wO 2007/016412 A2 |10 0 0000 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘, | [I

) IO O T T O O

International Bureau

(43) International Publication Date
8 February 2007 (08.02.2007)

(10) International Publication Number

WO 2007/016412 A2

(51) International Patent Classification:

HO4L 12/66 (2006.01)
(21) International Application Number:
PCT/US2006/029571
(22) International Filing Date: 28 July 2006 (28.07.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/703,687 28 July 2005 (28.07.2005) US

(71) Applicant (for all designated States except US): POR-
TAL SOFTWARE, INC. [US/US]; 10200 South De Anza
Blvd., Cupertino, CA 95014 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LABUDA, David,
Scott [US/US]; 555 Bryant Street, #604, Palo Alto, CA
94301 (US). KRISHNAMOORTHY, Jayaprakash
[US/US]; 2252 Lenox Pl., Santa Clara, CA 95054 (US).
HADDOCK, James, R. [US/US]; 692 Clipper Street,
San Francisco, CA 94114 (US). ROCKEL, Alexander

(74)

(81)

(34)

[DE/DE]; Luttenredder 32, 22457 Hamburg (DE). BRE-
FCZYNSKI, Keith, M. [US/US]; 5636 Stevens Creek
Blvd., Apt. 381, Cupertino, CA 95014 (US). DOUGLAS,
Giles [GB/US]; 96 El Dora Dr, Mountain View, CA 94041
(US).

Agent: LEVINE, David, A.; Levine Bagade Han LLP,
2483 East Bayshore Road, Suite 100, Palo Alto, CA 94303
(US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA,
NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC,
SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, ZA, 7ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: REVENUE MANAGEMENT SYSTEM AND METHOD

10

100

(57) Abstract: A real-time customer
relation management system is
disclosed. The system can provide
increased availability, reduced internal
latencies, and reduced data processing
and transfer. The system can provide
real time processing and batch
processing. The system architecture

can have an in-memory write-through
cache. The cache can store data that
would have otherwise been sent to
a database. The system can have
a backup in-memory write-through
cache. The system can use a warm

standby, for example, to enhance data
backup efficiency.

WO 2007/016412 A2 |00 0T 000 A0 0 O

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, Published:

7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), — without international search report and to be republished
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, upon receipt of that report

FR, GB, GR, HU, IE, IS, IT, L', LU, LV, MC, NL, PL, PT, gy, nyo letter codes and other abbreviations, refer to the "Guid-
RO, SE, SI, SK, TR), OAPI (BE, BJ, CE, CG, CI, CM, GA, 4,00 Notes on Codes and Abbreviations” appearing at the begin-
GN, GQ, GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gazette.

O ¢ 3 & W b W N

W W W W W N NN NN N NN NN e e el e e e e e
B W N = O 0w 00 N3N R WN= O W IYN N R W N = O

WO 2007/016412 PCT/US2006/029571

TITLE OF THE INVENTION
REVENUE MANAGEMENT SYSTEM AND METHOD

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Application No.
60/703,687 filed 28 July 2005 which is herein incorporated by reference in its

entirety.

BACKGROUND OF THE INVENTION
[0002] This invention relates to a revenue management system that has an in-memory
write-through cache.
[0003] Prepaid phone accounts are tracked in real-time by billing and time
management hardware and software architectures in communication with the phone
network switch. The architecture approves the customer’s call if there are sufficient
funds in the customer’s prepaid account. If the customer runs out of time on his
prepaid account during a call, the architecture acts to terminate the call.
[0004] These architectures are known as customer relation management (CRM)
systems. CRM systems are also used for non-prepaid scenarios, such as for
generating bills. CRM systems are also used for other telecommunications, and other
network management scenarios.
[0005] Prepaid account CRM systems need to have the ability to track accounts in
real-time. Available real-time architectures for managing prepaid customer accounts
have some existing limitations.
[0006] First, the available architectures require high performance and data
throughput, thereby leading to relatively high hardware requirements. These
architectures, along with their storage and maintenance can be expensive and time-
consuming.
[0007] Second, requirements for very low system response latencies are difficult to
achieve. Transactions in existing architectures involve several round-trips to the disk-
based storage subsystem. The data must be processed by a comparatively large
software stack to transform from a relational representation into a physical storage
format.
[0008] Third, in an available architecture, the data is transferred several times from

component to component of the system to retrieve the data, map it from a relational

O 60 3 O b A W N =

W W W NN RN NN NN N NN R =R s e e e e
N = O O 00 3 & WU b~ W N O YW YA W N~ O

WO 2007/016412 PCT/US2006/029571

format to an object format, process it with the desired business logic, and then transfer
the response to the client.

