wo 2013/119481 A1)V 00O 000 A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/119481 A1l

15 August 2013 (15.08.2013) WIPOIPCT
(51) International Patent Classification: Microsott Way, Redmond, Washington 98052-6399 (US).
GO6F 9/30 (2006.01) RICE, Timothy S.; ¢/o Microsoft Corporation, LCA - In-
. . ternational Patents, One Microsoft Way, Redmond, Wash-
(21) International Application Number: ington 98052-6399 (US).
PCT/US2013/024558
. . (81) Designated States (unless otherwise indicated, for eve
(22) International Filing Date: kz'ndgof national pro(tection available): AE, AG,{’\L, Al\r/i
4 February 2013 (04.02.2013) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(25) Filing Language: Enghsh BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
. DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(26) Publication Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(30) Priority Data: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
13/370,126 9 February 2012 (09.02.2012) Us ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
(71) Applicant (for all designated States except US): MI- RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
CROSOFT CORPORATION [US/US]; One Microsoft ™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
Way, Redmond, Washington 98052-6399 (US). M, ZW.
(72) Imventors: FANNING, Michael C.; c/o Microsoft Corpor- (84) Designated States (unless otherwise indicated, for every

ation, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). FAUCON,
Christopher M.H.; c/o Microsoft Corporation, LCA - In-
ternational Patents, One Microsoft Way, Redmond, Wash-
ington 98052-6399 (US). STERLAND, Andrew R.; c/o
Microsoft Corporation, LCA - International Patents, One

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

[Continued on next page]

(54) Title: DYNAMIC INJECTION OF CODE INTO RUNNING PROCESS

100

(57) Abstract: Techniques are described herein that are capable of dy-

namically injecting code into a running process. For instance, the tech-
niques are capable of causing arbitrary code to be activated in the pro-
cess while the process is running in response to receipt of a request for

106A

First Server(s)
114

Target Madule
110

In-Process Injection
Module

User Systems

2

112

Request Module

106B

Second Server(s)

106N

Nth Server(s}

FIG. 1

dynamic execution of the arbitrary code from outside the process while
the process is running.

WO 2013/119481 A1 WAL 00TV AV T A

TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW, __
ML, MR, NE, SN, TD, TG).

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:
— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

Declarations under Rule 4.17:

with international search report (Art. 21(3))

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

DYNAMIC INJECTION OF CODE INTO RUNNING PROCESS
BACKGROUND

[0001] A process, such as a computer program (e.g., a software application) or a portion
thereof, may perform operations with respect to another process. The process that
performs the operations is referred to as a requesting process, and the process on which the
operations are performed is referred to as a targeted process. Traditionally, in order for a
requesting process to attach to a target process, a contributor to a runtime environment in
which the targeted process executes provides a targeted set of services for the requesting
process or an activation mechanism for instantiating code within the targeted process. For
instance, the contributor may be an operating system, a layered runtime (e.g., Common
Language Runtime (CLR) distributed by Microsoft Corporation, Java Virtual Machine
(JVM) distributed by Oracle Corporation, etc.), a host executable (e.g., a browser), an
integrated framework (e.g., Windows Presentation Foundation (WPF)), etc. When an
activation mechanism instantiates code (e.g., an object) within the targeted process, the
code typically is callback code that receives notifications or is called with a reference to a
host object that provides access to data and/or services. Such an activation mechanism
traditionally is provided by consulting machine configuration information, such as a
registry or an environment variable at start-up of the targeted process. The relevant code is
then instantiated based on this information and initialized with relevant host-provided
data.

[0002] However, techniques for activating code in a targeted process at start-up of the
targeted process have limitations. For instance, if the targeted process is not started with a
configuration that references code, the targeted process typically is restarted after a
configuration that references the code is set. Restarting the targeted process may
introduce additional cost and/or steps to the user experience of activating the code. Also,
circumstances that exist while the targeted process is running may be difficult to recreate
once the target process is restarted. For example, problems such as thread race conditions,
a slow memory leak that takes days to force an error, etc. are relatively serious but
potentially difficult to reproduce. In another example, alterations of an execution
environment implied by re-configuring the targeted process may prevent a problem from
being reproduced at all.

[0003] Providing application programming interface (API) functionality to code of a
requesting process may be relatively costly. For instance, production and maintenance of

documentation, forward compatibility, etc. may contribute to the cost of a platform-

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

provided APL. Auxiliary functionality, such as tooling functionality, of a platform or
framework often is regarded as having a relatively lower priority than the central
functionality of the platform or framework. Accordingly, work that is to be performed for
providing the auxiliary functionality may be deferred. For relatively complex platforms or
frameworks, the expertise for providing core platform services versus the expertise for
providing auxiliary services may not overlap. Such issues may limit development and/or
innovation with regard to the auxiliary services. Code that is not strictly purposed for a
platform and/or which possibly entails execution of arbitrary code (e.g., arbitrary tool
code), as would be the case for public extension points, entails substantial security risk
that may be mitigated by careful review and/or implementation. Finally, an API that is
provided by an application or framework may entail servicing and/or versioning problems.
For instance, providers of requesting processes often make adjustments to code thereof in
an effort to keep in sync with changes to a platform, potentially recompiling and/or
rewriting the code to account for such changes.
SUMMARY

[0004] Various approaches are described herein for, among other things, dynamically
injecting code into a running process. For instance, the approaches are capable of causing
arbitrary code to be activated in the process while the process is running in response to
receipt of a request for dynamic execution of the arbitrary code from outside the process
while the process is running. The approaches may cause the arbitrary code to be activated
in the process in any of a variety of ways, including but not limited to causing an operating
system (OS) application programming interface (API) to look up a location of a code
container that includes the arbitrary code from a registry, loading the arbitrary code from a
code container via a path that is indicated by the message into a shared library at a location
that is indicated by the message and calling the shared library to execute the arbitrary code
value, obtaining the arbitrary code from a code container that is indicated by the message
and activating the arbitrary code at an entry point of the process that is specified by the
message, etc.

[0005] A method is described for dynamically injecting code into a running process.
According to the method, a message is received in a targeted process from a requesting
process that is external to the targeted process while the targeted process is running. The
message requests dynamic execution of arbitrary code in the targeted process. The

message includes a code identifier that identifies the arbitrary code. The arbitrary code is

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

caused to be located and activated in the targeted process while the targeted process is
running based on the code identifier to provide activated code.
[0006] A system is described that includes an interface module and a causation module.
The interface module is configured to receive a message in a targeted process from a
requesting process that is external to the targeted process while the targeted process is
running. The message requests dynamic execution of arbitrary code in the targeted
process. The message includes a code identifier that identifies the arbitrary code. The
causation module is configured to cause the arbitrary code to be located and activated in
the targeted process while the targeted process is running based on the code identifier to
provide activated code.
[0007] A computer program product is described that includes a computer-readable
medium having computer program logic recorded thereon for enabling a processor-based
system to dynamically inject code into a running process. The computer program product
includes a program logic module. The program logic module is for enabling the
processor-based system to cause arbitrary code to be located and activated in a targeted
process while the targeted process is running to provide activated code based on receipt of
a message in the targeted process from a requesting process that is external to the targeted
process while the targeted process is running. The message requests dynamic execution of
the arbitrary code in the targeted process. The message includes a code identifier that
identifies the arbitrary code. The code identifier is useable to locate and activate the
arbitrary code.
[0008] This Summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used to limit the scope of the claimed subject matter. Moreover, it is
noted that the invention is not limited to the specific embodiments described in the
Detailed Description and/or other sections of this document. Such embodiments are
presented herein for illustrative purposes only. Additional embodiments will be apparent
to persons skilled in the relevant art(s) based on the teachings contained herein.

BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES
[0009] The accompanying drawings, which are incorporated herein and form part of the
specification, illustrate embodiments of the present invention and, together with the
description, further serve to explain the principles involved and to enable a person skilled

in the relevant art(s) to make and use the disclosed technologies.

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

[0010] FIG. 1 is a block diagram of an example computer system in accordance with an
embodiment.
[0011] FIG. 2 depicts a flowchart of an example method for dynamically activating code
of a targeted process according to an embodiment.
[0012] FIG. 3 is a block diagram of an example implementation of a request module
shown in FIG. 1 in accordance with an embodiment.
[0013] FIGS. 4 and 6 depict flowcharts of example methods for dynamically injecting
code into a running process according to embodiments.
[0014] FIGS. 5 and 7 are block diagrams of example implementations of an in-process
injection module shown in FIG. 1 in accordance with embodiments.
[0015] FIGS. 8 and 9 depict flowcharts of example methods for causing arbitrary code to
be located and activated according to embodiments.
[0016] FIG. 10 is a block diagram of an example implementation of a causation module
shown in FIG. 7 in accordance with an embodiment.
[0017] FIG. 11 depicts an example computer in which embodiments may be implemented.
[0018] The features and advantages of the disclosed technologies will become more
apparent from the detailed description set forth below when taken in conjunction with the
drawings, in which like reference characters identify corresponding elements throughout.
In the drawings, like reference numbers generally indicate identical, functionally similar,
and/or structurally similar elements. The drawing in which an element first appears is
indicated by the leftmost digit(s) in the corresponding reference number.

DETAILED DESCRIPTION
L Introduction
[0019] The following detailed description refers to the accompanying drawings that
illustrate exemplary embodiments of the present invention. However, the scope of the
present invention is not limited to these embodiments, but is instead defined by the
appended claims. Thus, embodiments beyond those shown in the accompanying
drawings, such as modified versions of the illustrated embodiments, may nevertheless be

encompassed by the present invention.

"n on "non

[0020] References in the specification to "one embodiment,” "an embodiment," "an
example embodiment," or the like, indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every embodiment may not necessarily
include the particular feature, structure, or characteristic. Moreover, such phrases are not

necessarily referring to the same embodiment. Furthermore, when a particular feature,

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

structure, or characteristic is described in connection with an embodiment, it is submitted
that it is within the knowledge of one skilled in the relevant art(s) to implement such
feature, structure, or characteristic in connection with other embodiments whether or not
explicitly described.

IL. Example Embodiments

[0021] Example embodiments described herein are capable of dynamically injecting code
into a running process. For instance, the example embodiments are capable of causing
arbitrary code to be activated in the process while the process is running in response to
receipt of a request for dynamic execution of the arbitrary code from outside the process
while the process is running. The example embodiments may cause the arbitrary code to
be activated in the process in any of a variety of ways, including but not limited to causing
an operating system (OS) application programming interface (API) to look up a location of
a code container that includes the arbitrary code from a registry, to activate the arbitrary
code from the code container upon determining the location, and to provide a reference to
the arbitrary code to a caller that provided the request; loading the arbitrary code from a
code container via a path that is indicated by the message into a shared library at a location
that is indicated by the message and calling the shared library to activate the arbitrary code
value; obtaining the arbitrary code from a code container that is indicated by the message
and activating the arbitrary code at an entry point of the process that is specified by the
message, etc.

[0022] Example techniques described herein have a variety of benefits as compared to
conventional techniques for executing code in a process. For instance, the example
techniques may “attach” to a running target process on an ad hoc basis in order to bring
code of a requesting process to bear against the target process. The example techniques
may pass data that qualify instantiation of arbitrary code to enable parameterized
activation of the arbitrary code. The instantiation may be qualified in any of a variety of
arbitrary ways (e.g., by accessing data received from the requesting process). Once the
arbitrary code is injected into the running targeted process, the arbitrary code may be
serviced (e.g., updated) out-of-band with respect to the targeted process and/or an
environment (e.g., a programming runtime environment) in which the targeted process
runs (i.e., outside the targeted process and/or the aforementioned environment).

[0023] The example techniques may reduce cost and/or a number of steps to the user
experience and/or the developer experience of activating the code, as compared to

conventional techniques for executing code in a process. For example, the example

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

techniques need not necessarily provide API functionality to code of the requesting
process. In accordance with this example, production and maintenance of documentation,
forward compatibility, etc. with regard to such API functionality may not be necessary. In
further accordance with this example, servicing and/or versioning problems associated
with such API functionality may be avoided. The arbitrary code that is injected into the
running process may provide an API with which the caller that provided the request for
dynamic execution of the arbitrary code may communicate. This may provide greater
flexibility and/or control with respect to the process in which the arbitrary code is injected.
In another example, no particular configuration is needed at startup of the targeted process.
For instance, if the targeted process is not started with a configuration that references the
code, the targeted process need not be restarted with a configuration that references the
code. Accordingly, circumstances (e.g., problems) that exist while the target process is
running need not be recreated. In yet another example, a provider of the requesting
process need not necessarily make adjustments to code of the requesting process in order
to keep in sync with changes to the target process.

[0024] FIG. 1 is a block diagram of an example computer system 100 in accordance with
an embodiment. Generally speaking, computer system 100 operates to provide
information to users (e.g., application developers) in response to requests (e.g., hypertext
transfer protocol (HTTP) requests) that are received from the users. The information may
include documents (e.g., Web pages, images, video files, etc.), output of executables,
and/or any other suitable type of information. In accordance with example embodiments
described herein, computer system 100 dynamically injects code into running process(es).
For instance, if an application developer develops an application using computer system
100, computer system 100 may dynamically inject code into the application while the
application is running in order to facilitate trouble-shooting with regard to the application.
Detail regarding techniques for dynamically injects code into running process(es) is
provided in the following discussion.

[0025] As shown in FIG. 1, computer system 100 includes a plurality of user systems
102A-102M, a network 104, and a plurality of servers 106A-106N. Communication
among user systems 102A-102M and servers 106A-106N is carried out over network 104
using well-known network communication protocols. Network 104 may be a wide-area
network (e.g., the Internet), a local area network (LAN), another type of network, or a

combination thereof.

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

[0026] User systems 102A-102M are processing systems that are capable of
communicating with servers 106A-106N. An example of a processing system is a system
that includes at least one processor that is capable of manipulating data in accordance with
a set of instructions. For instance, a processing system may be a computer, a personal
digital assistant, etc. User systems 102A-102M are configured to provide requests to
servers 106A-106N for requesting information stored on (or otherwise accessible via)
servers 106A-106N. For instance, a user may initiate a request for executing a computer
program using a client (e.g., a Web browser, Web crawler, or other type of client)
deployed on a user system 102 that is owned by or otherwise accessible to the user. In
accordance with some example embodiments, user systems 102A-102M are capable of
accessing domains (e.g., Web sites) hosted by servers 104A-104N, so that user systems
102A-102M may access information that is available via the domains. Such domain may
include Web pages, which may be provided as hypertext markup language (HTML)
documents and objects (e.g., files) that are linked therein, for example.

[0027] It will be recognized that any one or more user systems 102A-102M may
communicate with any one or more servers 106A-106N. Although user systems 102A-
102M are depicted as desktop computers in FIG. 1, persons skilled in the relevant art(s)
will appreciate that user systems 102A-102M may include any client-enabled system or
device, including but not limited to a desktop computer, a laptop computer, a tablet
computer, a personal digital assistant, a cellular telephone, or the like.

