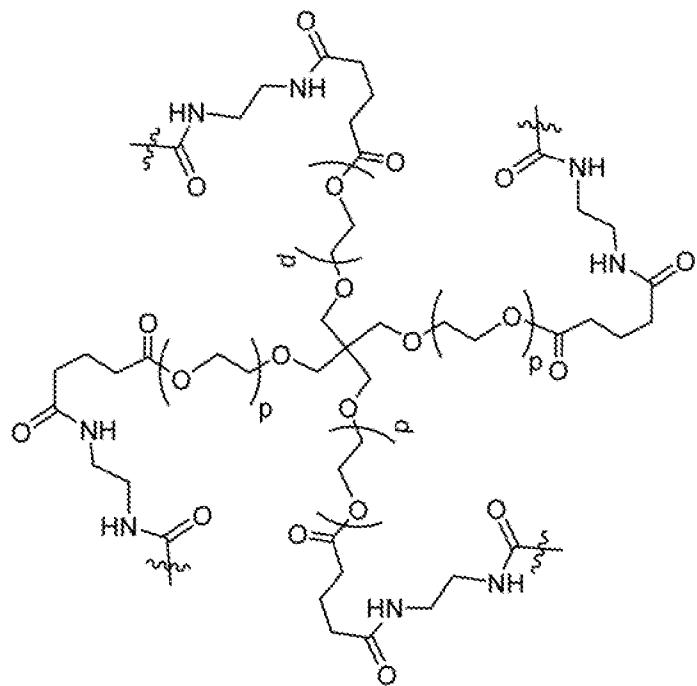
[0092] In some embodiments, L is chosen from


wherein p is chosen from integers ranging from 0 to 250.

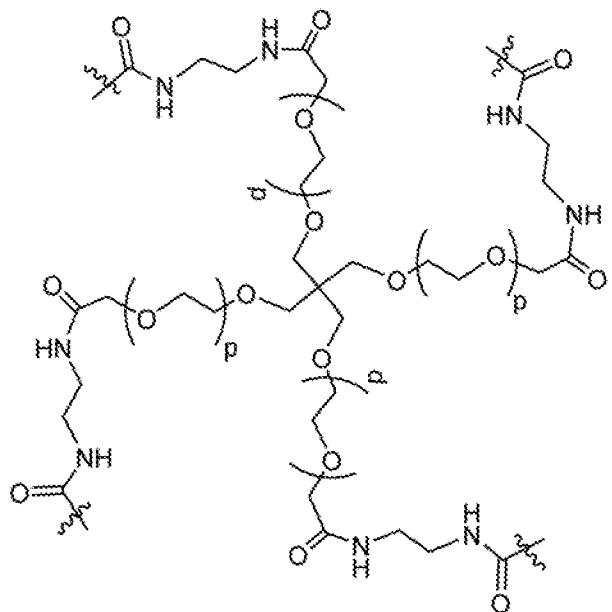
[0093] In some embodiments, L is chosen from



wherein p is chosen from integers ranging from 0 to 250.


[0094] In some embodiments, L is chosen from

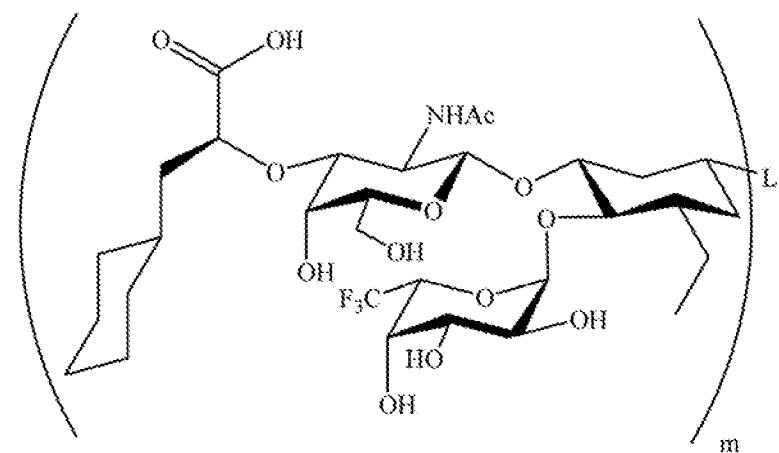
[0095] In some embodiments, L is chosen from



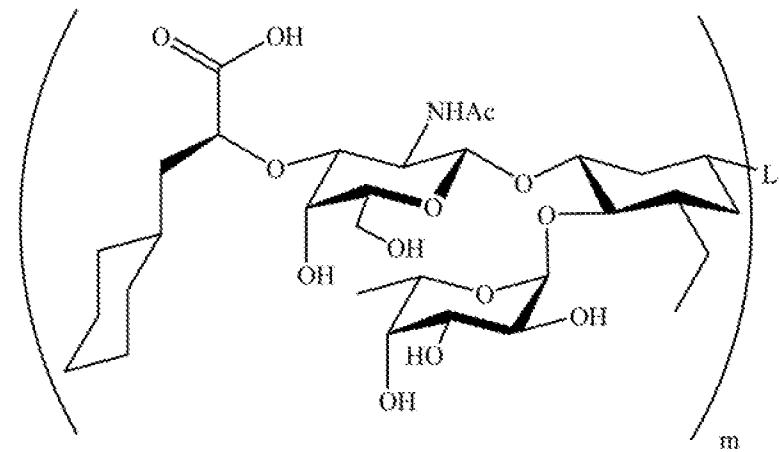
[0096] In some embodiments, L is chosen from

wherein p is chosen from integers ranging from 0 to 250.

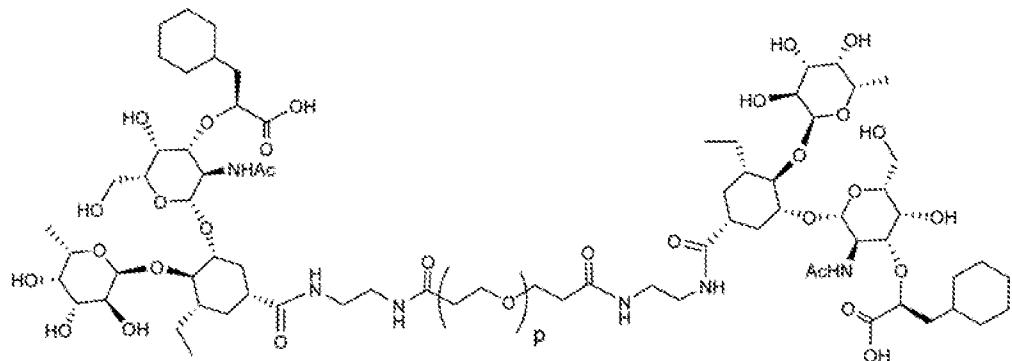
[0097] In some embodiments, L is chosen from



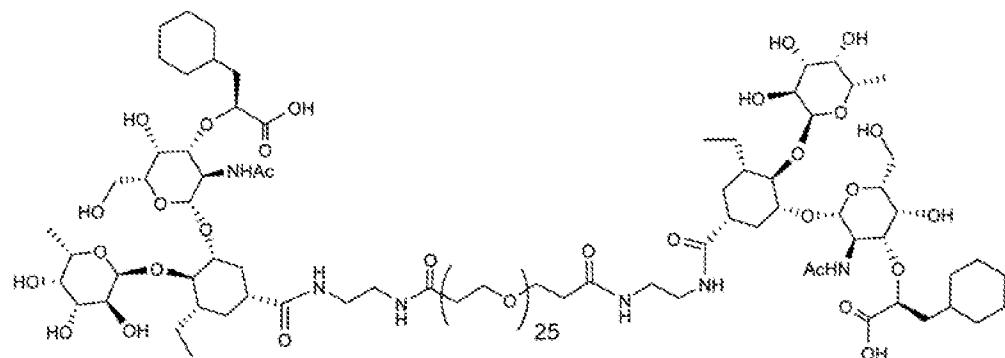
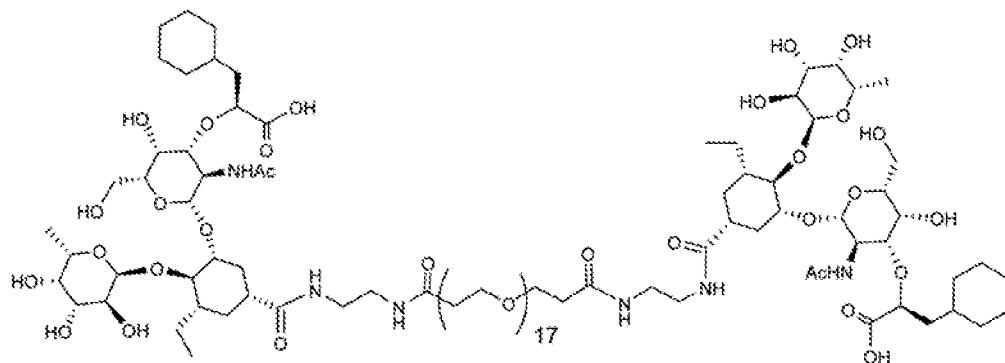
wherein p is chosen from integers ranging from 0 to 250.

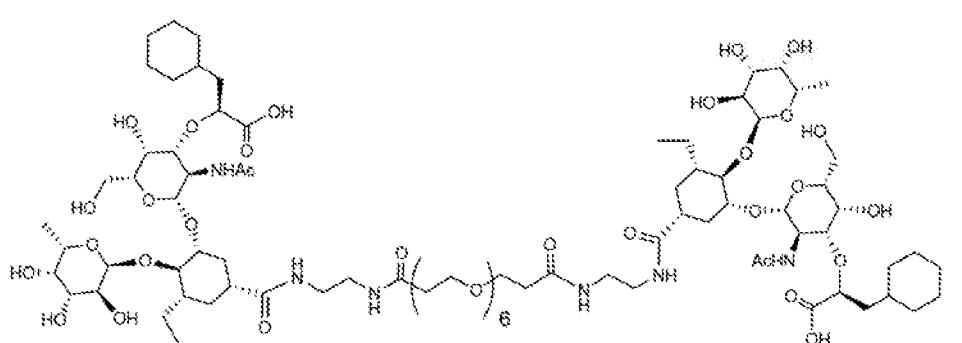
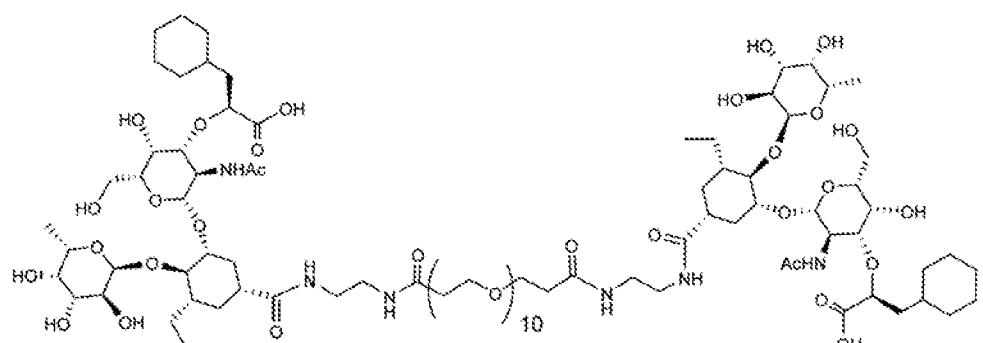
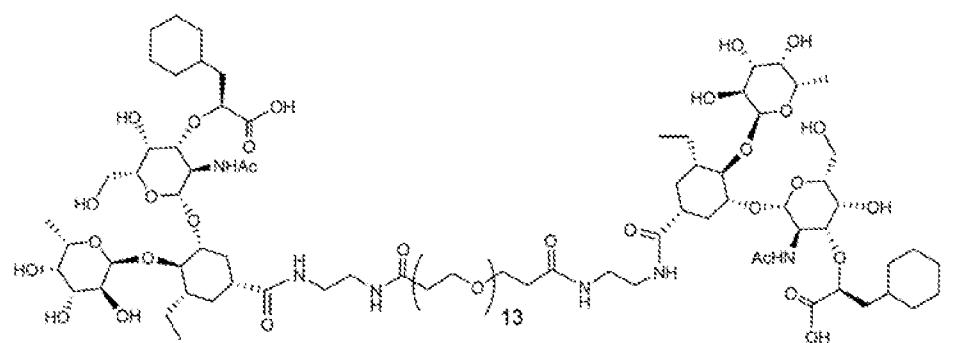
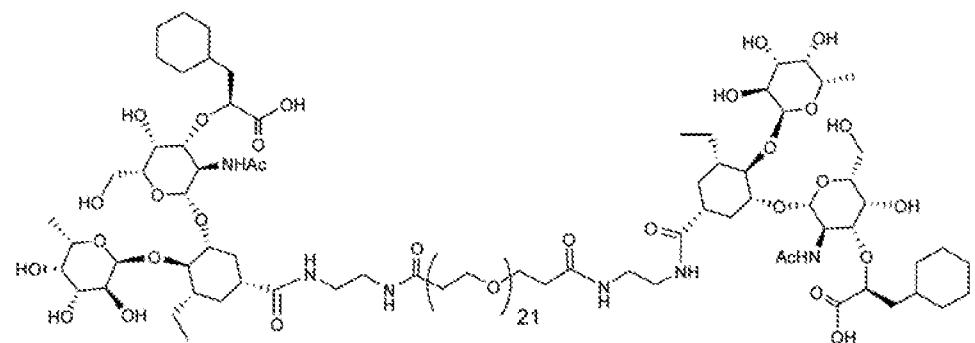

[0098] In some embodiments, p is chosen from integers ranging from 0 to 200. In some embodiments, p is chosen from integers ranging from 0 to 150. In some embodiments, p is chosen from integers ranging from 0 to 100. In some embodiments, p is chosen from integers ranging from 0 to 50. In some embodiments, p is chosen from integers ranging from 0 to 30. In some embodiments, p is chosen from integers ranging from 0 to 15. In some embodiments, p is chosen from integers ranging from 0 to 10. In some embodiments, p is chosen from integers ranging from 0 to 5. In some embodiments, p is 117. In some embodiments, p is 25. In some embodiments, p is 21. In some embodiments, p is 17. In some embodiments p is 13. In some embodiments, p is 10. In some embodiments, p is 8. In some embodiments, p is 6. In some embodiments, p is 5. In some embodiments, p is 4. In some embodiments, p is 3. In some embodiments, p is 2. In some embodiments, p is 1. In some embodiments, p is 0.

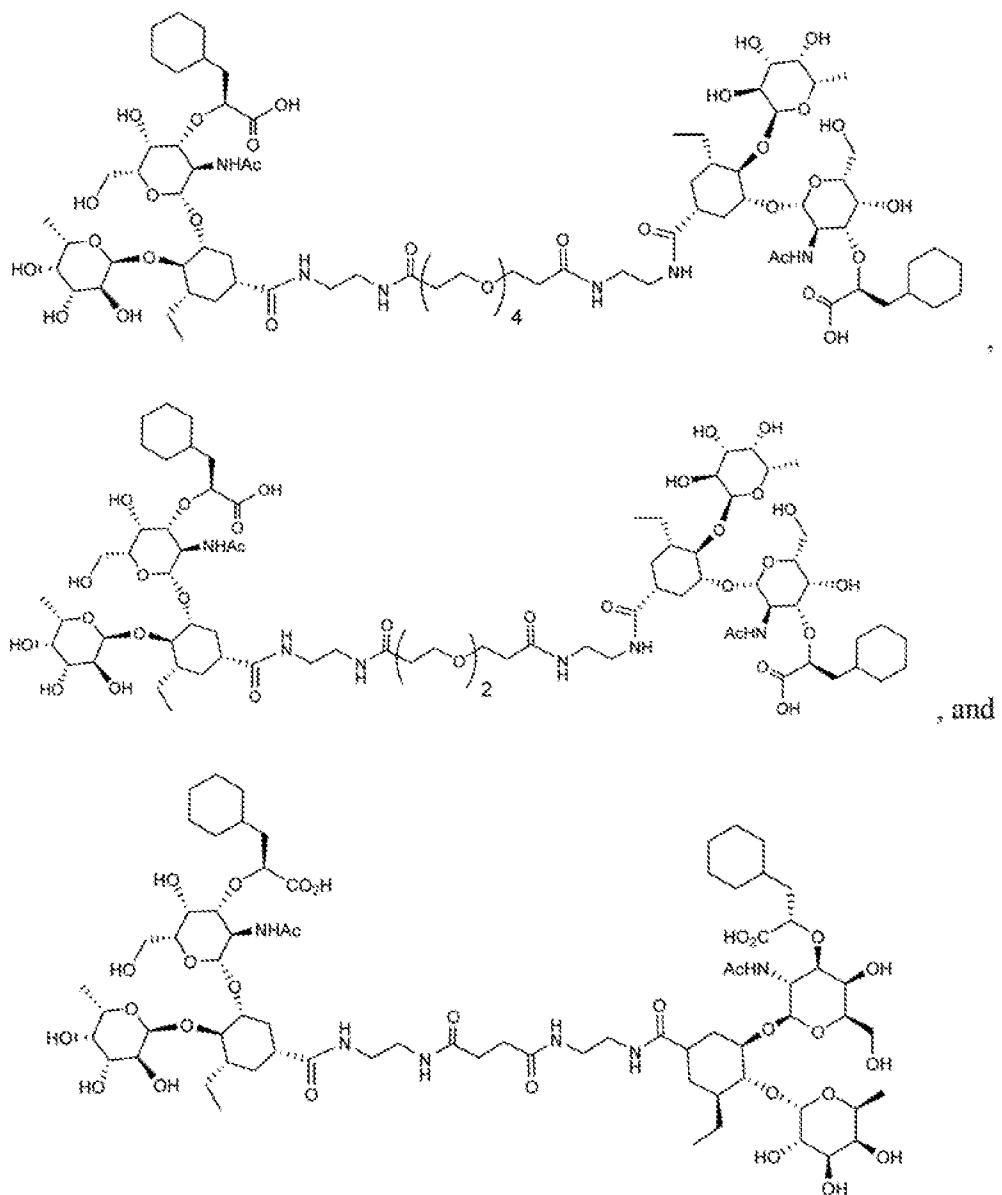
[0099] In some embodiments, at least one compound is chosen from compounds of Formula (I), wherein said compound is symmetrical.


[00100] In some embodiments, at least one compound is chosen from compounds having the following Formula:

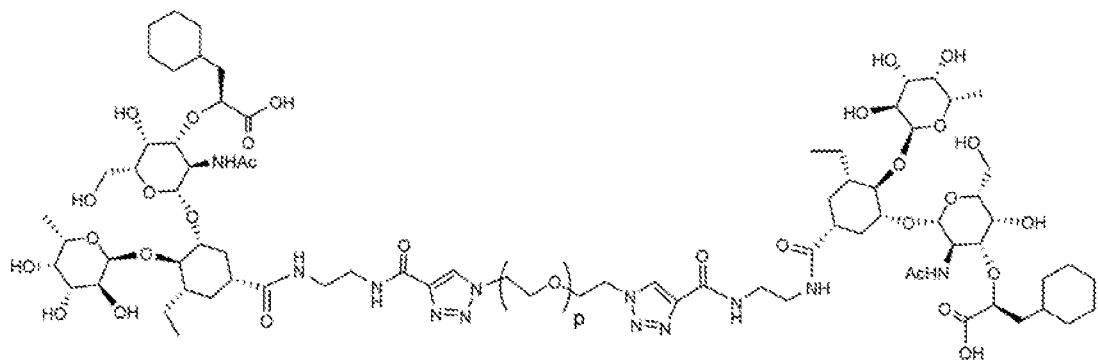
[00101] In some embodiments, at least one compound is chosen from compounds having the following Formula:

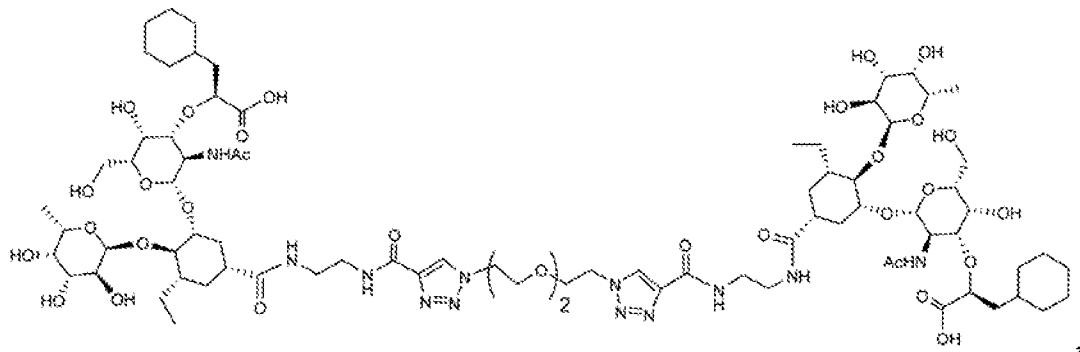







[00102] In some embodiments, at least one compound is chosen from compounds having the following Formula:

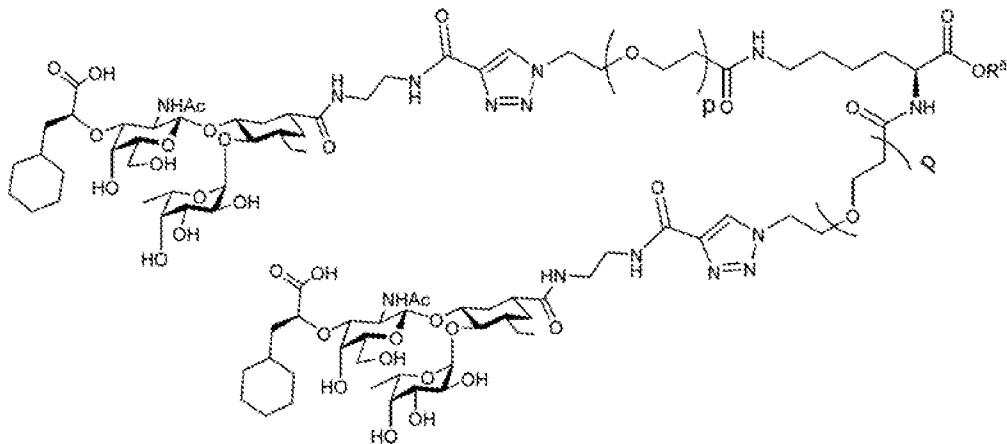


wherein p is chosen from integers ranging from 0 to 250. In some embodiments, p is chosen from integers ranging from 0 to 200. In some embodiments, p is chosen from integers ranging from 0 to 150. In some embodiments, p is chosen from integers ranging from 0 to 100. In some embodiments, p is chosen from integers ranging from 0 to 50. In some embodiments, p is chosen from integers ranging from 0 to 25. In some embodiments, p is chosen from integers ranging from 0 to 13. In some embodiments, p is chosen from integers ranging from 0 to 10.


[00103] In some embodiments, at least one compound is chosen from compounds having the following Formulae:

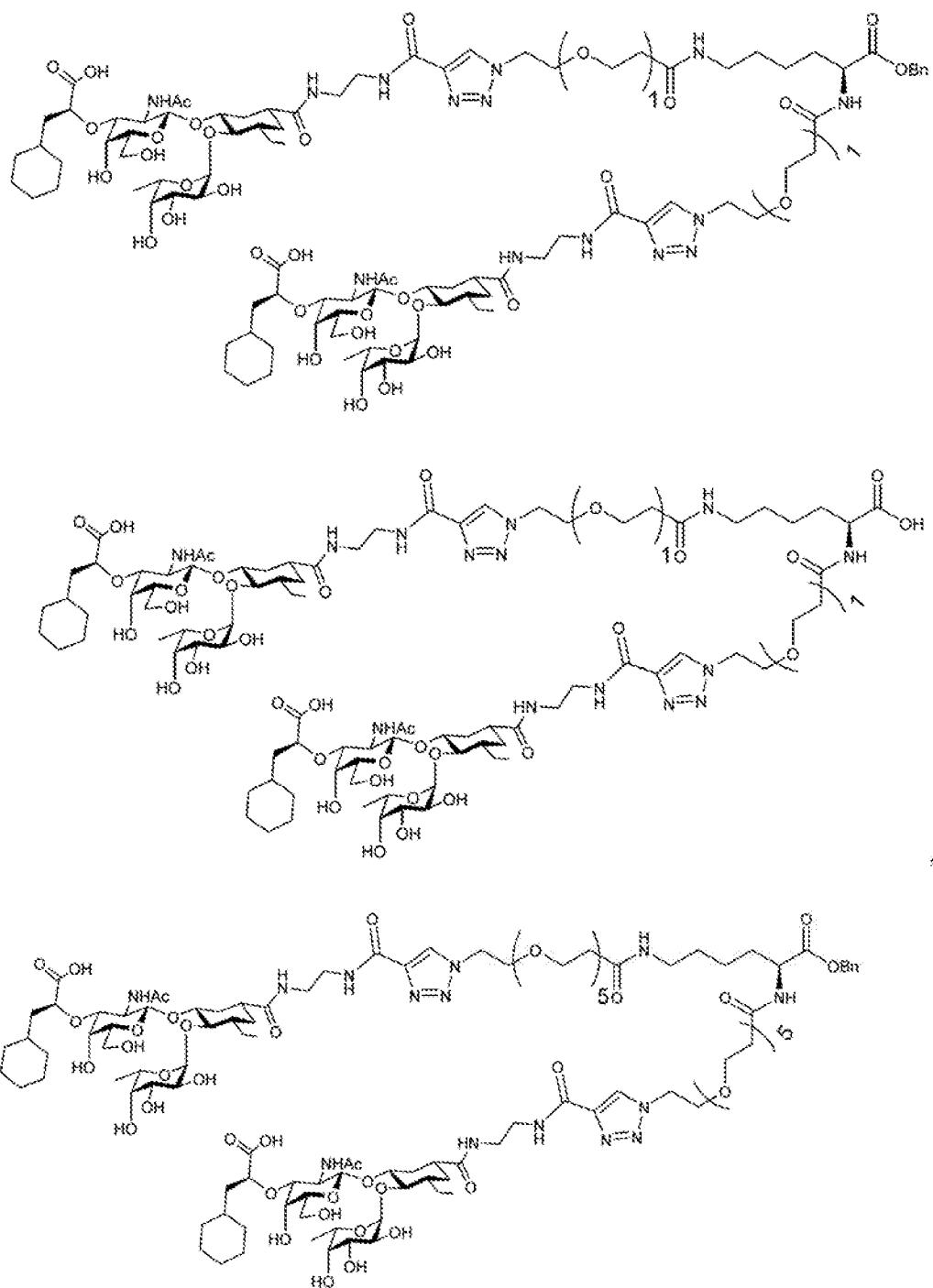


[00104] In some embodiments, at least one compound is chosen from compounds having the following Formula:

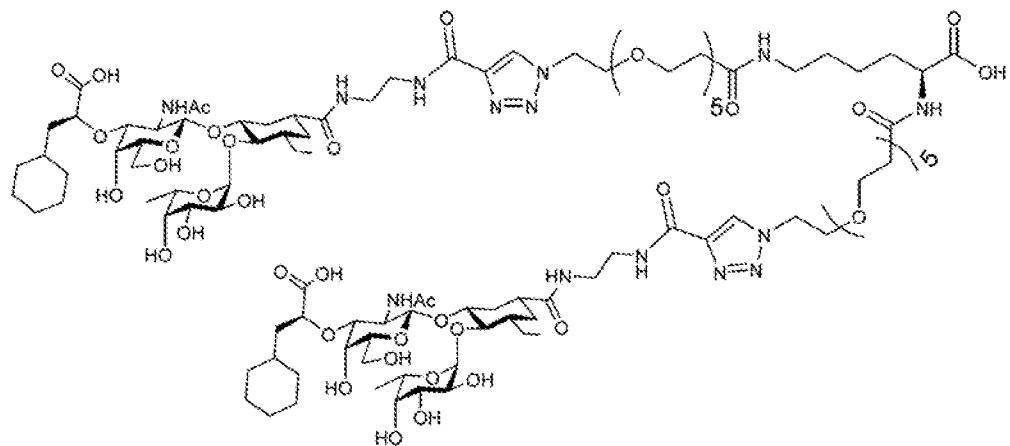


wherein p is chosen from integers ranging from 0 to 250. In some embodiments, p is chosen from integers ranging from 0 to 200. In some embodiments, p is chosen from integers ranging from 0 to 150. In some embodiments, p is chosen from integers ranging from 0 to 100. In some embodiments, p is chosen from integers ranging from 0 to 50. In some embodiments, p is chosen from integers ranging from 0 to 25. In some embodiments, p is chosen from integers ranging from 0 to 13. In some embodiments, p is chosen from integers ranging from 0 to 10. In some embodiments, p is chosen from integers ranging from 0 to 5.

[00105] In some embodiments, at least one compound is chosen from compounds having the following Formulae:

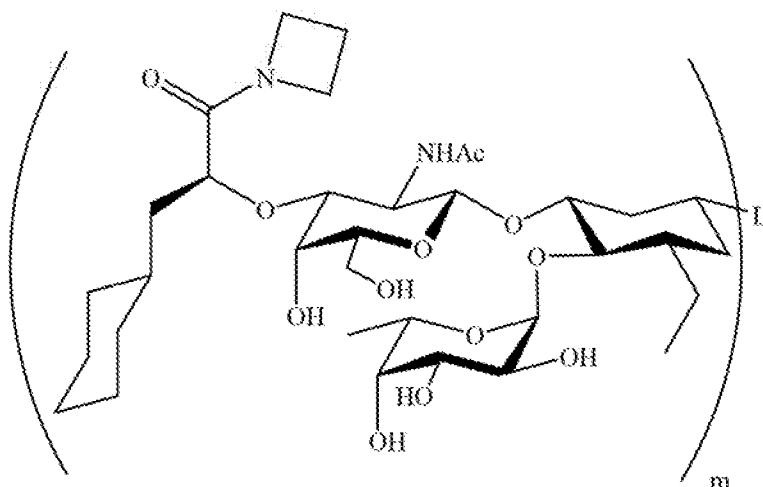


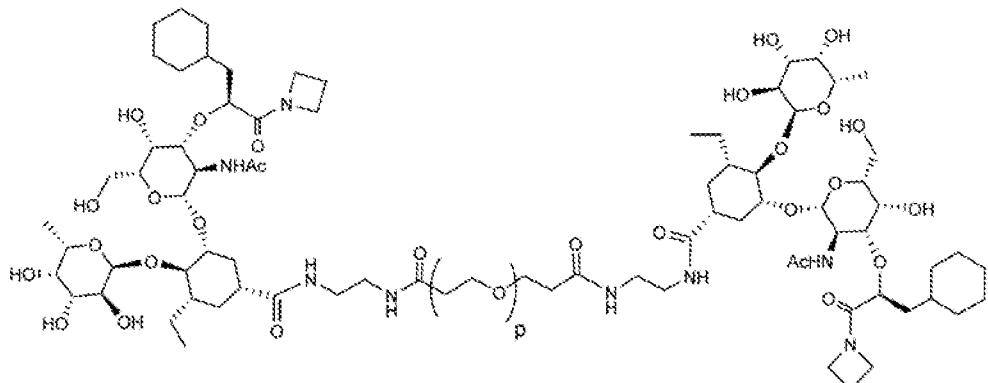
[00106] In some embodiments, at least one compound is chosen from compounds having the following Formula:



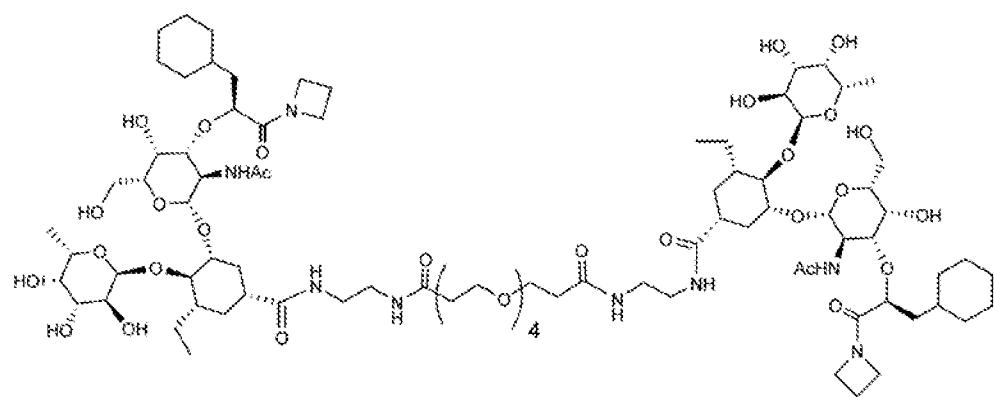
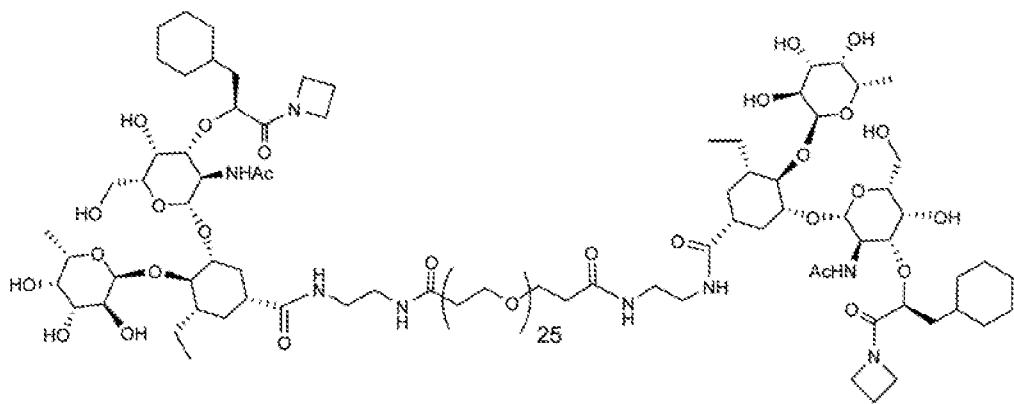
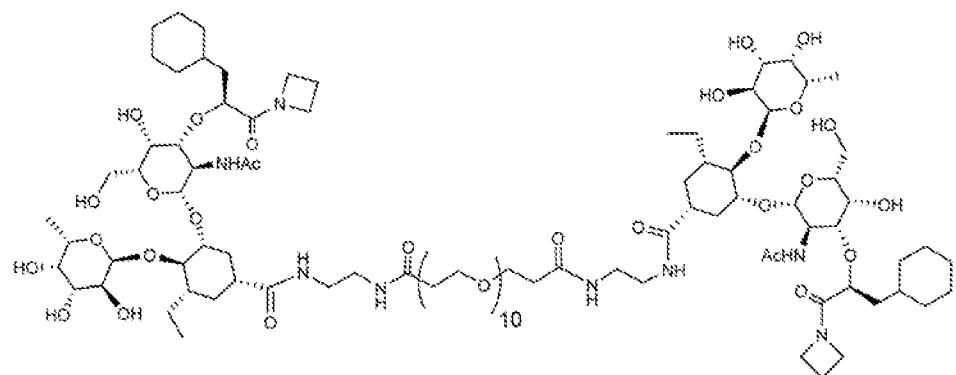
wherein R⁸ is chosen from H, C₁₋₈ alkyl, C₆₋₁₈ aryl, C₇₋₁₉ arylalkyl, and C₁₋₁₃ heteroaryl groups and each p, which may be identical or different, is independently chosen from integers ranging from 0 to 250. In some embodiments, R⁸ is chosen from H, C₁₋₈ alkyl, and C₇₋₁₉ arylalkyl groups. In some embodiments, R⁸ is chosen from C₁₋₈ alkyl groups. In some embodiments, R⁸ is chosen from C₇₋₁₉ arylalkyl groups. In some embodiments, R⁸ is H. In some embodiments, R⁸ is benzyl. In some embodiments, each p is identical and chosen from integers ranging from 0 to 250. In some embodiments, p is chosen from integers ranging from 0 to 200. In some embodiments, p is chosen from integers ranging from 0 to 150. In some embodiments, p is chosen from integers ranging from 0 to 100. In some embodiments, p is chosen from integers ranging from 0 to 50. In some embodiments, p is chosen from integers ranging from 0 to 25. In some embodiments, p is chosen from integers ranging from 0 to 13. In some embodiments, p is chosen from integers ranging from 0 to 10. In some embodiments, p is chosen from integers ranging from 0 to 5.