[0009] Fourth, currently available architectures can not provide desired levels of data
availability to the public phone network (e.g., the switch). The close connection of a
prepaid CRM system to the public network increases the data availability
requirements. Being part of the public network, some parts of the system need to
have carrier-grade availability.

[0010] Also, no single product accomplished both batch processing and real-time

processing for telecommunications CRM (e.g., billing) purposes.

BRIEF SUMMARY OF THE INVENTION
[0011] A system and method for managing any numerical account information is
disclosed. For example, the system and method can be used for managing revenue for
telecommunications system. The system and method can be used to manage account
balances, such as user accounts for the telecommunications system. Management of
account balances can include altering the balance of the account during use, and/or
querying the account (e.g., by the account holder or a customer service
representative), and/or querying the account to produce a billing statement or perform
other accounting features, and/or querying the account to determine whether to
authorize use of the account.
[0012] The system can be used with an account with an existing balance (e.g.,
prepaid), an account with a maximum use limit (e.g., capped), a current payment
account (e.g., now-pay, for example through the use of a credit card), other types of
balance management accounts, or combinations thereof.
[0013] The system architecture can be configured to increase performance, and
availability and decrease latency. The system and method can manage accounts, for
example, for the prepaid wireless markets handling services such as GSM, GPRS and
SMS.
[0014] The system can have a rating engine, a billing engine, and a first, high-speed,
memory (e.g., transaction in memory object store (TIMOS)). The first memory can
be a virtual database cache. The first memory can be a typical on-board RAM storage

location.

O o0 N O Ut A WD =

W W W W N N RN RN N NN NN N R R s e e e e e el
W N = O O o0 3 N Ut Bk W= O VW o0 Ny AW N O

WO 2007/016412 PCT/US2006/029571

[0015] The first memory can be a smart cache. The smart cache can treat different
object types different ways. For example, the smart cache can treat reference objects,
database-only objects, and transient object differently.

[0016] Reference objects can be owned by the database and never updated by the first
memory. Reference objects can include dynamic reference objects (e.g., an account
balance) that change each call, and static reference objects (e.g., the billing rate for
different types of calls) that never or rarely change. Database-only objects can be
objects that change one-time or rarely during the call and are not referred to by the
connection manager. Transient objects can exist, for example, only in-memory (e.g.,
in TIMOS). Transient objects can be unwritten to the database. Transient objects can
be written to the database, for example, at the end of the call (e.g., credit balance).
[0017] The database can have a data dictionary. The data dictionary can by written
by the users. The data dictionary can define an object type and what type of object
each other is. Customers can edit the data dictionary if so desired.

[0018] The new revenue management system can have a high availability. The
system can have a warm standby operation by referring to any data remaining in
TIMOS. During warm standby, in the case of a loss of data, the system can recreate
data from the switch and/or TIMOS when the switch sends re-authorization data (e.g.,
during long calls) or end-of-call data.

[0019] A known failure protection scheme with a high availability (monitor) regularly
checking the status of the control manager, TIMOS, data manager, the database
manager, and the database is also disclosed.

[0020] A self-container failure protection system is disclosed. Each component of the
system can check on the status of its immediately downstream component. If the
downstream component has failed, or is passing along a failure message regarding a
further downstream component failure, the system can take appropriate action,

including alerting a user.

BRIEF DESCRIPTION OF THE DRAWINGS
[0021] Figure 1 illustrates a variation of the revenue management system architecture
connected to a switch over a network.
[0022] Figure 2 illustrates a variation of the revenue management system architecture

connected to a switch over a public network. .