[0028] Servers 106A-106N are processing systems that are capable of communicating
with user systems 102A-102M. Servers 106A-106N are configured to execute computer
programs that provide information to users in response to receiving requests from the
users. For example, the information may include documents (e.g., Web pages, images,
video files, etc.), output of executables, or any other suitable type of information. In
accordance with some example embodiments, servers 106A-106N are configured to host
respective Web sites, so that the Web sites are accessible to users of computer system 100.
[0029] First server 106A is shown to include a request module 112 and a target module
114 for illustrative purposes. Request module 112 is configured to execute a requesting
process (e.g., a requesting software program), which is external to a targeted process that
is executed by target module 114. The requesting process is capable of generating
message(s) that request dynamic execution of arbitrary code in the targeted process that is
executed by target module 114. One example type of a requesting process is referred to as

a tool process. A tool process is a requesting process that is capable of being used to

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

perform diagnostic operations (e.g., identifying source of problem, debugging, profiling,
controlling, etc.) with respect to a targeted process. Examples of a tool process include
but are not limited to a web development program (e.g., Windows Azure Platform®,
Amazon Web Services®, Google App Engine®, VMWare®, Force.com®, etc.) and an
integrated development environment (e.g., Microsoft Visual Studio®, JDeveloper®,
NetBeans®, Eclipse Platform™, etc.).

[0030] Target module 114 is configured to execute a targeted process (e.g., a targeted
software application). Examples of a targeted process include but are not limited to a web
browser (e.g., Internet Explorer®, Firefox®, Google Chrome®, Safari®, etc.), a game
(e.g., an online game or a console game), etc. In one example embodiment, the targeted
process runs in a programming runtime environment. For instance, the programming
runtime environment may be executed by a runtime module that includes target module
114. A programming runtime environment is a software component that supports
execution of computer programs written in designated computer programming language(s)
by translating intermediate language (IL) instructions into machine instructions. For
instance, Java Runtime Environment® (JRE), developed and distributed by Sun
Microsystems, Inc. (now Oracle America, Inc.), is an example of a programming runtime
environment that supports execution of computer programs written in the Java®
programming language. Common Language Runtime® (CLR), developed and distributed
by Microsoft Corporation, is an example of a programming runtime environment that
supports execution of computer programs written in a variety of languages. It will be
recognized, however, that the targeted process need not necessarily run in a programming
runtime environment.

[0031] Target module 114 includes an in-process injection module 110. In-process
injection module 110 is configured to dynamically inject arbitrary code into the targeted
process that is executed by target module 114 to satisfy request(s) therefor from requesting
module 112. For example, in-process injection module 110 is capable of causing the
arbitrary code to be located and activated in the targeted process while the targeted process
1s running, resulting in activated code. In accordance with this example, the arbitrary code
is caused to be located and activated in the targeted process based on receipt of message(s)
in the targeted process from the requesting process while the targeted process is running.
The message(s) from the requesting process request dynamic execution of the arbitrary
code in the targeted process. In further accordance with this example, the message(s) may

include code identifier(s) that identify the respective arbitrary code and that may be

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

useable to locate and activate the arbitrary code. The message(s) from the requesting
process may be received by the targeted process directly from the requesting process or
indirectly from the requesting process. For instance, one or more of the message(s) may
be received via one or more intermediate processes and/or modules. Such intermediate
processes and/or modules may forward the message(s) toward the targeted process upon
receipt thereof from the requesting process or from another intermediate process, module,
and/or machine. Some example techniques for dynamically injecting code into a running
process are discussed in greater detail below with reference to FIGS. 2-10.

[0032] In-process injection module 110, request module 112, and target module 114 are
shown to be incorporated in first server(s) 106A for illustrative purposes and are not
intended to be limiting. It will be recognized that in-process injection module 110, request
module 112, and/or target module 114 (or any portion(s) thereof) may be incorporated in
any one or more of the user systems 102A-102M. For example, client-side aspects of in-
process injection module 110, request module 112, and/or target module 114 may be
incorporated in one or more of the user systems 102A-102M, and server-side aspects of in-
process injection module 110, request module 112, and/or target module 114 may be
incorporated in first server(s) 106A. In another example, in-process injection module 110,
request module 112, and/or target module 114 may be distributed among the user systems
102A-102M. In yet another example, in-process injection module 110, request module
112, and/or target module 114 may be incorporated in a single one of the user systems
102A-102M. In still another example, in-process injection module 110, request module
112, and/or target module 114 (or any portion(s) thereof) may be incorporated in a device
that is locally connected via a wired or wireless connection to a user system. For instance,
target module 114 (including in-process injection module 110) may be incorporated in a
mobile device that is coupled via a communication link to user system 102A, and request
module 112 may be incorporated in user system 102A.

[0033] In-process injection module 110 may be implemented in various ways to
dynamically inject code into a running process, including being implemented in hardware,
software, firmware, or any combination thereof. For example, in-process injection module
110 may be implemented as computer program code configured to be executed in one or
more processors. In another example, in-process injection module 110 may be
implemented as hardware logic/electrical circuitry. In an embodiment, in-process
injection module 110 may be implemented in a system-on-chip (SoC). Each SoC may

include an integrated circuit chip that includes one or more of a processor (e.g., a

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

microcontroller, microprocessor, digital signal processor (DSP), etc.), memory, one or
more communication interfaces, and/or further circuits and/or embedded firmware to
perform its functions.

[0034] Following are two example scenarios in which computer system 100 may be used.
In the first scenario, a customer may be using a requesting process that is executed by
request module 112. The customer may select an “attach to running process on networked
machine” entry in a “Debug” menu that is provided in the context of the requesting
process. Request module 112 may retrieve a list of processes that are running on the
networked machine. The user may select a targeted process from the list of processes and
press an “Attach” button, for example. Request module 112 may package and send a
message to the running targeted process to activate a debugging component in the running
targeted process. In-process injection module 110 may perform a global registration
operation with respect to the debugging component to enable request module 112 to have
access (e.g., to attach) to the debugging component in response to receipt of the message
from requesting module 112.

[0035] In the second scenario, request module 112 enumerates all processes running on a
tablet that is attached to a local computer via a universal serial bus (USB) cable. In this
scenario, no tool code has been downloaded to the tablet itself. Request module 112
selects a targeted process running on the tablet and packages an activation message to be
sent to the tablet. The activation message includes a code location identifier that specifies
a location of a code container. For instance, the code location identifier may specify a
uniform resource locator (URL) corresponding to information that is viewable from the
tablet. Upon receipt of the activation message, in-process injection module 110 retrieves
the code container from the location specified by the code location identifier and activates
arbitrary code that is included in the code container to provide instantiated code. In-
process injection module 110 provides a pointer to the instantiated code to request module
112. 1t is noted that request module 112 may call directly into the instantiated code if the
instantiated code is represented as a component object model (COM) object that supports
marshalling. In-process injection module 110 may initialize the instantiated code with
information regarding the instantiated code that may be useful for its execution
environment.

[0036] The example scenarios mentioned above are provided for illustrative purposes and
are not intended to be limiting. It will be recognized that the example techniques

described herein are applicable to any of a variety of scenarios.

10

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

[0037] FIG. 2 depicts a flowchart 200 of an example method for dynamically activating
code of a targeted process according to an embodiment. Flowchart 200 may be performed
by request module 112 of system 100 shown in FIG. 1, for example. For illustrative
purposes, flowchart 200 is described with respect to request module 300 shown in FIG. 3,
which is an example of request module 112, according to an embodiment. As shown in
FIG. 3, request module 300 includes an identification module 302, a generation module
304, a provision module 306, and a receipt module 308. Further structural and operational
embodiments will be apparent to persons skilled in the relevant art(s) based on the
discussion regarding flowchart 200.

[0038] As shown in FIG. 2, the method of flowchart 200 begins at step 202. In step 202, a
targeted process is identified. In an example implementation, identification module 302
identifies the targeted process.

[0039] At step 204, a message is generated that includes activation data regarding code.
In an example implementation, generation module 304 generates the message.