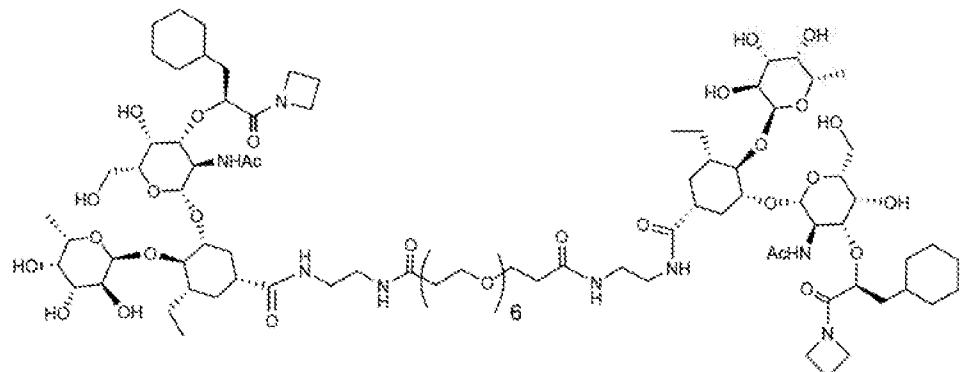

[00107] In some embodiments, at least one compound is chosen from compounds having the following Formulae:

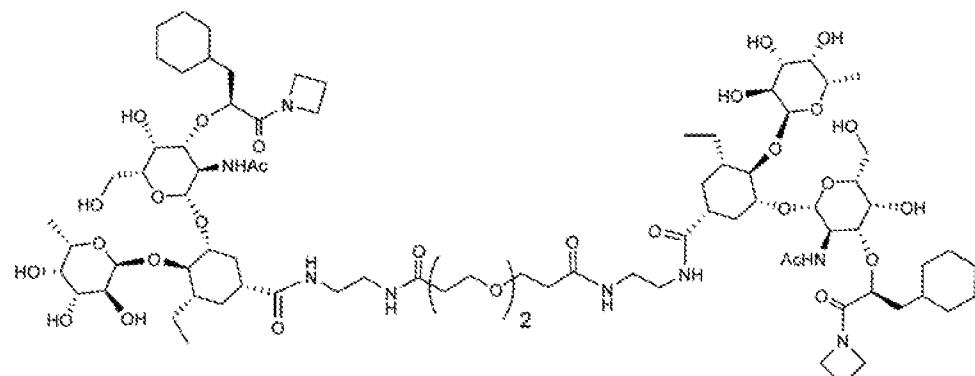

, and


[00108] In some embodiments, at least one compound is chosen from compounds having the following Formula:

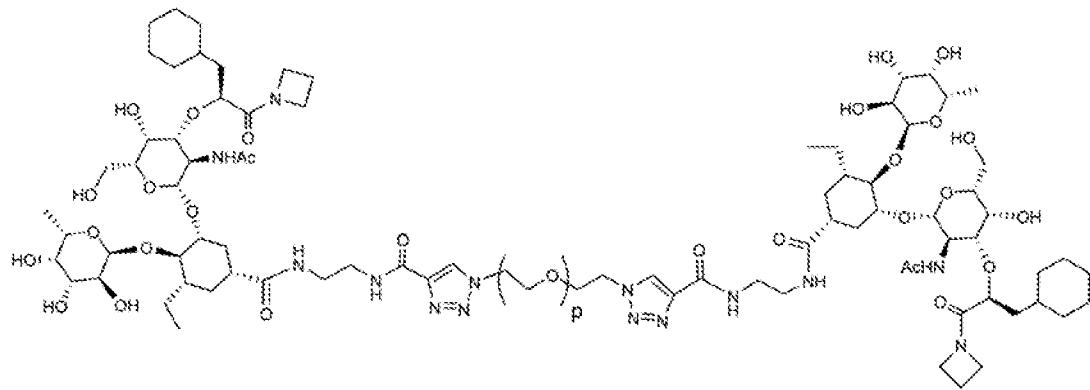
[00109] In some embodiments, at least one compound is chosen from compounds having the following Formula:

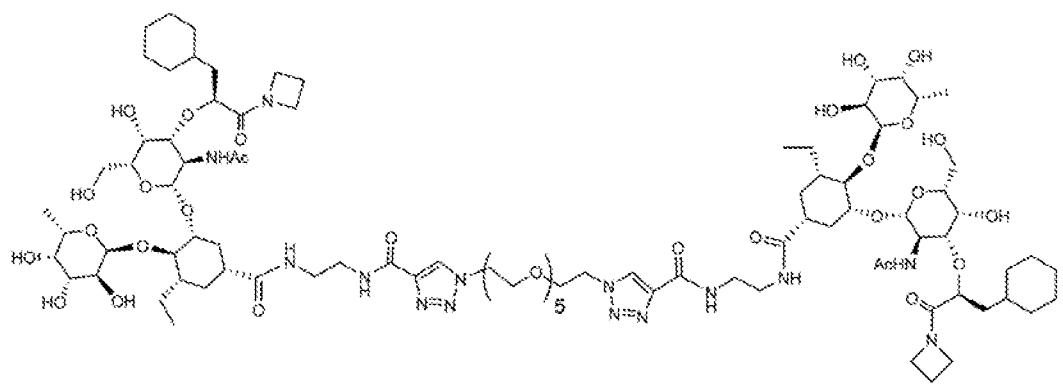
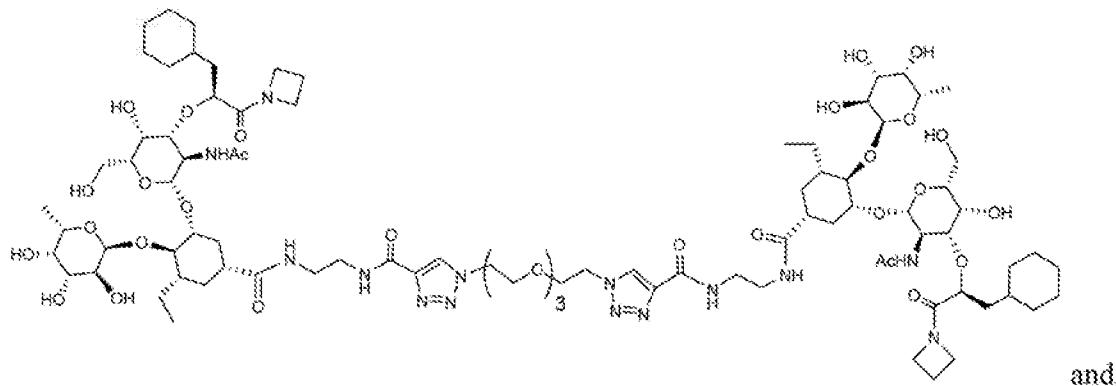

[00110] In some embodiments, at least one compound is chosen from compounds having the following Formula:

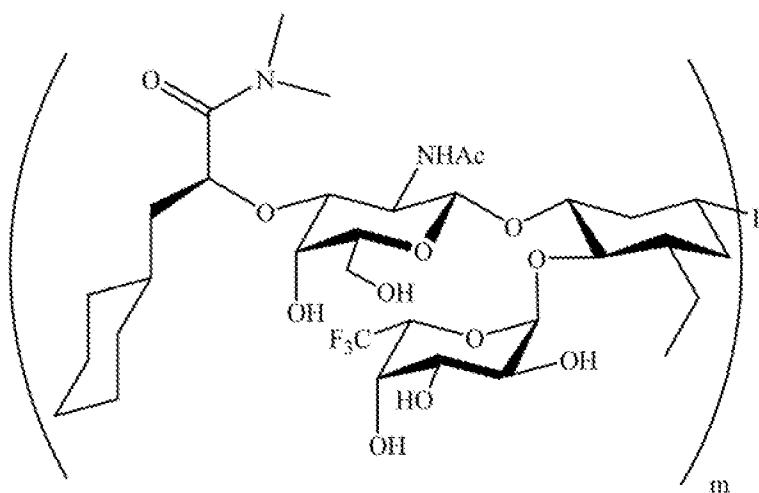

wherein p is chosen from integers ranging from 0 to 250. In some embodiments, p is chosen from integers ranging from 0 to 200. In some embodiments, p is chosen from integers ranging from 0 to 150. In some embodiments, p is chosen from integers ranging from 0 to 100. In some embodiments, p is chosen from integers ranging from 0 to 50. In some embodiments, p is chosen from integers ranging from 0 to 25. In some embodiments, p is chosen from integers ranging from 0 to 13. In some embodiments, p is chosen from integers ranging from 0 to 10.

[00111] In some embodiments, at least one compound is chosen from compounds having the following Formulae:

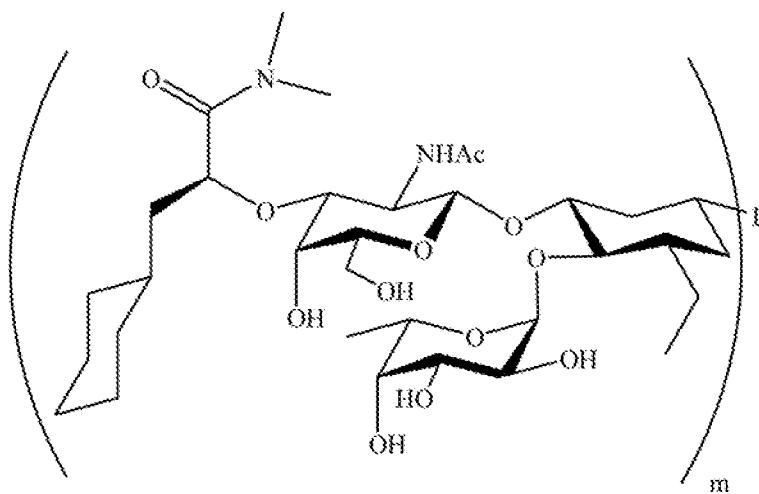


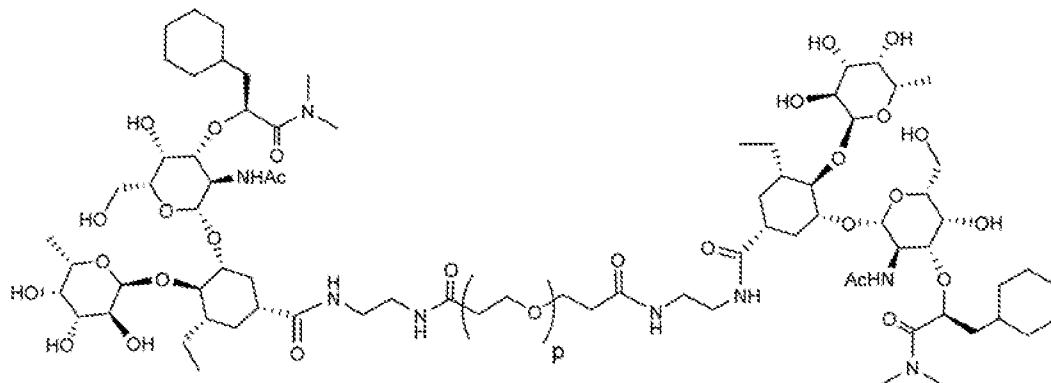
, and



[00112] In some embodiments, at least one compound is chosen from compounds having the following Formula:

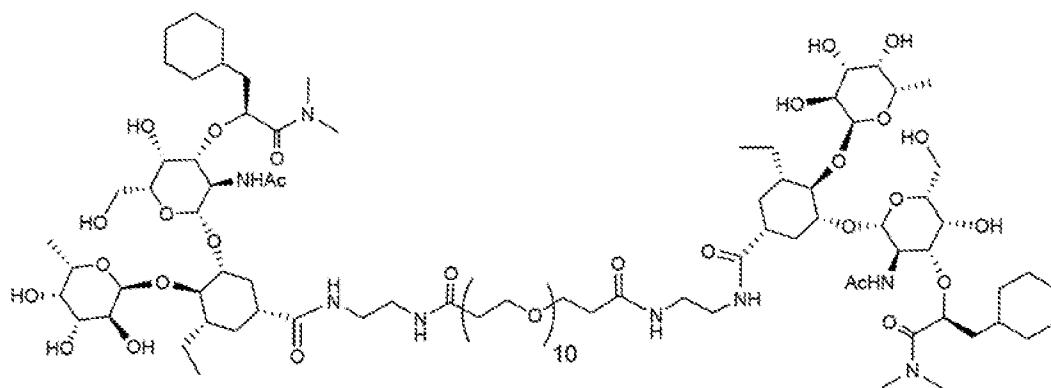

wherein p is chosen from integers ranging from 0 to 250. In some embodiments, p is chosen from integers ranging from 0 to 200. In some embodiments, p is chosen from integers ranging from 0 to 150. In some embodiments, p is chosen from integers ranging from 0 to 100. In some embodiments, p is chosen from integers ranging from 0 to 50. In some embodiments, p is chosen from integers ranging from 0 to 25. In some embodiments, p is

chosen from integers ranging from 0 to 13. In some embodiments, p is chosen from integers ranging from 0 to 10.

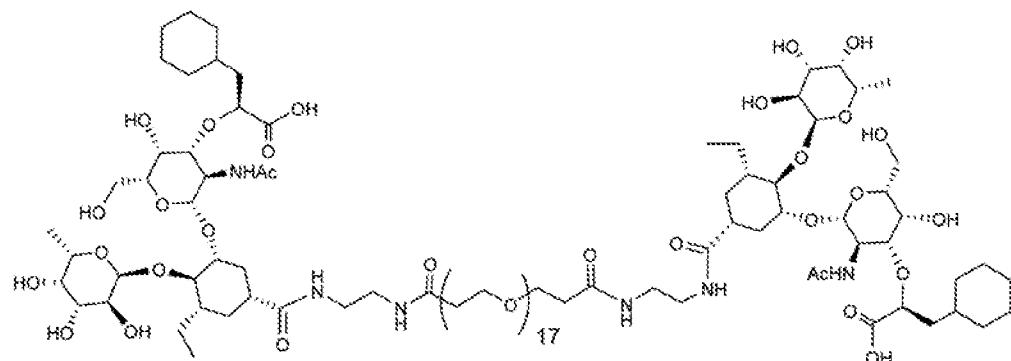

[00113] In some embodiments, at least one compound is chosen from compounds having the following Formulae:

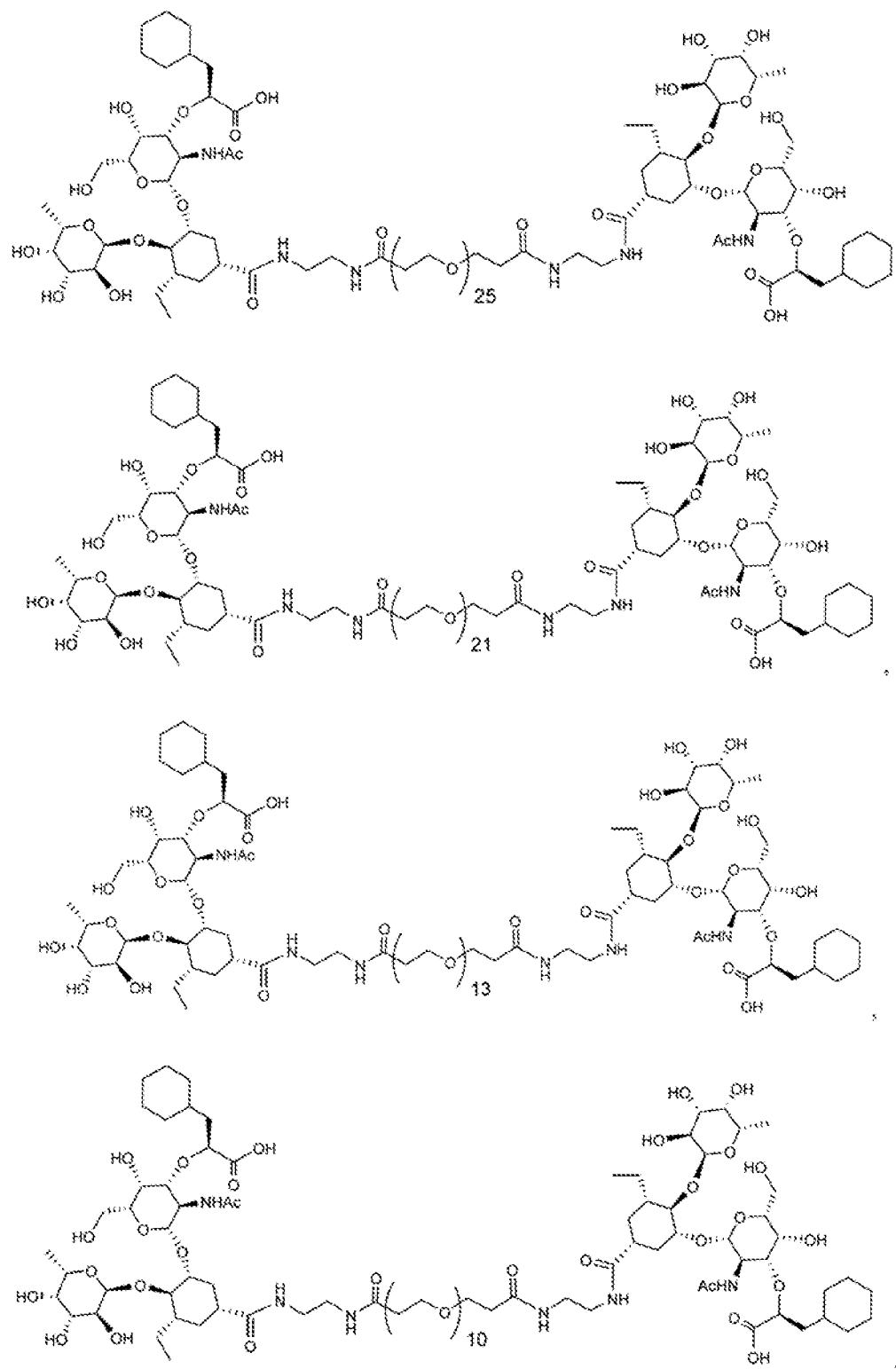

[00114] In some embodiments, at least one compound is chosen from compounds having the following Formula:

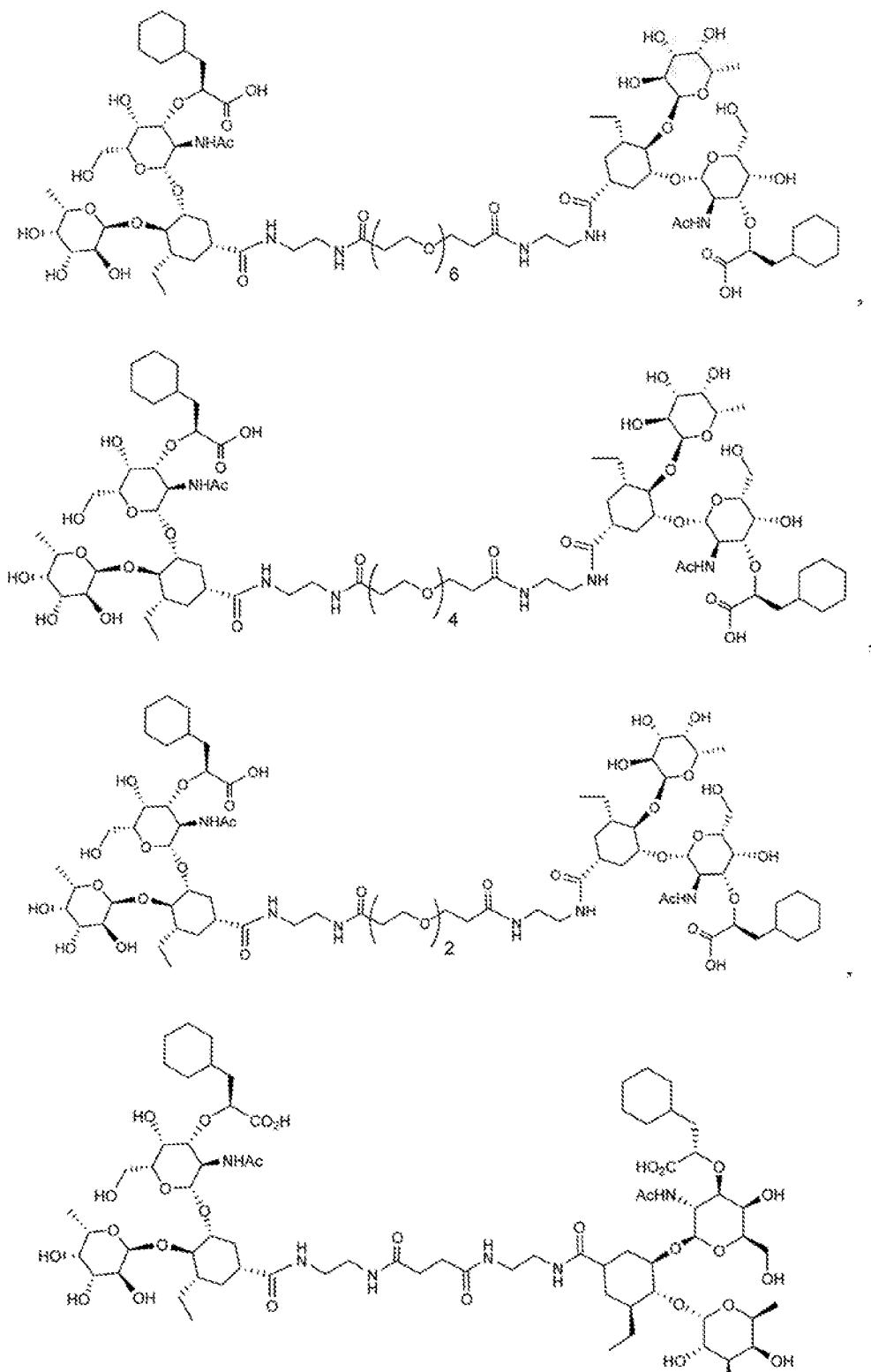
[00115] In some embodiments, at least one compound is chosen from compounds having the following Formula:

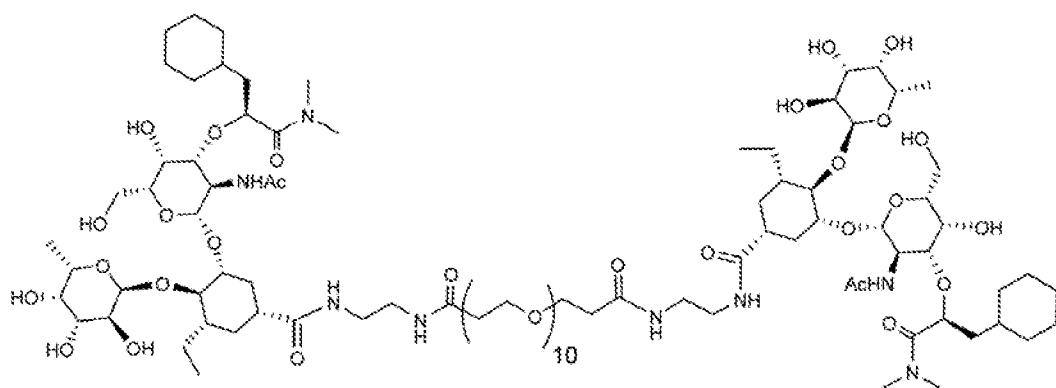
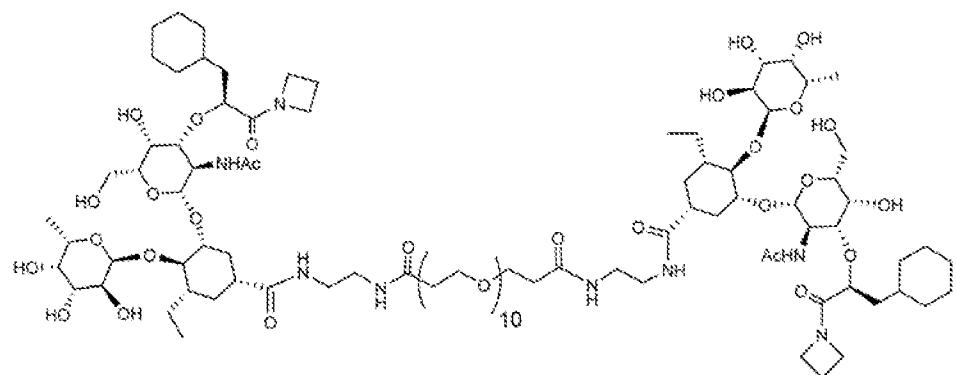


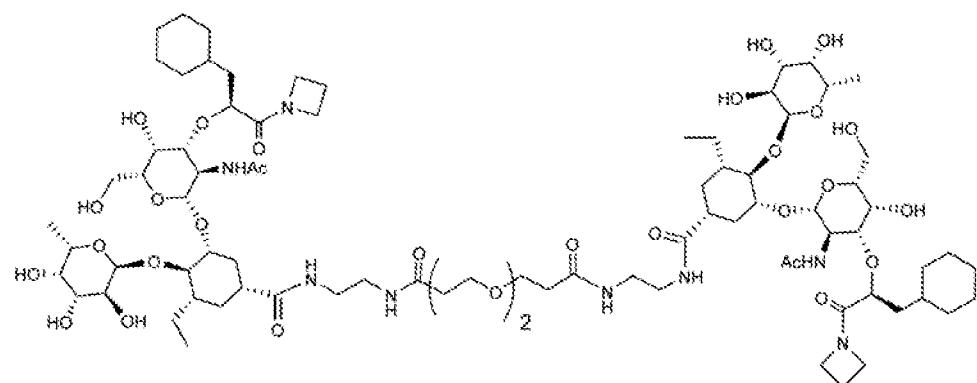
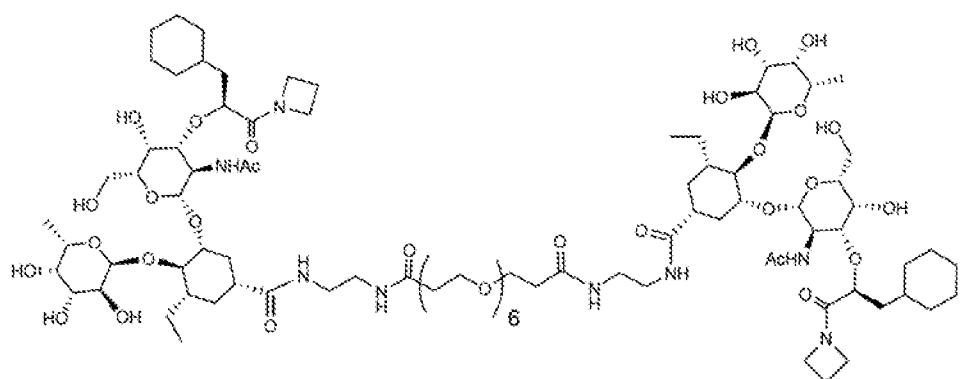
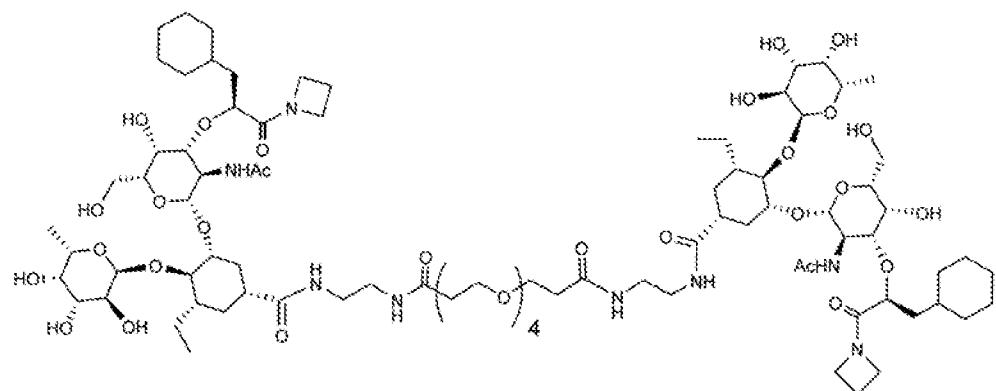
[00116] In some embodiments, at least one compound is chosen from compounds having the following Formula:

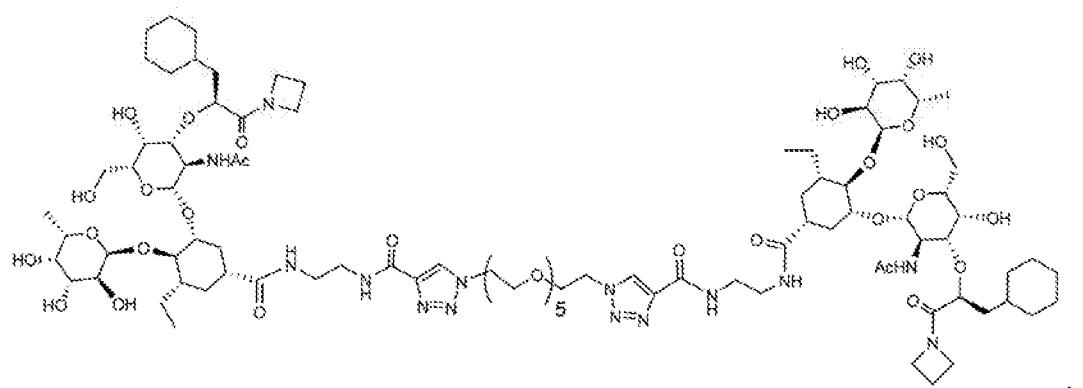
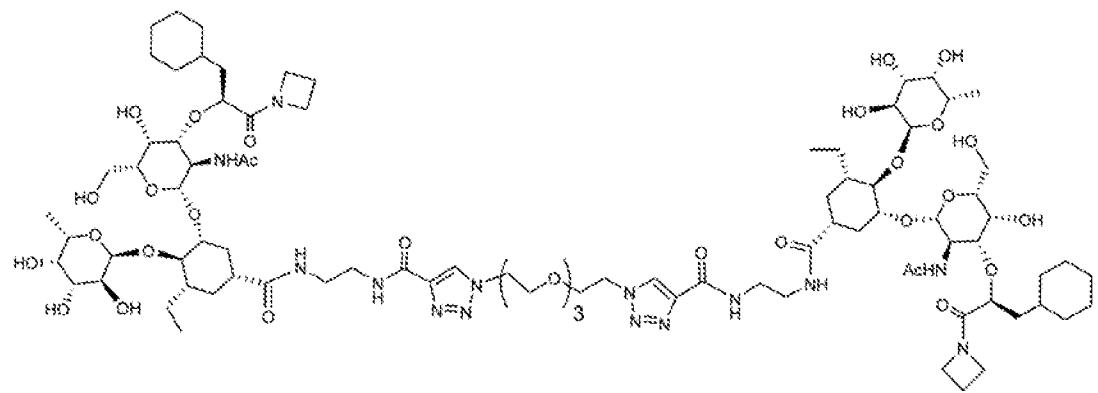
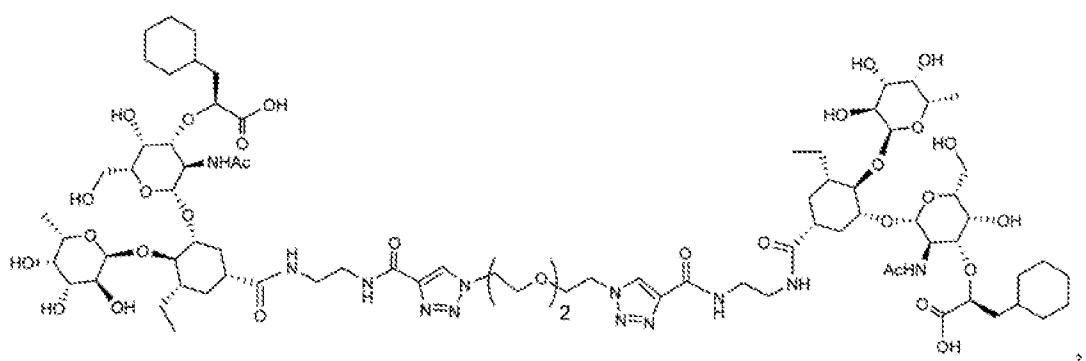
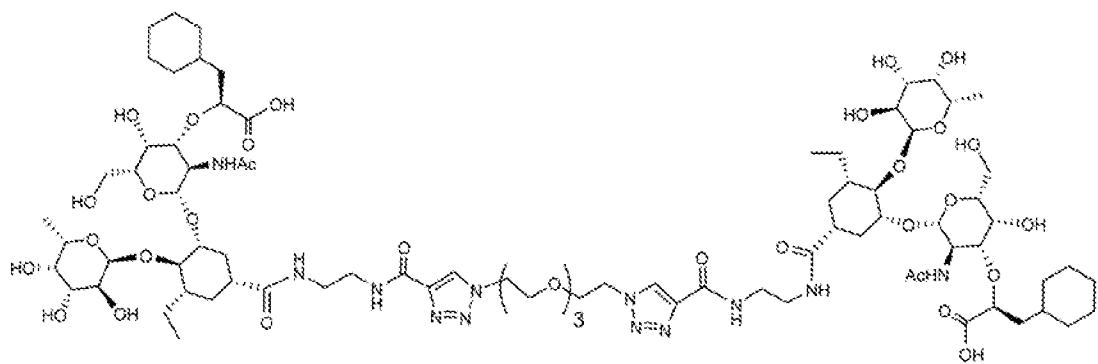


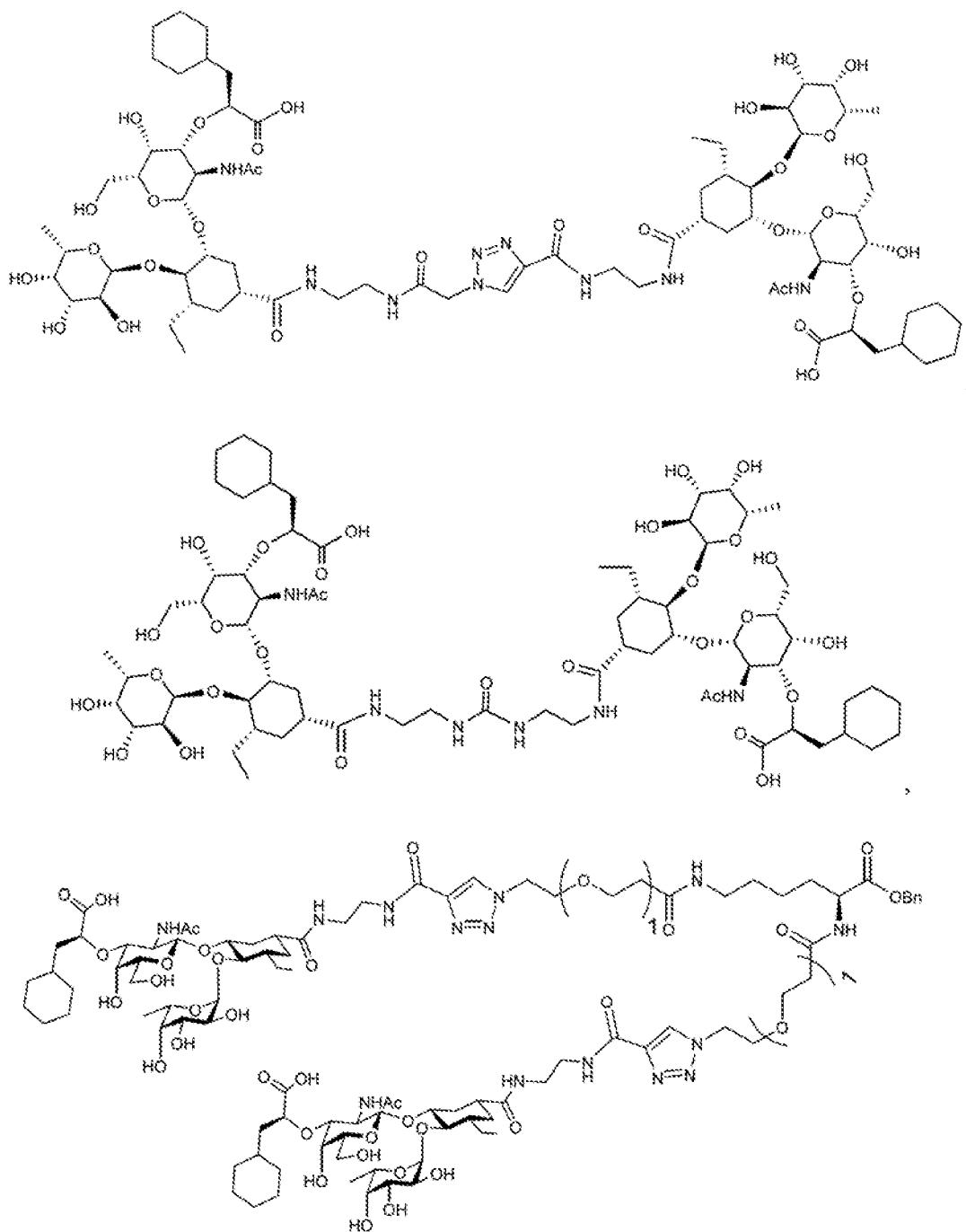

wherein p is chosen from integers ranging from 0 to 250. In some embodiments, p is chosen from integers ranging from 0 to 200. In some embodiments, p is chosen from integers ranging from 0 to 150. In some embodiments, p is chosen from integers ranging from 0 to 100. In some embodiments, p is chosen from integers ranging from 0 to 50. In some embodiments, p is chosen from integers ranging from 0 to 25. In some embodiments, p is chosen from integers ranging from 0 to 13. In some embodiments, p is chosen from integers ranging from 0 to 10.

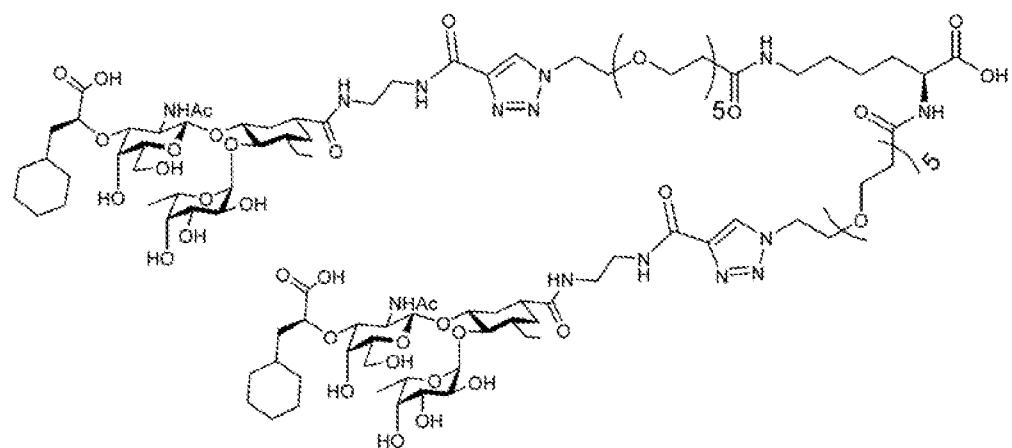
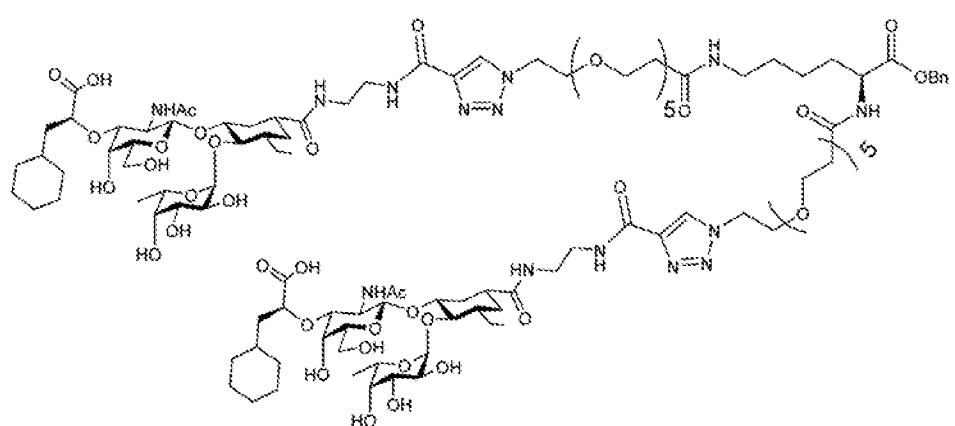
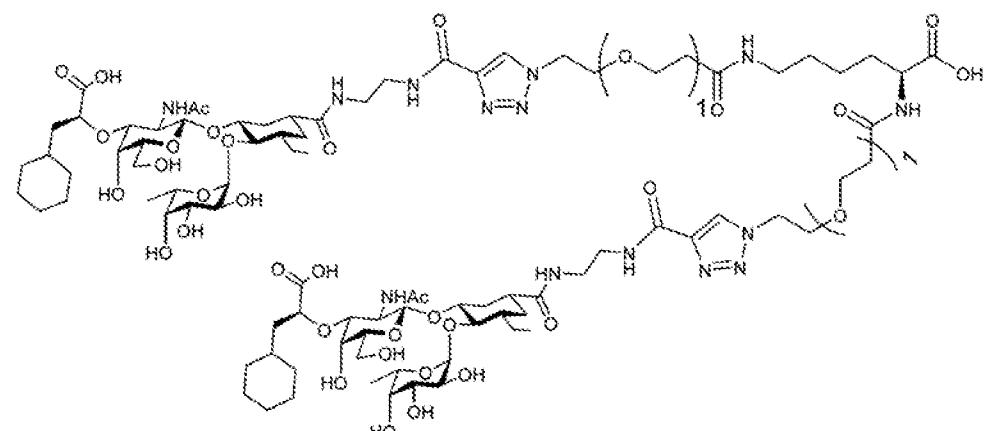

[00117] In some embodiments, at least one compound is:

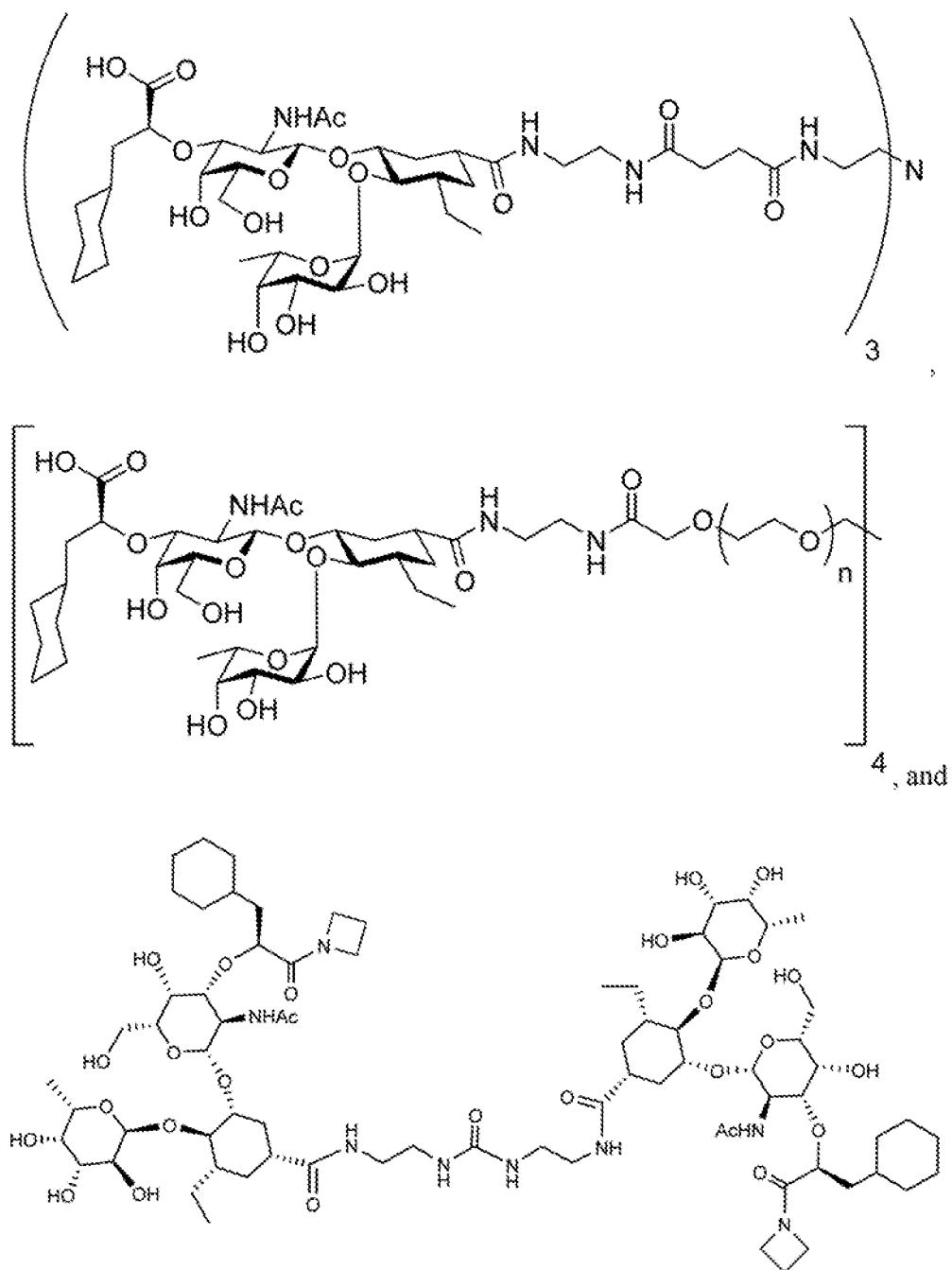






[00118] In some embodiments, at least one compound is chosen from compounds of the following Formulae:





[00119] Also provided are pharmaceutical compositions comprising at least one compound of Formula (I). Such pharmaceutical compositions are described in greater detail herein. These compounds and compositions may be used in the methods described herein.