O 0 3 & W K W N =

W W W W W RN NN DN N NN NN R R e e e R s e
A W N = O O 0 Y R W N O W LNy AW N O

WO 2007/016412 PCT/US2006/029571

[0023] Figures 3 through 5 illustrate variations of the revenue management system
architecture.

[0024] Figure 6 illustrates a variation for a method for using the revenue management
system.

[0025] Figure 7 illustrates process flows for variations for methods for using the
revenue management system.

[0026] Figure 8 illustrates a variation for a method for using the revenue management
system.

[0027] Figure 9 illustrates process flows for variations for methods for using the
revenue management system.

[0028] Figure 10 illustrates a variation for a method for using the revenue
management system.

[0029] Figure 11 illustrates process flows for variations for methods for using the
revenue management system.

[0030] Figures 12a through 14 illustrate variations of the revenue management

system.

DETAILED DESCRIPTION
[0031] A bomputer—based system and method for managing any numerical account
information is disclosed. For example, the system and method can be used for
managing revenue for telecommunications system. The system and method can be
used to manage account balances, such as user accounts for the telecommunications
system. The management of account balances can include altering the balance of the
account during use, and/or querying the account (e.g., by the account holder or a
customer service representative), and/or querying the account to produce a billing
statement or perform other accounting features, and/or querying the account to
determine whether to authorize use of the account.
[0032] Figure 1 illustrates a telecommunication device 2, such as a phone, computer,
or fax machine, that can be connected through a public telephone network 4 to a
switch 6. The telecommunication device 2 can be communicating with a second
telecommunication device through the switch 6. The switch 6 can communicate
across a network and through a gateway 8 (e.g., having a protocol translator) to the
revenue management system 100. The gateway 8 can communicate directly with a

business logic module 10 or business logic application (e.g., Portal Infranet, Portal

O 0 3 O i b W N

W W W LW W N NN NN NN NN N R R e e e e R e e e
B W NN = O WOV 0NN W= O VW NNy R W NN = O

WO 2007/016412 PCT/US2006/029571

Software, Inc. Cupertino, CA). The business logic module 10 can communicate with
a database system 12 to determine whether the telecommunication device 2 connected
to the switch 6 has permission to connect and/or stay on the line. The database
system 12 can have a highly-available Oracle RAC database cluster. The system 100
can utilize Oracle transaction management functionality.

[0033] Figure 2 illustrates that the gateway 8 can be a part of the revenue
management system 100. The gateway 8 can interface between the business logic
module 10 and an intelligent network (IN) service control point system (SCP) 14.
The service control point system 14 can facilitate communication between the switch
6 and the gateway 8. The SCP system 14 can be software or a remote computer
database within the network that receives queries, for example from service switching
points (SSP), in order to process applications, such as 800 and LNP number lookups
and calling card verification. The SCP system 14 can process the applications
utilizing the customer management system 100. The gateway 8 can be a high-speed
protocol translator from the IN SCP to the remainder of the revenue management
system 100.

[0034] Figure 3 illustrates that the business logic module 10 can have one or more
rating connection managers (CM) 16a and 16b, a first memory data manager 18 (e.g.,
TIMOS Data Manager (DMT) from Portal Software, Inc.), and one or more second
memory data managers 20a and 20b (e.g., Oracle Data Manager (DM Oracle). The
second memory data managers 20a and 20b can communicate with the database
system 12 or other second memory system. The database system 12 can have one or
more database clusters 22a and 22b (e.g., Oracle Real Application Clusters), for
example, providing high availability and scalability for databases running on the
cluster. The database clusters 22a and 22b can support one or more databases 24.
[0035] The business logic module can be accessed via the gateway 8 and/or via a
manual access application 26. The manual access application 26 can be operated
manually or automatically. The manual access application 26 can be configured, for
example, to be used by billing software to generate invoices, and/or by a customer
service representative to check on account status, and/or by the account-holder to
check account status.

[0036] The revenue management system 100 can have a first memory (e.g., TIMOS)
and a second memory (e.g., database). The first memory can be, for example, in

and/or in communication with the first memory data manager 18. The first memory

O 0 3 O W A W N =

W W W W W RN NN N NN DN NN R e e e e e e R s
B W N = © VW 00 N O L B WRN = O VW O NN AW N = O

WO 2007/016412 PCT/US2006/029571

can be configured to have faster, slower, and/or the same read, and/or write, and/or re-
write speeds (e.g., access speeds) as the second memory. The first memory can be an
in-memory data store and database céche dedicated to high-speed rating and
authorization requirements.