[0040] At step 206, the message is sent to the targeted process. In an example
implementation, provision module 306 sends the message to the targeted process.

[0041] At step 208, a response is received that indicates whether the activation is
successful. For example, an error message may be received if the activation is not
successful. In accordance with this example, the error message may specify an error that
occurred with respect to activation of the code. In another example, a success message
may be received if the activation is successful. In accordance with this example, the
success message may indicate that the code is accessible to request module 300. For
instance, the success message may include a reference to the code that is useable to call
into the code. In an example implementation, receipt module 308 receives the response.
[0042] In some example embodiments, one or more steps 202, 204, 206, and/or 208 of
flowchart 200 may not be performed. Moreover, steps in addition to or in lieu of steps
202, 204, 206, and/or 208 may be performed.

[0043] It will be recognized that request module 300 may not include one or more of
identification module 302, generation module 304, provision module 306, and/or receipt
module 308. Furthermore, request module 300 may include modules in addition to or in
lieu of identification module 302, generation module 304, provision module 306, and/or
receipt module 308.

[0044] FIGS. 4 depicts a flowchart 400 of an example method for dynamically injecting

code into a running process according to an embodiment. Flowchart 400 may be

11

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

performed by in-process injection module 110 of system 100 shown in FIG. 1, for
example. For illustrative purposes, flowchart 400 is described with respect to in-process
injection module 500 shown in FIG. 5, which is an example of in-process injection module
110, according to an embodiment. As shown in FIG. 5, in-process injection module 500
includes an interface module 502, an activation determination module 504, a provision
module 506, a state determination module 508, a state pushing module 510, an unpacking
module 512, an availability determination module 514, a path determination module 516,
an activation module 518, an initialization module 520, a registration module 522, a
packaging module 524, a pop determination module 526, and a state popping module 528.
Further structural and operational embodiments will be apparent to persons skilled in the
relevant art(s) based on the discussion regarding flowchart 400.

[0045] As shown in FIG. 4, the method of flowchart 400 begins at step 402. In step 402, a
message 1s received that includes activation data regarding code. In an example
implementation, interface module 502 receives the message.

[0046] At step 404, a determination is made whether activation is disabled. If activation is
disabled, the code cannot be activated. If activation is not disabled, the code may be
activated if appropriate activation operations are performed in accordance with
technique(s) described herein. If activation is disabled, flow continues to step 406.
Otherwise, flow continues to step 408. In an example implementation, activation
determination module 504 determines whether activation is disabled. It is noted that, in
some embodiments, activation may be toggled between “enabled” and “disabled” by an
entity, such as a system administrator. In accordance with these embodiments, toggling
the activation from “disabled” to “enabled” may render the code capable of being
activated if the appropriate activation operations are performed in accordance with
technique(s) described herein.

[0047] At step 406, a failure message is provided. The failure message indicates that
activation is disabled. In an example implementation, provision module 506 provides the
failure message. Upon completion of step 406, flowchart 400 ends.

[0048] At step 408, a determination is made whether a configuration state exists. For
example, the configuration state may be specified by environment variable(s) that are
associated with the code. In accordance with this example, if such environment
variable(s) specify the configuration state, the configuration state is said to exist. If no
such environment variable(s) exist or such environment variable(s) do not specify the

configuration state, the configuration state is said to not exist. If a configuration state

12

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

exists, flow continues to step 410. Otherwise, flow continues to step 412. In an example
implementation, state determination module 508 determines whether a configuration state
exists.

[0049] At step 410, the configuration state is pushed. “Pushing” the configuration state
means “persisting” the configuration state to be restored at a future time. For instance,
pushing the configuration state may result in a coding convenience, such as enabling reuse
of the same code location and/or activation mechanism that is provided on startup of the
code. In an example implementation, state pushing module 510 pushes the configuration
state. Upon completion of step 410, flow continues to step 412.

[0050] At step 412, the activation data is unpacked from the message. In an example
implementation, unpacking module 512 unpacks the activation data from the message.
[0051] At step 414, a determination is made whether an identifier that identifies the code
is available. If an identifier that identifies the code is available, flow continues to step
416. Otherwise, flow continues to step 406. In an example implementation, availability
determination module 514 determines whether an identifier that identifies the code is
available.

[0052] At step 416, a determination is made whether an indicator that indicates a path to
the code is available. For example, the path may be a network location, information
regarding a local machine, a uniform resource identifier (URI) to a file that may be
downloaded via a network (e.g., the Internet), etc. In accordance with this example, the
URI may be a uniform resource locator (URL) or a uniform resource name (URN). If an
indicator that indicates a path to the code is available, flow continues to step 418.
Otherwise, flow continues to step 420. In an example implementation, path determination
module 516 determines whether an indicator that indicates a path to the code is available.
[0053] At step 418, the code is activated (e.g., loaded and/or at least partially executed)
from a location specified by the path. In an example implementation, activation module
518 activates the code from the location specified by the path. Upon completion of step
418, flow continues to step 422.

[0054] At step 420, the code is activated based on the identifier that identifies the code. In
an example implementation, activation module 518 activates the code based on the
identifier that identifies the code. Upon completion of step 420, flow continues to step
422.

[0055] It will be recognized that an unsuccessful attempt to perform step 418, 420, and/or

422 may lead to an error condition, in which case flow continues to step 406. For

13

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

example, activation of the code may fail at step 418 or 420. In another example,
initialization of the activated code may fail at step 422. In accordance with this example,
the activated code may be “cleaned up” if the initialization fails.

[0056] At step 422, the activated code is initialized. For instance, initialization may
involve reviewing environmental variables for information to qualify activation of the
code, requiring the activated code to implement a specified interface, requiring a code
container that is associated with the activated code to expose entry points of names that
may be called, unpacking arbitrary initialization data from the message, etc. In an
example implementation, initialization module 520 initializes the activated code.

[0057] At step 424, the activated code is registered. In an example implementation,
registration module 522 registers the activated code.

[0058] At step 426, a result of the activation is packaged. In an example implementation,
packaging module 524 packages the result of the activation.

[0059] At step 428, a determination is made whether the configuration state is to be
popped. If the configuration state is to be popped, flow continues to step 430. Otherwise,
flow continues to step 432. In an example implementation, pop determination module 526
determines whether the configuration state is to be popped.

[0060] At step 430, the configuration state is popped. “Popping” the configuration state
means “restoring” the configuration state, which is pushed at step 410. In an example
implementation, state popping module 528 pops the configuration state. Upon completion
of step 430, flow continues to step 432.

[0061] At step 432, the result of the activation is returned. In an example implementation,
provision module 506 returns the result of the activation. Upon completion of step 432,
flowchart 400 ends.

[0062] In some example embodiments, one or more steps 402, 404, 406, 408, 410, 412,
414, 416, 418, 420, 422, 424, 426, 428, 430, and/or 432 of flowchart 400 may not be
performed. Moreover, steps in addition to or in lieu of steps 402, 404, 406, 408, 410, 412,
414, 416, 418, 420, 422, 424, 426, 428, 430, and/or 432 may be performed.

[0063] It will be recognized that in-process injection module 500 may not include one or
more of interface module 502, activation determination module 504, provision module
506, state determination module 508, state pushing module 510, unpacking module 512,
availability determination module 514, path determination module 516, activation module
518, initialization module 520, registration module 522, packaging module 524, pop

determination module 526, and/or state popping module 528. Furthermore, in-process

14

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

injection module 500 may include modules in addition to or in licu of interface module
502, activation determination module 504, provision module 506, state determination
module 508, state pushing module 510, unpacking module 512, availability determination
module 514, path determination module 516, activation module 518, initialization module
520, registration module 522, packaging module 524, pop determination module 526,
and/or state popping module 528.