[00120] In some embodiments, a method for treating and/or preventing at least one disease, disorder, and/or condition where inhibition of E-selectin mediated functions may be useful is

disclosed, the method comprising administering at least one compound of Formula (I) and/or a pharmaceutical composition comprising at least one compound of Formula (I).

[00121] In some embodiments, a method for treating and/or preventing at least one inflammatory disease, disorder, and/or condition in which the adhesion and/or migration of cells occurs in the disease, disorder, and/or condition is disclosed, the method comprising administering at least one compound of Formula (I) and/or a pharmaceutical composition comprising at least one compound of Formula (I).

[00122] In some embodiments, a method for inhibiting adhesion of a cancer cell that expresses a ligand of E-selectin to an endothelial cell expressing E-selectin on the cell surface of the endothelial cell is disclosed, the method comprising contacting the endothelial cell and at least one compound of Formula (I) and/or a pharmaceutical composition comprising at least one compound of Formula (I) such that the at least one compound of Formula (I) interacts with E-selectin on the endothelial cell, thereby inhibiting binding of the cancer cell to the endothelial cell. In some embodiments, the endothelial cell is present in the bone marrow.

[00123] In some embodiment, a method for treating and/or preventing a cancer is disclosed, the method comprising administering to a subject in need thereof an effective amount of at least one compound of Formula (I) and/or a pharmaceutical composition comprising at least one compound of Formula (I). In some embodiments, at least one compound of Formula (I) and/or pharmaceutical composition comprising at least one compound of Formula (I) may be administered in conjunction with (*i.e.*, as an adjunct therapy, which is also called adjunctive therapy) chemotherapy and/or radiotherapy.

[00124] The chemotherapy and/or radiotherapy may be referred to as the primary anti-tumor or anti-cancer therapy that is being administered to the subject to treat the particular cancer. In some embodiments, a method for reducing (*i.e.*, inhibiting, diminishing) chemosensitivity and/or radiosensitivity of hematopoietic stem cells (HSC) to the chemotherapeutic drug(s) and/or radiotherapy, respectively, is disclosed, the method comprising administering to a subject in need thereof an effective amount of at least one compound of Formula (I) and/or a pharmaceutical composition comprising at least one compound of Formula (I).

[00125] In some embodiments, a method for enhancing (*i.e.*, promoting) survival of hematopoietic stem cells is provided, the method comprising administering to a subject in need thereof at least one compound of Formula (I) or a pharmaceutical composition comprising at least one compound of Formula (I).

[00126] In some embodiments, a method for decreasing the likelihood of occurrence of metastasis of cancer cells (also called tumor cells herein) in a subject who is in need thereof is disclosed, the method comprising administering an effective amount of at least one compound of Formula (I) and/or a pharmaceutical composition comprising at least one compound of Formula (I).

[00127] In some embodiments, a method for treatment and/or prevention of at least one cancer in which the cancer cells may leave the primary site is disclosed, the method comprising administering to a subject in need thereof an effective amount of at least one compound of Formula (I) and/or a pharmaceutical composition comprising at least one compound of Formula (I). A primary site may be, for example, solid tissue (*e.g.*, breast or prostate) or the bloodstream.

[00128] In some embodiments, a method for treatment and/or prevention of at least one cancer in which it is desirable to mobilize cancer cells from a site into the bloodstream and/or retain the cancer cells in the bloodstream is disclosed, the method comprising administering to a subject in need thereof an effective amount of at least one compound of Formula (I) and/or a pharmaceutical composition comprising at least one compound of Formula (I).

[00129] In some embodiments, a method for decreasing the likelihood of occurrence of infiltration of cancer cells into bone marrow is disclosed, the method comprises administering to a subject in need thereof an effective amount of at least one compound of Formula (I) and/or a pharmaceutical composition comprising at least one compound of Formula (I).

[00130] In some embodiments, a method for releasing cells into circulating blood and enhancing retention of the cells in the blood is disclosed, the method comprising administering to a subject in need thereof an effective amount of at least one compound of Formula (I) and/or a pharmaceutical composition comprising at least one compound of Formula (I). In some embodiments, the method further includes collecting the released cells.

In some embodiments, collecting the released cells utilizes apheresis. In some embodiments, the released cells are stem cells (e.g., bone marrow progenitor cells). In some embodiments, G-CSF is administered to the individual.

[00131] In some embodiments, a method for treating and/or preventing thrombosis is disclosed, the method comprising administering to a subject in need thereof an effective amount of at least one compound of Formula (I) and/or a pharmaceutical composition comprising at least one compound of Formula (I).

[00132] In some embodiments, a method for treating and/or preventing mucositis is disclosed, the method comprising administering to a subject in need thereof an effective amount of at least one compound of Formula (I) and/or a pharmaceutical composition comprising at least one compound of Formula (I).

[00133] In some embodiments, a compound of Formula (I) and/or a pharmaceutical composition comprising at least one compound of Formula (I) may be used for the preparation and/or manufacture of a medicament for use in treating and/or preventing at least one of the diseases, disorders, and/or conditions described herein.

[00134] Whenever a term in the specification is identified as a range (e.g., C₁₋₄ alkyl), the range independently discloses and includes each element of the range. As a non-limiting example, C₁₋₄ alkyl groups includes, independently, C₁ alkyl groups, C₂ alkyl groups, C₃ alkyl groups, and C₄ alkyl groups.

[00135] The term "at least one" refers to one or more, such as one, two, etc. For example, the term "at least one C₁₋₄ alkyl group" refers to one or more C₁₋₄ alkyl groups, such as one C₁₋₄ alkyl group, two C₁₋₄ alkyl groups, etc.

[00136] The term "alkyl" includes saturated straight, branched, and cyclic (also identified as cycloalkyl), primary, secondary, and tertiary hydrocarbon groups. Non-limiting examples of alkyl groups include methyl, ethyl, propyl, isopropyl, cyclopropyl, butyl, secbutyl, isobutyl, *ter*-butyl, cyclobutyl, 1-methylbutyl, 1,1-dimethylpropyl, pentyl, cyclopentyl, isopentyl, neopentyl, cyclopentyl, hexyl, isohexyl, and cyclohexyl. Unless stated otherwise specifically in the specification, an alkyl group may be optionally substituted.

[00137] The term "alkenyl" includes straight, branched, and cyclic hydrocarbon groups comprising at least one double bond. The double bond of an alkenyl group can be unconjugated or conjugated with another unsaturated group. Non-limiting examples of alkenyl groups include vinyl, allyl, butenyl, pentenyl, hexenyl, butadienyl, pentadienyl, hexadienyl, 2-ethylhexenyl, and cyclopent-1-en-1-yl. Unless stated otherwise specifically in the specification, an alkenyl group may be optionally substituted.

[00138] The term "alkynyl" includes straight and branched hydrocarbon groups comprising at least one triple bond. The triple bond of an alkynyl group can be unconjugated or conjugated with another unsaturated group. Non-limiting examples of alkynyl groups include ethynyl, propynyl, butynyl, pentynyl, and hexynyl. Unless stated otherwise specifically in the specification, an alkynyl group may be optionally substituted.

[00139] The term "aryl" includes hydrocarbon ring system groups comprising at least 6 carbon atoms and at least one aromatic ring. The aryl group may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems. Non-limiting examples of aryl groups include aryl groups derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, fluoranthene, fluorene, *as*-indacene, *s*-indacene, indane, indene, naphthalene, phenalene, phenanthrene, pleiadene, pyrene, and triphenylene. Unless stated otherwise specifically in the specification, an aryl group may be optionally substituted.

[00140] The term "E-selectin antagonist" includes inhibitors of E-selectin only, as well as inhibitors of E-selectin and either P-selectin or L-selectin, and inhibitors of E-selectin, P-selectin, and L-selectin.

[00141] The term "glycomimetic" includes any naturally occurring or non-naturally occurring carbohydrate compound in which at least one substituent has been replaced, or at least one ring has been modified (e.g., substitution of carbon for a ring oxygen), to yield a compound that is not fully carbohydrate.

[00142] The term "halo" or "halogen" includes fluoro, chloro, bromo, and iodo.

[00143] The term "haloalkyl" includes alkyl groups, as defined herein, substituted by at least one halogen, as defined herein. Non-limiting examples of haloalkyl groups include

trifluoromethyl, difluoromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 1,2-difluoroethyl, 3-bromo-2-fluoropropyl, and 1,2-dibromoethyl. A “fluoroalkyl” is a haloalkyl wherein at least one halogen is fluoro. Unless stated otherwise specifically in the specification, a haloalkyl group may be optionally substituted.

[00144] The term “haloalkenyl” includes alkenyl groups, as defined herein, substituted by at least one halogen, as defined herein. Non-limiting examples of haloalkenyl groups include fluoroethenyl, 1,2-difluoroethenyl, 3-bromo-2-fluoropropenyl, and 1,2-dibromoethenyl. A “fluoroalkenyl” is a haloalkenyl substituted with at least one fluoro group. Unless stated otherwise specifically in the specification, a haloalkenyl group may be optionally substituted.

[00145] The term “haloalkynyl” includes alkynyl groups, as defined herein, substituted by at least one halogen, as defined herein. Non-limiting examples include fluoroethynyl, 1,2-difluoroethynyl, 3-bromo-2-fluoropropynyl, and 1,2-dibromoethynyl. A “fluoroalkynyl” is a haloalkynyl wherein at least one halogen is fluoro. Unless stated otherwise specifically in the specification, a haloalkynyl group may be optionally substituted.

[00146] The term “heterocyclyl” or “heterocyclic ring” includes 3- to 24-membered saturated or partially unsaturated non-aromatic ring groups comprising 2 to 23 ring carbon atoms and 1 to 8 ring heteroatom(s) each independently chosen from N, O, and S. Unless stated otherwise specifically in the specification, the heterocyclyl groups may be monocyclic, bicyclic, tricyclic or tetracyclic ring systems, which may include fused or bridged ring systems, and may be partially or fully saturated; any nitrogen, carbon or sulfur atom(s) in the heterocyclyl group may be optionally oxidized; any nitrogen atom in the heterocyclyl group may be optionally quaternized; and the heterocyclyl group. Non-limiting examples of heterocyclic ring include dioxolanyl, thiényl[1,3]dithianyl, decahydroisoquinolyl, imidazolinyl, imidazolidinyl, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxopiperazinyl, 2-oxopiperidinyl, 2-oxopyrrolidinyl, oxazolidinyl, piperidinyl, piperazinyl, 4-piperidonyl, pyrrolidinyl, pyrazolidinyl, quinuclidinyl, thiazolidinyl, tetrahydrofuryl, trithianyl, tetrahydropyranyl, thiomorpholinyl, thiamorpholinyl, 1-oxo-thiomorpholinyl, and 1,1-dioxo-thiomorpholinyl. Unless stated otherwise specifically in the specification, a heterocyclyl group may be optionally substituted.

[00147] The term “heteroaryl” includes 5- to 14-membered ring groups comprising 1 to 13 ring carbon atoms and 1 to 6 ring heteroatom(s) each independently chosen from N, O, and S, and at least one aromatic ring. Unless stated otherwise specifically in the specification, the heteroaryl group may be a monocyclic, bicyclic, tricyclic or tetracyclic ring system, which may include fused or bridged ring systems; and the nitrogen, carbon or sulfur atoms in the heteroaryl radical may be optionally oxidized; the nitrogen atom may be optionally quaternized. Non-limiting examples include azepinyl, acridinyl, benzimidazolyl, benzothiazolyl, benzindolyl, benzodioxolyl, benzofuranyl, benzoazazolyl, benzothiazolyl, benzothiadiazolyl, benzo[b][1,4]dioxepinyl, 1,4-benzodioxanyl, benzonaphthofuranyl, benzoxazolyl, benzodioxolyl, benzodioxinyl, benzopyranyl, benzopyranonyl, benzofuranyl, benzofuranonyl, benzothienyl (benzothiophenyl), benzotriazolyl, benzo[4,6]imidazo[1,2-a]pyridinyl, carbazolyl, cinnolinyl, dibenzofuranyl, dibenzothiophenyl, furanyl, furanonyl, isothiazolyl, imidazolyl, indazolyl, indolyl, indazolyl, isoindolyl, indoliny, isoindolinyl, isoquinolyl, indolizinyl, isoxazolyl, naphthyridinyl, oxadiazolyl, 2-oxazepinyl, oxazolyl, oxiranyl, 1-oxidopyridinyl, 1-oxidopyrimidinyl, 1-oxidopyrazinyl, 1-oxidopyridazinyl, 1-phenyl-1*H*-pyrrolyl, phenazinyl, phenothiazinyl, phenoxazinyl, phthalazinyl, pteridinyl, purinyl, pyrrolyl, pyrazolyl, pyridinyl, pyrazinyl, pyrimidinyl, pyridazinyl, quinazolinyl, quinoxalinyl, quinolinyl, quinuclidinyl, isoquinolinyl, tetrahydroquinolinyl, thiazolyl, thiadiazolyl, triazolyl, tetrazolyl, triazinyl, and thiophenyl (i.e. thienyl). Unless stated otherwise specifically in the specification, a heteroaryl group may be optionally substituted.

[00148] The term “pharmaceutically acceptable salts” includes both acid and base addition salts. Non-limiting examples of pharmaceutically acceptable acid addition salts include chlorides, bromides, sulfates, nitrates, phosphates, sulfonates, methane sulfonates, formates, tartrates, maleates, citrates, benzoates, salicylates, and ascorbates. Non-limiting examples of pharmaceutically acceptable base addition salts include sodium, potassium, lithium, ammonium (substituted and unsubstituted), calcium, magnesium, iron, zinc, copper, manganese, and aluminum salts. Pharmaceutically acceptable salts may, for example, be obtained using standard procedures well known in the field of pharmaceuticals.

[00149] The term “prodrug” includes compounds that may be converted, for example, under physiological conditions or by solvolysis, to a biologically active compound described

herein. Thus, the term "prodrug" includes metabolic precursors of compounds described herein that are pharmaceutically acceptable. A discussion of prodrugs can be found, for example, in Higuchi, T., et al., "Pro-drugs as Novel Delivery Systems," A.C.S. Symposium Series, Vol. 14, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987. The term "prodrug" also includes covalently bonded carriers that release the active compound(s) as described herein *in vivo* when such prodrug is administered to a subject. Non-limiting examples of prodrugs include ester and amide derivatives of hydroxy, carboxy, mercapto and amino functional groups in the compounds described herein.

[00150] The term "substituted" includes the situation where, in any of the above groups, at least one hydrogen atom is replaced by a non-hydrogen atom such as, for example, a halogen atom such as F, Cl, Br, and I; an oxygen atom in groups such as hydroxyl groups, alkoxy groups, and ester groups; a sulfur atom in groups such as thiol groups, thioalkyl groups, sulfone groups, sulfonyl groups, and sulfoxide groups; a nitrogen atom in groups such as amines, amides, alkylamines, dialkylamines, arylamines, alkylarylamines, diarylamines, N-oxides, imides, and enamines; a silicon atom in groups such as trialkylsilyl groups, dialkylarylsilyl groups, alkyl diarylsilyl groups, and triarylsilyl groups; and other heteroatoms in various other groups. "Substituted" also includes the situation where, in any of the above groups, at least one hydrogen atom is replaced by a higher-order bond (e.g., a double- or triple-bond) to a heteroatom such as oxygen in oxo, carbonyl, carboxyl, and ester groups; and nitrogen in groups such as imines, oximes, hydrazones, and nitriles.

[00151] The present disclosure includes within its scope all the possible geometric isomers, e.g., Z and E isomers (*cis* and *trans* isomers), of the compounds as well as all the possible optical isomers, e.g., diastereomers and enantiomers, of the compounds. Furthermore, the present disclosure includes in its scope both the individual isomers and any mixtures thereof, e.g., racemic mixtures. The individual isomers may be obtained using the corresponding isomeric forms of the starting material or they may be separated after the preparation of the end compound according to conventional separation methods. For the separation of optical isomers, e.g., enantiomers, from the mixture thereof conventional resolution methods, e.g., fractional crystallization, may be used.

[00152] The present disclosure includes within its scope all possible tautomers. Furthermore, the present disclosure includes in its scope both the individual tautomers and any mixtures thereof.

[00153] Compounds of Formula (I) may be prepared according to the General Reaction Scheme shown in Figure 1. It is understood that one of ordinary skill in the art may be able to make these compounds by similar methods or by combining other methods known to one of ordinary skill in the art. It is also understood that one of ordinary skill in the art would be able to make, in a similar manner as described in Figure 1, other compounds of Formula (I) not specifically illustrated herein by using appropriate starting components and modifying the parameters of the synthesis as needed. In general, starting components may be obtained from sources such as Sigma Aldrich, Lancaster Synthesis, Inc., Maybridge, Matrix Scientific, TCI, and Fluorochem USA, etc. and/or synthesized according to sources known to those of ordinary skill in the art (see, for example, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 5th edition (Wiley, December 2000)) and/or prepared as described herein.

[00154] It will also be appreciated by those skilled in the art that in the processes described herein the functional groups of intermediate compounds may need to be protected by suitable protecting groups, even if not specifically described. Such functional groups include hydroxy, amino, mercapto, and carboxylic acid. Suitable protecting groups for hydroxy include but are not limited to trialkylsilyl or diarylalkylsilyl (for example, *t*-butyldimethylsilyl, *t*-butyldiphenylsilyl or trimethylsilyl), tetrahydropyranyl, benzyl, and the like. Suitable protecting groups for amino, amidino and guanidino include but are not limited to *t*-butoxycarbonyl, benzyloxycarbonyl, and the like. Suitable protecting groups for mercapto include but are not limited to -C(O)R" (where R" is alkyl, aryl or arylalkyl), *p*-methoxybenzyl, trityl and the like. Suitable protecting groups for carboxylic acid include but are not limited to alkyl, aryl or arylalkyl esters. Protecting groups may be added or removed in accordance with standard techniques, which are known to one skilled in the art and as described herein. The use of protecting groups is described in detail in Green, T.W. and P.G.M. Wutz, *Protective Groups in Organic Synthesis* (1999), 3rd Ed., Wiley. As one of skill in the art would appreciate, the protecting group may also be a polymer resin such as a Wang resin, Rink resin or a 2-chlorotriptyl-chloride resin.

[00155] Analogous reactants to those described herein may be identified through the indices of known chemicals prepared by the Chemical Abstract Service of the American Chemical Society, which are available in most public and university libraries, as well as through on-line databases (the American Chemical Society, Washington, D.C., may be contacted for more details). Chemicals that are known but not commercially available in catalogs may be prepared by custom chemical synthesis houses, where many of the standard chemical supply houses (e.g., those listed above) provide custom synthesis services. A reference for the preparation and selection of pharmaceutical salts of the present disclosure is P. H. Stahl & C. G. Wermuth "Handbook of Pharmaceutical Salts," Verlag Helvetica Chimica Acta, Zurich, 2002.

[00156] Methods known to one of ordinary skill in the art may be identified through various reference books, articles, and databases. Suitable reference books and treatise that detail the synthesis of reactants useful in the preparation of compounds of the present disclosure, or provide references to articles that describe the preparation, include for example, "Synthetic Organic Chemistry," John Wiley & Sons, Inc., New York; S. R. Sandler et al., "Organic Functional Group Preparations," 2nd Ed., Academic Press, New York, 1983; H. O. House, "Modern Synthetic Reactions", 2nd Ed., W. A. Benjamin, Inc. Menlo Park, Calif. 1972; T. L. Gilchrist, "Heterocyclic Chemistry", 2nd Ed., John Wiley & Sons, New York, 1992; J. March, "Advanced Organic Chemistry: Reactions, Mechanisms and Structure," 4th Ed., Wiley-Interscience, New York, 1992. Additional suitable reference books and treatise that detail the synthesis of reactants useful in the preparation of compounds of the present disclosure, or provide references to articles that describe the preparation, include for example, Fuhrhop, J. and Penzlin G. "Organic Synthesis: Concepts, Methods, Starting Materials", Second, Revised and Enlarged Edition (1994) John Wiley & Sons ISBN: 3-527-29074-5; Hoffman, R.V. "Organic Chemistry, An Intermediate Text" (1996) Oxford University Press, ISBN 0-19-509618-5; Larock, R. C. "Comprehensive Organic Transformations: A Guide to Functional Group Preparations" 2nd Edition (1999) Wiley-VCH, ISBN: 0-471-19031-4; March, J. "Advanced Organic Chemistry: Reactions, Mechanisms, and Structure" 4th Edition (1992) John Wiley & Sons, ISBN: 0-471-60180-2; Otera, J. (editor) "Modern Carbonyl Chemistry" (2000) Wiley-VCH, ISBN: 3-527-29871-1; Patai, S. "Patai's 1992 Guide to the Chemistry of Functional Groups" (1992) Interscience ISBN: 0-471-93022-9; Quin, L.D. et al.

"A Guide to Organophosphorus Chemistry" (2000) Wiley-Interscience, ISBN: 0-471-31824-8; Solomons, T. W. G. "Organic Chemistry" 7th Edition (2000) John Wiley & Sons, ISBN: 0-471-19095-0; Stowell, J.C., "Intermediate Organic Chemistry" 2nd Edition (1993) Wiley-Interscience, ISBN: 0-471-57456-2; "Industrial Organic Chemicals: Starting Materials and Intermediates: An Ullmann's Encyclopedia" (1999) John Wiley & Sons, ISBN: 3-527-29645-X, in 8 volumes; "Organic Reactions" (1942-2000) John Wiley & Sons, in over 55 volumes; and "Chemistry of Functional Groups" John Wiley & Sons, in 73 volumes.

[00157] Biological activity of a compound described herein may be determined, for example, by performing at least one *in vitro* and/or *in vivo* study routinely practiced in the art and described herein or in the art. *In vitro* assays include without limitation binding assays, immunoassays, competitive binding assays, and cell based activity assays.

[00158] An inhibition assay may be used to screen for antagonists of E-selectin. For example, an assay may be performed to characterize the capability of a compound described herein to inhibit (*i.e.*, reduce, block, decrease, or prevent in a statistically or biologically significant manner) interaction of E-selectin with sLe^a or sLe^x. The inhibition assay may be a competitive binding assay, which allows the determination of IC₅₀ values. By way of example, E-selectin/Ig chimera may be immobilized onto a matrix (*e.g.*, a multi-well plate, which may be made from a polymer, such as polystyrene; a test tube, and the like); a composition may be added to reduce nonspecific binding (*e.g.*, a composition comprising non-fat dried milk or bovine serum albumin or other blocking buffer routinely used by a person skilled in the art); the immobilized E-selectin may be contacted with the candidate compound in the presence of sLe^a comprising a reporter group under conditions and for a time sufficient to permit sLe^a to bind to the immobilized E-selectin; the immobilized E-selectin may be washed; and the amount of sLe^a bound to immobilized E-selectin may be detected. Variations of such steps can be readily and routinely accomplished by a person of ordinary skill in the art.

[00159] Conditions for a particular assay include temperature, buffers (including salts, cations, media), and other components that maintain the integrity of any cell used in the assay and the compound, which a person of ordinary skill in the art will be familiar and/or which can be readily determined. A person of ordinary skill in the art also readily appreciates that

appropriate controls can be designed and included when performing the *in vitro* methods and *in vivo* methods described herein.

[00160] The source of a compound that is characterized by at least one assay and techniques described herein and in the art may be a biological sample that is obtained from a subject who has been treated with the compound. The cells that may be used in the assay may also be provided in a biological sample. A "biological sample" may include a sample from a subject, and may be a blood sample (from which serum or plasma may be prepared), a biopsy specimen, one or more body fluids (e.g., lung lavage, ascites, mucosal washings, synovial fluid, urine), bone marrow, lymph nodes, tissue explant, organ culture, or any other tissue or cell preparation from the subject or a biological source. A biological sample may further include a tissue or cell preparation in which the morphological integrity or physical state has been disrupted, for example, by dissection, dissociation, solubilization, fractionation, homogenization, biochemical or chemical extraction, pulverization, lyophilization, sonication, or any other means for processing a sample derived from a subject or biological source. In some embodiments, the subject or biological source may be a human or non-human animal, a primary cell culture (e.g., immune cells), or culture adapted cell line, including but not limited to, genetically engineered cell lines that may contain chromosomally integrated or episomal recombinant nucleic acid sequences, immortalized or immortalizable cell lines, somatic cell hybrid cell lines, differentiated or differentiable cell lines, transformed cell lines, and the like.

[00161] As described herein, methods for characterizing E-selectin antagonists include animal model studies. Non-limiting examples of animal models for liquid cancers used in the art include multiple myeloma (see, e.g., DeWeerdt, *Nature* 480:S38–S39 (15 December 2011) doi:10.1038/480S38a; Published online 14 December 2011; Mitsiades et al., *Clin. Cancer Res.* 2009 15:1210021 (2009)); acute myeloid leukemia (AML) (Zuber et al., *Genes Dev.* 2009 April 1; 23(7): 877–889). Animal models for acute lymphoblastic leukemia (ALL) have been used by persons of ordinary skill in the art for more than two decades. Numerous exemplary animal models for solid tumor cancers are routinely used and are well known to persons of ordinary skill in the art.

[00162] The compounds of the present disclosure and the pharmaceutical compositions comprising at least one of such compounds may be useful in methods for treating and/or preventing a disease or disorder that is treatable by inhibiting at least one activity of E-selectin (and/or inhibiting binding of E-selectin to a ligand, which in turn inhibits a biological activity). Focal adhesion of leukocytes to the endothelial lining of blood vessels is a characteristic step in certain vascular disease processes.

[00163] The compounds of the present disclosure and pharmaceutical compositions comprising at least one such compound may be useful in methods for treating and/or preventing at least one inflammatory disease. Inflammation comprises reaction of vascularized living tissue to injury. By way of example, although E-selectin-mediated cell adhesion is important to the body's anti-infective immune response, in other circumstances, E-selectin mediated cell adhesion may be undesirable or excessive, resulting in tissue damage instead of repair. For example, many pathologies (such as autoimmune and inflammatory diseases, shock and reperfusion injuries) involve abnormal adhesion of white blood cells. Therefore, inflammation affects blood vessels and adjacent tissues in response to an injury or abnormal stimulation by a physical, chemical, or biological agent. Examples of inflammatory diseases, disorders, or conditions include, without limitation, dermatitis, chronic eczema, psoriasis, multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, graft versus host disease, sepsis, diabetes, atherosclerosis, Sjogren's syndrome, progressive systemic sclerosis, scleroderma, acute coronary syndrome, ischemic reperfusion, Crohn's disease, inflammatory bowel disease, endometriosis, glomerulonephritis, myasthenia gravis, idiopathic pulmonary fibrosis, asthma, allergic reaction, acute respiratory distress syndrome (ARDS) or other acute leukocyte-mediated lung injury, vasculitis, or inflammatory autoimmune myositis. Other diseases and disorders for which the glycomimetic compounds described herein may be useful for treating and/or preventing include hyperactive coronary circulation, microbial infection, cancer metastasis, thrombosis, wounds, burns, spinal cord damage, digestive tract mucous membrane disorders (e.g., gastritis, ulcers), osteoporosis, osteoarthritis, septic shock, traumatic shock, stroke, nephritis, atopic dermatitis, frostbite injury, adult dyspnoea syndrome, ulcerative colitis, diabetes and reperfusion injury following ischaemic episodes, prevention of restenosis associated with vascular stenting, and for undesirable angiogenesis, for example, angiogenesis associated with tumor growth.

[00164] As discussed in detail herein, a disease or disorder to be treated or prevented is a cancer and related metastasis and includes cancers that comprise solid tumor(s) and cancers that comprise liquid tumor(s). The compounds of the present disclosure and pharmaceutical compositions comprising at least one such compound may be useful in methods for preventing and/or treating cancer. In some embodiments, the at least one compound may be used for treating and/or preventing metastasis and/or for inhibiting (slowing, retarding, or preventing) metastasis of cancer cells.

[00165] In some embodiments, the compounds of present disclosure and pharmaceutical compositions comprising at least one such compound may be used for decreasing (*i.e.*, reducing) the likelihood of occurrence of metastasis of cancer cells in an individual (*i.e.*, subject, patient) who is in need thereof. The compounds of the present disclosure and compositions comprising at least one such compound may be used for decreasing (*i.e.*, reducing) the likelihood of occurrence of infiltration of cancer cells into bone marrow in an individual who is in need thereof. The individuals (or subjects) in need of such treatments include subjects who have been diagnosed with a cancer, which includes cancers that comprise solid tumor(s) and cancers that comprise liquid tumor(s).

[00166] Non-limiting examples of cancers include colorectal cancer, liver cancer, gastric cancer, lung cancer, brain cancer, kidney cancer, bladder cancer, thyroid cancer, prostate cancer, ovarian cancer, cervical cancer, uterine cancer, endometrial cancer, melanoma, breast cancer, and pancreatic cancer. Liquid tumors can occur in the blood, bone marrow, the soft, sponge-like tissue in the center of most bones, and lymph nodes and include leukemia (*e.g.*, AML, ALL, CLL, and CML), lymphoma, and myeloma (*e.g.*, multiple myeloma). Lymphomas include Hodgkin lymphoma, which is marked by the presence of a type of cell called the Reed-Sternberg cell, and non-Hodgkin lymphomas, which includes a large, diverse group of cancers of immune system cells. Non-Hodgkin lymphomas can be further divided into cancers that have an indolent (slow-growing) course and those that have an aggressive (fast-growing) course, and which subtypes respond to treatment differently.

[00167] The compounds of the present disclosure and pharmaceutical compositions comprising at least one such compound may be administered as an adjunct therapy to chemotherapy and/or radiotherapy, which is/are being delivered to the subject as primary

therapy for treating the cancer. The chemotherapy and/or radiotherapy that may be administered depend upon several factors including the type of cancer, location of the tumor(s), stage of the cancer, age and gender and general health status of the subject. A person of ordinary skill in the medical art can readily determine the appropriate chemotherapy regimen and/or radiotherapy regimen for the subject in need. The person of ordinary skill in the medical art can also determine, with the aid of preclinical and clinical studies, when the compound of the present disclosure or pharmaceutical composition comprising at least one such compound should be administered to the subject, that is whether the compound or composition is administered prior to, concurrent with, or subsequent to a cycle of the primary chemotherapy or radiation treatment.

[00168] Also provided herein is a method for inhibiting adhesion of a tumor cell that expresses a ligand of E-selectin to an endothelial cell expressing E-selectin on its cell surface, which method comprises contacting the endothelial cell with at least one compound of the present disclosure or pharmaceutical compositions comprising at least one such compound, thereby permitting the compound to interact with E-selectin on the endothelial cell surface and inhibiting binding of the tumor cell to the endothelial cell. Without wishing to be bound by theory, inhibiting adhesion of tumor cells to endothelial cells may reduce in a significant manner, the capability of the tumor cells to extravasate into other organs, blood vessels, lymph, or bone marrow and thereby reduce, decrease, or inhibit, or slow the progression of the cancer, including reducing, decreasing, inhibiting, or slowing metastasis.

[00169] As described herein, at least one of the compounds of the present disclosure or pharmaceutical compositions comprising at least one such compound may be administered in combination with at least one additional anti-cancer agent. Chemotherapy may comprise one or more chemotherapeutic agents. For example, chemotherapy agents, radiotherapeutic agents, inhibitors of phosphoinositide-3 kinase (PI3K), and inhibitors of VEGF may be used in combination with an E-selectin antagonist compound described herein. Non-limiting examples of inhibitors of PI3K include the compound named by Exelixis as "XL499." Non-limiting examples of VEGF inhibitors include the compound called "cabo" (previously known as XL184). Many other therapeutics are small organic molecules. As understood by a person of ordinary skill in the art, chemotherapy may also refer to a combination of two or more chemotherapeutic molecules that are administered coordinately

and which may be referred to as combination chemotherapy. Numerous chemotherapeutic drugs are used in the oncology art and include, for example, alkylating agents; antimetabolites; anthracyclines, plant alkaloids; and topoisomerase inhibitors.

[00170] The compounds of the present disclosure or pharmaceutical compositions comprising at least one such compound may function independently from the anti-cancer agent or may function in coordination with the anti-cancer agent, *e.g.*, by enhancing effectiveness of the anti-cancer agent or vice versa. Accordingly, provided herein are methods for enhancing (*i.e.*, enhancing, promoting, improving the likelihood of, enhancing in a statistically or biologically significant manner) and/or maintaining survival of hematopoietic stem cells (HSC) in a subject who is treated with and/or will be treated with a chemotherapeutic drug(s) and/or radioactive therapy, respectively, comprising administering at least one E-selectin antagonist glycomimetic compound as described herein. In some embodiments, the subject receives and/or will receive both chemotherapy and radiation therapy. Also, provided herein is a method for reducing (*i.e.*, reducing, inhibiting, diminishing in a statistically or biologically significant manner) chemosensitivity and/or radiosensitivity of hematopoietic stem cells (HSC) to the chemotherapeutic drug(s) and/or radioactive therapy, respectively, in a subject. Because repeated cycles of chemotherapy and radiotherapy often diminish the ability of HSCs to recover and replenish bone marrow, the glycomimetic compounds described herein may be useful for subjects who will receive more than one cycle, such as at least two, three, four or more cycles, of chemotherapy and/or radiotherapy. HSCs reside in the bone marrow and generate the cells that are needed to replenish the immune system and the blood. Anatomically, bone marrow comprises a vascular niche that is adjacent to bone endothelial sinuses (see, *e.g.*, Kiel et al., *Cell* 121:1109-21 (2005); Sugiyama et al., *Immunity* 25:977-88 (2006); Mendez-Ferrer et al., *Nature* 466:829-34 (2010); Butler et al., *Cell Stem Cell* 6:251-64 (2010)). A recent study describes that E-selectin promotes HSC proliferation and is an important component of the vascular niche (see, *e.g.*, Winkler et al., *Nature Medicine* published online 21 October 2012; doi:10.1038/nm.2969). Deletion or inhibition of E-selectin enhanced HSC survival in mice that were treated with chemotherapeutic agents or radiotherapy and accelerated blood neutrophil recovery (see, *e.g.*, Winkler et al., *supra*).

[00171] In addition, the administration of at least one compound of the present disclosure or pharmaceutical composition comprising at least one such compounds may be in conjunction with one or more other therapies, e.g., for reducing toxicities of therapy. For example, at least one palliative agent to counteract (at least in part) a side effect of a therapy (e.g., anti-cancer therapy) may be administered. Agents (chemical or biological) that promote recovery, or counteract side effects of administration of antibiotics or corticosteroids, are examples of such palliative agents. At least one E-selectin antagonist described herein may be administered before, after, or concurrently with administration of at least one additional anti-cancer agent or at least one palliative agent to reduce a side effect of therapy. When administration is concurrent, the combination may be administered from a single container or two (or more) separate containers.

[00172] Cancer cells (also called herein tumor cells) that may be prevented (i.e., inhibited, slowed) from metastasizing, from adhering to an endothelial cell, or from infiltrating bone marrow include cells of solid tumors and liquid tumors (including hematological malignancies). Examples of solid tumors are described herein and include colorectal cancer, liver cancer, gastric cancer, lung cancer, brain cancer, kidney cancer, bladder cancer, thyroid cancer, prostate cancer, ovarian cancer, cervical cancer, uterine cancer, endometrial cancer, melanoma, breast cancer, and pancreatic cancer. Liquid tumors occur in the blood, bone marrow, and lymph nodes and include leukemia (e.g., AML, ALL, CLL, and CML), lymphoma (e.g., Hodgkin lymphoma and non-Hodgkin lymphoma), and myeloma (e.g., multiple myeloma). As used herein, the term cancer cells include mature, progenitor, and cancer stem cells.

[00173] Bones are a common location for cancer to infiltrate once leaving the primary tumor location. Once cancer resides in bone, it is frequently a cause of pain to the individual. In addition, if the particular bone affected is a source for production of blood cells in the bone marrow, the individual may develop a variety of blood cell related disorders. Breast and prostate cancer are examples of solid tumors that migrate to bones. Acute myelogenous leukemia (AML) and multiple myeloma (MM) are examples of liquid tumors that migrate to bones. Cancer cells that migrate to bone will typically migrate to the endosteal region of the bone marrow. Once cancer cells have infiltrated into the marrow, the cells become quiescent and are protected from chemotherapy. The compounds of the present disclosure block

infiltration of disseminated cancer cells into bone marrow. A variety of individuals may benefit from treatment with the compounds. Examples of such individuals include individuals with a cancer type having a propensity to migrate to bone where the tumor is still localized or the tumor is disseminated but not yet infiltrated bone, or where individuals with such a cancer type are in remission.