[0037] The first memory can be solid state memory, such as system memory (e.g.,
RAM) or one or more hard drives, for example with fast access speeds. Requests for
data in the first memory can be processed faster than requests for data in a second
memory.

[0038] The first data in a first data object can be stored in the first memory in the
format used by the business logic module 10 (e.g., Portal Infranet, Portal Software,
Inc.). The first data can be left untranslated before storage in the first memory. The
internal search and storage algorithms can be optimized for in-first-memory data.
Storing the first data in the first memory can, for example, eliminate the round trip to
the second memory (e.g., one or more databases, such as on database servers), and
can speed the process of storing, editing and/or querying the first data. Object
creation or updates for the first data objects can require no access of the second
memory. Updates for the first data objects can be performed in the first memory. The
system can have, for example, a reduced throughput and/or latency.

[0039] The first memory data objects (e.g., transient objects) can be stored in the first
memory and/or the second memory. For example, the first memory data objects can
be stored not in the database and not be persisted in the first memory. The first
memory objects can, for example, exist only in the process heap memory of the first
memory. The first memory objects can be, for example, managed in a transactional
manner (e.g., like the other memory objects).

[0040] First memory data objects can be removed from the first memory by shutdown
of the first memory or the business logic executing a delete operation on the first
memory data object. The store for first memory data objects can be a fixed size, for
example, determined during startup of the first memory process.

[0041] The first memory data manager 18 can be configured to improve access times
and latency on moving and/or writing and/or editing and/or deleting and/or querying
objects.

[0042] The second memory can be in and/or in communication with the second
memory data manager 20. Requests for second memory data objects can be sent to

the second memory data manager 20. The second memory, for example, can be a

O 0 3 & B W N

W W W W W NN N DN N N DN NN N O e e e e e b el e
B W N = O O W NN N A WN RO YL W NN N DWW N R o

WO 2007/016412 PCT/US2006/029571

disk-based (e.g., on one or more hard drives) database. The database can be a
relational database (RDBMS).

[0043] The system can have low access second memory data objects (e.g., database-
only objects). The low access second memory data objects can be stored primarily
and/or exclusively in the second memory (e.g., one or more databases). The low
access second memory data objects can be stored in the first memory none of the
time, or some of the time.

[0044] The first memory data manager can access the low access second memory data
object type via a pass-through mode. For example, requests can be forwarded to the
second memory data manager (e.g., DM_Oracle), and responses can be forwarded
back to the first memory data manager.

[0045] The high access second memory data objects (e.g., reference objects) can be
updated seldom and not during high-speed session processing. The high access
second memory data objects can be stored (cached) in a first memory reference object
cache (ROC). The high access second memory data objects can grow in number in
relation to growth in the subscriber base.

[0046] The high access second memory data objects can exist in the first memory an
equal amount of time as length of the first memory process. A newly started first
memory instance can contain no high access second memory data objects.

[0047] Updating and creating high access second memory data objects can be
performed in the second memory and in the first memory. in the high access second
memory data objects can be updated or created asynchronously or synchronously in
the second memory and the first memory.

[0048] The high access second memory data objects can be static or dynamic. The
static high access second memory data objects can be queried, updated, created, or
deleted at irregular intervals. The static high access second memory data objects can
be, for example, subscriber information such as the list of subscribed services and the
chosen tariff plans.

[0049] The dynamic high access second memory data objects can be touched (e.g.,
queried, updated, created, deleted) after the completion of each session. The dynamic
high access second memory data objects can be, for example, the monetary and non-
monetary balances belonging to a subscriber account.

[0050] A standby-first memory (e.g., for a high availability variation that can have an .
active first memory and a backup, standby first memory) can preload the static high

O© 0 . 3 O it K W N

WOW W W W NN NN RN NN N RN D = s s e e e e e
B W N =, © O 0NN A W= O VNN R WY = O

WO 2007/016412 PCT/US2006/029571

access second memory data objects. Changes of static reference objects can be
propagated from the active first memory to the standby first memory.