[0064] FIGS. 6 depicts a flowchart 600 of another example method for dynamically
injecting code into a running process according to an embodiment. Flowchart 600 may be
performed by in-process injection module 110 of system 100 shown in FIG. 1, for
example. For illustrative purposes, flowchart 600 is described with respect to in-process
injection module 700 shown in FIG. 7, which is another example of in-process injection
module 110, according to an embodiment. As shown in FIG. 7, in-process injection
module 700 includes an interface module 702, a causation module 704, an identification
module 706, an invalidation module 708, and a startup module 710. Further structural and
operational embodiments will be apparent to persons skilled in the relevant art(s) based on
the discussion regarding flowchart 600.

[0065] As shown in FIG. 6, the method of flowchart 600 begins at step 602. In step 602, a
message is received in a targeted process from a requesting process that is external to the
targeted process while the targeted process is running. It will be recognized that the
message may be received in the targeted process directly or indirectly from the requesting
process. The message includes a code identifier and requests dynamic execution of
arbitrary code in the targeted process. The code identifier identifies the arbitrary code.
The code identifier is useable to locate and activate the arbitrary code. The requesting
process may be a tool process, such as a web development program or an integrated
development environment, though the scope of the example embodiments is not limited in
this respect. In an example implementation, interface module 702 receives the message in
the targeted process from the requesting process while the targeted process is running.
[0066] In an example embodiment, the code identifier contains source code to be
compiled and then executed in the targeted process. In another example embodiment, the
code identifier is a URI and/or a web service call that returns source code for compilation.
In yet another example embodiment, the code identifier contains script code, which is not
compiled, for execution in the targeted process.

[0067] At step 604, the arbitrary code is caused to be located and activated (e.g., loaded

and/or at least partially activated) in the targeted process while the targeted process is

15

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

running based on the code identifier to provide activated code. In an example
implementation, causation module 704 causes the arbitrary code to be located and
activated in the targeted process while the targeted process is running.

[0068] In an example embodiment, step 604 includes causing an operating system (OS)
application programming interface (API) to look up a location of a code container that
includes the arbitrary code from a registry based on the code identifier. For instance, the
operating system application programming interface may be caused to use the code
identifier as a key to look up the location of the code container. The code identifier may
be represented using a globally unique identifier (GUID), for example. The operating
system application programming interface may be a CoCreatelnstance component object
model (COM)function, for example. It will be recognized that the code container may be
a binary container or a cab or other compressed container from which the code is to be
extracted. In accordance with this embodiment, the code identifier is provided to the
operating system application programming interface.

[0069] In another example embodiment, step 604 includes providing arbitrary data to the
arbitrary code to initialize the arbitrary code. In accordance with this embodiment, the
arbitrary data is included in the message that is received in the targeted process at step
602.

[0070] In yet another example embodiment, step 604 includes halting all threads of the
targeted process except for a thread that is associated with the activated code.

[0071] In still another example embodiment, the code identifier and/or other data in the
message specifies a singleton instance of the arbitrary code. For instance, the code
identifier and/or other data may request that an instance of the arbitrary code be created if
such an instance does not already exist and/or that a previously constructed instance of the
arbitrary code be returned otherwise. An object registration mechanism may be reused for
this purpose.

[0072] At step 606, instantiated code, which is instantiated with respect to the targeted
process, is identified. The instantiated code includes the activated code. In an example
implementation, identification module 706 identifies the instantiated code, which is
instantiated with respect to the targeted process.

[0073] At step 608, an invalidation message is received. For instance, the invalidation
message may be generated by the targeted process or by the requesting process. In an
aspect, the invalidation message may indicate that an error has occurred in the targeted

process or in the requesting process. In another aspect, the invalidation message may

16

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

indicate that the targeted process or the requesting process is to be discontinued. For
example, the invalidation message may be received in response to a user exiting the
targeted process. In accordance with this example, the invalidation message may be
received during a shutdown sequence of the targeted process. For instance, the targeted
process may detect that the user has exited the targeted process and generate the
invalidation message based thereon. In an example implementation, interface module 702
receives the invalidation message.

[0074] At step 610, the instantiated code is invalidated. For example, the instantiated
code may be discarded, removed from memory, called into so that the instantiated code
may perform its own un-initialization and/or shutdown work, etc. In accordance with this
example, reference(s) to the instantiated code may be deleted, deactivated, etc. In an
example implementation, invalidation module 708 invalidates the instantiated code.

[0075] In an example embodiment, the message may include qualifier(s) related to
caching of the arbitrary code. For example, the message may indicate that the arbitrary
code is to be retrieved, even if the arbitrary code has already been retrieved and cached
locally. In accordance with this example, the code identifier may refer to a URI, such as a
URL or a URN. In one aspect, causation module 704 may consult a table that indicates
whether that arbitrary code has been retrieved and cached locally already. Causation
module 704 may retrieve the arbitrary code from the table if the arbitrary code has not
been retrieved and cached locally already. In another aspect, causation module 704 may
know whether causation module 704 has already compiled a code container that was
delivered as source code in a previous message. Note that a message may include a GUID
to be associated with the arbitrary code along with the source code for the arbitrary code to
be identified by the GUID.

[0076] Because of the costs of transmitting source code with each message, the requesting
process may request activation of a designated GUID. Activation may fail because the
code container cannot be located. The requesting process may follow-up with a message
that requests activating the same GUID and, this time, bundles the source code with the
message. The causation module 704 may compile and cache and activate the arbitrary
code. The requesting process may continue with another message that requests the
arbitrary code, providing the GUID without the source code. This time, causation module
704 may locate and activate its cached compiled version of the arbitrary code. One

potential reason for implementing the aforementioned scheme is that multiple requesting

17

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

processes may be providing messages that request dynamic execution of the same
arbitrary code in the targeted process.

[0077] It will be recognized that the message received by the targeted process may include
a request for instantiating (e.g., initializing) more than a single code object, which may be
included in a single code container or span multiple code containers. In the case where a
return reference is provided, the data structure holding the result may contain an ordered
collection of references to the various instantiated objects.

[0078] In some example embodiments, one or more steps 602, 604, 606, 608, and/or 610
of flowchart 600 may not be performed. Moreover, steps in addition to or in lieu of steps
602, 604, 606, 608, and/or 610 may be performed. For instance, in an example
embodiment, flowchart 600 includes providing accessibility of code that is included in the
targeted process to the activated code. Accessibility of the code that is included in the
targeted process may be provided to the activated code despite some of the code that is
included in the targeted process being configured to be inaccessible to entities other than
the targeted process, for example. In accordance with this embodiment, causation module
704 may provide accessibility of the code that is included in the targeted process to the
activated code.

[0079] In another example embodiment, flowchart 600 includes determining
environmental variables that are associated with the arbitrary code. The environmental
variables are configured to parameterize loading of the arbitrary code. For instance,
startup module 710 may determine the environmental variables that are associated with the
arbitrary code. In accordance with this embodiment, the arbitrary code is activated during
startup of the targeted process in accordance with the environmental variables. For
instance, startup module 710 may activate the arbitrary code during startup of the targeted
process. In further accordance with this embodiment, step 604 is performed in response to
completion of activating the arbitrary code during the startup of the targeted process. For
instance, causation module 704 may perform step 604 in response to completion of
activating the arbitrary code during startup of the targeted process.

[0080] In yet another example embodiment, flowchart 600 includes providing a value that
references the activated code. The value is callable by the requesting process to interact
with the targeted process while the targeted process continues to run. A data structure
provided by the requesting process may be populated with the value, though the scope of

the example embodiments is not limited in this respect. In one example, causation module

18

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

704 may provide the value that references the activated code. In accordance with this
example, causation module 704 may generate the value.