[00174] The cancer patient population most likely to respond to treatment using the E-selectin antagonist agents (e.g., compounds of Formula (I)) described herein can be identified based on the mechanism of action of E-selectin. That is, patients may be selected that express a highly active E-selectin as determined by the genetic polymorphism for E-selectin of S128R (Alessandro et al., *Int. J. Cancer* 121:528-535, 2007). In addition, patients for treatment by the compounds described herein may also selected based on elevated expression of the E-selectin binding ligands (sialyl Le^a and sialyl Le^x) as determined by antibodies directed against cancer-associated antigens CA-19-9 (Zheng et al., *World J. Gastroenterol.* 7:431-434, 2001) and CD65. In addition, antibodies HECA-452 and FH-6 which recognize similar carbohydrate ligands of E-selectin may also be used in a diagnostic assay to select the cancer patient population most likely to respond to this treatment.

[00175] The compounds of the present disclosure and pharmaceutical compositions comprising at least one such compound may be useful in methods for treating and/or preventing thrombosis. As described herein methods are provided for inhibiting formation of a thrombus or inhibiting the rate at which a thrombus is formed. These methods may therefore be used for preventing thrombosis (*i.e.*, reducing or decreasing the likelihood of occurrence of a thrombus in a statistically or clinically significant manner).

[00176] Thrombus formation may occur in infants, children, teenagers and adults. An individual may have a hereditary predisposition to thrombosis. Thrombosis may be initiated, for example, due to a medical condition (such as cancer or pregnancy), a medical procedure (such as surgery) or an environmental condition (such as prolonged immobility). Other individuals at risk for thrombus formation include those who have previously presented with a thrombus.

[00177] The compounds of the present disclosure and pharmaceutical compositions comprising at least one such compound may be useful in methods for treating individuals

undergoing thrombosis or who are at risk of a thrombotic event occurring. Such individuals may or may not have a risk of bleeding. In some embodiments, the individual has a risk of bleeding. In some embodiments, the thrombosis is a venous thromboembolism (VTE). VTE causes deep vein thrombosis and pulmonary embolism. Low molecular weight (LMW) heparin is the current mainstay therapy for the prevention and treatment of VTE. In many circumstances, however, the use of LMW heparin is contraindicated. LMW heparin is a known anti-coagulant and delays clotting over four times longer than control bleeding times. Patients undergoing surgery, patients with thrombocytopenia, patients with a history of stroke, and many cancer patients should avoid administration of heparin due to the risk of bleeding. By contrast, administration of the E-selectin antagonist compounds of Formula (I) significantly reduces the time to clotting than occurs when LMW heparin is administered, and thus provide a significant improvement in reducing bleeding time compared with LMW heparin. Accordingly, the compounds and pharmaceutical compositions described herein may not only be useful for treating a patient for whom the risk of bleeding is not significant, but also may be useful in when the risk of bleeding is significant and the use of anti-thrombosis agents with anti-coagulant properties (such as LMW heparin) is contraindicated.

[00178] The compounds of the present disclosure and pharmaceutical compositions comprising at least one such compound may be administered in combination with at least one additional anti-thrombosis agent. The compounds of the present disclosure and pharmaceutical compositions comprising at least one such compound may function independently from the anti-thrombosis agent or may function in coordination with the at least one anti-thrombosis agent. In addition, the administration of one or more of the compounds or compositions may be in conjunction with one or more other therapies, e.g., for reducing toxicities of therapy. For example, at least one palliative agent to counteract (at least in part) a side effect of therapy may be administered. Agents (chemical or biological) that promote recovery and/or counteract side effects of administration of antibiotics or corticosteroids are examples of such palliative agents. The compounds of the present disclosure and pharmaceutical composition comprising at least one such compound may be administered before, after, or concurrently with administration of at least one additional anti-thrombosis agent or at least one palliative agent to reduce a side effect of therapy. Where

administration is concurrent, the combination may be administered from a single container or two (or more) separate containers.

[00179] The compounds of the present disclosure and pharmaceutical compositions comprising at least one such compound may be useful in methods for preventing and/or treating mucositis. In some embodiments, at least one compound of Formula (I) or a pharmaceutical composition comprising at least one compound of Formula (I) may be used in methods described herein for decreasing the likelihood of occurrence of mucositis in a subject who is in need thereof by administering the compound or composition to the subject. In some embodiments, the mucositis is chosen from oral mucositis, esophageal mucositis, and gastrointestinal mucositis. In some embodiments, the mucositis is alimentary mucositis.

[00180] It is believed that approximately half of all cancer patients undergoing therapy suffer some degree of mucositis. Mucositis is believed to occur, for example, in virtually all patients treated with radiation therapy for head and neck tumors, all patients receiving radiation along the GI tract, and approximately 40% of those subjected to radiation therapy and/or chemotherapy for tumors in other locations (e.g., leukemias or lymphomas). It is also believed to be highly prevalent in patients treated with high dose chemotherapy and/or irradiation for the purpose of myeloablation, such as in preparation for stem cell or bone marrow transplantation. The compounds of the present disclosure and pharmaceutical compositions comprising at least one such compound may be useful in methods for treating and/or preventing mucositis in a subject afflicted with cancer. In some embodiments, the subject is afflicted with a cancer chosen from head and neck cancer, breast cancer, lung cancer, ovarian cancer, prostate cancer, lymphatic cancer, leukemic cancer, and/or gastrointestinal cancer. In some embodiments, the mucositis is associated with radiation therapy and/or chemotherapy. In some embodiments, the chemotherapy comprises administering a therapeutically effective amount of at least one compound chosen from platinum, cisplatin, carboplatin, oxaliplatin, mechlorethamine, cyclophosphamide, chlorambucil, azathioprine, mercaptopurine, vincristine, vinblastine, vinorelbine, vindesine, etoposide, teniposide, paclitaxel, docetaxel, irinotecan, topotecan, amsacrine, etoposide, etoposide phosphate, teniposide, 5-fluorouracil (5-FU), leucovorin, methotrexate, gemcitabine, taxane, leucovorin, mitomycin C, tegafur-uracil, idarubicin, fludarabine, mitoxantrone, ifosfamide and doxorubicin.

[00181] In some embodiments, the method further comprises administering a therapeutically effective amount of at least one MMP inhibitor, inflammatory cytokine inhibitor, mast cell inhibitor, NSAID, NO inhibitor, or antimicrobial compound.

[00182] In some embodiments, the method further comprises administering a therapeutically effective amount of velafermin and/or palifermin.

[00183] The compounds of the present disclosure and pharmaceutical compositions comprising at least one such compound may be useful in methods for mobilizing cells from the bone marrow to the peripheral vasculature and tissues. As discussed herein, in some embodiments, the compounds and compositions are useful for mobilizing hematopoietic cells, including hematopoietic stem cells and hematopoietic progenitor cells. In some embodiments, the compounds act as mobilizing agents of normal blood cell types. In some embodiments, the agents are used in methods for mobilizing mature white blood cells (which may also be called leukocytes herein), such as granulocytes (e.g., neutrophils, eosinophils, basophils), lymphocytes, and monocytes from the bone marrow or other immune cell compartments such as the spleen and liver. Methods are also provided for using the compounds of the present disclosure and pharmaceutical compositions comprising at least one such compound in methods for mobilizing tumor cells from the bone marrow. The tumor cells may be malignant cells (e.g., tumor cells that are metastatic cancer cells, or highly invasive tumor cells) in cancers. These tumor cells may be of hematopoietic origin or may be malignant cells of another origin residing in the bone.

[00184] In some embodiments, the methods using the E-selectin antagonists described herein are useful for mobilizing hematopoietic cells, such as hematopoietic stem cells and progenitor cells and leukocytes (including granulocytes such as neutrophils), which are collected (*i.e.*, harvested, obtained) from the subject receiving the E-selectin antagonist and at a later time are administered back into the same subject (autologous donor) or administered to a different subject (allogeneic donor). Hematopoietic stem cell replacement and hematopoietic stem cell transplantation have been successfully used for treating a number of diseases (including cancers) as described herein and in the art. By way of example, stem cell replacement therapy or transplantation follows myeloablation of a subject, such as occurs with administration of high dose chemotherapy and/or radiotherapy. Desirably, an allogeneic

donor shares sufficient HLA antigens with the recipient/subject to minimize the risk of host versus graft disease in the recipient (*i.e.*, the subject receiving the hematopoietic stem cell transplant). Obtaining the hematopoietic cells from the donor subject (autologous or allogeneic) is performed by apheresis or leukapheresis. HLA typing of a potential donor and the recipient and apheresis or leukapheresis are methods routinely practiced in the clinical art.

[00185] By way of non-limiting example, autologous or allogenic hematopoietic stem cells and progenitors cells may be used for treating a recipient subject who has certain cancers, such as Hodgkin lymphoma, non-Hodgkin lymphoma, or multiple myeloma. Allogeneic hematopoietic stem cells and progenitors cells may be used, for example, for treating a recipient subject who has acute leukemias (*e.g.*, AML, ALL); chronic lymphocytic leukemia (CLL); amegakaryocytosis/congenital thrombocytopenia; aplastic anemia/refractory anemia; familial erythrophagocytic lymphohistiocytosis; myelodysplastic syndrome/other myelodysplastic disorders; osteopetrosis; paroxysmal nocturnal hemoglobinuria; and Wiskott-aldrich syndrome, for example. Exemplary uses for autologous hematopoietic stem cells and progenitors cells include treating a recipient subject who has amyloidosis; germ cell tumors (*e.g.*, testicular cancer); or a solid tumor. Allogeneic hematopoietic stem cell transplants have also been investigated for use in treating solid tumors (see, *e.g.*, Ueno et al., *Blood* 102:3829-36 (2003)).

[00186] In some embodiments of the methods described herein, the subject is not a donor of peripheral hematopoietic cells but has a disease, disorder, or condition for which mobilization of hematopoietic cells in the subject will provide clinical benefit. Stated another way, while this clinical situation is similar to autologous hematopoietic cell replacement, the mobilized hematopoietic cells are not removed and given back to the same subject at a later time as occurs, for example, with a subject who receives myeloablation therapy. Accordingly, methods are provided for mobilizing hematopoietic cells, such as hematopoietic stem cells and progenitor cells and leukocytes (including granulocytes, such as neutrophils), by administering at least once compound of Formula (I). Mobilizing hematopoietic stem cells and progenitor cells may be useful for treating an inflammatory condition or for tissue repair or wound healing. See, *e.g.*, Mimeault et al., *Clin. Pharmacol. Therapeutics* 82:252-64 (2007).

[00187] In some embodiments, the methods described herein are useful for mobilizing hematopoietic leukocytes (white blood cells) in a subject, which methods may be used in treating diseases, disorders, and conditions for which an increase in white blood cells, such as neutrophils, eosinophils, lymphocytes, monocytes, basophils, will provide clinical benefit. For example, for cancer patients, the compounds of Formula (I) are beneficial for stimulating neutrophil production to compensate for hematopoietic deficits resulting from chemotherapy or radiation therapy. Other diseases, disorders, and conditions to be treated include infectious diseases and related conditions, such as sepsis. When the subject to whom at least one compound of Formula (I) is administered is a donor, neutrophils may be collected for administration to a recipient subject who has reduced hematopoietic function, reduced immune function, reduced neutrophil count, reduced neutrophil mobilization, severe chronic neutropenia, leucopenia, thrombocytopenia, anemia, and acquired immune deficiency syndrome. Mobilization of mature white blood cells may be useful in subjects to improve or to enhance tissue repair, and to minimize or prevent vascular injury and tissue damage, for example following liver transplantation, myocardial infarction or limb ischemia. *See, e.g.*, Pelus, *Curr. Opin. Hematol.* 15:285-92 (2008); Lemoli et al., *Haematologica* 93:321-24 (2008).

[00188] The compound of Formula (I) may be used in combination with one or more other agents that mobilize hematopoietic cells. Such agents include, for example, G-CSF; AMD3100 or other CXCR4 antagonists; GRO- β (CXCL2) and an N-terminal 4-amino truncated form (SB-251353); IL-8SDF-1 α peptide analogs, CTCE-0021 and CTCE-0214; and the SDF1 analog, Met-SDF-1 β (*see, e.g.*, Pelus, *supra* and references cited therein). In some embodiments, a compound of Formula (I) may be administered with other mobilizing agents used in the art, which may permit administration of a lower dose of GCSF or AMD3100, for example, than required in the absence of a compound of Formula (I). The appropriate therapeutic regimen for administering a compound of Formula (I) in combination with another mobilizing agent or agents can be readily determined by a person skilled in the clinical art.

[00189] The terms, "treat" and "treatment," include medical management of a disease, disorder, and/or condition of a subject (*i.e.*, patient, individual) as would be understood by a person of ordinary skill in the art (*see, e.g.*, Stedman's Medical Dictionary). In general, an

appropriate dose and treatment regimen provide at least one of the compounds of the present disclosure in an amount sufficient to provide therapeutic and/or prophylactic benefit. For both therapeutic treatment and prophylactic or preventative measures, therapeutic and/or prophylactic benefit includes, for example, an improved clinical outcome, wherein the object is to prevent or slow or retard (lessen) an undesired physiological change or disorder, or to prevent or slow or retard (lessen) the expansion or severity of such disorder. As discussed herein, beneficial or desired clinical results from treating a subject include, but are not limited to, abatement, lessening, or alleviation of symptoms that result from or are associated with the disease, condition, and/or disorder to be treated; decreased occurrence of symptoms; improved quality of life; longer disease-free status (*i.e.*, decreasing the likelihood or the propensity that a subject will present symptoms on the basis of which a diagnosis of a disease is made); diminishment of extent of disease; stabilized (*i.e.*, not worsening) state of disease; delay or slowing of disease progression; amelioration or palliation of the disease state; and remission (whether partial or total), whether detectable or undetectable; and/or overall survival. “Treatment” can include prolonging survival when compared to expected survival if a subject were not receiving treatment.

[00190] In some embodiments of the methods described herein, the subject is a human. In some embodiments of the methods described herein, the subject is a non-human animal. Non-human animals that may be treated include mammals, for example, non-human primates (*e.g.*, monkey, chimpanzee, gorilla, and the like), rodents (*e.g.*, rats, mice, gerbils, hamsters, ferrets, rabbits), lagomorphs, swine (*e.g.*, pig, miniature pig), equine, canine, feline, bovine, and other domestic, farm, and zoo animals.

[00191] The effectiveness of the compounds of the present disclosure in treating and/or preventing diseases, disorders, and/or conditions treatable by inhibiting an activity of E-selectin can readily be determined by a person of ordinary skill in the relevant art. Determining and adjusting an appropriate dosing regimen (*e.g.*, adjusting the amount of compound per dose and/or number of doses and frequency of dosing) can also readily be performed by a person of ordinary skill in the relevant art. One or any combination of diagnostic methods, including physical examination, assessment and monitoring of clinical symptoms, and performance of analytical tests and methods described herein, may be used for monitoring the health status of the subject.

[00192] Also provided herein are pharmaceutical compositions comprising at least one compound of Formula (I). In some embodiments, the pharmaceutical composition further comprises at least one additional pharmaceutically acceptable ingredient.

[00193] In pharmaceutical dosage forms, any one or more of the compounds of the present disclosure may be administered in the form of a pharmaceutically acceptable derivative, such as a salt, and/or it or they may also be used alone and/or in appropriate association, as well as in combination, with other pharmaceutically active compounds.

[00194] An effective amount or therapeutically effective amount refers to an amount of at least one compound of the present disclosure or a pharmaceutical composition comprising at least one such compound that, when administered to a subject, either as a single dose or as part of a series of doses, is effective to produce at least one therapeutic effect. Optimal doses may generally be determined using experimental models and/or clinical trials. Design and execution of pre-clinical and clinical studies for each of the therapeutics (including when administered for prophylactic benefit) described herein are well within the skill of a person of ordinary skill in the relevant art. The optimal dose of a therapeutic may depend upon the body mass, weight, and/or blood volume of the subject. In general, the amount of at least one compound of Formula (I) as described herein, that is present in a dose, may range from about 0.01 μ g to about 3000 μ g per kg weight of the subject. The minimum dose that is sufficient to provide effective therapy may be used in some embodiments. Subjects may generally be monitored for therapeutic effectiveness using assays suitable for the disease, disorder and/or condition being treated or prevented, which assays will be familiar to those having ordinary skill in the art and are described herein. The level of a compound that is administered to a subject may be monitored by determining the level of the compound (or a metabolite of the compound) in a biological fluid, for example, in the blood, blood fraction (e.g., serum), and/or in the urine, and/or other biological sample from the subject. Any method practiced in the art to detect the compound, or metabolite thereof, may be used to measure the level of the compound during the course of a therapeutic regimen.

[00195] The dose of a compound described herein may depend upon the subject's condition, that is, stage of the disease, severity of symptoms caused by the disease, general health status, as well as age, gender, and weight, and other factors apparent to a person of

ordinary skill in the medical art. Similarly, the dose of the therapeutic for treating a disease, disorder, and/or condition may be determined according to parameters understood by a person of ordinary skill in the medical art.

[00196] Pharmaceutical compositions may be administered in any manner appropriate to the disease, disorder, and/or condition to be treated as determined by persons of ordinary skill in the medical arts. An appropriate dose and a suitable duration and frequency of administration will be determined by such factors as discussed herein, including the condition of the patient, the type and severity of the patient's disease, the particular form of the active ingredient, and the method of administration. In general, an appropriate dose (or effective dose) and treatment regimen provides the composition(s) as described herein in an amount sufficient to provide therapeutic and/or prophylactic benefit (for example, an improved clinical outcome, such as more frequent complete or partial remissions, or longer disease-free and/or overall survival, or a lessening of symptom severity or other benefit as described in detail above).

[00197] The pharmaceutical compositions described herein may be administered to a subject in need thereof by any one of several routes that effectively delivers an effective amount of the compound. Non-limiting examples of suitable administrative routes include topical, oral, nasal, intrathecal, enteral, buccal, sublingual, transdermal, rectal, vaginal, intraocular, subconjunctival, sublingual, and parenteral administration, including subcutaneous, intravenous, intramuscular, intrasternal, intracavernous, intrameatal, and intraurethral injection and/or infusion.

[00198] The pharmaceutical compositions described herein may, for example, be sterile aqueous or sterile non-aqueous solutions, suspensions, or emulsions, and may additionally comprise at least one pharmaceutically acceptable excipient (*i.e.*, a non-toxic material that does not interfere with the activity of the active ingredient). Such compositions may, for example, be in the form of a solid, liquid, or gas (aerosol). Alternatively, the compositions described herein may, for example, be formulated as a lyophilizate, or compounds described herein may be encapsulated within liposomes using technology known in the art. The pharmaceutical compositions may further comprise at least one additional pharmaceutically acceptable ingredient, which may be biologically active or inactive. Non-limiting examples

of such ingredients include buffers (e.g., neutral buffered saline or phosphate buffered saline), carbohydrates (e.g., glucose, mannose, sucrose or dextrans), mannitol, proteins, polypeptides, amino acids (e.g., glycine), antioxidants, chelating agents (e.g., EDTA and glutathione), stabilizers, dyes, flavoring agents, suspending agents, and preservatives.

[00199] Any suitable excipient or carrier known to those of ordinary skill in the art for use in compositions may be employed in the compositions described herein. Excipients for therapeutic use are well known, and are described, for example, in *Remington: The Science and Practice of Pharmacy* (Gennaro, 21st Ed. Mack Pub. Co., Easton, PA (2005)). In general, the type of excipient may be selected based on the mode of administration, as well as the chemical composition of the active ingredient(s). Compositions may be formulated for the particular mode of administration. For parenteral administration, pharmaceutical compositions may further comprise water, saline, alcohols, fats, waxes, and buffers. For oral administration, pharmaceutical compositions may further comprise at least one component chosen, for example, from any of the aforementioned ingredients, excipients and carriers, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, kaolin, glycerin, starch dextrins, sodium alginate, carboxymethylcellulose, ethyl cellulose, glucose, sucrose, and magnesium carbonate.

[00200] The pharmaceutical compositions (e.g., for oral administration or delivery by injection) may be in the form of a liquid. A liquid composition may include, for example, at least one of the following: a sterile diluent such as water for injection, saline solution, including for example physiological saline, Ringer's solution, isotonic sodium chloride, fixed oils that may serve as the solvent or suspending medium, polyethylene glycols, glycerin, propylene glycol or other solvents; antibacterial agents; antioxidants; chelating agents; buffers and agents for the adjustment of tonicity such as sodium chloride or dextrose. A parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic. In some embodiments, the pharmaceutical composition comprises physiological saline. In some embodiments, the pharmaceutical composition is an injectable composition, and in some embodiments, the injectable composition is sterile.

[00201] For oral formulations, at least one of the compounds of the present disclosure can be used alone or in combination with at least one additive appropriate to make tablets,

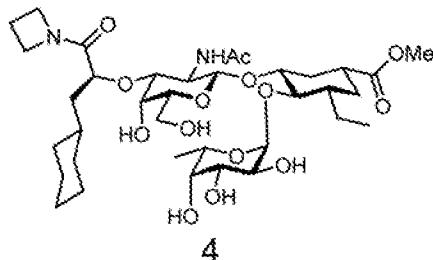
powders, granules and/or capsules, for example, those chosen from conventional additives, disintegrators, lubricants, diluents, buffering agents, moistening agents, preservatives, coloring agents, and flavoring agents. The pharmaceutical compositions may be formulated to include at least one buffering agent, which may provide for protection of the active ingredient from low pH of the gastric environment and/or an enteric coating. A pharmaceutical composition may be formulated for oral delivery with at least one flavoring agent, *e.g.*, in a liquid, solid or semi-solid formulation and/or with an enteric coating.

[00202] Oral formulations may be provided as gelatin capsules, which may contain the active compound or biological along with powdered carriers. Similar carriers and diluents may be used to make compressed tablets. Tablets and capsules can be manufactured as sustained release products to provide for continuous release of active ingredients over a period of time. Compressed tablets can be sugar coated or film coated to mask any unpleasant taste and protect the tablet from the atmosphere, or enteric coated for selective disintegration in the gastrointestinal tract.

[00203] A pharmaceutical composition may be formulated for sustained or slow release. Such compositions may generally be prepared using well known technology and administered by, for example, oral, rectal or subcutaneous implantation, or by implantation at the desired target site. Sustained-release formulations may contain the active therapeutic dispersed in a carrier matrix and/or contained within a reservoir surrounded by a rate controlling membrane. Excipients for use within such formulations are biocompatible, and may also be biodegradable; the formulation may provide a relatively constant level of active component release. The amount of active therapeutic contained within a sustained release formulation depends upon the site of implantation, the rate and expected duration of release, and the nature of the condition to be treated or prevented.

[00204] The pharmaceutical compositions described herein can be formulated as suppositories by mixing with a variety of bases such as emulsifying bases or water-soluble bases. The pharmaceutical compositions may be prepared as aerosol formulations to be administered via inhalation. The pharmaceutical compositions may be formulated into pressurized acceptable propellants such as dichlorodifluoromethane, propane, nitrogen and the like.

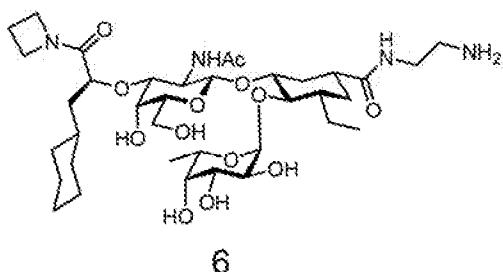
[00205] The compounds of the present disclosure and pharmaceutical compositions comprising these compounds may be administered topically (e.g., by transdermal administration). Topical formulations may be in the form of a transdermal patch, ointment, paste, lotion, cream, gel, and the like. Topical formulations may include one or more of a penetrating agent or enhancer (also call permeation enhancer), thickener, diluent, emulsifier, dispersing aid, or binder. Physical penetration enhancers include, for example, electrophoretic techniques such as iontophoresis, use of ultrasound (or “phonophoresis”), and the like. Chemical penetration enhancers are agents administered either prior to, with, or immediately following administration of the therapeutic, which increase the permeability of the skin, particularly the stratum corneum, to provide for enhanced penetration of the drug through the skin. Additional chemical and physical penetration enhancers are described in, for example, *Transdermal Delivery of Drugs*, A. F. Kydonieus (ED) 1987 CRL Press; *Permeation Enhancers*, eds. Smith et al. (CRC Press, 1995); Lennerås et al., *J. Pharm. Pharmacol.* 54:499-508 (2002); Karande et al., *Pharm. Res.* 19:655-60 (2002); Vaddi et al., *Int. J. Pharm.* 91:1639-51 (2002); Ventura et al., *J. Drug Target* 9:379-93 (2001); Shokri et al., *Int. J. Pharm.* 228(1-2):99-107 (2001); Suzuki et al., *Biol. Pharm. Bull.* 24:698-700 (2001); Alberti et al., *J. Control Release* 71:319-27 (2001); Goldstein et al., *Urology* 57:301-5 (2001); Kijjavainen et al., *Eur. J. Pharm. Sci.* 10:97-102 (2000); and Tenjarla et al., *Int. J. Pharm.* 192:147-58 (1999).

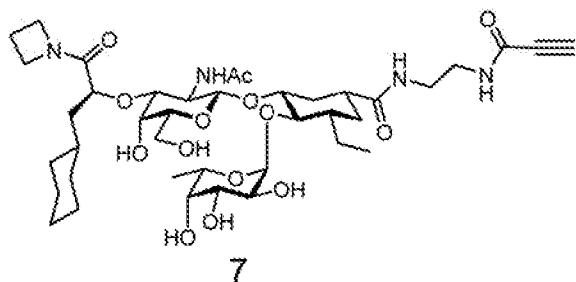

[00206] Kits comprising unit doses of at least one compound of the present disclosure, for example in oral or injectable doses, are provided. Such kits may include a container comprising the unit dose, an informational package insert describing the use and attendant benefits of the therapeutic in treating the pathological condition of interest, and/or optionally an appliance or device for delivery of the at least one compound of Formula (1) and/or pharmaceutical composition comprising the same.

EXAMPLES

EXAMPLE 1: COMPOUND 11

[00207] **Compound 2:** A solution of 1-[(1-oxo-2-propynyl)oxy]-2,5-pyrrolidinedione (propargylic acid NHS ester) (57 mg, 0.34 mmole) in anhydrous DMF (1 mL) was added dropwise over 15 minutes to a slurry of compound 1 (0.19 g, 0.26 mmole) (preparation

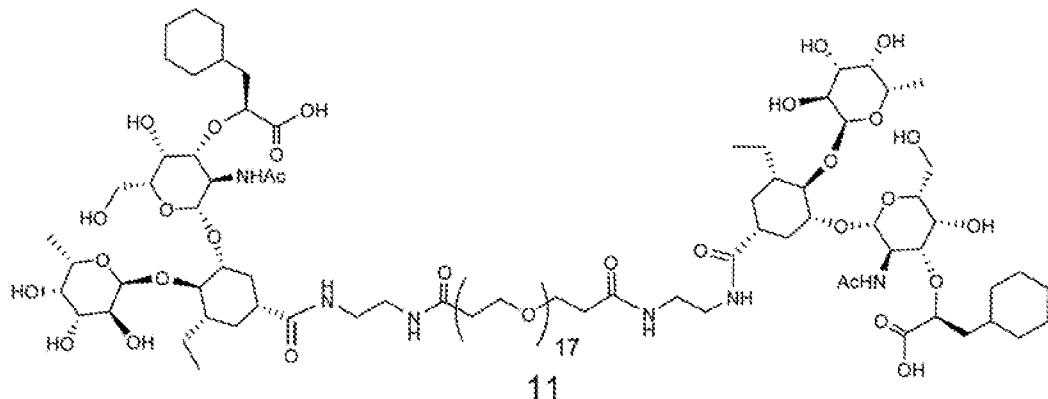

described in WO 2013096926) and DIPEA (0.1 mL) in anhydrous DMF (3 mL) at room temperature. The resulting solution was stirred for 1.5 hrs. The reaction mixture was concentrated under reduced pressure. The residue was separated by Combi-flash [EtOAc/(MeOH/water, 6/1, v/v), 9/1 – 3/7, v/v] to afford the desired compound as a light brown solid (0.14 g, 69%). MS: Calculated for $C_{37}H_{59}N_3O_{15} = 785.3$, Found ES- positive $m/z = 808.3$ ($M+Na^+$), ES-negative $m/z = 784.4$ ($M-1$).


[00208] **Compound 4:** To a solution of compound 3 (preparation described in WO 2013096926) (2.5 g, 3.54 mmole) and DIPEA (1.2 mL, 7.08 mmole) in anhydrous DMF (15 mL) was added TBTU (1.7 g, 5.31 mmole) at 0 °C and the solution was stirred for 20 min. Azetidine (0.85 mL, 35.4 mmole) was added and the resulting solution was stirred for 1 hr while the temperature was gradually increased to room temperature. After the reaction was completed, the solution was concentrated under reduced pressure. The reaction mixture was separated by Combi-flash (EtOAc/MeOH, 4/1-2/3, v/v) to give compound 4 (1.17 g, 1.57 mmole, 44%) and lactone side product compound 5 (0.88 g, 1.28 mmole, 36%).

[00209] **Compound 4:** Compound 5 (0.88 g, 1.28 mmol) was dissolved in anhydrous DMF (5 mL). Azetidine (0.5 mL) was added, and then the resulting solution was stirred for 3 hrs at 50 °C. The solution was concentrated and dried under high vacuum to give compound 4 (0.93 g, 1.25 mmole, 98%).

[00210] 1H NMR (400 MHz, Deuterium Oxide) δ 4.92 (d, $J = 4.0$ Hz, 1H), 4.79 (q, $J = 7.3$, 6.8 Hz, 1H), 4.43 (broad d, $J = 8.3$ Hz, 1H), 4.24 (q, $J = 8.6$ Hz, 1H), 4.15 (q, $J = 8.5$ Hz, 1H), 4.01 (d, $J = 9.3$ Hz, 1H), 3.99 – 3.80 (m, 3H), 3.76 (dd, $J = 10.6$, 3.2 Hz, 1H), 3.73 – 3.51 (m, 8H), 3.42 (m, $J = 7.7$, 4.4 Hz, 2H), 3.21 (t, $J = 9.7$ Hz, 1H), 2.39 (broad t, $J = 12.7$ Hz, 1H), 2.32 – 2.09 (m, 3H), 1.95 (s, 3H), 1.95 (m, 1H), 1.77 (m, 2H), 1.69 – 1.35 (m, 7H), 1.35 – 0.93 (m, 10H), 0.93 – 0.58 (m, 6H). MS: Calculated for $C_{36}H_{60}N_2O_{14} = 785.3$, Found ES- positive $m/z = 767.3$ ($M+Na^+$), ES-negative $m/z = 743.4$ ($M-1$).

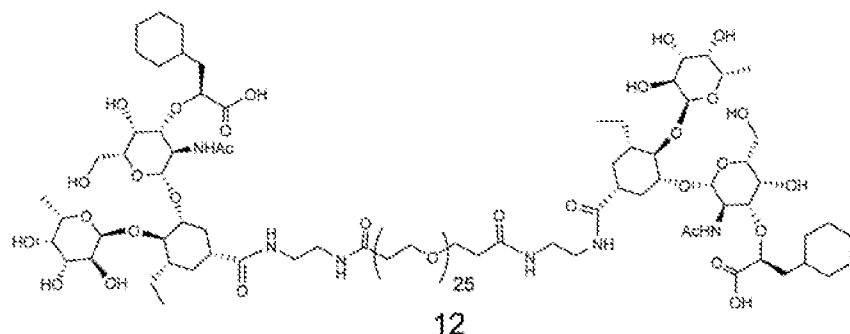
[00211] Compound 6: A solution of compound 4 (0.93 g, 1.25 mmole) in ethylene diamine (10 mL) was stirred overnight at 60 °C. The solution was concentrated under reduced pressure and the residue was directly purified by silica gel column chromatography (EtOAc/MeOH, 1/2, v/v) to give compound 6 as a light yellow gel (0.9 g, 1.16 mmole, 91%).
MS: Calculated for $C_{37}H_{64}N_4O_{13} = 772.4$, Found ES- positive $m/z = 773.4$ ($M+H^+$).



[00212] Compound 7: A solution of compound 6 (0.22 g, 0.28 mmole) and 3 drops of DIPEA in anhydrous DMF (3 mL) was cooled to 0 °C. Propargylic acid NHS ester (57 mg, 0.34 mmole) was slowly added. The resulting solution was stirred for 1 hr. The solution was concentrated under reduced pressure and the residue was directly purified by Combi-flash [EtOAc/(MeOH/water, 6/1, v/v), 1/9-2/8, v/v]. The product lyophilized to give compound 7 as an off-white solid (0.12 g, 0.15 mmole, 54%). MS: Calculated for $C_{40}H_{64}N_4O_{13} = 824.4$, Found ES- positive $m/z = 847.3$ ($M+Na^+$).

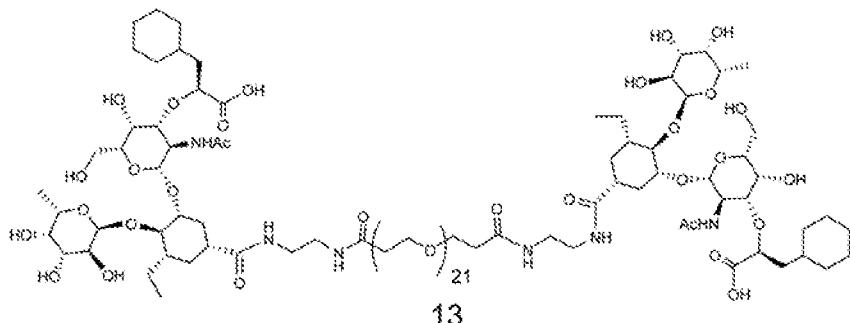
[00213] Compound 9: To a slurry solution of compound 1 (0.12 g, 0.16 mmole) and DIPEA (0.1 mL) in anhydrous DMF (1 mL) was added a solution of azidoacetic acid-NHS ester (compound 8) (39 mg, 0.2 mmole) in anhydrous DMF (1 mL) dropwise over a 10 minute period at room temperature. The resulting solution was stirred for 3 hrs. The reaction mixture was concentrated under reduced pressure and the residue was purified by Combi-flash eluting with [EtOAc/(MeOH/water, 6/1, v/v), 9/1 – 2/8, v/v]. The product was collected then lyophilized to give compound 9 as a white solid (0.11 g, 0.13 mmole, 81%). MS:

Calculated for $C_{37}H_{59}N_3O_{15} = 816.4$, Found ES- positive $m/z = 838.7$ ($M+Na^+$), ES- negative $m/z = 814.7$ ($M-H$).


[00214] **Compound 11:** A solution of PEG-17 Bis-NHS ester (compound **10**) (0.2 g, 0.19 mmol) in DMSO (2 mL) was added to a solution of compound **1** (0.4 g, 0.56 mmole) and DIPEA (0.2 mL) in anhydrous DMSO (2 mL) dropwise over a 5 minute period at room temperature. The resulting solution was stirred overnight. The solution was dialyzed against distilled water for 3 days with dialysis tube MWCO 1000 while distilled water was changed every 12 hours. The solution in the tube was lyophilized overnight to give compound **11** as a white solid (0.32 g, 0.14 mmole, 77%).

[00215] 1H NMR (400 MHz, Deuterium Oxide) δ 5.02 (d, $J = 3.9$ Hz, 2H), 4.90 (q, $J = 6.7$ Hz, 2H), 4.52 (broad d, $J = 8.4$ Hz, 2H), 3.97 (broad t, 2H), 3.86 - 3.74 (m, 16H), 3.73 - 3.59 (m, 62H), 3.56 (t, $J = 5.8$ Hz, 2H), 3.44 (m, 2H), 3.34-3.26 (m, 10H), 2.50 (t, $J = 6.1$ Hz, 4H), 2.31 (broad t, 2H), 2.12 (m, 2H), 2.04 (s, 6H), 1.90 - 1.79 (m, 4H), 1.78 - 1.38 (m, 14H), 1.37 - 1.26 (m, 14H), 1.25 - 1.08 (m, 14H), 0.98 - 0.79 (m, 10H). MS: Calculated for $C_{106}H_{188}N_6O_{47} = 2297.2$, Found MALDI-TOF $m/z = 2321$, ($M+Na^+$).

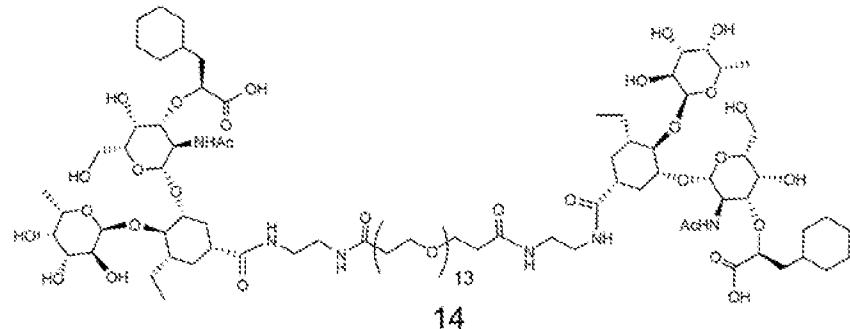
EXAMPLE 2: COMPOUND 12


[00216] **Compound 12:** Prepared in an analogous manner from compound **1** and PEG-25 bis-NHS ester.

[00217] ^1H NMR (400 MHz, Deuterium Oxide) δ 5.03 (d, $J = 3.9$ Hz, 2H), 4.91 (q, $J = 6.9$ Hz, 2H), 4.53 (broad d, $J = 8.4$ Hz, 2H), 3.98 (broad t, $J = 8.8$ Hz 2H), 3.92-3.86 (m, 6H), 3.81 – 3.79 (m, 2H), 3.78 – 3.74 (m, 4H), 3.72 - 3.66 (m, 100H), 3.56 (t, $J = 5.7$ Hz 2H), 3.52 – 3.40 (m, 2H), 3.37-3.25 (m, 10H), 2.53 -2.49 (t, $J = 6.1$ Hz 4H), 2.31 (m, 2H), 2.16 - 2.13 (m, 2H), 2.05 (s, 6H), 1.86 – 1.84 (m, 4H), 1.76 – 1.65 (m, 4H), 1.63 – 1.44 (m, 10H), 1.41 – 1.29 (m, 14H), 1.27 – 1.12 (m, 14H), 0.94 – 0.89 (m, 4H), 0.87 – 0.84 (t, $J = 7.2$ Hz, 6H). MS: Calculated for $\text{C}_{122}\text{H}_{220}\text{N}_6\text{O}_{55} = 2649$; Found MALDI-TOF $m/z = 2672$ ($\text{M}+\text{Na}^+$).