[0051] The gateway 8 can directly communicate with the business logic module 10.
For example, during a customer’s use of the telecommunication network, the gateway
8 can communicate with a first connection manager (CM) 16a. The gateway 8 can
pass requests to the CM 16a, for example, calling the appropriate business logic
routines depending on the type of request that is indicated from the IN SCP 14. The
gateway 8 can be nearly stateless. The gateway 8 can provide fast failover
capabilities, for example, accompanied by a degraded mode of operation that is used
when the lower architecture layers become unavailable. The gateway 8 can perform
authentication, authorization and accounting procedures.

[0052] Events received by the CM can be rated via an embedded rating engine using
the data provided from the first memory data manager 18 (e.g., DM TIMOS cache)
and the database system 12. The rating engine can produce rates for customer use of
the telecommunications network under the specific conditions that apply (e.g., time of
day, day of week, network used). The rating engine can cache pricing objects itself,
for example, in order to reduce the number of network roundtrips necessary to
complete the rating phase. The rating engine can perform zoning and discounting
rating.

[0053] Based on the object type, the first memory data manager 18 can pass the
request to the database system 12, query the first memory data manager 18 reference
object cache or accesses the first memory (e.g., in-memory store) for transient objects.
The object types and their locations can be defined in a business logic database (e.g., -
Infranet Data Dictionary by Portal Software, Inc.), which can be in the database
system 12. Traffic for objects not in the first memory can be allowed to bypass the by
accessing the database manager 20, for example, in the same way a commonly used
system without the first data manager would be configured. The data integrity of the
first memory can be ensured by a platform-managed synchronization mechanism that
can propagate the necessary updates to the first memory. The first memory can have
one or more caches.

[0054] Figures 4a and 4b illustrate variations of the revenue management system 100.
The gateway 8 can act as a high-speed protocol translator as well as an SLA monitor
with fallback capabilities. The CM 16 can receive requests from the gateway 8. The

CM 16 can have the authorization, authentication and accounting business logic (e.g.,

O 0 1 & o b W N

W W W W W NN RN NN NN NN N = = s s e e e e e
B W N = O VW W NN kR W RO YW L NNy R W N~ O

WO 2007/016412 PCT/US2006/029571

for delivery to the gateway 8). The CM 16 can call operational codes on the first data
manager 18. The CM 16 can be replaced with another client, such as a migration tool.
The CM 16 can have a realtime pipeline (RTP) 28. The RTP 28 can be configured to
adjust the rating, for example by discounting and zoning the rate. The RTP 28 can be
optionally used by the CM 16 while rating.

[0055] The first data manager 18 can have a data migratory subsystem 30. The data
manager subsystem 30 can be used to fill the high access second memory object cache
after start or fail over.

[0056] The first data manager 18 can have a directory server 32. The directory server
32 can be configured to identify the correct first memory/second memory
combinations in scaled scenarios with more second memory instances than first
memory instances or more first memory instances than second memory instances.

The directory server 32 can enable the gateway instances and CM instances to be
independent of the number of first memory instances. The number and location of
gateway and CM processes can be flexibility and scalability with respect to the
number and location of first memory instances.

[0057] Figure 4a shows that the elements of the architecture of the business logic
module can all be standalone. Figure 4b illustrates that the numerous elements of the
architecture can be integrated.

[0058] Figure 5 illustrates that the first memory 102 can have a reference object cache
(ROC) 34 and a transient object store (TOC) 36. The ROC 34 can be managed by a
separate set of rules than the TOC 36. The ROC 34 and the TOC 36 can be in the
same or different parts of the first memory 102. The first memory 102 can be part of,
or separate but in communication with, the first memory data manager 18. The ROC
34 can be configured to cache high access second memory data objects (e.g.,
reference objects). The TOC 36 can be configured to store first memory data objects
(e.g., transient objects).

[0059] Figure 6 illustrates a ﬁlethod for accessing a first memory data in the TOC 36.
The CM 16 can send, shown by arrow 38, a request to the first data manager 18. The
request can apply to the first memory data. The first data manager 18 can analyze the
request 38. The first data manager 18 can conclude that the request applies to the first
memory. The first data manager 18 can apply or execute the request on the TOC 36.
The first data manager 18 can generate a reply and send, shown by arrow 40, the reply

to the CM 16.