[0081] In one aspect of the aforementioned embodiment, the requesting process may have
a synchronous code activation experience that, on return, gives the requesting process
access (e.g., relatively immediate access) to the value, which serves as a callable reference
to the activated code. In another aspect, the activated code may be registered in a manner
that causes the activated code to become accessible to the requesting process. For
instance, the activated code may be registered using a memory section that is shared
among the targeted process and the requesting process.

[0082] It will be recognized that in-process injection module 700 may not include one or
more of interface module 702, causation module 704, identification module 706,
invalidation module 708, and/or startup module 710. Furthermore, in-process injection
module 700 may include modules in addition to or in lieu of interface module 702,
causation module 704, identification module 706, invalidation module 708, and/or startup
module 710.

[0083] FIGS. 8 and 9 depict flowcharts 800 and 900 of example methods for causing
arbitrary code to be located and activated according to embodiments. Accordingly,
flowcharts 800 and 900 illustrate example ways in which step 604 of flowchart 600 may
be performed. Flowcharts 800 and 900 may be performed by causation module 704 of in-
process injection module 700 shown in FIG. 7, for example. For illustrative purposes,
flowcharts 800 and 900 are described with respect to causation module 1000 shown in
FIG. 10, which is an example of causation module 704, according to an embodiment. As
shown in FIG. 10, causation module 1000 includes activation logic 1002, calling logic
1004, and obtaining logic 1006. Further structural and operational embodiments will be
apparent to persons skilled in the relevant art(s) based on the discussion regarding
flowcharts 800 and 900.

[0084] As shown in FIG. 8, the method of flowchart 800 begins at step 802. In step 802,
the arbitrary code is loaded from a code container into a shared library based on a location
that is indicated by a location identifier in the message and a path that is indicated by path
information in the message. For example, the shared library may be a dynamic-link
library (DLL). In another example, the location identifier may be a uniform resource
identifier (URI), such as a uniform resource locator (URL) or a uniform resource name
(URN). In an example implementation, activation logic 1002 loads the arbitrary code

from the code container into the shared library. For instance, activation logic 1002 may

19

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

download the shared library from a source external to a device that includes causation
module 1000.

[0085] At step 804, a call is made into the shared library to execute the arbitrary code. In
an example implementation, calling logic 1004 calls into the shared library to execute the
arbitrary code.

[0086] In some example embodiments, one or more steps 802 and/or 804 of flowchart 800
may not be performed. Moreover, steps in addition to or in lieu of steps 802 and/or 804
may be performed.

[0087] As shown in FIG. 9, the method of flowchart 900 begins at step 902. In step 902,
the arbitrary code is obtained from a code container that is indicated by the code identifier.
The code identifier may be specified as MyDIl.dlI#MyCodeActivatingEntryPoint, for
example. In an example implementation, obtaining logic 1006 obtains the arbitrary code
from the code container.

[0088] At step 904, the arbitrary code is activated at an entry point of the targeted process.
The entry point is specified by the code identifier. For example, the code identifier may
include a DLL that is to be loaded into memory, the entry point into which calls are to be
made for accessing the arbitrary code, and a contract name that identifies an interface that
is to be used for calling into the arbitrary code. In accordance with this example, the DLL
exposes the entry point. The entry point may be specified by an identifier such as
MyDIlLdlI#MyCodeActivatingEntryPoint, for example. In this example, the initial
portion, “MyDII”, of the identifier represents a filename for illustrative purposes and is not
intended to be limiting. It will be recognized that the initial portion of the identifier may
be a fully-qualified path to a binary on disk or another URI that corresponds to a location
of the arbitrary code. In an example implementation, activation logic 1002 activates the
arbitrary code at the entry point of the targeted process that is specified by the code
identifier.

[0089] In some example embodiments, one or more steps 902 and/or 904 of flowchart 900
may not be performed. Moreover, steps in addition to or in lieu of steps 902 and/or 904
may be performed.

[0090] It will be recognized that causation module 1000 may not include one or more of
activation logic 1002, calling logic 1004, and/or obtaining logic 1006. Furthermore,
causation module 1000 may include modules in addition to or in lieu of activation logic

1002, calling logic 1004, and/or obtaining logic 1006.

20

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

[0091] In-process injection module 110, request module 112, target module 114,
identification module 302, generation module 304, provision module 306, receipt module
308, interface module 502, activation determination module 504, provision module 506,
state determination module 508, state pushing module 510, unpacking module 512,
availability determination module 514, path determination module 516, activation module
518, initialization module 520, registration module 522, packaging module 524, pop
determination module 526, state popping module 528, interface module 702, causation
module 704, identification module 706, invalidation module 708, startup module 710,
activation logic 1002, calling logic 1004, obtaining logic 1006, flowchart 200, flowchart
400, flowchart 600, flowchart 800, and flowchart 900 may be implemented in hardware,
software, firmware, or any combination thereof.

[0092] For example, in-process injection module 110, request module 112, target module
114, identification module 302, generation module 304, provision module 306, receipt
module 308, interface module 502, activation determination module 504, provision
module 506, state determination module 508, state pushing module 510, unpacking
module 512, availability determination module 514, path determination module 516,
activation module 518, initialization module 520, registration module 522, packaging
module 524, pop determination module 526, state popping module 528, interface module
702, causation module 704, identification module 706, invalidation module 708, startup
module 710, activation logic 1002, calling logic 1004, obtaining logic 1006, flowchart
200, flowchart 400, flowchart 600, flowchart 800, and/or flowchart 900 may be
implemented as computer program code configured to be executed in one or more
processors.

[0093] In another example, in-process injection module 110, request module 112, target
module 114, identification module 302, generation module 304, provision module 306,
receipt module 308, interface module 502, activation determination module 504, provision
module 506, state determination module 508, state pushing module 510, unpacking
module 512, availability determination module 514, path determination module 516,
activation module 518, initialization module 520, registration module 522, packaging
module 524, pop determination module 526, state popping module 528, interface module
702, causation module 704, identification module 706, invalidation module 708, startup
module 710, activation logic 1002, calling logic 1004, obtaining logic 1006, flowchart
200, flowchart 400, flowchart 600, flowchart 800, and/or flowchart 900 may be

implemented as hardware logic/electrical circuitry.

21

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

[0094] For instance, in an embodiment, one or more of in-process injection module 110,
request module 112, target module 114, identification module 302, generation module
304, provision module 306, receipt module 308, interface module 502, activation
determination module 504, provision module 506, state determination module 508, state
pushing module 510, unpacking module 512, availability determination module 514, path
determination module 516, activation module 518, initialization module 520, registration
module 522, packaging module 524, pop determination module 526, state popping module
528, interface module 702, causation module 704, identification module 706, invalidation
module 708, startup module 710, activation logic 1002, calling logic 1004, obtaining logic
1006, flowchart 200, flowchart 400, flowchart 600, flowchart 800, and/or flowchart 900
may be implemented in a system-on-chip (SoC). The SoC may include an integrated
circuit chip that includes one or more of a processor (e.g., a microcontroller,
microprocessor, digital signal processor (DSP), etc.), memory, one or more
communication interfaces, and/or further circuits and/or embedded firmware to perform its
functions.

[0095] FIG. 11 depicts an example computer 1100 in which embodiments may be
implemented. Any one or more of the clients 102A-102M or any one or more of servers
106A-106N shown in FIG. 1 (or any one or more subcomponents thereof shown in FIGS.
1, 3, 5, 7, and 10) may be implemented using computer 1100, including one or more
features of computer 1100 and/or alternative features. Computer 1100 may be a general-
purpose computing device in the form of a conventional personal computer, a mobile
computer, or a workstation, for example, or computer 1100 may be a special purpose
computing device. The description of computer 1100 provided herein is provided for
purposes of illustration, and is not intended to be limiting. Embodiments may be
implemented in further types of computer systems, as would be known to persons skilled
in the relevant art(s).