EXAMPLE 3: COMPOUND 13

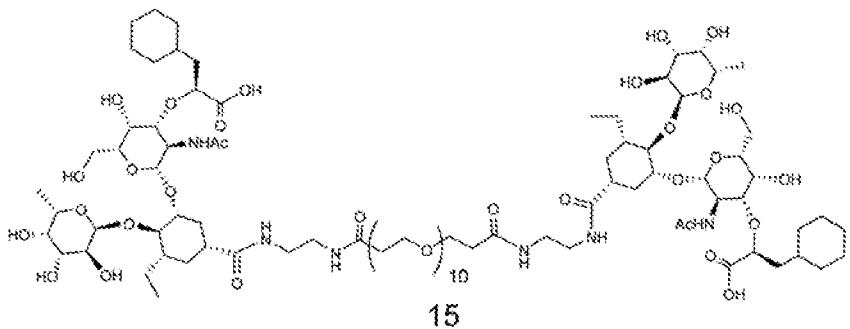
[00218] Compound 13: Prepared in an analogous manner from compound 1 and PEG-21 bis-NHS ester.



[00219] ^1H NMR (400 MHz, Deuterium Oxide) δ 5.03 (d, $J = 3.9$ Hz, 2H), 4.91 (q, $J = 6.7$ Hz, 2H), 4.56 (broad d, $J = 8.4$ Hz, 2H), 3.98 (broad t, 2H), 3.91-3.86 (m, 6H), 3.81 – 3.79 (m, 4H), 3.78 – 3.74 (m, 4H), 3.72 (m, 4H), 3.71 - 3.66 (m, 78H), 3.56 (t, $J = 5.8$ Hz 2H), 3.47 (m, 2H), 3.35-3.27 (m, 10H), 2.53 -2.49 (t, $J = 6.1$ Hz 4H), 2.31 (broad t, 2H), 2.16 - 2.13 (m, 2H), 2.05 (s, 6H), 1.86 – 1.84 (m, 4H), 1.76 – 1.65 (m, 4H), 1.63 – 1.47 (m, 8H), 1.38 – 1.29 (m, 14H), 1.27 – 1.22 (m, 8H), 1.18 – 1.12 (m, 6H), 0.94 – 0.89 (m, 4H), 0.87 –

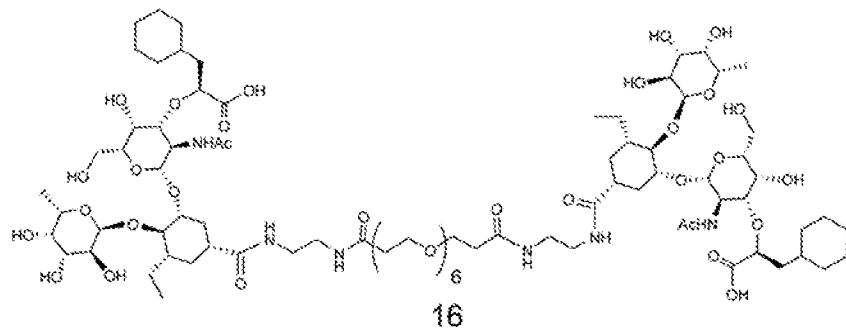
0.84 (t, $J = 7.2$ Hz, 6H). MS: Calculated for $C_{114}H_{264}N_6O_{53} = 2473.3$; Found MALDI-TOF $m/z = 2496$ ($M+Na^+$).

EXAMPLE 4: Compound 14


[00220] **Compound 14:** Prepared in an analogous manner from compound 1 and PEG-13 bis-NHS ester.

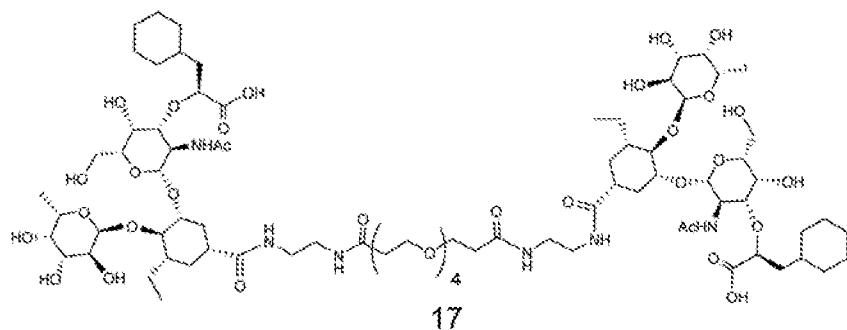
[00221] 1H NMR (400 MHz, Deuterium Oxide) δ 5.06 (d, $J = 4.1$ Hz, 2H), 4.94 (q, $J = 6.6$ Hz, 2H), 4.56 (broad d, $J = 8.4$ Hz, 2H), 4.02 (Broad s, 2H), 3.94-3.90 (m, 6H), 3.84 (m, 2H), 3.80 (m, 4H), 3.76 (m, 6H), 3.72 - 3.70 (m, 50H), 3.59 (broad t, 2H), 3.49 (m, 2H), 3.38-3.33 (m, 10H), 2.54 (t, $J = 6.1$ Hz 4H), 2.34 (broad t, 2H), 2.19 - 2.17 (m, 2H), 2.09 (s, 6H), 1.90 - 1.87 (m, 4H), 1.79 - 1.71 (m, 4H), 1.69 - 1.58 (m, 8H), 1.56 (m, 2H), 1.51 (m, 4H), 1.43 - 1.36 (m, 4H), 1.35 - 1.33 (m, 6H), 1.27 - 1.17 (m, 8H), 1.00 - 0.91 (m, 4H), 0.90 - 0.88 (t, $J = 7.4$ Hz, 6H). MS: Calculated for $C_{98}H_{172}N_6O_{53} = 2121.1$; Found MALDI-TOF $m/z = 2144$ ($M+Na^+$).

EXAMPLE 5: Compound 15


[00222] **Compound 15:** Prepared in an analogous manner from compound 1 and PEG-10 bis-NHS ester.

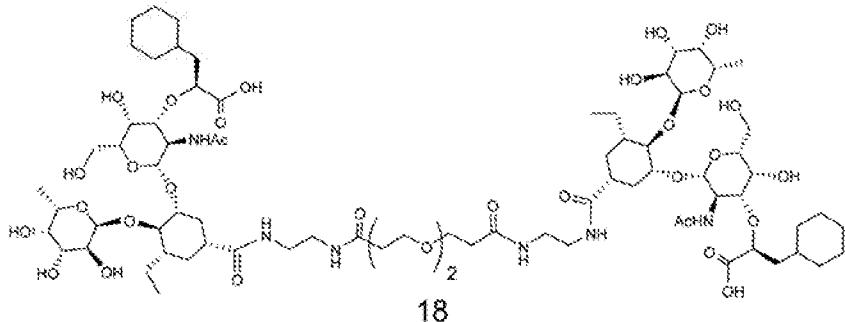
[00223] ^1H NMR (400 MHz, Deuterium Oxide) δ 5.06 (d, $J = 4.0$ Hz, 2H), 4.94 (q, $J = 6.7$ Hz, 2H), 4.56 (broad d, $J = 8.4$ Hz, 2H), 4.02 (broad s, 2H), 3.95-3.90 (m, 6H), 3.84 (m, 2H), 3.79 (m, 4H), 3.75 (m, 6H), 3.72 (m, 30H), 3.70 (broad s, 10H), 3.58 (broad t, $J = 5.6$ Hz 2H), 3.51 (m, 2H), 3.38-3.35 (m, 6H), 3.34-3.31 (m, 4H), 2.54 (t, 4H), 2.34 (broad t, 2H), 2.19 - 2.17 (m, 2H), 2.09 (s, 6H), 1.90 - 1.87 (m, 4H), 1.79 - 1.66 (m, 4H), 1.63 - 1.55 (m, 8H), 1.53 - 1.49 (m, 2H), 1.41 (q, $J = 12.0$ Hz, 4H), 1.37 - 1.32 (m, 8H), 1.27 (broad d, $J = 6.6$ Hz, 6H), 1.24 - 1.17 (m, 8H), 0.98 - 0.93 (m, 4H), 0.90 - 0.88 (t, $J = 7.4$ Hz, 6H). MS: Calculated for $\text{C}_{92}\text{H}_{180}\text{N}_6\text{O}_{40} = 1989.0$; Found MALDI-TOF $m/z = 2013$ ($\text{M}+\text{Na}^+$).

EXAMPLE 6: Compound 16


[00224] **Compound 16:** Prepared in an analogous manner from compound 1 and PEG-9 bis-NHS ester.

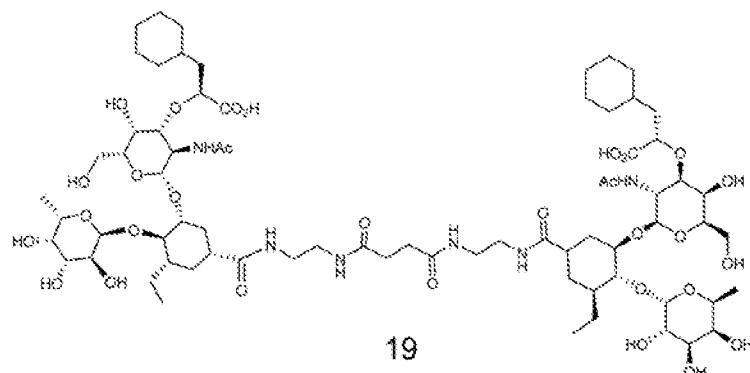
[00225] ^1H NMR (400 MHz, Deuterium Oxide) δ 7.82 (m, 2H), 6.83 (d, $J = 8.9$ Hz, 2H), 4.91 (d, $J = 4.0$ Hz, 2H), 4.79 (q, $J = 6.7$ Hz, 2H), 4.39 (d, $J = 8.5$ Hz, 2H), 3.96 - 3.83 (m, 4H), 3.81 (d, $J = 3.0$ Hz, 2H), 3.79 - 3.71 (m, 4H), 3.71 - 3.47 (m, 34H), 3.47 - 3.31 (m, 4H), 3.31 - 3.07 (m, 10H), 2.39 (t, $J = 6.1$ Hz, 4H), 2.19 (t, $J = 12.5$ Hz, 2H), 2.03 (broad d, $J = 6.8$ Hz, 2H), 1.93 (s, 6H), 1.73 (broad d, $J = 12.5$ Hz, 4H), 1.68 - 1.34 (m, 16H), 1.34 - 1.15 (m, 4H), 1.15 - 0.91 (m, 14H), 0.91 - 0.65 (m, 10H). MS: Calculated for $\text{C}_{84}\text{H}_{144}\text{N}_6\text{O}_{36} = 1812.9$; Found ES-Negative $m/z = 1812.8$ ($\text{M}-1$).

EXAMPLE 7: Compound 17


[00226] **Compound 17:** Prepared in an analogous manner from compound 1 and PEG-4 bis-NHS ester.

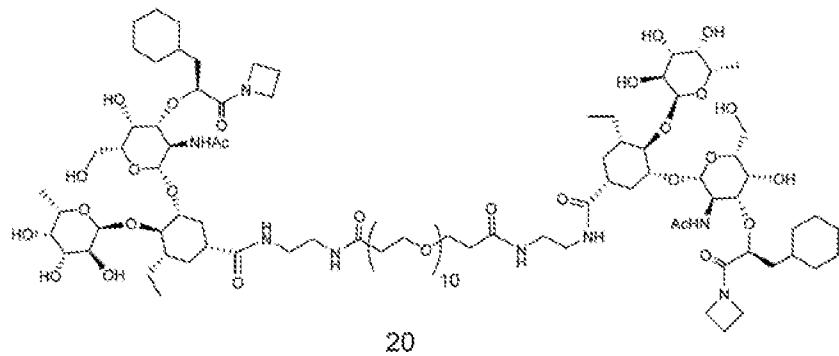
[00227] ^1H NMR (400 MHz, Deuterium Oxide) δ 4.91 (d, $J = 4.0$ Hz, 2H), 4.80 (q, $J = 6.7$ Hz, 2H), 4.40 (broad d, $J = 8.4$ Hz, 2H), 4.00 – 3.84 (m, 4H), 3.82 (d, $J = 3.0$ Hz, 2H), 3.76 (dd, $J = 10.6, 3.2$ Hz, 2H), 3.72 – 3.57 (m, 12H), 3.55 (m, $J = 3.1$ Hz, 14H), 3.42 (m, $J = 7.5, 4.5$ Hz, 4H), 3.30 – 3.09 (m, 10H), 2.39 (t, $J = 6.1$ Hz, 4H), 2.20 (broad t, $J = 12.6$ Hz, 2H), 2.03 (m, $J = 6.5$ Hz, 2H), 1.94 (s, 6H), 1.73 (broad d, $J = 12.5$ Hz, 4H), 1.67 – 1.33 (m, 16H), 1.33 – 0.93 (m, 20H), 0.89 – 0.67 (m, 10H). MS: Calculated for $\text{C}_{86}\text{H}_{136}\text{N}_6\text{O}_{34} = 1724.9$; Found ES-Negative $m/z = 1724.8$ (M-1).

EXAMPLE 8: Compound 18


[00228] **Compound 18:** Prepared in an analogous manner from compound 1 and PEG-2 bis-NHS ester.

[00229] ^1H NMR (400 MHz, Deuterium Oxide) δ 4.91 (d, $J = 4.0$ Hz, 2H), 4.79 (q, $J = 6.7$ Hz, 2H), 4.40 (broad d, $J = 8.5$ Hz, 2H), 4.01 – 3.84 (m, 4H), 3.81 (d, $J = 3.0$ Hz, 2H), 3.76 (dd, $J = 10.5, 3.2$ Hz, 2H), 3.72 – 3.55 (m, 14H), 3.52 (s, 4H), 3.42 (m, $J = 6.0$ Hz, 4H), 3.28 – 3.06 (m, 10H), 2.38 (t, $J = 6.1$ Hz, 4H), 2.19 (broad t, $J = 12.7$ Hz, 2H), 2.03 (m, $J = 6.5$ Hz, 2H), 1.94 (s, 6H), 1.73 (m, $J = 12.5$ Hz, 4H), 1.67 – 1.33 (m, 16H), 1.33 – 0.92 (m, 20H), 0.92 – 0.60 (m, 10H). MS: Calculated for $\text{C}_{76}\text{H}_{128}\text{N}_6\text{O}_{32} = 1636.8$; Found ES-Negative $m/z = 1636.7$ (M-1).

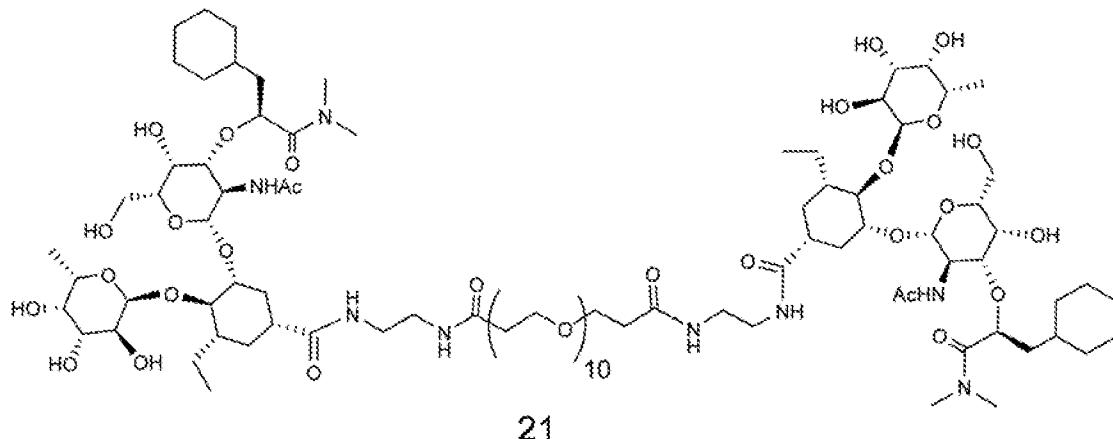
EXAMPLE 9: Compound 19


[00230] **Compound 19:** Prepared in an analogous manner from compound **1** and succinic acid bis-NHS ester.

[00231] ^1H NMR (400 MHz, Deuterium Oxide) δ 4.91 (d, $J = 4.0$ Hz, 2H), 4.80 (q, $J = 6.8$ Hz, 2H), 4.41 (broad d, $J = 8.6$ Hz, 2H), 3.88 (m, 2H), 3.81 – 3.74 (m, 6H), 3.73-3.65 (m, 6H), 3.64-3.56 (m, 6H), 3.45 (broad t, 2H), 3.33 (broad d, $J = 9.9$ Hz, 2H), 3.20 (m, $J = 11.4$, 10.3 Hz, 10H), 2.39 (s, 4H), 2.19 (m, $J = 12.8$ Hz, 2H), 2.02 (m, 2H), 1.94 (s, 6H), 1.84 – 1.69 (m, 4H), 1.51 (m, $J = 65.3$, 30.1, 14.0 Hz, 14H), 1.26 (q, $J = 12.5$ Hz, 6H), 1.09 (m, $J = 28.4$, 8.7 Hz, 14H), 0.94 – 0.64 (m, 10H). MS: Calculated for $\text{C}_{72}\text{H}_{126}\text{N}_6\text{O}_{36} = 1548.8$; Found ES-Negative $m/z = 1548.67$ (M-1).

EXAMPLE 10: Compound 20

[00232] **Compound 20:** A solution of compound **15** (12.4 mg, 6.23 μ mole) and DIPEA (11 μ L, 62.3 μ mole,) in anhydrous DMF (0.2 mL) was cooled to 0°C and TBTU (12 mg, 37.8 μ mole) was added. The resulting solution was stirred for 10 minute. Azetidine (8.4 μ L, 124.6 μ mole,) was added and the resulting solution was stirred for 1h at room temperature. The reaction mixture was concentrated under high vacuum and the residue was purified by HPLC. The product portion was collected and evaporated, re-dissolved in minimum amount of distilled water then lyophilized overnight to give compound **20** as a white solid (6.3 mg, 49%).

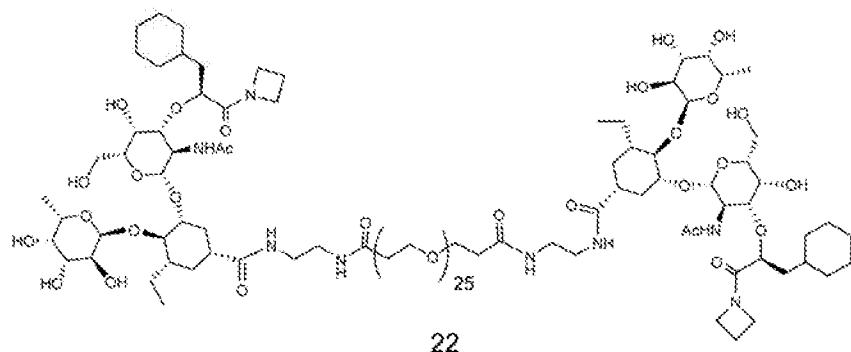

20

[00233] ^1H NMR (400 MHz, Deuterium Oxide) δ 8.32 (s, 2H), 8.23 (d, $J = 9.5$ Hz, 2H), 4.92 (broad d, 2H), 4.79 (q, $J = 6.7$ Hz, 2H), 4.42 (m, 2H), 4.23 (q, $J = 7.8$ Hz, 2H), 4.14 (q, $J = 7.8$ Hz, 2H), 4.06 – 3.79 (m, 6H), 3.76 (dd, $J = 10.5$ Hz, 2H), 3.66 (m, $J = 15.1, 13.8, 8.6$ Hz, 8H), 3.57 (m, $J = 8.0$ Hz, 46H), 3.41 (m, 4H), 3.21 (m, $J = 14.4, 12.2$ Hz, 10H), 2.45 – 2.34 (t, 4H), 2.22 (m, $J = 12.9$ Hz, 6H), 2.02 (m, 2H), 1.94 (s, 6H), 1.74 (broad d, $J = 12.2$ Hz, 4H), 1.68 – 1.33 (m, 14H), 1.26 (m, $J = 11.1$ Hz, 6H), 1.15 – 0.95 (m, 16H), 0.95 – 0.64 (m, 10H). MS: Calculated for $\text{C}_{98}\text{H}_{170}\text{N}_8\text{O}_{38} = 2067$; Found ES-Negative $m/z = 1033.6$ ((M-1)/2).

[00234] The following compounds were prepared in an analogous manner:

EXAMPLE 11: Compound 21

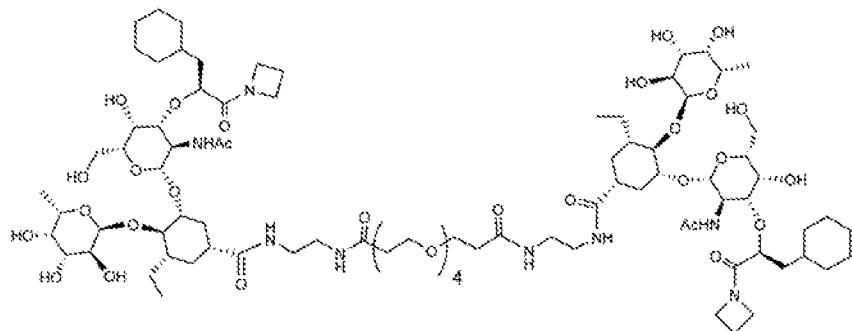
[00235] Compound 21: Prepared in an analogous manner from compound 15 and dimethylamine.



[00236] ^1H NMR (400 MHz, Deuterium Oxide) δ 8.33 (s, 6H), 4.93 (broad s, 2H), 4.80 (q, 2H), 4.42 (broad d, $J = 9.9$ Hz, 4H), 3.89 (broad s, 2H), 3.77 (dd, $J = 10.9$ Hz, 2H), 3.74 – 3.49 (m, 54H), 3.42 (Broad s, 4H), 3.21 (m, $J = 14.5, 12.4$ Hz, 10H), 2.95 (s, 6H), 2.83 (s,

6H), 2.41 (broad t, 4H), 2.21 (broad t, 2H), 2.05 (m, 2H), 1.97 (s, 6H), 1.73 (m, 6H), 1.67 – 1.36 (m, 12H), 1.36 – 0.96 (m, 20H), 0.80 (d, $J = 38.2$ Hz, 10H). MS: Calculated for $C_{96}H_{170}N_8O_{38} = 2043.0$; Found ES-Negative $m/z = 1066.8$ ((M+formic acid-1)/2).

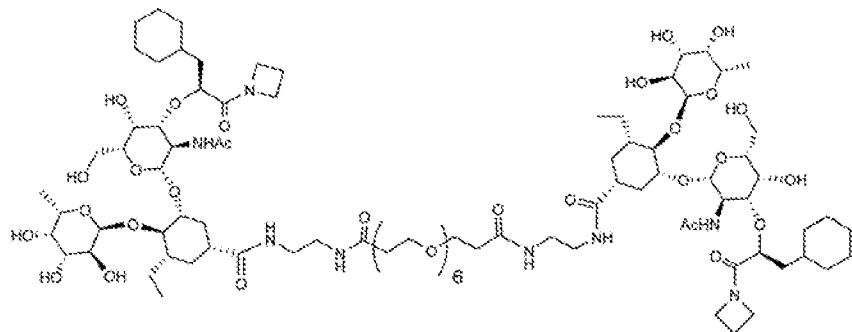
EXAMPLE 12: Compound 22


[00237] **Compound 22:** Prepared in an analogous manner from compound 12 and azetidine.

[00238] 1H NMR (400 MHz, Deuterium Oxide) δ 8.33 (s, 2H), 4.92 (d, $J = 4.0$ Hz, 2H), 4.79 (q, $J = 6.6$ Hz, 2H), 4.42 (Broad d, $J = 8.6$ Hz, 2H), 4.24 (q, $J = 8.7$ Hz, 2H), 4.15 (q, $J = 8.6$ Hz, 2H), 3.96 (m, $J = 25.2, 9.1$ Hz, 4H), 3.86 (broad s, 2H), 3.77 (dd, $J = 10.6, 3.1$ Hz, 2H), 3.73 – 3.47 (m, 114H), 3.42 (m, $J = 7.8, 4.6$ Hz, 4H), 3.20 (m, $J = 22.8, 8.6$ Hz, 10H), 2.41 (t, $J = 6.1$ Hz, 4H), 2.35 – 2.13 (m, 6H), 2.04 (m, $J = 10.8$ Hz, 2H), 1.95 (s, 6H), 1.75 (broad d, $J = 12.7$ Hz, 4H), 1.68 – 1.35 (m, 16H), 1.35 – 0.94 (m, 20H), 0.94 – 0.67 (m, 10H). MS: Calculated for $C_{128}H_{230}N_8O_{53} = 2727.5$; Found ES-Negative $m/z = 1409.3$ ((M+formic acid-1)/2).

EXAMPLE 13: Compound 23

[00239] **Compound 23:** Prepared in an analogous manner from compound 17 and azetidine.

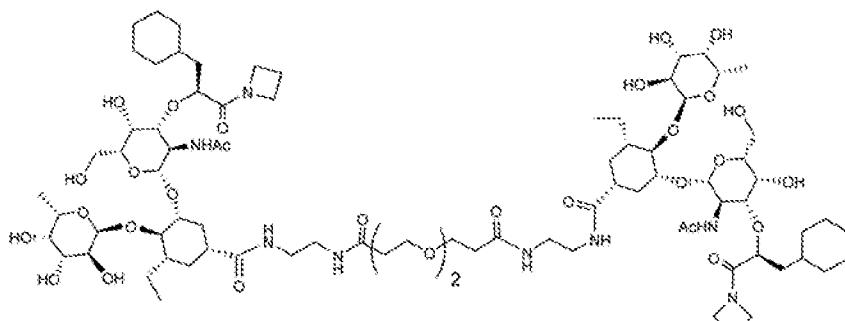


23

[00240] ^1H NMR (400 MHz, Deuterium Oxide) δ 8.28 (broad s, 2H), 8.23 (broad d, 2H), 4.91 (d, J = 4.0 Hz, 2H), 4.78 (q, J = 7.4, 6.9 Hz, 2H), 4.41 (broad d, J = 8.5 Hz, 2H), 4.23 (q, J = 8.7 Hz, 2H), 4.14 (q, J = 8.8 Hz, 2H), 4.04 – 3.80 (m, 8H), 3.76 (dd, J = 10.6, 3.2 Hz, 2H), 3.72 – 3.58 (m, 16H), 3.55 (d, J = 3.0 Hz, 12H), 3.41 (m, J = 7.7, 4.4 Hz, 4H), 3.30 – 3.10 (m, 10H), 2.40 (t, J = 6.1 Hz, 4H), 2.34 – 2.12 (m, 6H), 2.03 (m, J = 7.1 Hz, 2H), 1.94 (s, 6H), 1.74 (broad d, J = 12.7 Hz, 4H), 1.67 – 1.33 (m, 14H), 1.33 – 1.16 (m, 8H), 1.16 – 0.95 (m, 14H), 0.95 – 0.64 (m, 10H). MS: Calculated for $\text{C}_{86}\text{H}_{146}\text{N}_2\text{O}_{32}$ = 1803.0; Found ES-Positive m/z = 1826.8 (M^+Na^+).

EXAMPLE 14: Compound 24

[00241] Compound 24: Prepared in an analogous manner from compound 16 and azetidine.

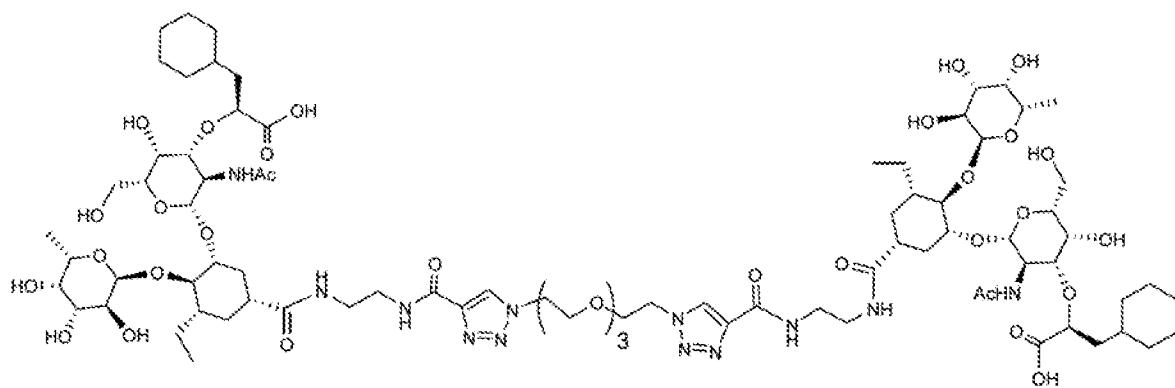

24

[00242] ^1H NMR (400 MHz, Deuterium Oxide) δ 4.92 (d, J = 4.0 Hz, 2H), 4.79 (q, J = 6.6 Hz, 2H), 4.42 (m, 2H), 4.24 (q, J = 8.7 Hz, 2H), 4.14 (q, J = 8.4 Hz, 2H), 3.96 (m, J = 24.9, 8.9 Hz, 8H), 3.80 – 3.48 (m, 36H), 3.42 (m, J = 7.7, 4.4 Hz, 4H), 3.19 (m, J = 23.4, 8.5 Hz, 10H), 2.40 (t, J = 6.1 Hz, 4H), 2.32 – 2.10 (m, 8H), 2.02 (m, 2H), 1.94 (s, 6H), 1.74 (broad d, J = 12.5 Hz, 4H), 1.67 – 1.34 (m, 14H), 1.24 (m, J = 11.2 Hz, 8H), 1.16 – 0.94 (m, 14H),

0.94 – 0.64 (m, 10H). MS: Calculated for $C_{99}H_{154}N_8O_{34} = 1891.0$; Found ES-Negative $m/z = 1935.9$ (M^+ -formic acid-1).

EXAMPLE 15: Compound 25

[00243] **Compound 25:** Prepared in an analogous manner from compound **18** and azetidine.

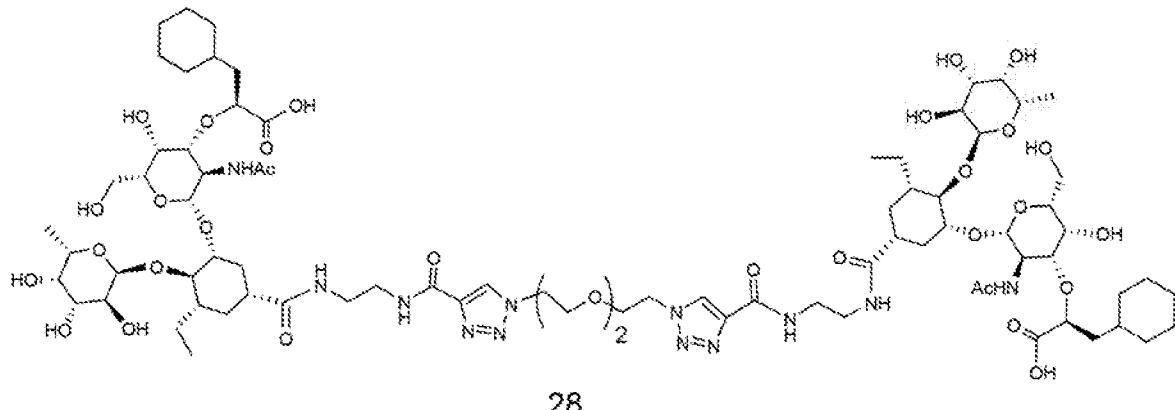


25

[00244] 1H NMR (400 MHz, Deuterium Oxide) δ 8.23 (d, $J = 9.6$ Hz, 2H), 4.91 (d, $J = 4.0$ Hz, 2H), 4.78 (q, $J = 6.7$ Hz, 2H), 4.41 (broad d, $J = 8.5$ Hz, 2H), 4.23 (q, $J = 8.6$ Hz, 2H), 4.14 (q, $J = 8.7$ Hz, 2H), 3.95 (m, $J = 24.6, 8.8$ Hz, 8H), 3.76 (dd, $J = 10.6, 3.2$ Hz, 2H), 3.72 – 3.55 (m, 14H), 3.53 (s, 4H), 3.41 (m, $J = 7.7, 4.4$ Hz, 4H), 3.19 (m, $J = 13.5, 10.9$ Hz, 12H), 2.39 (t, $J = 6.1$ Hz, 4H), 2.21 (m, $J = 16.1, 8.8$ Hz, 6H), 2.02 (m, 2H), 1.94 (s, 6H), 1.74 (broad d, $J = 12.4$ Hz, 4H), 1.67 – 1.33 (m, 14H), 1.33 – 0.93 (m, 22H), 0.93 – 0.62 (m, 10H). MS: Calculated for $C_{82}H_{138}N_8O_{30} = 1714.9$; Found ES-Positive $m/z = 1737.8$ (M^+Na^+).

EXAMPLE 16: Compound 27

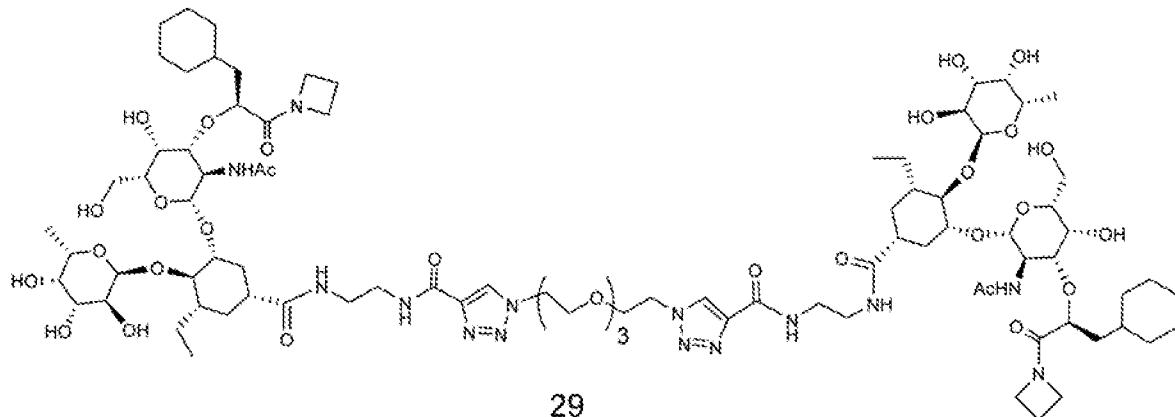
[00245] **Compound 27:** To a mixture of compound **2** (72 mg, 91 μ mole) and compound **26** (azido-PEG3-azide) (9.3 mg, 38 μ mole) in deionized water (2 mL) was added a solution of $CuSO_4$ -THPTA (0.04M) (0.5 mL) and sodium ascorbate (38 mg, 0.19 mmole) successively. The reaction mixture was stirred overnight at room temperature. The reaction mixture was concentrated under high vacuum and the residue was purified by HPLC. The product was lyophilized overnight to give compound **27** as a white solid (3.0 mg, 4%).



[00246] ^1H NMR (400 MHz, Deuterium Oxide) δ 8.27 (s, 2H), 8.22 (s, 2H), 4.88 (d, J = 4.0 Hz, 2H), 4.78 (q, J = 6.8 Hz, 2H), 4.53 (t, J = 4.9 Hz, 4H), 4.39 (broad d, J = 8.6 Hz, 2H), 3.94 – 3.80 (m, 8H), 3.80 – 3.72 (m, 4H), 3.72 – 3.64 (m, 4H), 3.60 (m, J = 5.8 Hz, 4H), 3.54 – 3.31 (m, 18H), 3.31 – 3.09 (m, 4H), 2.16 (broad t, J = 12.6 Hz, 2H), 2.01 (m, J = 7.5 Hz, 2H), 1.90 (s, 6H), 1.80 – 1.30 (m, 20H), 1.22 (m, J = 11.9 Hz, 2H), 1.16 – 0.87 (m, 18H), 0.78 (m, J = 23.1, 10.9 Hz, 4H), 0.63 (t, J = 7.3 Hz, 6H). MS: Calculated for $\text{C}_{82}\text{H}_{134}\text{N}_{12}\text{O}_{33} = 1814.9$; Found ES-Negative $m/z = 1814.7$ (M-1).

[00247] The following compounds were prepared in an analogous manner:

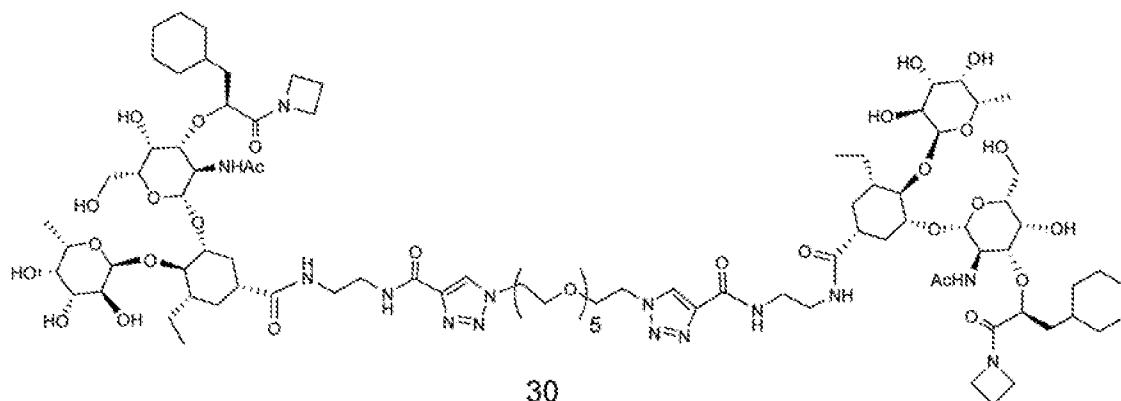
EXAMPLE 17: Compound 28


[00248] Compound 28: Prepared in an analogous manner from compound 2 and azido-PEG2-azide.

[00249] ^1H NMR (400 MHz, Deuterium Oxide) δ 8.23 (s, 2H), 4.87 (d, J = 4.0 Hz, 2H), 4.77 (q, J = 6.9 Hz, 2H), 4.50 (t, J = 4.9 Hz, 4H), 4.37 (broad d, J = 8.6 Hz, 2H), 3.87 (broad d, J = 5.9 Hz, 4H), 3.82 – 3.71 (m, 8H), 3.71 – 3.63 (m, 4H), 3.63 – 3.53 (m, 4H), 3.50 (m, 6H), 3.46 – 3.32 (m, 8H), 3.32 – 3.23 (m, 2H), 3.23 – 3.09 (m, 2H), 2.17 (broad t, J = 12.8 Hz, 2H), 2.10 – 1.97 (m, 2H), 1.89 (s, 6H), 1.82 – 1.30 (m, 20H), 1.21 (d, J = 12.1 Hz, 4H), 1.16 – 0.87 (m, 18H), 0.79 (dt, J = 22.3, 10.7 Hz, 4H), 0.62 (t, J = 7.4 Hz, 6H). MS: Calculated for $\text{C}_{80}\text{H}_{130}\text{N}_{12}\text{O}_{32}$ = 1770.8; Found ES-Negative m/z = 1769.7 (M-1).

EXAMPLE 18: Compound 29

[00250] **Compound 29:** To a solution of compound 7 (46 mg, 56 μ mole) and compound 26 (azido-PEG3-azide) (5.6 mg, 23 μ mole) in a solution of MeOH (3 mL) and distilled water (0.3 mL) was added a solution of CuSO_4 -THPTA (0.04M) (0.3 mL) and sodium ascorbate (23 mg, 0.12 mmole) successively. The resulting solution was stirred overnight at room temperature. To complete the reaction, another set of catalyst was added and the reaction was continued additional 6 hrs. After the reaction was completed, the solution was concentrated under high vacuum and the residue was purified by HPLC. The product portion was collected and evaporated, re-dissolved in minimum amount of distilled water then lyophilized overnight to give compound 29 as a white solid (25.2 mg, 13.3 μ mole, 57%).