O 00 3 & Wi BRW N e

W W W W W R NN RN RN N NN NN e e e e R el e e
AOWON R, O YW 0 SN Y R W N = O W00 Yy N = O

WO 2007/016412 PCT/US2006/029571

[0060] Figure 7 illustrates flows of various requests from the CM 16 and the replies to
the requests. The instructions are shown as create, update, delete and search/read
(i.e., query). The request from the CM 16 can be, respectively, create the first data
object, update the first data object, delete the first data object, and search/read the first
data object. (The numbers of the requests and replies illustrate an exemplary
chronological order.) The first data manager 18 can convert or otherwise transiate the
request from the CM 16 to a first data manager instruction, such as add the first data
object, change the first data object, remove the first data object, and find the first data
object, respectively. The first data manager 18 can apply or execute the first data
manager instruction on the TOC 36. The first data manager 18 can then return a
reply. The replies can include the data searched, and/or confirmation that the task was
completed successfully, and/or an error code and or etror explanation.

[0061] Figure 8 illustrates a method for accessing high access memory data in the
ROC 34 and in the database system 12, The CM 16 can send, shown by arrow 38, a
request to the first data manager 18. The request can apply to the high access second
memory data. The first data manager 18 can analyze the request 38. The first data
manager 18 can conclude that the request applies to the high access second memory
data. The first data manager 18 can determine whether the high access second
memory data is in the ROC 34. If the first data manager 34 determines that the high
access second memory data is in the ROC 34, the first data manager 18 can apply or
execute the request on the high access second data in the ROC 34. The first data
manager 18 can send the request to the second data manager 20. The second data
manager 20 can apply or execute the request on the high access second data in the
database system 12, The database system 12 and/or the second data manager 20
and/or the first data manager 18 can generate one or more replies. The replies can be
sent, shown by arrow 40, directly or via the first data manager 18 to the CM 16.
[0062] Figure 9 illustrates flows of various requests from the CM and the replies to
the requests. The exemplary instructions are shown as create, update, delete, simple
and complex searches/reads (i.e., query). The request from the CM 16 can be,
respectively, create the first data object, update the first data object, delete the first
data object, and search/read the first data object. (The numbers of the requests and
replies illustrate an exemplary chronological order.) The first data manager 20 can
convert or otherwise translate the request from the CM 16 to a first data manager

instruction, such as add the first data object, change the first data object, remove the

10

O 00 3 O U B W N =

LW W W W W RN RN RN NN NN NN R e R e R e e d
HW N = O VW NI NN A W= DO W NN B W NN = O

WO 2007/016412 PCT/US2006/029571

first data object, and find the first data object, respectively. The first data manager
can then apply or execute the translated request on the high access second data in the
ROC 34,

[0063] The first data manager 18 can send the request to the second data manager 20
and/or the CM 16 can send the request directly to the second data manager 20. The
second data manager 20 can convert or otherwise translate the request to a second
data manager instruction, such as insert the row of data, update the row of data, delete
the row of data, and select the row or rows of data, respectively (with no response
shown for a simple search/read, although the second data manager can perform simple
searching). The second data manager 20 can apply or execute the request on the high
access second data in the database system 12. The second data manager 20, and/or
the database system 12 and/or the first data manager 20 can then return areply. The
replies can include the data searched, and/or confirmation that the task was completed
successfully, and/or an error code and or error explanation.

[0064] Figure 10 illustrates a method for accessing low access memory data in the
database system 12. The CM 16 can send, shown by arrow 38, a request to the first
data manager 18, and/or directly to the second data manager 18. The request can
apply to the high access second memory data. The first data manager 18 can analyze
the request 38. The first data manager 18 can conclude that the request applies to the
low access second memory data. The first data manager 18 can send the request to
the second data manager 20. The second data manager 20 can apply or execute the
request on the high access second data in the database system 12. The database
system 12 and/or the second data manager 20 can generate one or more replies. The
replies can be sent, shown by arrow 40, directly or via the first data manager 18 to the
CM 16.