[0096] As shown in FIG. 11, computer 1100 includes a processing unit 1102, a system
memory 1104, and a bus 1106 that couples various system components including system
memory 1104 to processing unit 1102. Bus 1106 represents one or more of any of several
types of bus structures, including a memory bus or memory controller, a peripheral bus, an
accelerated graphics port, and a processor or local bus using any of a variety of bus
architectures. System memory 1104 includes read only memory (ROM) 1108 and random
access memory (RAM) 1110. A basic input/output system 1112 (BIOS) is stored in ROM
1108.

22

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

[0097] Computer 1100 also has one or more of the following drives: a hard disk drive
1114 for reading from and writing to a hard disk, a magnetic disk drive 1116 for reading
from or writing to a removable magnetic disk 1118, and an optical disk drive 1120 for
reading from or writing to a removable optical disk 1122 such as a CD ROM, DVD ROM,
or other optical media. Hard disk drive 1114, magnetic disk drive 1116, and optical disk
drive 1120 are connected to bus 1106 by a hard disk drive interface 1124, a magnetic disk
drive interface 1126, and an optical drive interface 1128, respectively. The drives and
their associated computer-readable storage media provide nonvolatile storage of computer-
readable instructions, data structures, program modules and other data for the computer.
Although a hard disk, a removable magnetic disk and a removable optical disk are
described, other types of computer-readable storage media can be used to store data, such
as flash memory cards, digital video disks, random access memories (RAMs), read only
memories (ROM), and the like.

[0098] A number of program modules may be stored on the hard disk, magnetic disk,
optical disk, ROM, or RAM. These programs include an operating system 1130, one or
more application programs 1132, other program modules 1134, and program data 1136.
Application programs 1132 or program modules 1134 may include, for example, computer
program logic for implementing in-process injection module 110, request module 112,
target module 114, identification module 302, generation module 304, provision module
306, receipt module 308, interface module 502, activation determination module 504,
provision module 506, state determination module 508, state pushing module 510,
unpacking module 512, availability determination module 514, path determination module
516, activation module 518, initialization module 520, registration module 522, packaging
module 524, pop determination module 526, state popping module 528, interface module
702, causation module 704, identification module 706, invalidation module 708, startup
module 710, activation logic 1002, calling logic 1004, obtaining logic 1006, flowchart 200
(including any step of flowchart 200), flowchart 400 (including any step of flowchart 400),
flowchart 600 (including any step of flowchart 600), flowchart 800 (including any step of
flowchart 800), and/or flowchart 900 (including any step of flowchart 900), as described
herein.

[0099] A user may enter commands and information into the computer 1100 through input
devices such as keyboard 1138 and pointing device 1140. Other input devices (not shown)
may include a microphone, joystick, game pad, satellite dish, scanner, touch screen,

camera, accelerometer, gyroscope, or the like. These and other input devices are often

23

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

connected to the processing unit 1102 through a serial port interface 1142 that is coupled
to bus 1106, but may be connected by other interfaces, such as a parallel port, game port,
or a universal serial bus (USB).

[0100] A display device 1144 (e.g., a monitor) is also connected to bus 1106 via an
interface, such as a video adapter 1146. In addition to display device 1144, computer
1100 may include other peripheral output devices (not shown) such as speakers and
printers.

[0101] Computer 1100 is connected to a network 1148 (e.g., the Internet) through a
network interface or adapter 1150, a modem 1152, or other means for establishing
communications over the network. Modem 1152, which may be internal or external, is
connected to bus 1106 via serial port interface 1142.

[0102] As used herein, the terms “computer program medium” and “computer-readable
medium” are used to generally refer to non-transitory media such as the hard disk
associated with hard disk drive 1114, removable magnetic disk 1118, removable optical
disk 1122, as well as other non-transitory media such as flash memory cards, digital video
disks, random access memories (RAMs), read only memories (ROM), and the like. Such
computer-readable storage media are distinguished from and non-overlapping with
communication media. Communication media typically embodies computer-readable
instructions, data structures, program modules or other data in a modulated data signal
such as a carrier wave. The term “modulated data signal” means a signal that has one or
more of its characteristics set or changed in such a manner as to encode information in the
signal. By way of example, and not limitation, communication media includes wireless
media such as acoustic, RF, infrared and other wireless media. Example embodiments are
also directed to such communication media.

[0103] As noted above, computer programs and modules (including application programs
1132 and other program modules 1134) may be stored on the hard disk, magnetic disk,
optical disk, ROM, or RAM. Such computer programs may also be received via network
interface 1150 or serial port interface 1142. Such computer programs, when executed or
loaded by an application, enable computer 1100 to implement features of embodiments
discussed herein. Accordingly, such computer programs represent controllers of the
computer 1100.

[0104] Example embodiments are also directed to computer program products comprising
software (e.g., computer-readable instructions) stored on any computer useable medium.

Such software, when executed in one or more data processing devices, causes a data

24

10

15

WO 2013/119481 PCT/US2013/024558

processing device(s) to operate as described herein. Embodiments may employ any
computer-useable or computer-readable medium, known now or in the future. Examples
of computer-readable mediums include, but are not limited to storage devices such as
RAM, hard drives, floppy disks, CD ROMs, DVD ROMs, zip disks, tapes, magnetic
storage devices, optical storage devices, MEMS-based storage devices, nanotechnology-
based storage devices, and the like.

1. Conclusion

[0105] While various embodiments have been described above, it should be understood
that they have been presented by way of example only, and not limitation. It will be
apparent to persons skilled in the relevant art(s) that various changes in form and details
can be made therein without departing from the spirit and scope of the invention. Thus,
the breadth and scope of the present invention should not be limited by any of the above-
described example embodiments, but should be defined only in accordance with the

following claims and their equivalents.

25

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

WHAT IS CLAIMED IS:
1. A method comprising:
receiving a message in a targeted process from a requesting process that is external
to the targeted process while the targeted process is running, the message requesting
dynamic execution of arbitrary code in the targeted process, the message including a code
identifier that identifies the arbitrary code, the code identifier being useable to locate and
activate the arbitrary code; and
causing the arbitrary code to be located and activated in the targeted process while
the targeted process is running based on the code identifier to provide activated code.
2. The method of claim 1, wherein causing the arbitrary code to be located and
activated comprises:
causing an operating system application programming interface to look up a
location of a code container that includes the arbitrary code from a registry based on the
code identifier; and
wherein causing the operating system application programming interface to look
up the code container comprises:
providing the code identifier to the operating system application
programming interface.
3. The method of claim 1, wherein receiving the message comprises:
receiving path information and a location identifier, the path information indicating
a path to a code container, the location identifier indicating a location of a shared library;
and
wherein causing the arbitrary code to be located and activated comprises:
loading the arbitrary code from the code container into the shared library
based on the location that is indicated by the location identifier and further based
on the path that is indicated by the path information; and
calling into the shared library to execute the arbitrary code.
4, The method of claim 1, wherein the code identifier contains source code to be
compiled and then executed in the targeted process.
5. The method of claim 1, further comprising:
providing a value that references the activated code, the value being callable by the
requesting process to interact with the targeted process while the targeted process

continues to run.