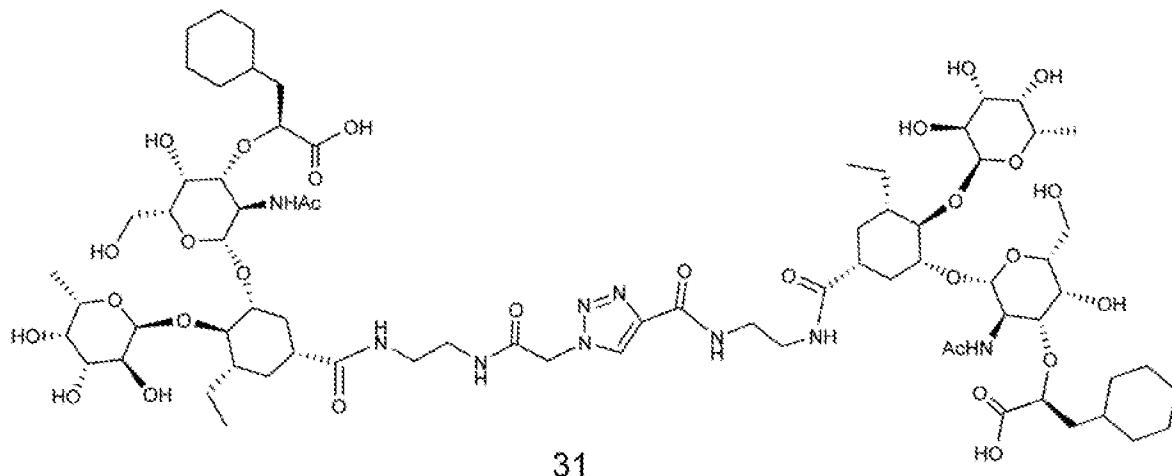

[00251] ^1H NMR (400 MHz, Deuterium Oxide) δ 8.28 (s, 2H), 4.88 (d, J = 4.0 Hz, 2H), 4.77 (q, J = 6.8 Hz, 2H), 4.53 (t, J = 4.8 Hz, 4H), 4.38 (broad d, 2H), 4.23 (q, J = 7.7 Hz, 2H), 4.13 (q, J = 8.4 Hz, 2H), 4.07 – 3.87 (m, 6H), 3.82 (t, J = 4.9 Hz, 4H), 3.79 – 3.63 (m, 8H), 3.63 – 3.55 (m, 6H), 3.55 – 3.32 (m, 14H), 3.32 – 3.10 (m, 4H), 2.33 – 2.08 (m, 8H), 2.02 (m,

2H), 1.89 (s, 6H), 1.81 – 1.31 (m, 18H), 1.22 (m, J = 11.6 Hz, 6H), 1.17 – 0.90 (m, 14H), 0.90 – 0.68 (m, 4H), 0.63 (t, J = 7.3 Hz, 6H). MS: Calculated for $C_{88}H_{144}N_{14}O_{33}$ = 1893.0; Found ES-Positive m/z = 969.5 ($M/2^+Na^+$).

[00252] The following compounds were prepared in an analogous manner:

EXAMPLE 19: Compound 30

[00253] **Compound 30:** Prepared in an analogous manner from compound 7 and azido-PEG5-azide.

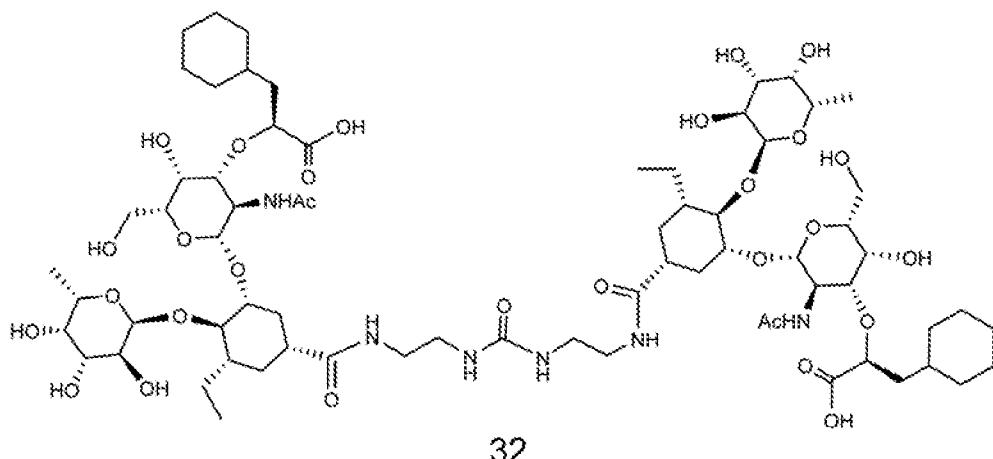


[00254] 1H NMR (400 MHz, Deuterium Oxide) δ 8.33 (s, 2H), 4.88 (d, J = 3.9 Hz, 2H), 4.77 (q, J = 6.8 Hz, 2H), 4.55 (t, J = 5.0 Hz, 4H), 4.39 (m, 2H), 4.22 (q, J = 8.2 Hz, 2H), 4.13 (q, J = 8.7 Hz, 2H), 4.00 (broad d, J = 9.9 Hz, 2H), 3.93 (q, J = 7.7 Hz, 4H), 3.85 (t, J = 5.0 Hz, 4H), 3.74 (dd, J = 10.5, 3.2 Hz, 2H), 3.70 (broad d, J = 3.0 Hz, 2H), 3.69 – 3.62 (m, 4H), 3.59 (m, J = 7.7 Hz, 6H), 3.53 (m, J = 5.6 Hz, 2H), 3.47 (m, J = 11.4, 4.1 Hz, 12H), 3.43 – 3.31 (m, 6H), 3.31 – 3.22 (m, 2H), 3.17 (t, J = 9.7 Hz, 2H), 2.20 (m, J = 14.0 Hz, 8H), 2.01 (m, J = 10.3 Hz, 2H), 1.90 (s, 6H), 1.75 – 1.31 (m, 18H), 1.22 (m, J = 12.1 Hz, 6H), 1.16 – 0.91 (m, 14H), 0.91 – 0.69 (m, 4H), 0.63 (t, J = 7.3 Hz, 6H). MS: Calculated for $C_{92}H_{152}N_{14}O_{33}$ = 1981.0; Found ES-Positive m/z = 1013.6 ($M/2^+Na^+$).

EXAMPLE 20: Compound 31

[00255] **Compound 31:** To a solution of compound 2 (30 mg, 38 μ mole) and compound 9 (46 mg, 57 μ mole) in distilled water (2 mL) was added a solution of $CuSO_4$ -THPTA (0.04M) (0.2 mL) and sodium ascorbate (1.5 mg, 7.6 μ mole) successively. The resulting solution was stirred for 4 hrs at room temperature. The solution was concentrated under high vacuum and

the residue was purified by HPLC. The product portion was collected and evaporated, re-dissolved in minimum amount of distilled water then lyophilized overnight to give compound 31 as a white solid (3.5 mg, 6%).

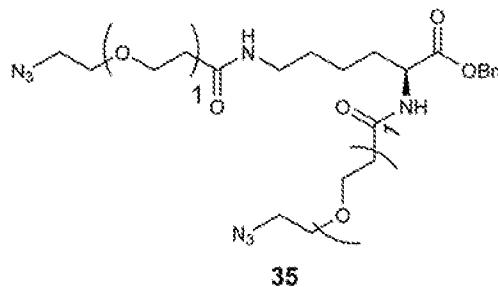

[00256] ^1H NMR (400 MHz, Deuterium Oxide) δ 8.39 (s, 1H), 5.23 (s, 2H), 4.97 (t, J = 4.5 Hz, 2H), 4.85 (m, 2H), 4.45 (broad t, 2H), 3.94 (m, 2H), 3.91 – 3.78 (m, 6H), 3.77 – 3.62 (m, 12H), 3.61 – 3.40 (m, 8H), 3.40 – 3.16 (m, 8H), 2.24 (m, J = 12.0 Hz, 2H), 2.09 (m, 2H), 1.98 (two s, 6H), 1.89 – 1.37 (m, 20H), 1.36 – 1.24 (m, 4H), 1.23 – 0.94 (m, 18H), 0.93 – 0.77 (m, 4H), 0.71 (t, J = 7.2 Hz, 6H). MS: Calculated for $\text{C}_{73}\text{H}_{119}\text{N}_9\text{O}_{30}$ = 1601.8, Found ES-Negative m/z = 1600.5 (M-H).

EXAMPLE 21: Compound 32

[00257] **Compound 32:** To a solution of compound 1 (25 mg, 34 μ mole) and carbonyldiimidazole (2.3 mg, 14 μ mole) in anhydrous DMF (1 mL) was added DIPEA (20 μ L). The resulting solution was stirred overnight at room temperature under an N_2 atmosphere. The reaction mixture was concentrated under high vacuum and the residue was purified by HPLC. The product portion was collected and evaporated, re-dissolved in minimum amount of distilled water then lyophilized overnight to give compound 32 as a white solid (1.6 mg, 8%).

[00258] **Compound 32 (Alternative Synthesis):** To a solution of compound 1 (0.77 g, 1.04 mmole) in anhydrous DMSO (3 mL) was added bis(*p*-nitrophenyl) carbonate (0.15 g,

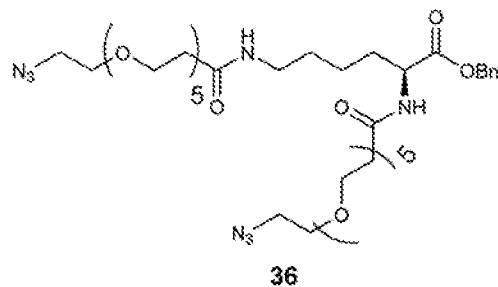
0.49 mole) (3 mL). The reaction mixture was stirred overnight at 40 °C. The reaction mixture was lyophilized to dryness. The residue was purified by reverse phase C-18 column chromatography eluting with a solution of water/MeOH (gradient change from 9/1 to 1/9 v/v). The product portion was concentrated and lyophilized to give the desired product as a white solid (0.47 g, 0.31 mmole, 48%).



[00259] ^1H NMR (400 MHz, Deuterium Oxide) δ 4.92 (d, J = 4.0 Hz, 2H), 4.81 (q, J = 6.7 Hz, 2H), 4.42 (broad d, J = 8.5 Hz, 2H), 3.88 (m, 2H), 3.84 – 3.74 (m, 6H), 3.73 – 3.56 (m, 12H), 3.45 (t, J = 5.9 Hz, 2H), 3.36 (broad d, J = 10.1 Hz, 2H), 3.29 – 3.00 (m, 12H), 2.23 (broad t, J = 12.7 Hz, 2H), 2.05 (m, 2H), 1.95 (s, 6H), 1.75 (broad d, J = 12.5 Hz, 4H), 1.69 – 1.35 (m, 18H), 1.35 – 1.16 (m, 6H), 1.15 – 0.92 (m, 16H), 0.91 – 0.62 (m, 12H); MS: Calculated for $\text{C}_{69}\text{H}_{116}\text{N}_6\text{O}_{29}$ = 1492.7; Found ES-Negative m/z = 1491.5 (M-H).

EXAMPLE 22: Intermediate 35

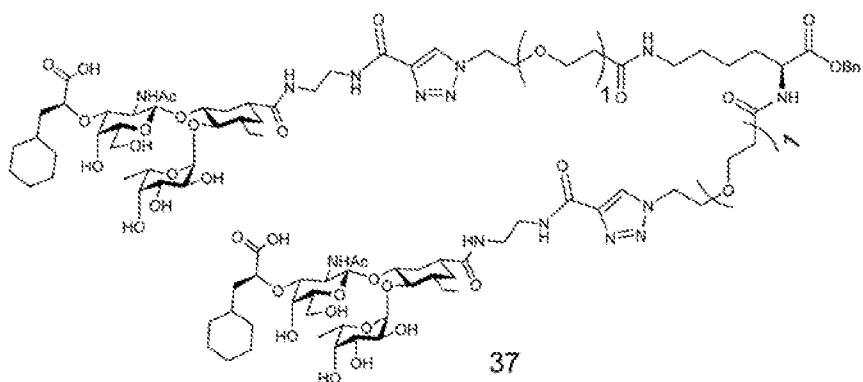
[00260] **Compound 35:** A solution of L-Lysine (OBn ester) (0.15 g, 0.49 mmole) in anhydrous DMF (3 mL) was cooled to 0 °C and DIPEA (0.35 mL, 2.0 mmole) was added. The solution was stirred for 10 min. This solution was added to a solution of N_3 -PEG1-NHS ester (compound 34) (0.30 g, 1.16 mmole) over a 5 minute period followed by a catalytic amount of DMAP (20 mg). The resulting solution was stirred overnight while temperature was gradually increased to room temperature. The solution was concentrated and the residue was dried under high vacuum for 30 min to dryness, then directly purified by Combi-flash (EtOAc/MeOH, EtOAc only - 2/1, v/v). The product portion was collected and evaporated,


then dried under high vacuum to give compound **35** as a light yellow gel (0.25 g, 0.48 mmole, 98%). MS: Calculated (C₂₃H₃₄N₈O₆, 518.2), ES- positive (519.2, M+1, 541.2 M+Na).

[00261] ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.47 – 7.22 (m, 5H), 5.31 – 5.03 (dd, 2H), 4.45 (dd, *J* = 8.7, 5.2 Hz, 1H), 3.86 – 3.66 (m, 4H), 3.63 (q, *J* = 4.9 Hz, 4H), 3.45 – 3.24 (m, 7H), 3.17 (td, *J* = 6.9, 4.9 Hz, 2H), 2.63 – 2.48 (m, 2H), 2.45 (t, *J* = 6.1 Hz, 2H), 1.86 (dtd, *J* = 13.3, 8.0, 5.2 Hz, 1H), 1.80 – 1.63 (m, 1H), 1.63 – 1.45 (m, 2H), 1.39 (m, 2H).

EXAMPLE 23: Intermediate 36

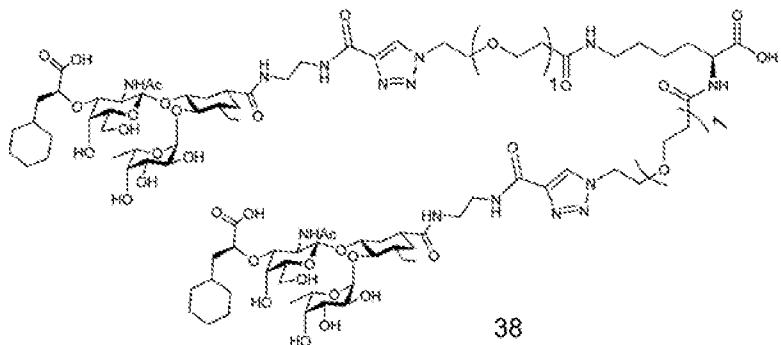
[00262] **Compound 36:** Prepared in an analogous manner from compound **33** and azido-PEG5-NHS ester in 58% yield.



[00263] ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.48 – 7.26 (m, 5H), 5.29 – 5.09 (dd, 2H), 4.45 (dd, *J* = 8.8, 5.2 Hz, 1H), 3.81 – 3.55 (m, 4H), 3.43 – 3.36 (m, 5H), 3.33 (p, *J* = 1.7 Hz, 12H), 3.17 (t, *J* = 7.0 Hz, 2H), 2.61 – 2.49 (m, 2H), 2.44 (t, *J* = 6.1 Hz, 2H), 1.95 – 1.80 (m, 1H), 1.80 – 1.66 (m, 1H), 1.61 – 1.46 (m, 2H), 1.46 – 1.31 (m, 3H).

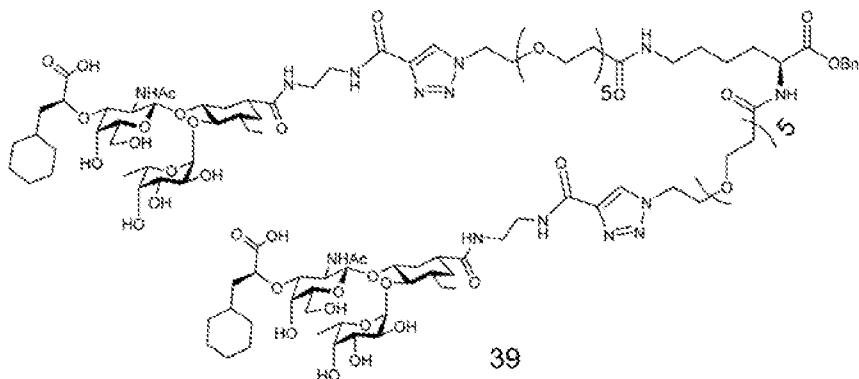
EXAMPLE 24: Compound 37

[00264] **Compound 37:** To a solution of compound **35** (24 mg, 46 μ mole) and compound **2** (94 mg, 0.12 mmole) in of MeOH (1 mL) and water (1 mL) was added a solution of CuSO₄-THPTA (0.04M, 0.23 mL, 20 μ mole) and sodium ascorbate (2.7 mg, 14 μ mole)


successively. The resulting solution was stirred for 3 days at room temperature. The solution was concentrated under reduced pressure and the mixture of mono- and di-coupled products was separated by C-18 column (water/MeOH, water only ~ 1/4, v/v). To complete the reaction, this mixture was re-subjected to the reaction conditions as described above overnight at 40 °C. The reaction solution was then dialyzed against water with dialysis tube MWCO 1000 while distilled water was changed every 6 hours. The aqueous solution in the tube was collected and lyophilized to give compound 37 as a white solid (53 mg, 55% yield).

[00265] ^1H NMR (400 MHz, Deuterium Oxide) δ 8.27 (broad two s, 2H), 7.27 (m, 5H), 5.05 (broad s, 2H), 4.92 (broad s, 2H), 4.81 (m, 2H), 4.62 – 4.28 (m, 6H), 4.20 (m, 1H), 4.09 – 3.55 (m, 26H), 3.55 – 3.10 (m, 13H), 2.93 (broad t, 2H), 2.42 (broad t, 2H), 2.31 (broad t, 2H), 2.20 (m, J = 12.6 Hz, 2H), 2.06 (m, 4H), 1.95 (m, 10H), 1.84 – 1.36 (m, 12H), 1.35 – 0.91 (m, 12H), 0.91 – 0.72 (m, 10), 0.71 – 0.60 (broad t, 8H) MS: Calculated (C₉₇H₁₅₂N₁₄O₃₆, 2089.0), ES-Negative (2088.6, M-1, 1042.9 M/2-1).

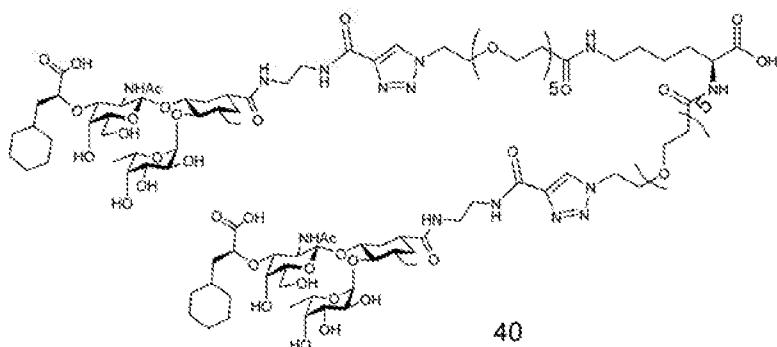
EXAMPLE 25: Compound 38


[00266] **Compound 38:** A solution of compound 37 (13 mg, 6.2 μ mole) in anhydrous MeOH (2 mL) was hydrogenated in the presence of Pd(OH)₂ (10 mg) for 2hrs at room temperature. The solution was filtered through a Celite pad and the filtrate was concentrated. The crude product was purified by HPLC. The product portion was collected, evaporated, then lyophilized overnight to give compound 38 as a white solid (4.5 mg, 36% yield).

[00267] ^1H NMR (400 MHz, Deuterium Oxide) δ 8.28 (two s, 2H), 4.89 (d, $J = 4.0$ Hz, 2H), 4.79 (q, $J = 6.7$ Hz, 2H), 4.54 (q, $J = 4.6$ Hz, 5H), 4.40 (d, $J = 8.6$ Hz, 2H), 3.98 (dd, $J = 8.5, 4.7$ Hz, 1H), 3.95 – 3.79 (m, 6H), 3.78 – 3.74 (m, 5H), 3.73 – 3.67 (m, 6H), 3.66 – 3.55 (m, 13H), 3.54 – 3.32 (m, 11H), 3.31 – 3.24 (m, 2H), 3.18 (t, $J = 9.7$ Hz, 2H), 2.92 (t, $J = 6.9$ Hz, 2H), 2.49 – 2.33 (m, 2H), 2.30 (t, $J = 5.8$ Hz, 2H), 2.19 (broad t, $J = 12.6$ Hz, 2H), 2.11 – 1.98 (m, 2H), 1.92 (d, $J = 3.1$ Hz, 6H), 1.79 – 1.33 (m, 24H), 1.23 (m, 3H), 1.18 – 0.89 (m, 20H), 0.88 – 0.69 (m, 5H), 0.64 (t, $J = 7.4$ Hz, 6H). MS: Calculated (C₉₀H₁₄₆N₁₄O₃₆, 1999.0), ES-Negative (1219.2 M/2-1).

EXAMPLE 26: Compound 39

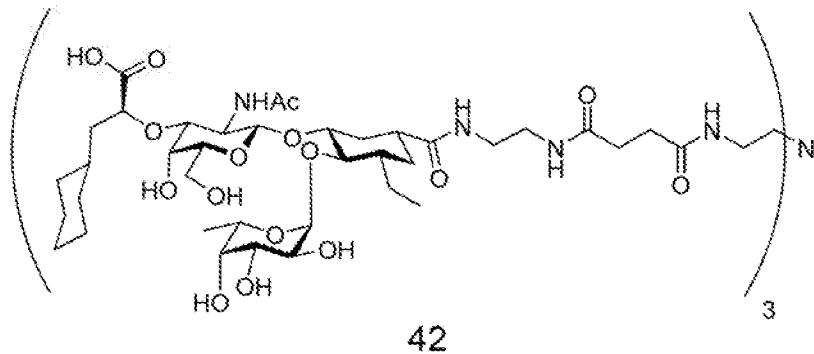
[00268] Compound 39: Compound 39 was prepared in 52% yield using an analogous procedure starting from compound 2 and compound 36.



[00269] ^1H NMR (400 MHz, Deuterium Oxide) δ 8.35 (s, 2H), 7.41 – 7.20 (m, 5H), 5.21 – 5.01 (dd, 2H), 4.92 (d, $J = 4.0$ Hz, 2H), 4.81 (m, $J = 6.8$ Hz, 2H), 4.58 (t, $J = 4.9$ Hz, 4H), 4.42 (d, $J = 8.6$ Hz, 2H), 4.35 – 4.21 (m, 1H), 3.88 (m, $J = 5.0$ Hz, 6H), 3.84 – 3.75 (m, 5H), 3.74 – 3.70 (m, 4H), 3.69 – 3.59 (m, 11H), 3.58 – 3.44 (m, 36H), 3.43 – 3.34 (m, 6H), 3.33 – 3.24 (m, 3H), 3.20 (t, $J = 9.7$ Hz, 2H), 3.03 (t, $J = 6.8$ Hz, 2H), 2.46 (t, $J = 6.1$ Hz, 2H), 2.37

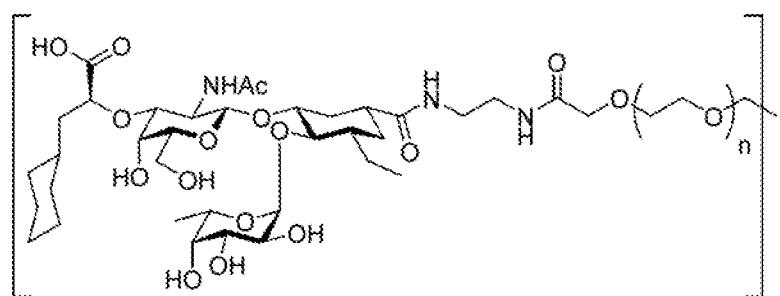
(t, $J = 6.0$ Hz, 2H), 2.20 (broad t, $J = 12.3$ Hz, 2H), 2.05 (m, 2H), 1.93 (s, 6H), 1.82 – 1.33 (m, 24H), 1.32 – 1.18 (7H), 1.17 – 0.91 (m, 17H), 0.90 – 0.72 (m, 5H), 0.67 (t, $J = 7.3$ Hz, 6H)
MS: Calculated ($C_{113}H_{184}N_{14}O_{44}$, 2441.2), ES-Negative (1219.2 M/2-1).

EXAMPLE 27: Compound 40


[00270] **Compound 40:** Compound 40 was prepared in 26% yield using an analogous procedure starting from compound 39.

[00271] 1H NMR (400 MHz, Deuterium Oxide) δ 8.36 (two s, 2H), 4.90 (d, $J = 3.9$ Hz, 2H), 4.80 (q, $J = 6.7$ Hz, 2H), 4.58 (t, $J = 4.9$ Hz, 5H), 4.41 (d, $J = 8.6$ Hz, 2H), 4.05 (dd, $J = 8.5, 4.7$ Hz, 1H), 3.98 – 3.82 (m, 5H), 3.81 – 3.72 (m, 5H), 3.72 – 3.59 (m, 11H), 3.59 – 3.32 (m, 34H), 3.32 – 3.11 (m, 5H), 3.06 (t, $J = 6.9$ Hz, 2H), 2.57 – 2.42 (m, 2H), 2.38 (t, $J = 6.1$ Hz, 2H), 2.20 (broad t, $J = 12.2$ Hz, 2H), 2.04 (m, 2H), 1.92 (s, 6H), 1.78 – 1.32 (m, 20H), 1.32 – 0.88 (m, 24H), 0.89 – 0.70 (m, 5H), 0.66 (t, $J = 7.3$ Hz, 6H) MS Calculated ($C_{106}H_{178}N_{14}O_{44}$, 2351.2), ES- negative (1173.9 M/2-1, 782.3, M/3-1).

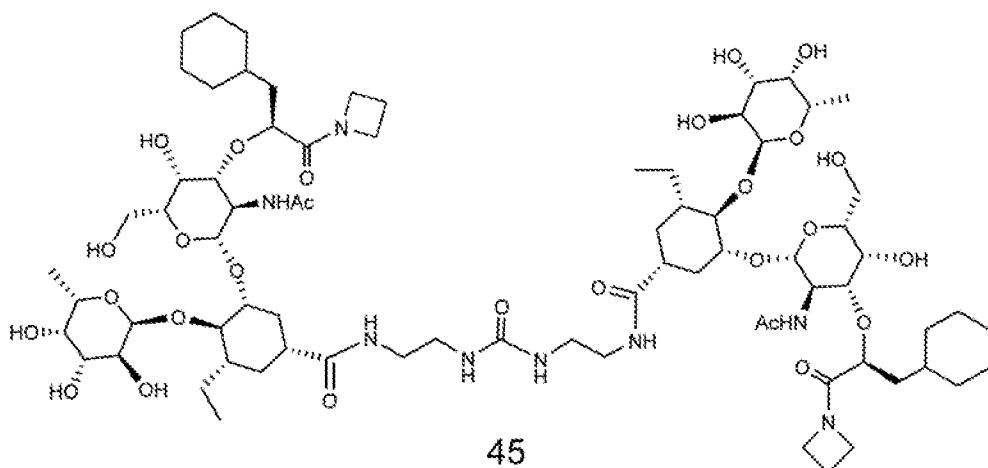
EXAMPLE 28: Compound 42


[00272] **Compound 42:** A solution of compound 41 (described in JACS, 2002, 124(47), 14085) (22 mg, 49 μ mole) and DIPEA (28 μ L, 163 μ mole) in anhydrous DMF (0.3 mL) was cooled to 0°C and HATU (62 mg, 163 μ mole) was added. The solution was stirred for 30 minutes. This solution was added to a solution of compound 1 (0.12 g, 163 μ mole) over a 5 min. period. The resulting solution was stirred overnight. The reaction solution was dialyzed against water with dialysis tube MWCO 1000 while distilled water was changed every 6 hours. The aqueous solution in the tube was collected and lyophilized overnight to give compound 42 as a white solid (69 mg, 54%).

[00273] ^1H NMR (400 MHz, Methanol- d_4) δ 4.85 (m, 6H), 4.52 (broad s, 3H), 3.75 (M, J = 11.1 Hz, 15H), 3.69 – 3.52 (m, 12H), 3.38 (broad t, J = 1.7 Hz, 3H), 3.37 – 3.06 (m, 45H, partially hidden by MeOH), 2.67 (m, 6H), 2.52 – 2.34 (m, 15H), 2.15 (broad t, 3H), 2.08 – 1.96 (m, 3H), 1.88 (m, 12H), 1.73 (m, 3H), 1.70 – 1.37 (m, 12H), 1.36 – 0.98 (m, 36H), 0.93 – 0.71 (m, J = 7.3 Hz, 15H). MS: Calculated for $\text{C}_{120}\text{H}_{201}\text{N}_{13}\text{O}_{48}$ = 2592.3; Found ES-Negative m/z = 1295.6 (M/2-H).

EXAMPLE 29: Compound 44

[00274] **Compound 44:** A solution of tetravalent PEG-active ester (Average MW = 20176, 0.5 g, 0.24 mmole) in DMSO (5 mL) was added a solution of compound 1 (1.4 g, 1.93 mmole) and DIPEA (0.5 mL) in distilled water (10 mL) over 1 hr period at room temperature. The resulting solution was stirred for 3 days under the same condition. The reaction solution was dialyzed against water with dialysis tube MWCO 1000 while distilled water was changed every 6 hours. The aqueous solution in the tube was collected and lyophilized overnight to give compound 44 (average chain length (n) = 110) as a white solid (0.67 g, 0.15 mmole, 63%).



44

[00275] ^1H NMR (400 MHz, Deuterium Oxide) δ 4.92 (d, $J = 4.0$ Hz, 4H), 4.81 (d, $J = 6.8$ Hz, 4H), 4.42 (d, $J = 7.8$ Hz, 4H), 3.96 (s, 8H), 3.78 (m, 12H), 3.74 – 3.50 (m, 188H), 3.42 – 3.34 (m, 12H), 3.33 – 3.16 (m, 8H), 3.10 (q, $J = 7.4$ Hz, 4H), 2.37 – 2.14 (m, 4H), 2.05 (m, 4H), 1.96 (s, 12H), 1.75 (m, 8H), 1.70 – 1.33 (m, 8H).

EXAMPLE 30: Compound 45

[00276] **Compound 45:** A solution of compound 32 (300 mg, 0.2 mmole) and DIPEA (0.2 mL, 1.0 mmole) in anhydrous DMF (15 mL) was cooled to 0 °C. TBTU (200 mg, 0.6 mmole) was added. The resulting solution was stirred for 3 hrs at room temperature. Azetidine (4.0 mL, 60.0 mmol) was added. The solution was transferred to a sealed tube and stirred overnight at 55 °C. The reaction mixture was cooled to room temperature and concentrated *in vacuo*. The residue was partially purified by chromatography using the Combi-flash system and eluting with EtOAc/MeOH/water (5/5/1, v/v/v). The crude product was de-salted using a C-18 column (water/MeOH, 9/1 – 1/9, v/v). The pure product was lyophilized to afford a white solid (0.37 g, 2.35 mmole, quantitative).

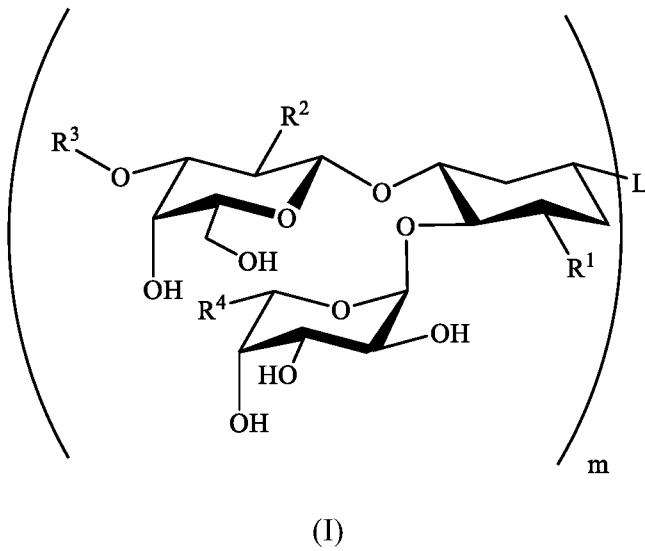
[00277] ^1H NMR (400 MHz, Deuterium Oxide) δ 4.93 (broad s, 1H), 4.88 – 4.76 (m, 1H), 4.42 (broad s, 1H), 4.19 (m, 3H), 3.97 (m, 3H), 3.88 – 3.73 (m, 2H), 3.72-3.54 (m, 6H), 3.42 (m, 2H), 3.29 – 3.00 (m, 6H), 2.67 – 2.49 (m, 0.5H), 2.35 – 2.15 (m, 4H), 2.14 – 1.98 (m, 1H), 1.94 (s, 3H), 1.75 (broad d, $J = 12.8$ Hz, 2H), 1.68 – 1.36 (m, 8H), 1.35 – 1.17 (m, $J = 11.3$ Hz, 4H), 1.16 – 0.98 (dd, $J = 20.5, 9.1$ Hz, 7H), 0.94 – 0.67 (m, $J = 32.9, 8.9$ Hz, 5H) MS: Calculated (C75H126N8O27, 1570.8), ES-Positive (1594.5, M+Na; 808.5 (M/2+Na), ES-Negative (1569.6, M-1; 784.4, M/2-1).

EXAMPLE 31
E-SELECTIN ACTIVITY – ANALYSIS BY SPR

[00278] Surface Plasmon Resonance (SPR) measurements were performed on a Biacore X100 instrument (GE Healthcare). A CMS sensor chip (GE Healthcare) was used for the interaction between E-selectin and GMI compound. Anti-human IgG (Fc) antibody (GE Healthcare) was immobilized onto the chip by amine coupling according to the manufacturer's instructions. In brief, after a 7-min injection (flow rate of 5 μ l/min) of 1:1 mixture of N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide, anti-human IgG (Fc) antibody (25 μ g/ml in 10mM sodium acetate buffer, pH 5.0) was injected using a 6-min injection at 5 μ l/min. Remaining activated groups were blocked by injecting 1 M ethanolamine/HCl, pH 8.5. The recombinant human E-selectin/CD63E Fc Chimera (50 μ g/ml) (R & D systems) was injected into the experimental cell until 6000-7000 RU was captured onto the antibody surface. No recombinant human E-selectin/CD63E was injected into the control cell. Increasing concentrations of GMI compound samples were injected at 30 μ l/min into both flow cells and all sensograms were recorded against the control. Regeneration of the anti-human IgG (Fc) surface was achieved by injecting 3M magnesium chloride, followed by 50 mM sodium hydroxide. Data were analyzed using Biacore X100 evaluation / BIA evaluation 4.1.1 software (GE Healthcare) and Graphad prism 6 software.

E-Selectin Antagonist Activity of Compounds

Compound	KD (nM)
11	8.5
12	3.7
13	4.7
14	6.6
15	6.0
16	6.0
17	5.1
18	3.5
19	10.2
20	0.8

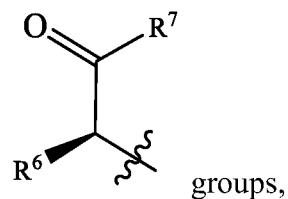

21	18.3
22	2.3
23	2.8
24	2.4
25	3.0
27	8.6
28	3.2
29	3.2
30	2.0
31	3.3
32	8.8
37	3.9
38	6.4
39	5.1
40	5.5
42	1.5
44	8.0
45	2.1
3 (monomer -CO₂H)	2260
4 (monomer azetidine)	2600

[00279] Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

[00280] The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

The claims defining the invention are as follows:

1. At least one compound chosen from glycomimetic E-selectin antagonists of Formula (I):

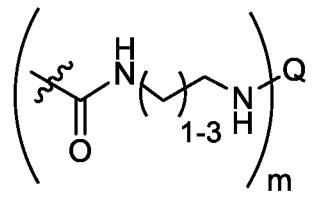

and pharmaceutically acceptable salts thereof,

wherein

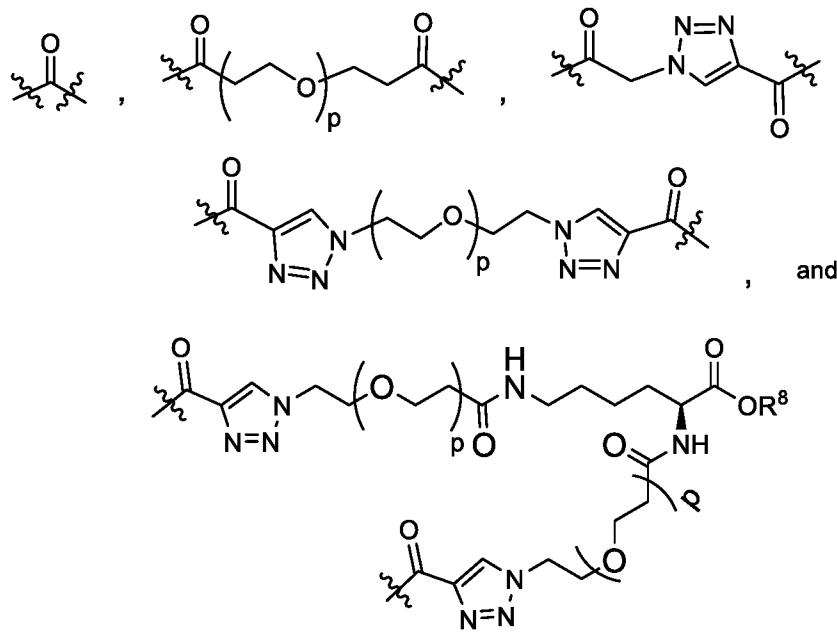
each R¹, which may be identical or different, is independently chosen from C₁₋₁₂ alkyl;

each R², which may be identical or different, is independently chosen from – NHC(=O)Y¹ groups, wherein each Y¹, which may be identical or different, is independently chosen from C₁₋₁₂ alkyl, groups;

each R³, which may be identical or different, is independently chosen from


wherein each R⁶, which may be identical or different, is independently chosen from C₁₋₁₂ alkyl groups, and wherein each R⁷, which may be identical or different, is independently chosen from -OY³ and -NY³Y⁴ groups, wherein each Y³ and each Y⁴, which may be identical

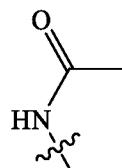
or different, are independently chosen from H and C₁₋₈ alkyl groups, wherein Y³ and Y⁴ may join together along with the nitrogen atom to which they are attached to form a ring;


each R⁴, which may be identical or different, is independently chosen from C₁₋₄ alkyl groups;

m is 2; and

L is chosen from

wherein Q is chosen from



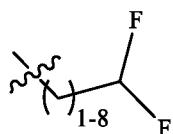
wherein R⁸ is chosen from H and benzyl, and wherein each p, which may be identical or different, is independently chosen from integers ranging from 0 to 30.