[0065] Figure 11 illustrates flows of various requests from the CM and the replies to
the requests. The exemplary instructions are shown as create, update, delete, and
searches/read (i.e., query). The request from the CM 16 can be, respectively, create
the first data object, update the first data object, delete the first data object, and
search/read the first data object. (The numbers of the requests and replies illustrate an
exemplary chronological order.) The first data manager 18 can send the request to the
second data manager 20. The second data manager 20 can convert or otherwise
translate the request to a second data manager instruction, such as insert the row of

data, update the row of data, delete the row of data, and select the row or rows of data,

11

O 0 3 N U AW N

W W W W W R N NN NN NN NN R e e e e R e e e
DWW N = O 0O 0 N R W NN = DO NNy R W N O

WO 2007/016412 PCT/US2006/029571

respectively. The second data manager 20 can apply or execute the request on the
high access second data in the database system 12. The second data manager 20,
and/or the database system 12 and/or the first data manager 20 can then return a reply.
The replies can include the data searched, and/or confirmation that the task was
completed successfully, and/or an error code and or error explanation.

[0066] The CM 16 can send requests directly to the desired data manager 18 or 20
and/or the CM 16 can tag the request and the first data manager 18 can analyze the tag
to determine whether to apply and/or execute the request and/or whether to send the
request to the second data manager. The tag can be the substance of the request (i.e.,
the requested action) and/or additional data solely to communicate the desired final
location of the request.

[0067] The first memory data objects of this category can be created, updated or
deleted in the high-speed access path of the revenue management system 100.
Examples of the first memory data objects include active session objects and resource
reservation objects.

[0068] The first memory data objects can be analyzed using, for example, logical
predicates (e.g., equals, not equals). Queries executed on first memory data can
specify an index to use to satisfy the query. The index can be a hash to enable fast
value lookup. The index can be a single column index. Predicates on other columns
can be supported by filtering the result set to find matches.

[0069] Requests for the first memory data objects can be passed to a standard heap
memory area. The requests can be created, changed and deleted within transactions.
[0070] The first memory data objects can be limited to particular object, such as
business object types.

[0071] The high access second memory data objects can be accessed only in a read-
only mode in the high-speed access path. An example of the high access second
memory data objects is customer account information.

[0072] The ROC 34 can be filled on demand. This means that requests can be
redirected to the database system 12 if the high access second memory data object is
not found in the ROC 34. If the request is a read of an entire object, the ROC 34 can
be filled or cached by the reply (e.g., as the reply passes through the first data manger
18 on the reply’s route back to the CM 16 from the second data manager 20). Partial
object requests (‘read_fields’) of the high access second memory data objects can be

cached in a similar manner to that performed for the entire object.

12

O & 3 O i A W NN

W W W W W N N NN D DN N NN R s e e e s e
O S =N« R B e U T O Vs S =TV T~ B B < N & SR O O TR N I SO

WO 2007/016412 PCT/US2006/029571

[0073] The high access second memory data objects can be fully queried. Simple
queries involving basic logical operators (e.g., equals, not equals) can be performed
by the first data manager 18 on the high access second memory data objects in the
ROC 34. Complex queries (e.g., involving joins to other objects, or operators such as
‘like’ or “in’) can be performed by the second data manager 20 on the high access
second memory data objects in the database system 12.

[0074] The dynamic high access second memory data objects can be loaded by the
data migrator 30 after a failover.

[0075] The static high access second memory data objects can be loaded by the data
migrator 30 immediately after the backup first memory system has been started. The
static high access second memory data objects can be synchronized with the database
via the first memory synchronization system.

[0076] The low access second memory data objects can be absent from the first
memory. Requests for the low access second memory data objects can be routed
directly from first data manager 18 to the second data manager 20. The low access
second memory data objects can be fully queried.

[0077] The first data manager can allow reading of the first data values during a write
operation. The first data manager can have the write operation take place on a
scratchpad of data that is only visible to the writing transaction. The first data
manager can serialize the first data while the update is moved to main memory at the
commit time.