26

10

15

20

25

30

WO 2013/119481 PCT/US2013/024558

6. A system comprising:

an interface module configured to receive a message in a targeted process from a
requesting process that is external to the targeted process while the targeted process is
running, the message requesting dynamic execution of arbitrary code in the targeted
process, the message including a code identifier that identifies the arbitrary code, the code
identifier being useable to locate and activate the arbitrary code; and

a causation module configured to cause the arbitrary code to be located and
activated in the targeted process while the targeted process is running based on the code
identifier to provide activated code.
7. The system of claim 6, wherein the causation module comprises:

obtaining logic configured to obtain the arbitrary code from a code container that is
indicated by the code identifier; and

activation logic configured to activate the arbitrary code at an entry point of the
targeted process, the entry point being specified by the code identifier.
8. The system of claim 6, further comprising:

an identification module configured to identify instantiated code, which is
instantiated with respect to the targeted process, the instantiated code including the
activated code; and

an invalidation module configured to invalidate the instantiated code in response to
receipt of an invalidation message.
9. The system of claim 6, wherein the causation module is configured to halt all
threads of the targeted process except for a thread that is associated with the activated code
during loading of the arbitrary code in the targeted process.
10. A computer program product comprising a computer-readable medium having
computer program logic recorded thereon for enabling a processor-based system to
dynamically inject code into a running process, the computer program product comprising:

a first program logic module for enabling the processor-based system to cause
arbitrary code to be located and activated in a targeted process while the targeted process
is running to provide activated code based on receipt of a message in the targeted process
from a requesting process that is external to the targeted process while the targeted process
is running, the message requesting dynamic execution of the arbitrary code in the targeted
process, the message including a code identifier that identifies the arbitrary code, the code

identifier being useable to locate and activate the arbitrary code; and

27

WO 2013/119481 PCT/US2013/024558

a second program logic module for enabling the processor-based system to provide
a value that references the activated code, the value being callable by the requesting

process to interact with the targeted process while the targeted process continues to run.

28

100

PCT/US2013/024558

1/7

WO 2013/119481

First Server(s)
Target Module
Request Module
Second Server(s)
Nth Server(s)

In-Process Injection
Module

104

User Systems
=
Vi
Vet

FIG. 1

WO 2013/119481 PCT/US2013/024558

2/7

200

|~ 202

Identify a targeted process

y

Generate a message that includes activation data regarding code L~ 204
\ 4

Send the message to the targeted process L~ 206
\4

Receive a response that indicates whether the activation is successful |~ 208
A

End
300

Request Module
-~ 302

Identification Module

304

Generation Module

- 306

Provision Module

- 308

Receipt Module

FIG. 3

WO 2013/119481 PCT/US2013/024558

3/7
Receive a message that includes activation data | - 402 400
regarding code z

.4 404
Is activation disabled?

Yes

Does a configuration state exist?

_ 412

=

Unpack the activation data from the message

Y

Push the configuration state

414

Is an identifier that identifies

the code available?
A 4

_ 406

| Provide a failure message |

416

Is an indicator that indicates a path
to the code available?

. 418 . - 420
Activate the code from a location Activate the code based on the
specified by the path identifier that identifies the code
' 422
Initialize the activated code -
N 424
Register the activated code -
426
Package a result of the activation -
X 428
Pop the con%@
No - 432
Pop the configuration state > Return the result of the activation
Y
End\

WO 2013/119481 PCT/US2013/024558

4/7
500
In-Process Injection Module z
502
Interface Module
504

Activation Determination Module

506

Provision Module

~508
State Determination Module

~510
State Pushing Module
512
Unpacking Module
~514

Availability Determination Module

516
Path Determination Module

~518
Activation Module
520
Initialization Module
522
Registration Module
~524
Packaging Module
- ~526

Pop Determination Module

528

State Popping Module

FIG. 5

WO 2013/119481 PCT/US2013/024558

5/7
. . 602 600
Receive a message in a targeted process from a |~
requesting process that is external to the targeted process J

while the targeted process is running, the message
including a code identifier and requesting dynamic
execution of arbitrary code in the targeted process

A 4

Cause the arbitrary code to be located and activated in the targeted |~ 604
process while the targeted process is running based on the code

identifier to provide activated code

A\ 4

Identify instantiated code, which is instantiated with respect to the |~ 606
targeted process, the instantiated code including the activated code

A
Receive an invalidation message |~ 608

A
Invalidate the instantiated code |~ 610

FIG. 6

700
In-Process Injection Module %
702
Interface Module
~ 704
Causation Module
~ 706

Identification Module

708

Invalidation Module

- 710

Startup Module

FIG. 7

WO 2013/119481 PCT/US2013/024558
6/7

800

Load the arbitrary code from acode containerintoa |~ 802
shared library based ona location that is indicated by a

location identifier in the message and a path that is
indicated by path information in the message

y
Call into the shared library to execute the arbitrary code |~ 804

FIG. 8

900

Obtain the arbitrary code from a code container thatis |~ 902
indicated by the code identifier

A4

Activate the arbitrary code at an entry point of the targeted process, |— 904
the entry point being specified by the code identifier

FIG. 9

1000

Causation Module

~ 1002
Activation Logic
~ 1004
Calling Logic
~ 1006
Obtaining Logic

FIG. 10

PCT/US2013/024558

1T 'Old

7/7

WO 2013/119481

eieq S3|NPON sweJtdold wa1sAg

SYTT QET T _H_ weJgoud 19410 uoneolddy Sunnesadp
_ — 8TTT “oett” vert” zett” oert

¢St

m — VI N G
! 0STT T¥iT — V11 ! £1ed Do
! O \ 9ETT -] weJdold P
“ 4 4 AN J i
| - aoeIalu| aoeyIalu| CRLIBEI] CRLITE] s b
“ 104 aALIQ aALIQ YSIa EYNITe YETT S3|NPOAI Do
! HOMISN |elas |eando Jnsude ysia pJeH J“f weJgoud b
i AN J i
“ A ﬂ A ﬂ A ﬂ e N
! T CETT] swesSoud Do
m | ! | uoneoyddy | ! !
“ TN o
1 e A
m \ ! Wa1sAg P
“ 90TT 0€TT—"| Sunesado P
“ AN St
m N 0TIt (INVY) ¢
! Ja1depy Hun .\W\.ﬁ 'R
m 9YTT 03PIA uissacodd | zryr - S B
! e 7 i BOTT (WoM) ! |
\ «— ooTt cort oo !
— “ | AJoway waishs | !
i Tt NI
124%" D o '

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/024558

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 9/30(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GO6F 9/30; GOG6F 15/16; HO4N 1/00; GO6F 9/44; GO6F 21/00; HO4L 12/22

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: code injection, running process, and the similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X WO 2011-055945 A2 (AHNLAB., INC. et al.) 12 May 2011 1,6,10
A See abstract, paragraphs [0030]1-[0050], and figures 2-3. 2-5,7-9
A US 2008-0256513 A1l (NATHAN, A.D. et al.) 16 October 2008 1-10
See paragraph [0021] and figures 2, 6.
A US 2006-0206585 A1l (LIBIN, T. et al.) 14 September 2006 1-10
See abstract, paragraphs [0028]-[0029], [0031], [0047], [0052]-[0053], figrue
s 1C, 6.
A US 2008-0307391 Al (RAJEEV, G.) 11 December 2008 1-10

See abstract and claims 1-2, 12.

|:| Further documents are listed in the continuation of Box C. IE See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
26 April 2013 (26.04.2013) 29 Apl’ll 2013 (29.04.2013)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan HWANG, Seung Hee
. City, 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-5749

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2013/024558

Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 2011-055945 A2 12.05.2011 KR 10-1044274 B1 28.06.2011
KR20110048670A 12.05.2011
US 2012-0233692 A1 13.09.2012
WO 2011-0565945 A3 03.11.2011
WO 2011-0565945 A3 12.05.2011

US 2008-0256513 Al 16.10.2008 US 8095910 B2 10.01.2012

US 2006-0206585 A1 14.09. 2006 None

US 2008-0307391 A1 11.12.2008 None

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - wo-search-report
	Page 39 - wo-search-report