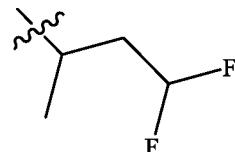
2. The at least one compound according to claim 1, wherein R⁸ is H.
3. The at least one compound according to claim 1, wherein R⁸ is benzyl.
4. The at least one compound according to any one of claims 1 to 3, wherein p is 0 to 5.

5. The at least one compound according to any one of claims 1 to 4, wherein at least one R^1 is chosen from methyl and ethyl.

6. The at least one compound according to any one of claims 1 to 5, wherein at least one R^2 is

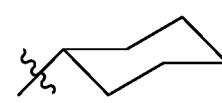
7. The at least one compound according to any one of claims 1 to 6, wherein at least one R^6 is chosen from the group consisting of:

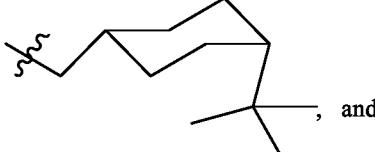
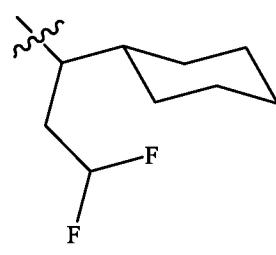

,


,

,

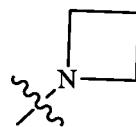
,


,

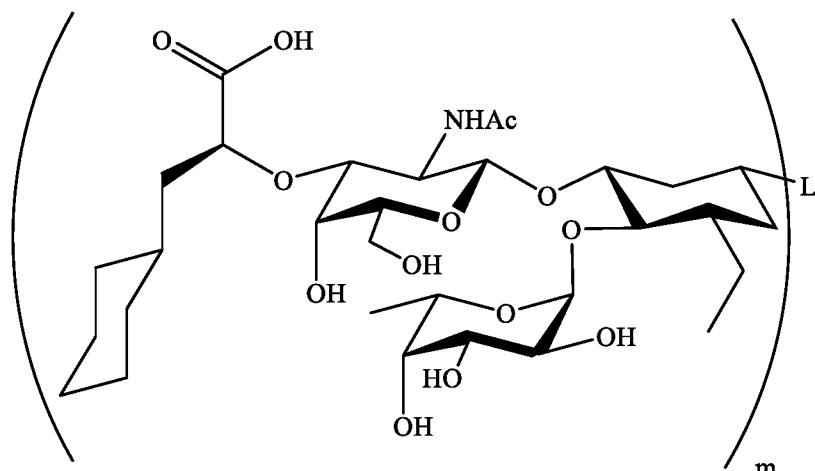


,

,

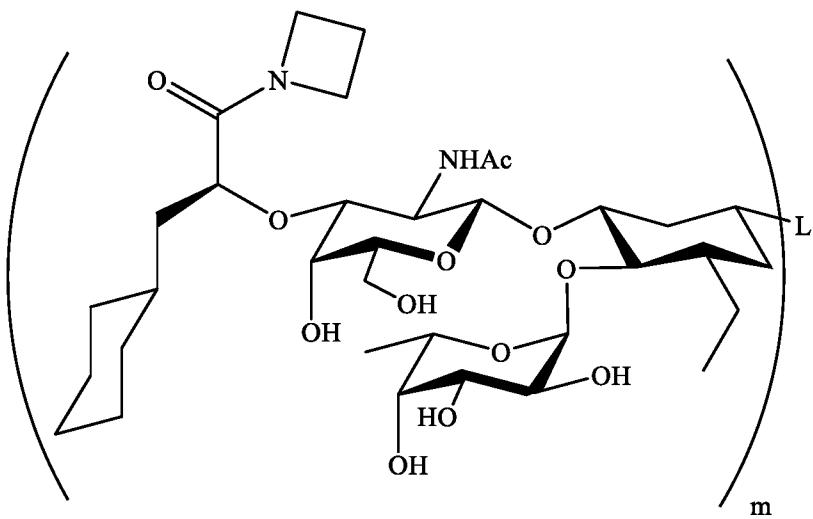
,


8. The at least one compound according to claim 7, wherein at least one R^6 is

or

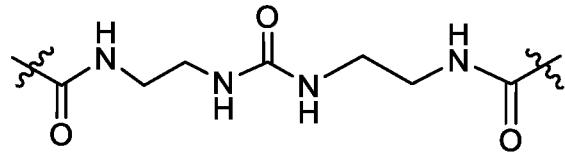


9. The at least one compound according to any one of claims 1 to 8, wherein at least one R^7 is chosen from $-OH$, $-N(Me)_2$ and

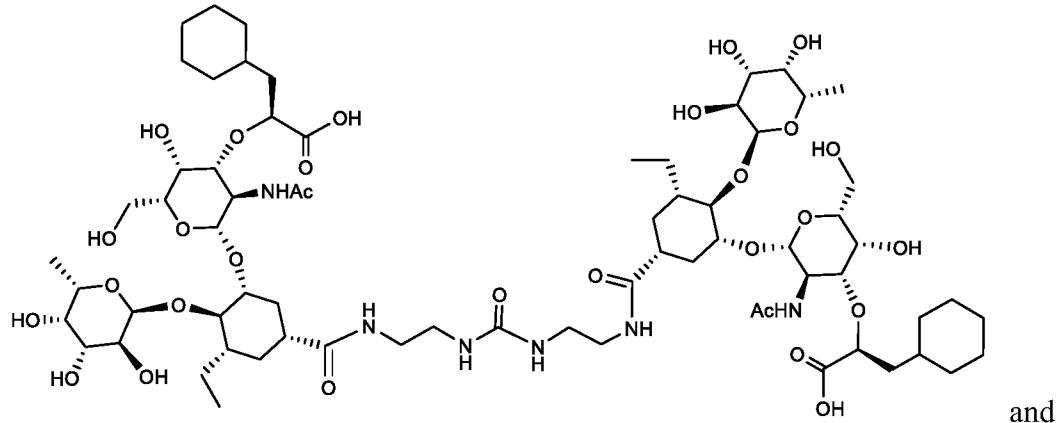


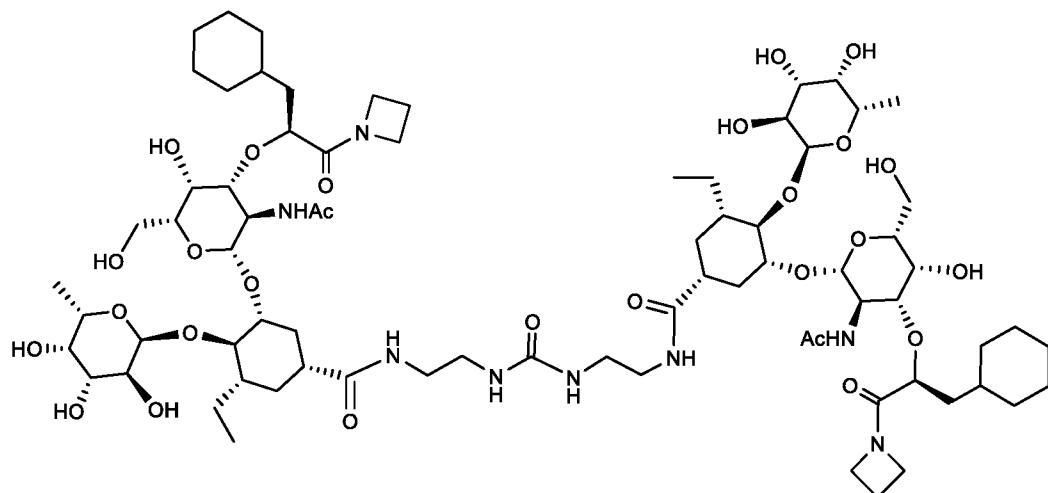
10. The at least one compound according to any one of claims 1 to 9, wherein at least one R^4 is CH_3 .

11. The at least one compound according to claim 1, wherein the compound is chosen from compounds having the following Formula:

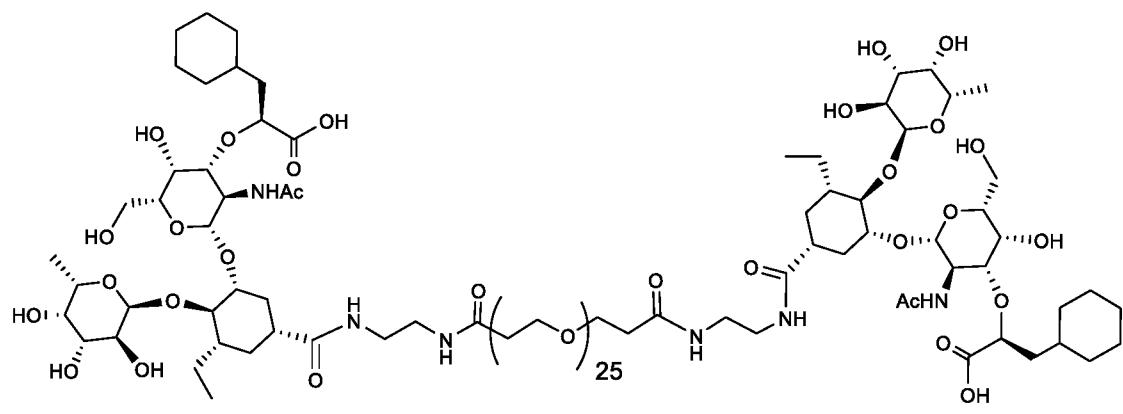
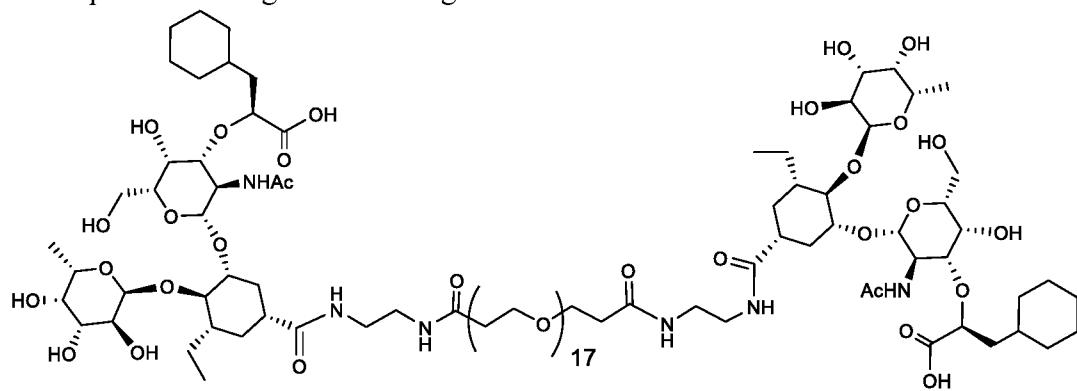


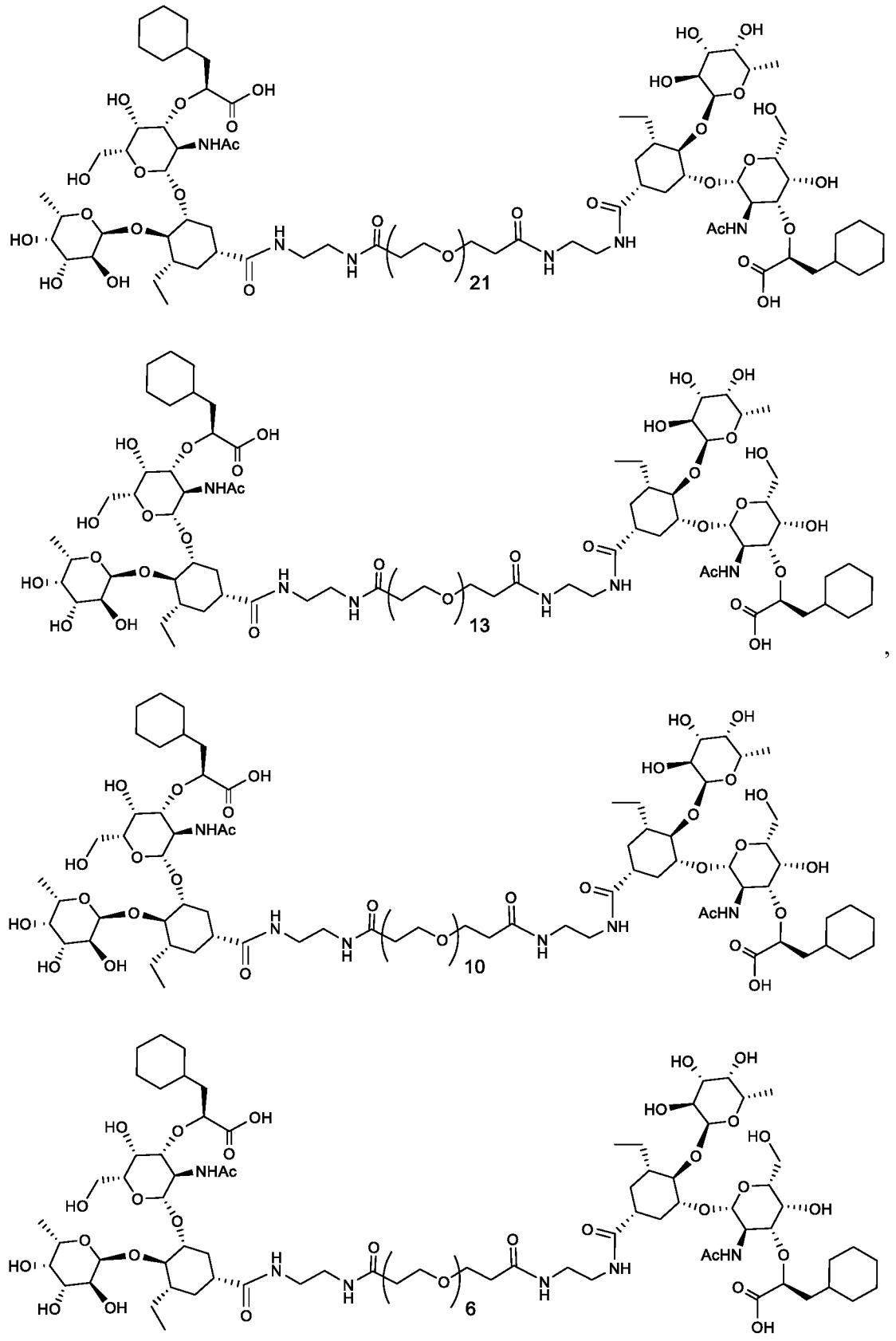
12. The at least one compound according to claim 1, wherein the compound is chosen from compounds having the following Formula:

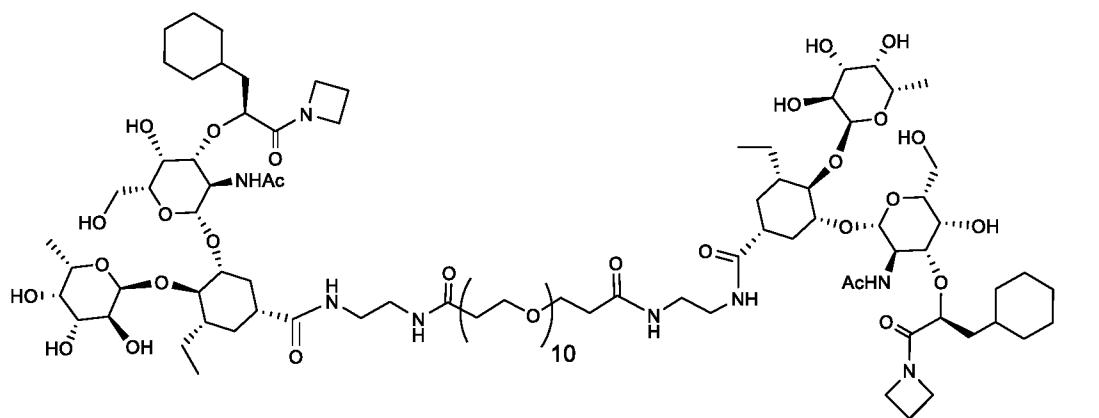
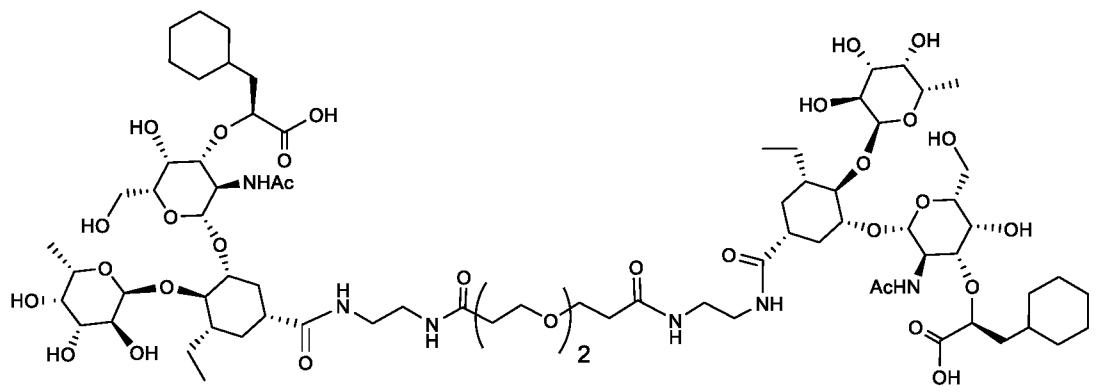


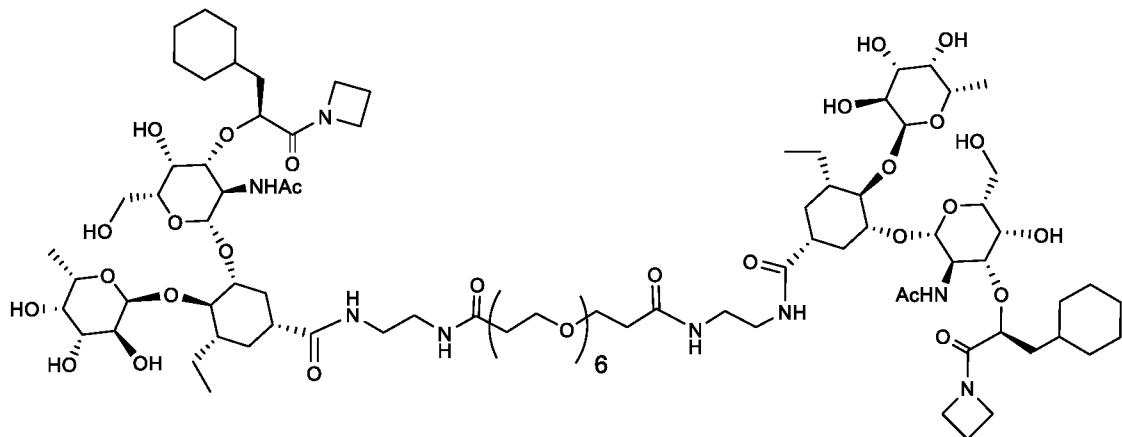

13. The at least one compound according to any one of claims 1 to 12, wherein the compound is symmetrical.

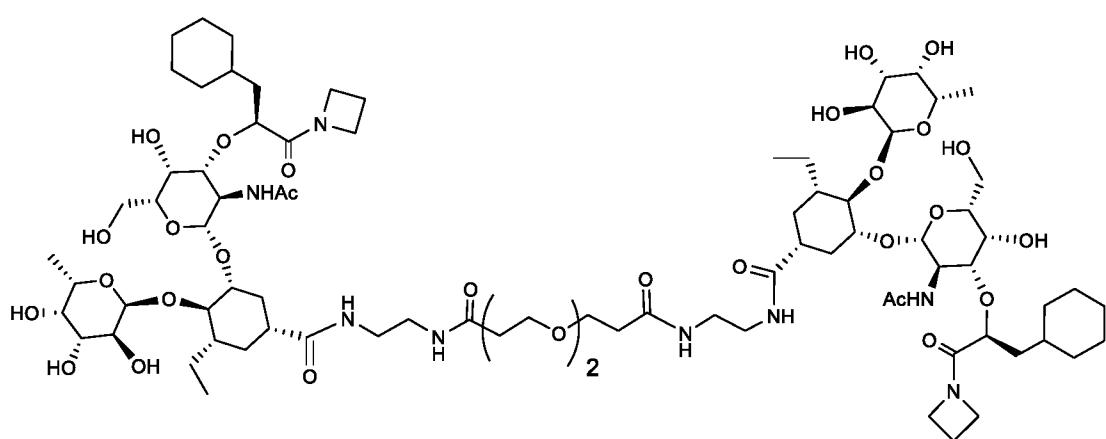
14. The at least one compound according to any one of claims 1 to 13, wherein L is

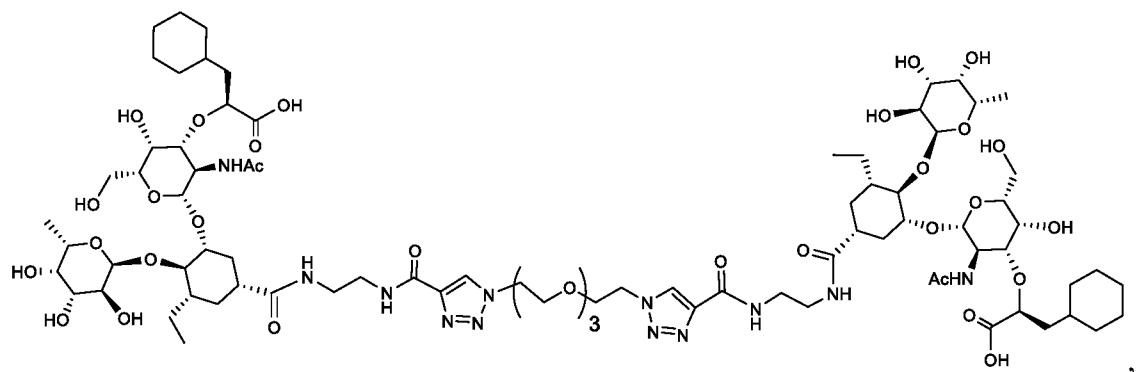



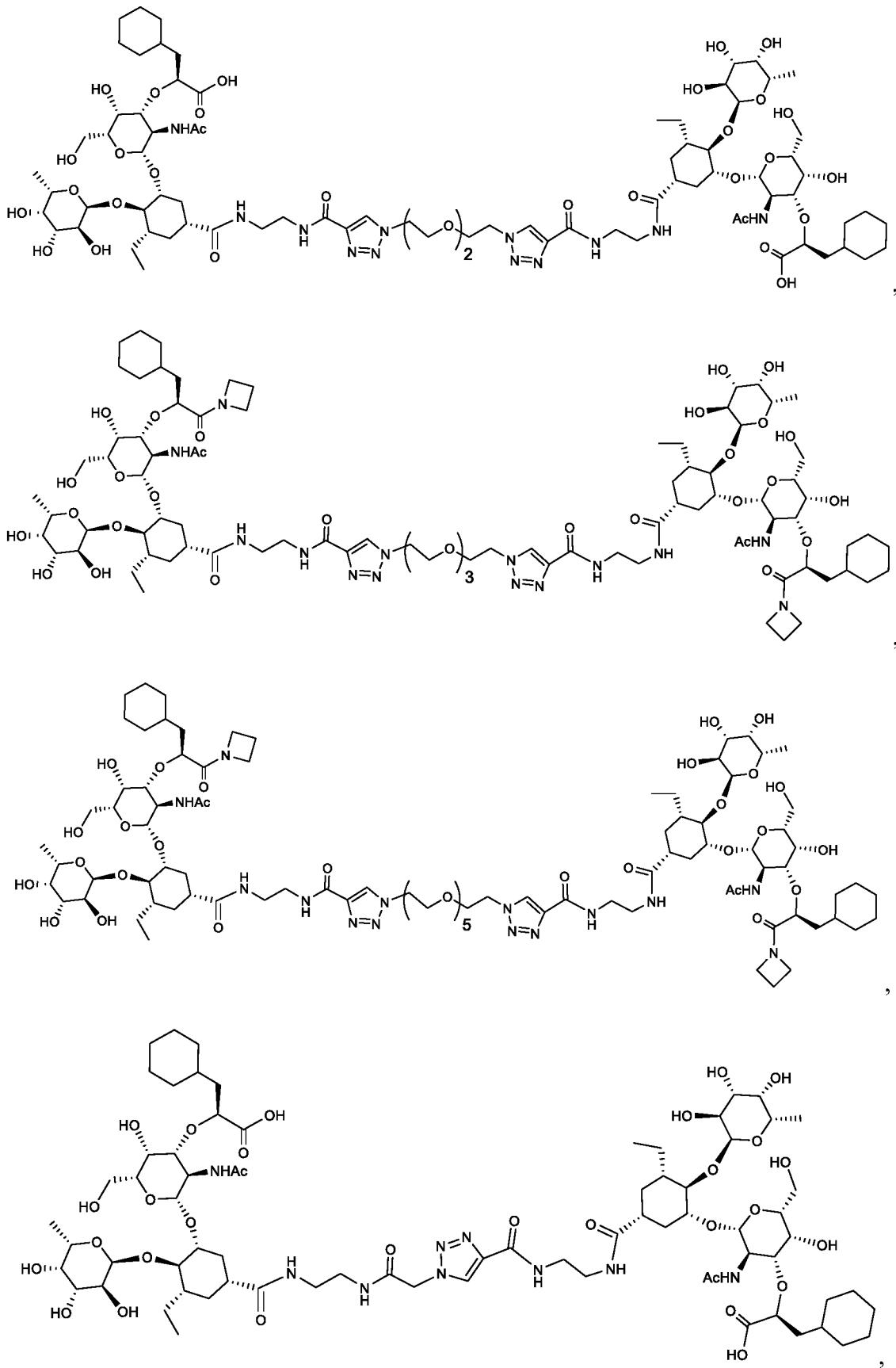

15. The at least one compound according to claim 1, wherein the compound is chosen from compounds having the following Formulae:

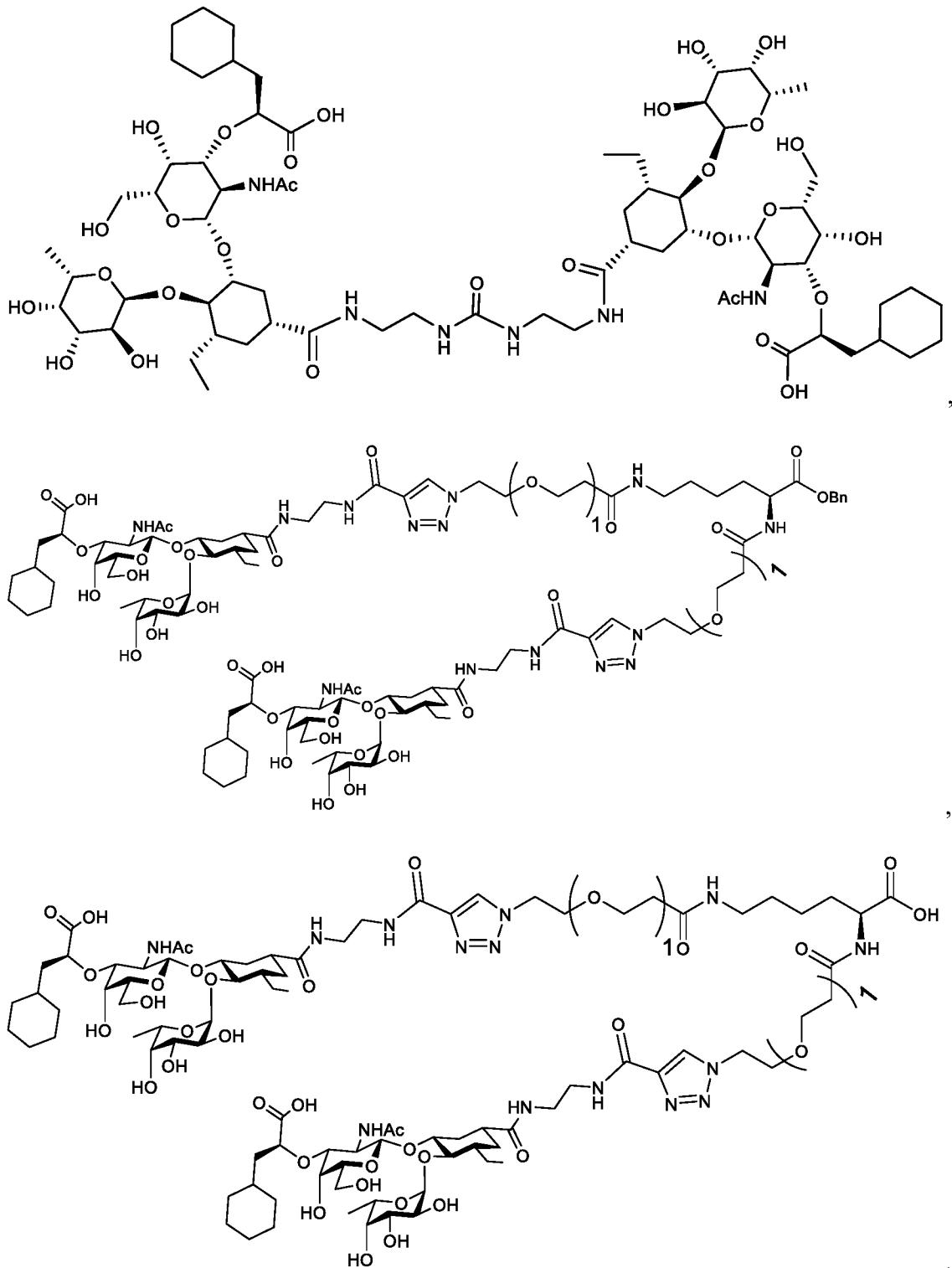



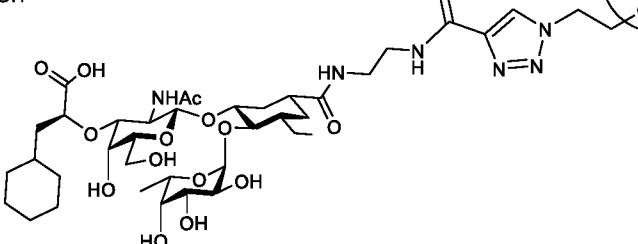

16. The at least one compound according to claim 1, wherein the compound is chosen from compounds having the following Formulae:



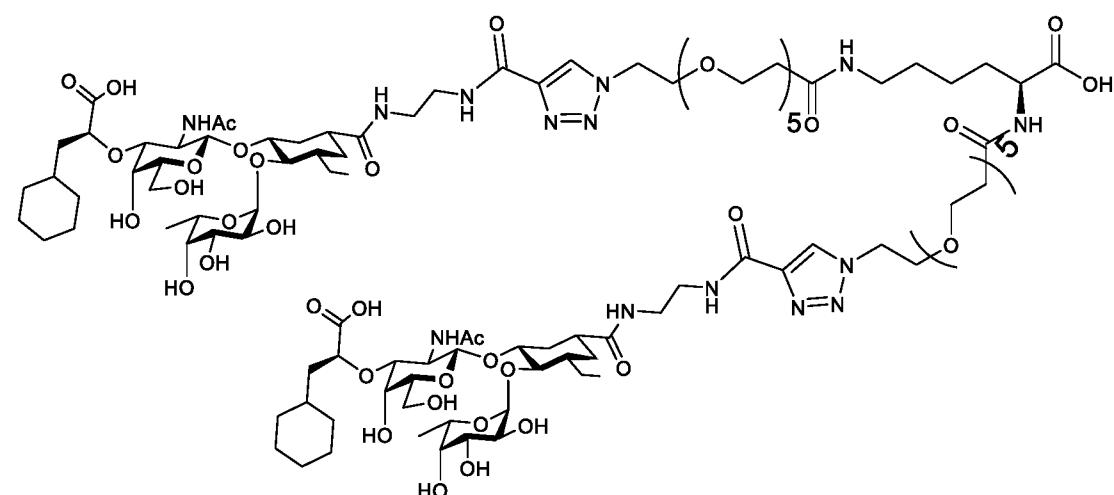


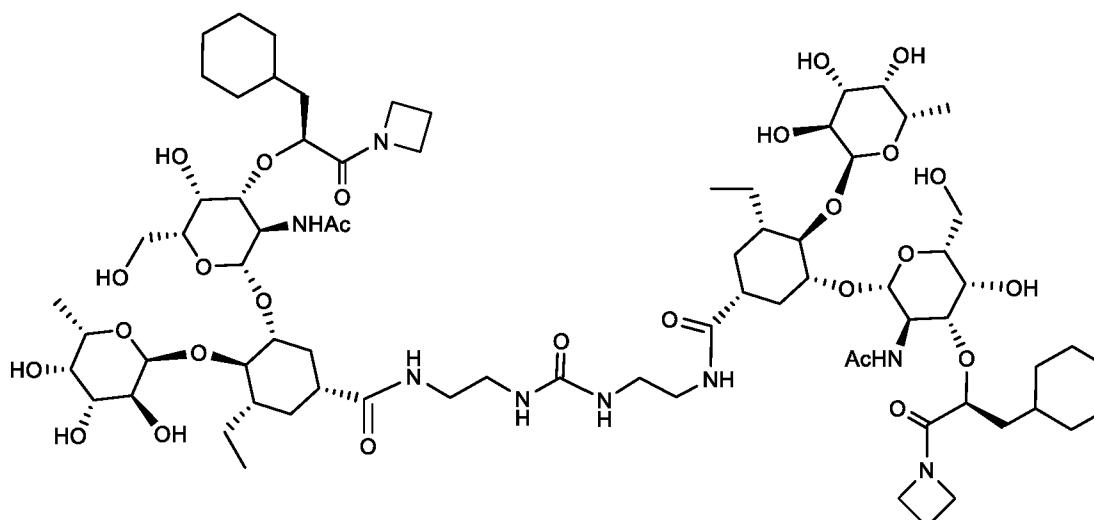



1

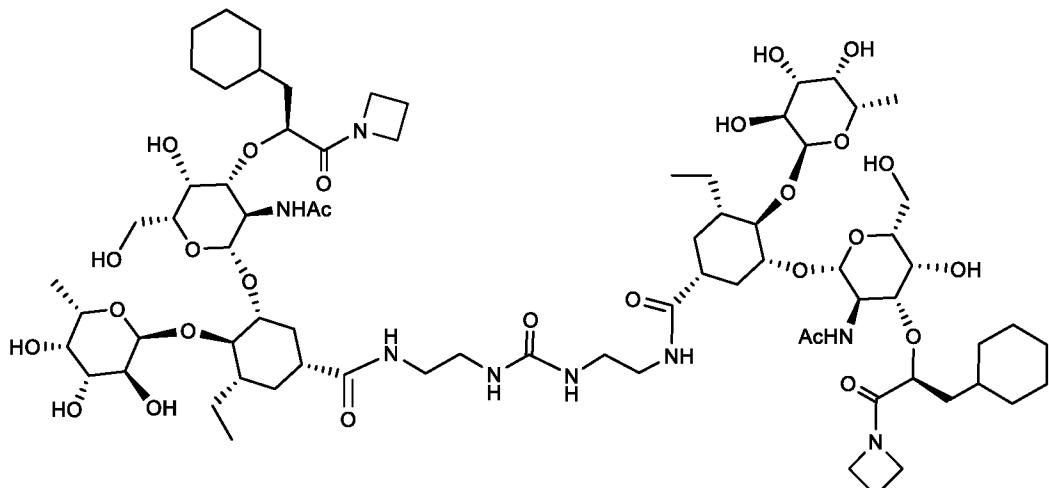


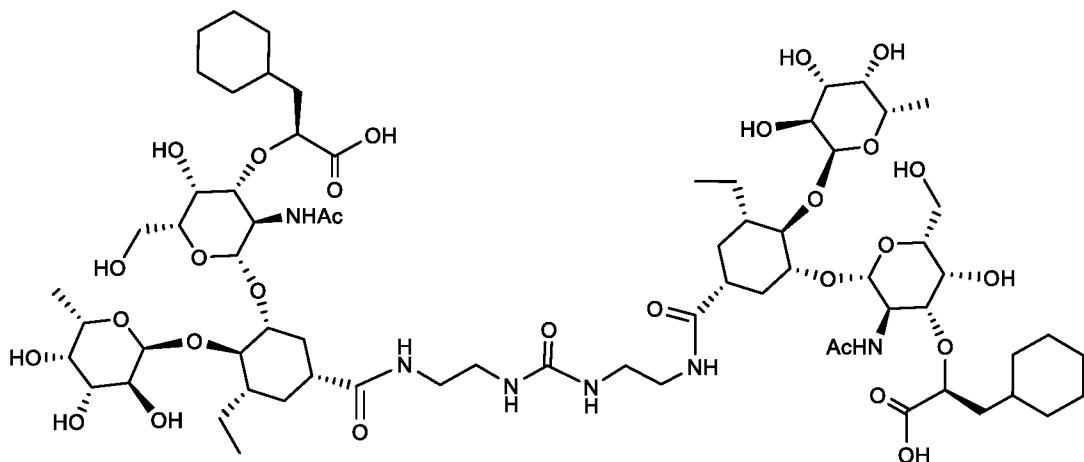
,



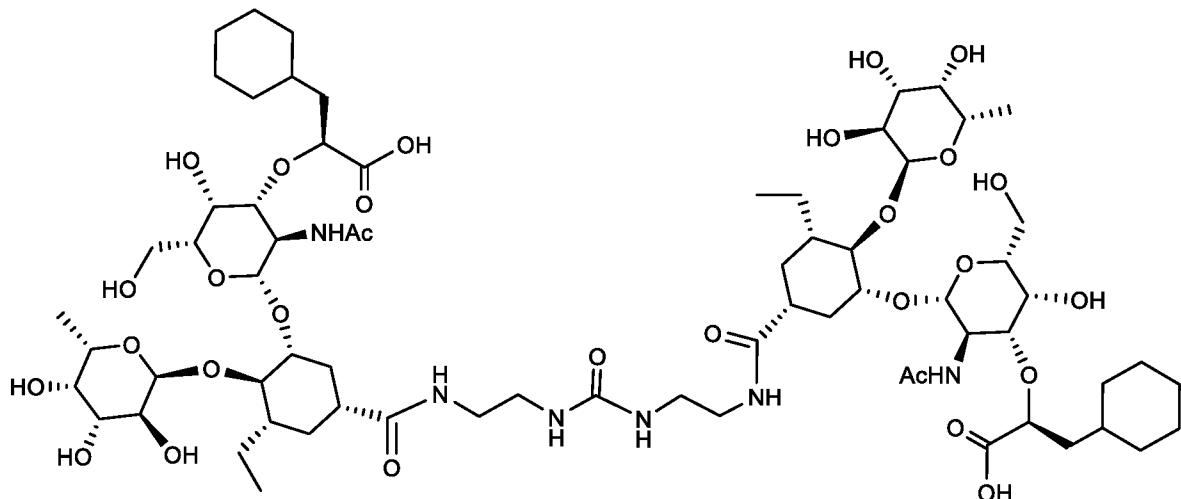


,


,


, and

pharmaceutically acceptable salts of any of the foregoing.


17. The at least one compound according to claim 1, wherein the compound is:

18. The at least one compound according to claim 1, wherein the compound is:

19. The at least one compound according to claim 1, wherein the compound is:

20. A composition comprising at least one compound according to any one of claims 1 to 19 and at least one additional pharmaceutically acceptable ingredient.

21. A method for treatment and/or prevention of at least one disease, disorder, and/or condition where inhibition of E-selectin mediated functions is useful, the method comprising administering to a subject in need thereof an effective amount of at least one compound of any one of claims 1 to 19 or the composition of claim 20.
22. A method for treatment and/or prevention of at least one inflammatory disease, disorder, and/or condition, the method comprising administering to a subject in need thereof an effective amount of at least one compound of any one of claims 1 to 19 or the composition of claim 20.
23. A method for treatment and/or prevention of metastasis of cancer cells, the method comprising administering to a subject in need thereof an effective amount of at least one compound of any one of claims 1 to 19 or the composition of claim 20.
24. A method for inhibiting infiltration of cancer cells into bone marrow, the method comprising administering to a subject in need thereof an effective amount of at least one compound of any one of claims 1 to 19 or the composition of claim 20.
25. A method for inhibiting adhesion of a tumor cell that expresses a ligand of E-selectin to an endothelial cell expressing E-selectin, the method comprising contacting the endothelial cell with an effective amount of at least one compound of any one of claims 1 to 19 or a composition of claim 20.
26. The method according to claim 25, wherein the endothelial cell is present in bone marrow.
27. A method for treatment and/or prevention of thrombosis, the method comprising administering to a subject in need thereof an effective amount of at least one compound of any one of claims 1 to 19 or a composition of claim 20.
28. A method for treatment and/or prevention of cancer, the method comprising administering to a subject in need thereof (a) an effective amount of at least one compound of any one of claims 1 to 19 or a composition of claim 20 and (b) at least one of therapy chosen from (i) chemotherapy and (ii) radiotherapy.

29. A method for enhancing hematopoietic stem cell survival, the method comprising administering to a subject in need thereof an effective amount of at least one compound of any one of claims 1 to 19 or a composition of claim 20.
30. The method according to claim 29, wherein the subject has cancer and has received or will receive chemotherapy and/or radiotherapy.
31. A method for treatment and/or prevention of mucositis, the method comprising administering to a subject in need thereof an effective amount of at least one compound of any one of claims 1 to 19 or a composition of claim 20.
32. The method according to claim 31, wherein the mucositis is oral mucositis, esophageal mucositis, and/or gastrointestinal mucositis.
33. The method according to claim 31, wherein the subject is afflicted with head and neck, breast, lung, ovarian, prostate, lymphatic, leukemic, and/or gastrointestinal cancer.
34. A method for mobilizing hematopoietic cells from the bone marrow, the method comprising administering to a subject in need thereof an effective amount of at least one compound of any one of claims 1 to 19 or a composition of claim 20, in combination with at least one mobilizing agent.
35. The method according to claim 34, wherein the at least one mobilizing agent is G-CSF.
36. Use of a compound of any one of claims 1 to 19 in the manufacture of a medicament; for the treatment and/or prevention of at least one disease, disorder, and/or condition where inhibition of E-selectin mediated functions is useful; for the treatment and/or prevention of at least one inflammatory disease, disorder and/or condition; for the treatment and/or prevention of metastasis of cancer cells; for inhibiting infiltration of cancer cells into bone marrow; for inhibiting adhesion of a tumor cell that expresses a ligand of E-selectin to an endothelial cell expressing E-selectin; for the treatment and/or prevention of thrombosis; for the treatment and/or prevention of cancer; for enhancing hematopoietic stem cell survival; for the treatment and/or prevention of mucositis; or for mobilizing hematopoietic cells from the bone marrow.

Synthesis of Intermediate 2

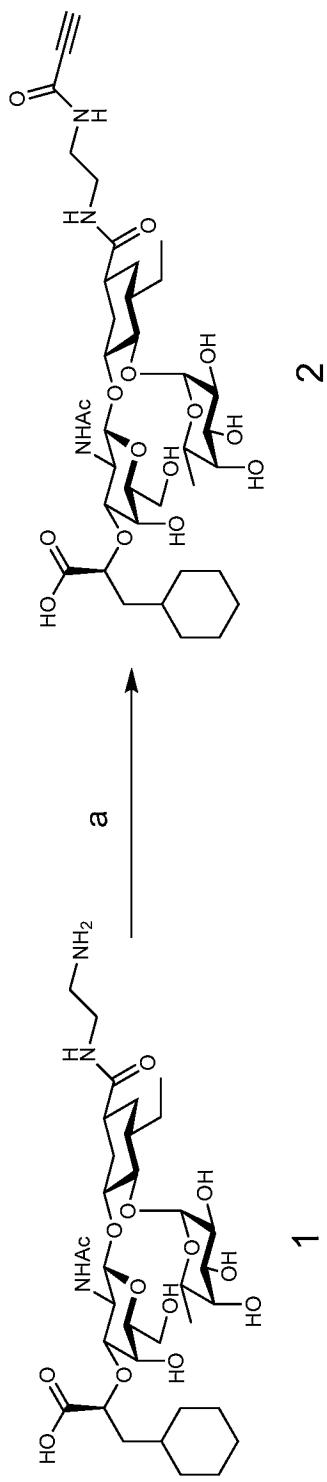
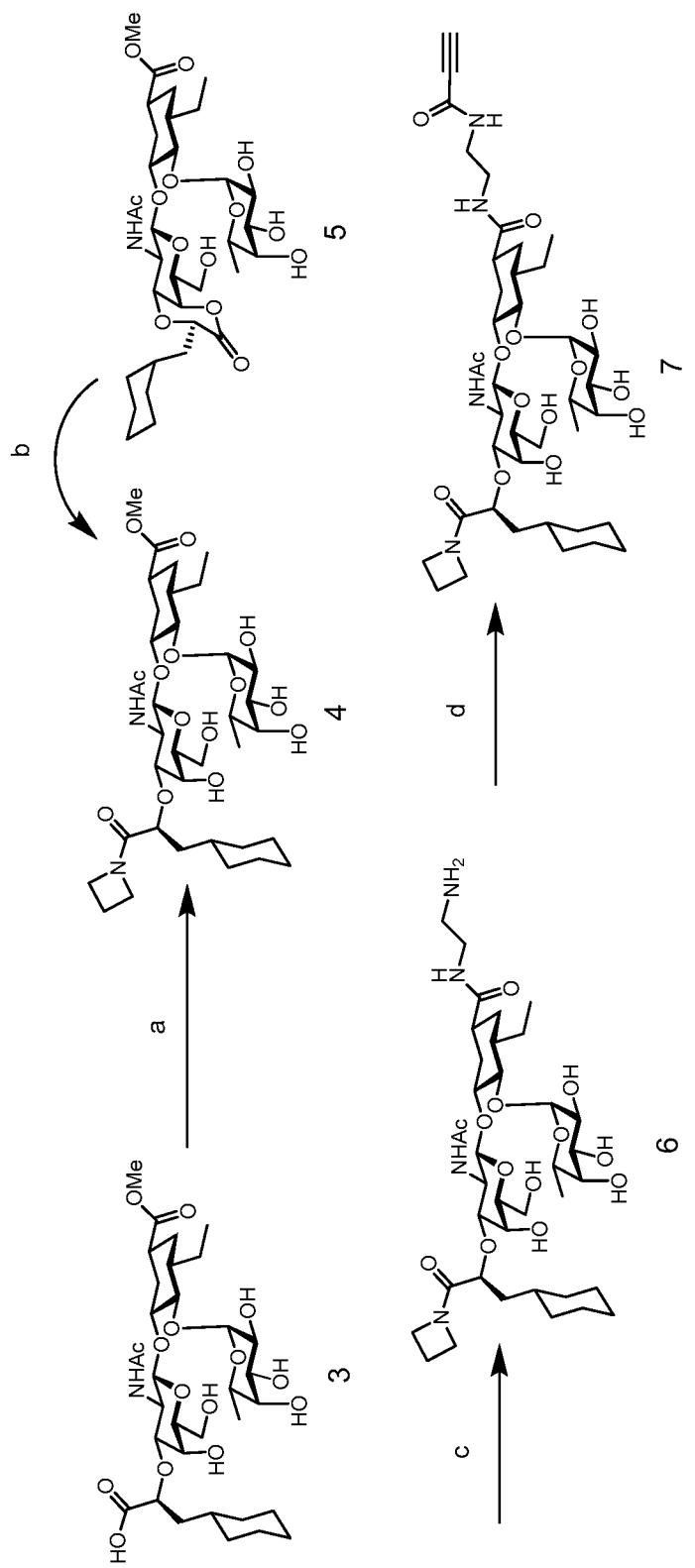



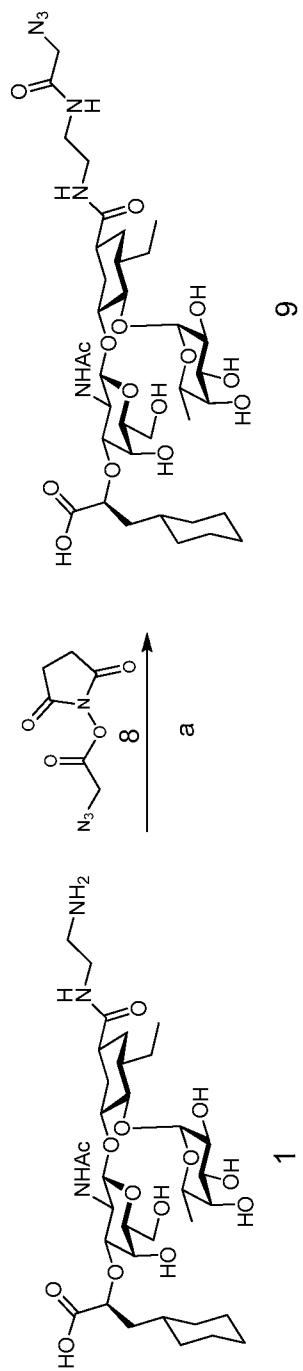
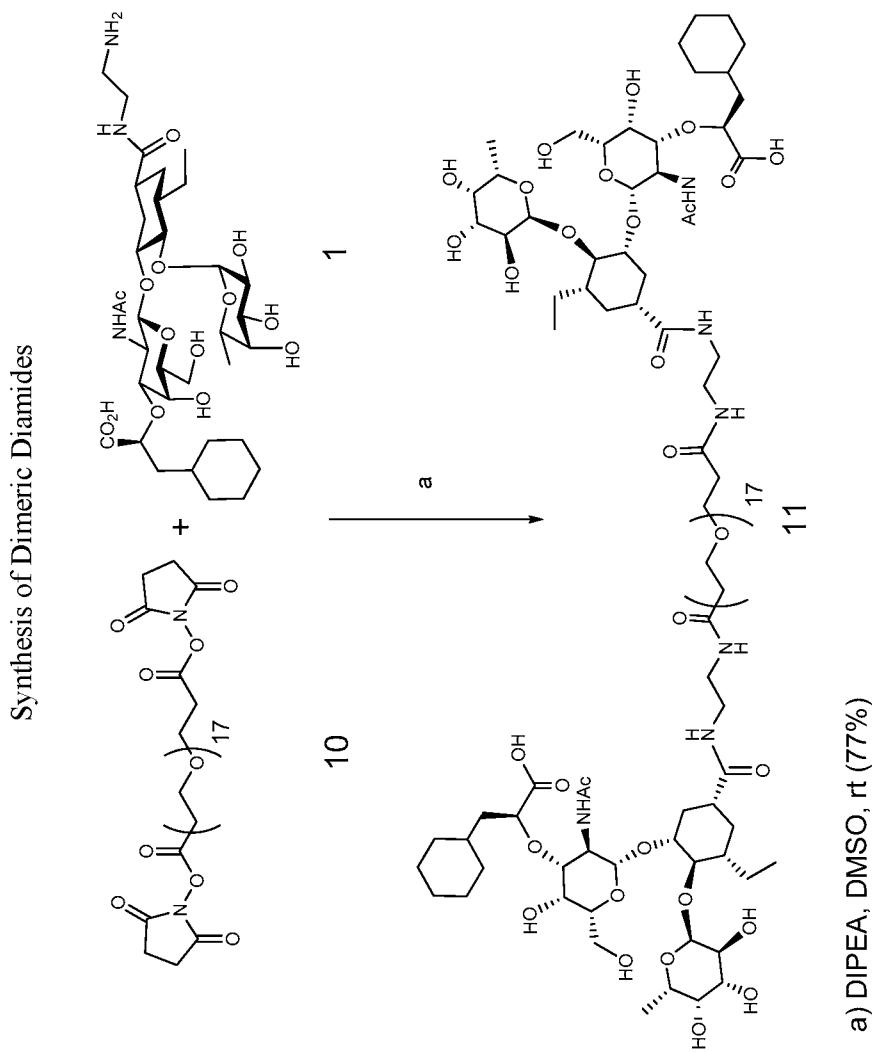
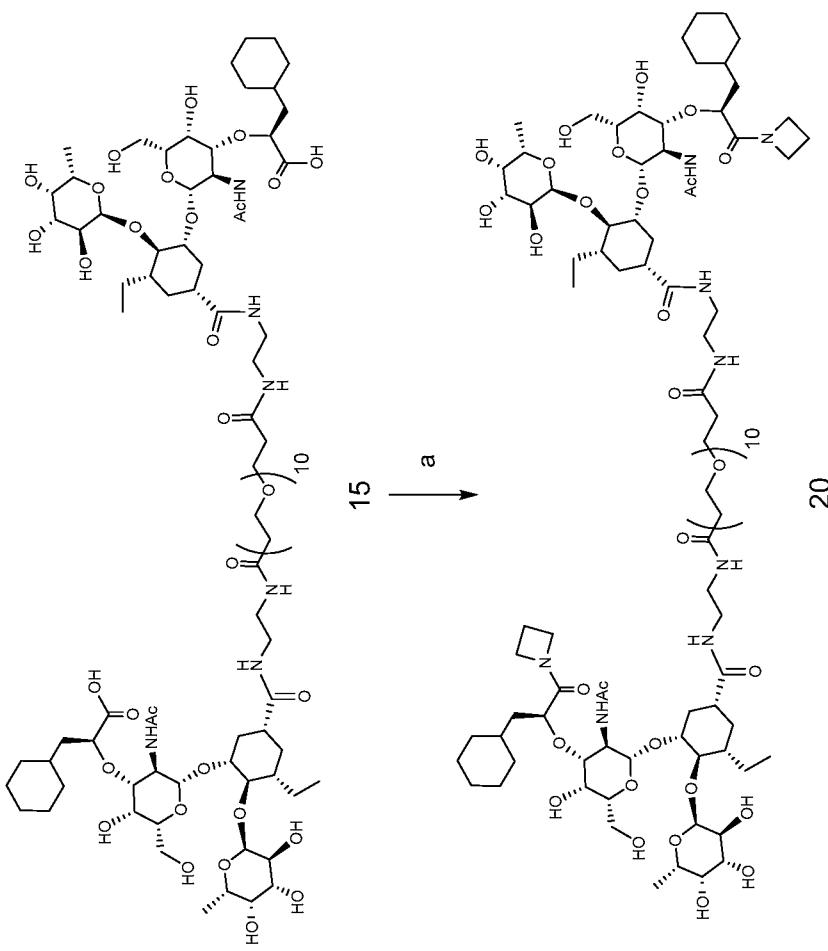
FIG. 1

Synthesis of Intermediate 7

a) i. TBTU, DIPEA, DMF, 0°C, ii. azetidine, 0°C to rt (44% compound 4, 36% compound 5); b) azetidine, DMF, 50°C (98%);
 c) ethylenediamine, 60°C (91%); d) Propargylic acid NHS ester, DIPEA, DMF, 0°C to rt (54%)

FIG. 2

Synthesis of Intermediate 9

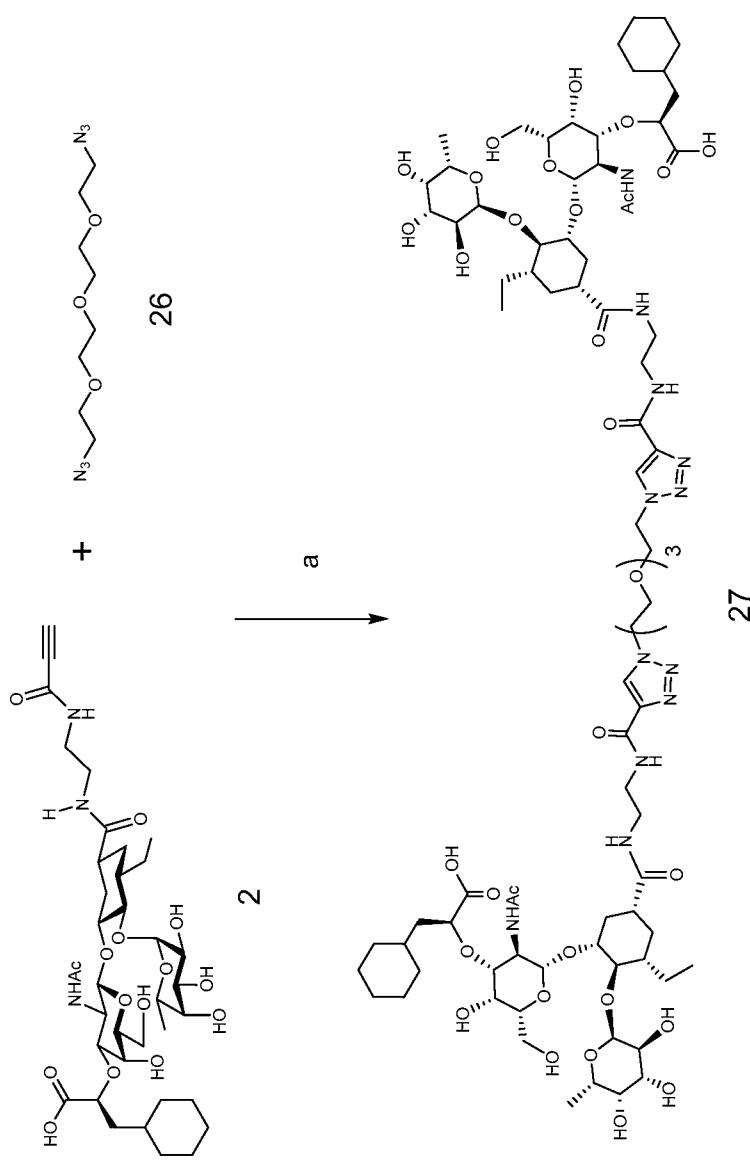
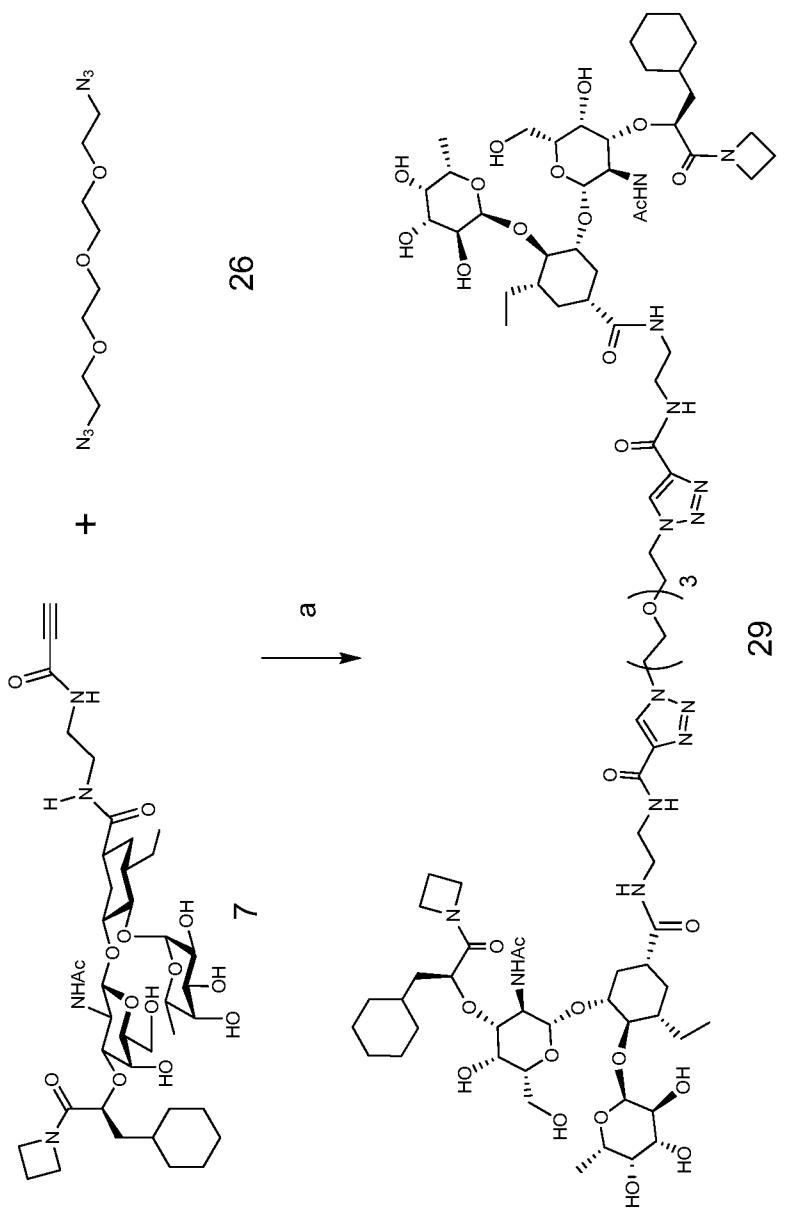

FIG. 3

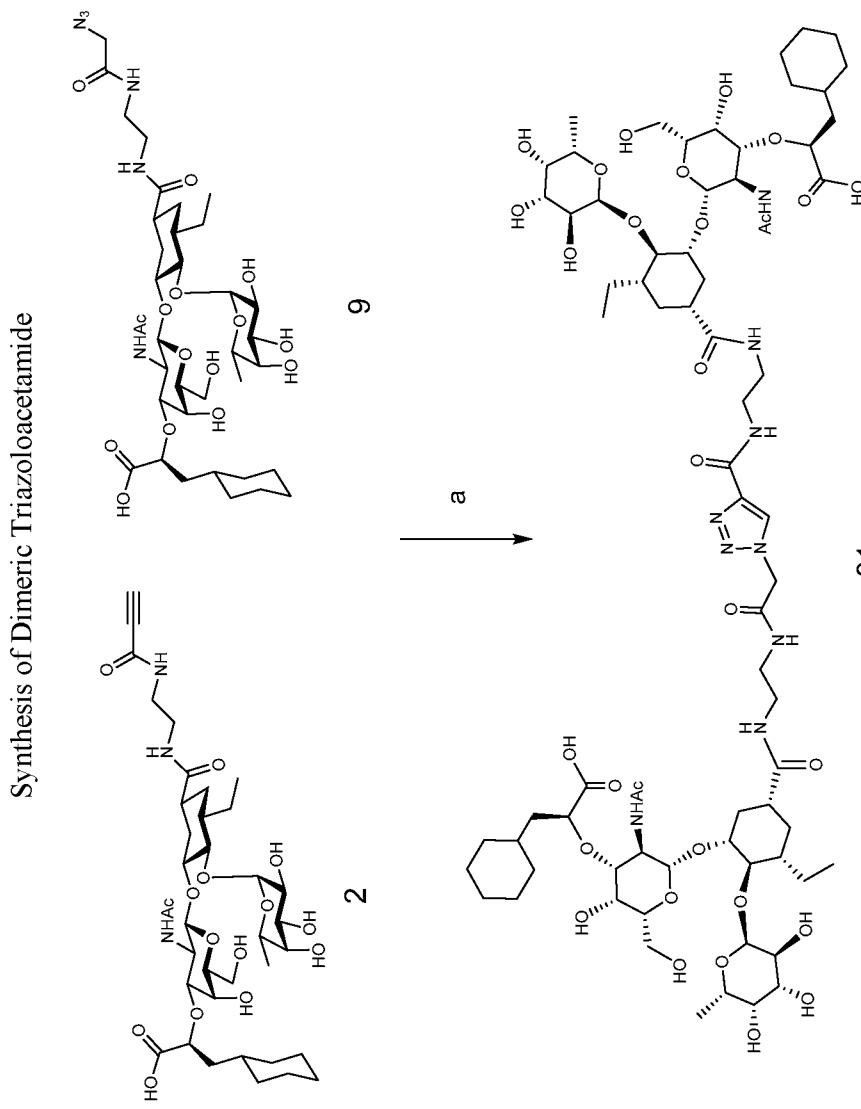
FIG. 4

Amidation of Dimeric Diacids

FIG. 5


Synthesis of Dimeric Ditriazolo-Amides

a) compound 26, CuSO_4 , THPTA, sodium ascorbate, MeOH, water, rt


FIG. 6

Synthesis of Dimeric Ditriazolo-Diamido-Diamides

a) compound 26, CuSO₄, THPTA, sodium ascorbate, MeOH, water, rt (57%)

FIG. 7

a) CuSO₄, THTPA, sodium ascorbate, water, rt (6%)

FIG. 8

Synthesis of Dimeric Urea

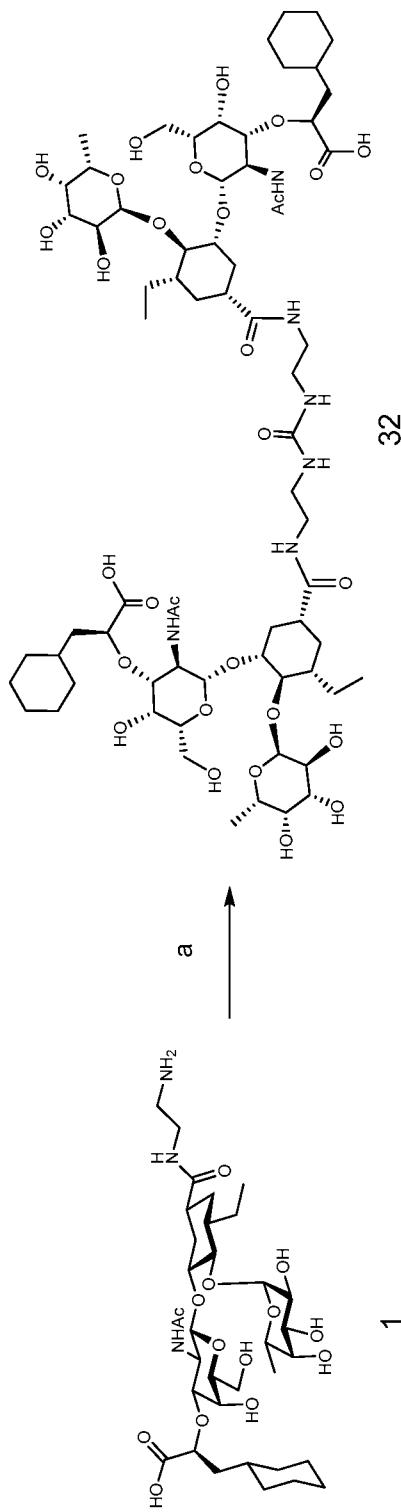
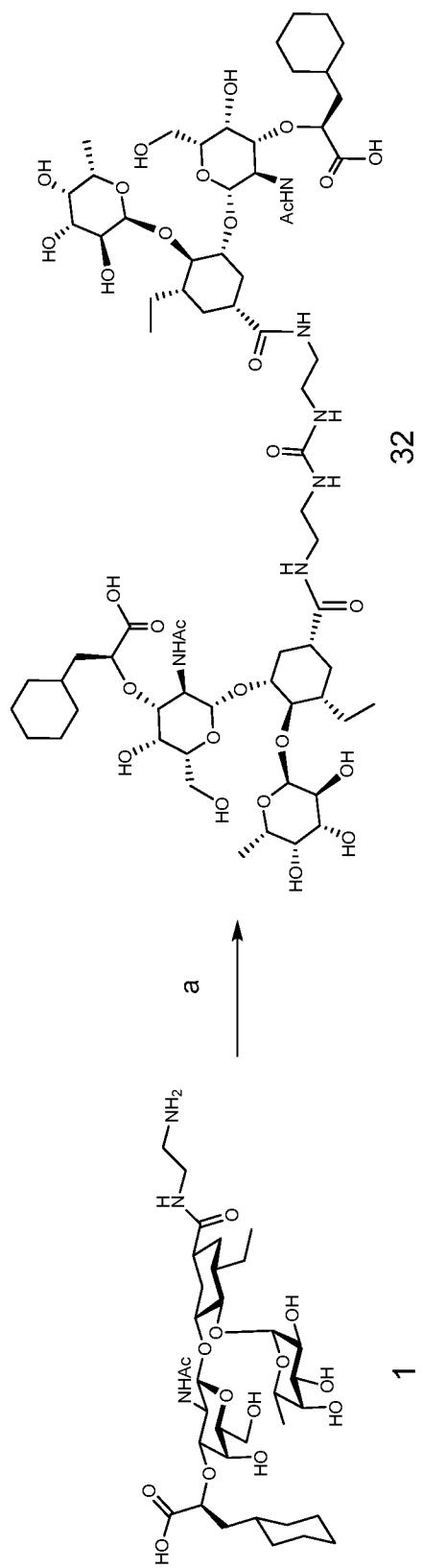
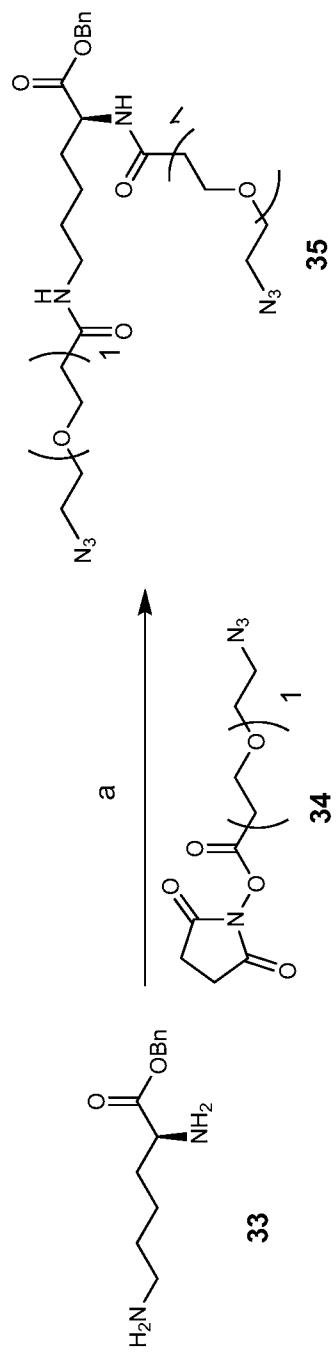
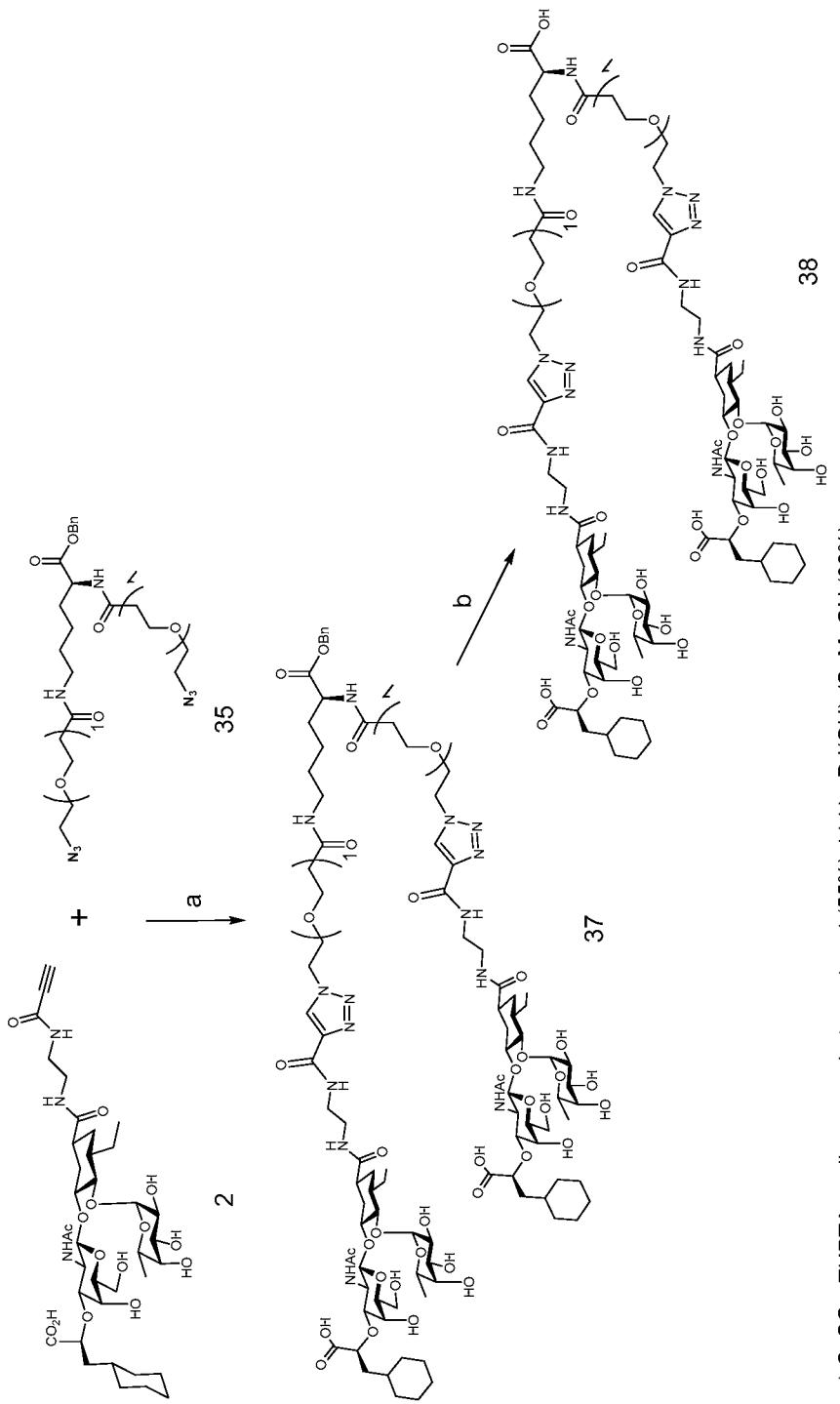




FIG. 9A

Alternative Synthesis of Dimeric Urea

FIG. 9B


Synthesis of Azido-Amide Lysine Derivatives

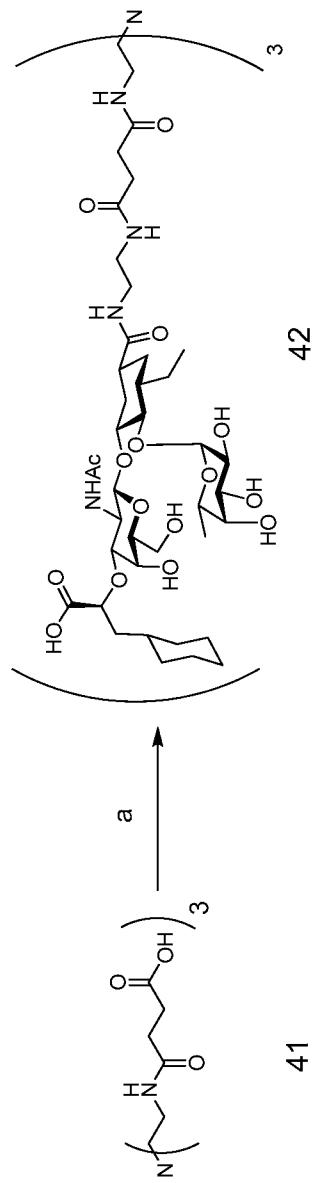
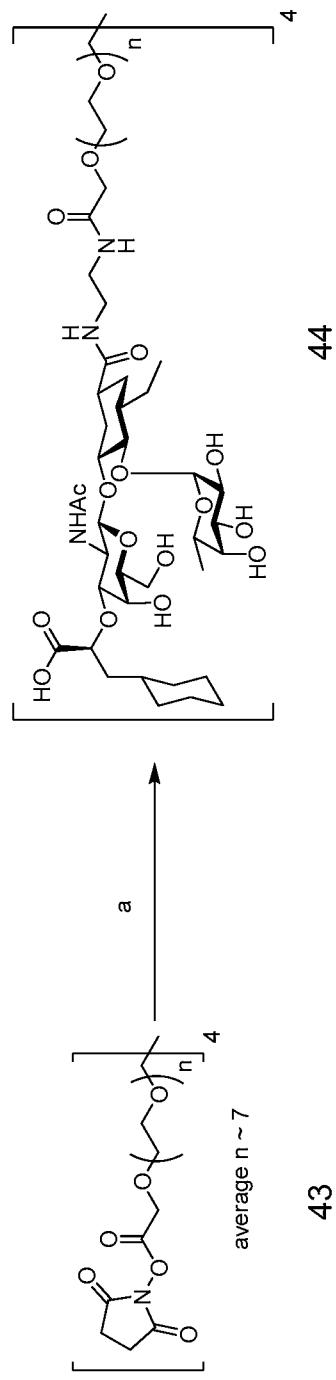

a) DIPEA, DMAP, DMF, 0°C to rt, (98%)

FIG. 10

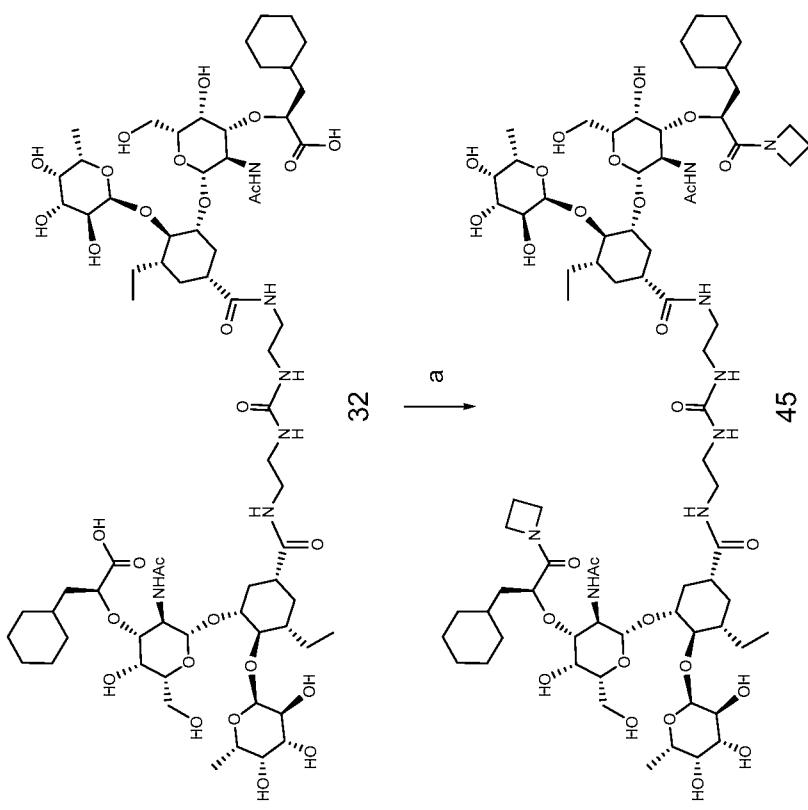
Synthesis of Dimeric Lysine Based Triazolo Amides

FIG. 11


Synthesis of Trimeric Triamides

a) compound 1, TBTU, DIPEA, DMSO, DMF, 0°C (54%)

FIG. 12


Synthesis of Tetrameric Tetra-Amides

a) compound 1, DIPEA, DMSO, water, 3 days (63%)

FIG. 13

Synthesis of Azetidine Amide Dimeric Urea

a) TBTU, DIPEA, azetidine, DMF, 55°C (100%)

FIG. 14