[0078] The first data manager can have a read committed isolation. The read
committed isolation makes all committed updates available to transactions even if the
commit takes place after the transaction is started. Read committed isolation can
prevent “dirty” reads (i.e., the first data manager preserves the earlier first data value
for reading during pending changes to the first data value).

[0079] The first data manager can support or not support statement or transaction
level consistent reads.

[0080] The revenue management system 100 can be configured to route any traffic
not related to session handling can be routed to and/or away from the first memory
data manager 18. A synchronization system can be used to send updates to the first
memory data manager 18. The synchronization system can automatically propagate
changes affecting objects stored in the first memory to all the first memory instances

caching the particular object or object type.

13

O 0 3 & i B W N

W W W W N NN NN NN N NN e e e e b e e e
W N = O O 0 NN N PRk WN R, DO W Ny bW N O

WO 2007/016412 PCT/US2006/029571

[0081] The revenue management system 100 can have a convergence system. The
convergence system can load batch data via the first data manager 18 into the revenue
management system 100, for example, to share any data of batch origin, such as
balances between prepaid and postpaid accounts.

[0082] The data capacity of a first memory instance can be lower than data the
capacity of a second memory (e.g., database) instance. One second memory instance
can support several shared-nothing instances of the first memory. (The commonly
used term is m:n (m — first memory instances / n — second memory instances)).

[0083] The first memory data manager 18 can reduce the latency for objects first
memory data manager 18 handles, and at the same time enabling increased throughput
of the system 100.

[0084] For installation of first memory data manager 18, the first memory data
manager 18 can be configured to be inserted between the CM 16 component and
second memory data manager 20 component. The introduction of the first memory
data manager 18 can change the access characteristics of some object types for a pre-
existing revenue management system that did not have the first memory data manager
18. Installation of the first memory data manager 18 can be configured to be
transparent (e.g., not change object types). The system 100 can be configured so that
the higher-level business logic architecture layers cannot tell first memory data
manager 18 is present. However, the business logic can be changed to utilize the first
memory data manager 18. These changes can be ignored by the system 100 if the
first memory data manager 18 is not present.

[0085] The first memory data manager 18 can be installed in an existing revenue
management system. For example, the first memory data manager 18 can be
physically installed (e.g., mounting hardware and/or loading software onto the
appropriate computer-readable medium) and the base software can be configured.
[0086] After the installation of the base software, the first data can then be migrated
into the first memory data manager 18. The first memory data object residencies
stored in the data dictionary can take effect, loading the first data onto the first data
manager 18 during use. The residencies can be part of the default business logic
module 10 installation (having no effect when the first memory data manager 18 is
not present) or can be loaded onto the business logic module 10 during the installation

of the first memory data manager 18.

14

O 00 3 O Ut h~h W N =

W W W W N NN RN NN N NN R e e e e s R e e
W N = O O 0 3 O L AW N DO Y 0N R WN =D

WO 2007/016412 PCT/US2006/029571

[0087] Reference objects can be migrated by loading into the first data manager 18
when accessed for the first time and/or pushed into the first memory data manager 18
by the data migratory 30.

[0088] Data objects can be redefined as first memory data objects (or low access or
high access second memory data objects) by deploying the data object via the normal
mechanism, and then updating the residency type in the data dictionary.

[0089] After a process startup, the first memory data manager 18 can have an empty
ROC 34. A separate data migration thread can push all high access second memory
data in the ROC 34. The static high access second memory data objects can be loaded
into the ROC 34. For example, a first memory data manager 18 in backup mode can
load only the static high access second memory data objects into the ROC 34.

[0090] The data migrator 30 can provide a notification hook to signal the end of the
migration and/or startup phase to other processes. The first memory data manager 18
can be operational immediately after start (e.g., before the migratory tool sends the
notification hook), for example, with an empty cache. The first request after startup
for a specific first data object can trigger that first data object to be loaded into the
cache (e.g., if the data migrator 30 has not yet loaded the desired first data object
already).

[0091] Upon a system shutdown, the first data manager 18 can close the process log
file, and release used memory. The high access second memory data objects can be
unaffected by shutdown (e.g., remaining stored on the second memory).

[0092] The revenue management system 100 can provide hooks to verify and monitor
performance. The revenue management system 100 can log performance data on a
regular basis and/or make performance data available via an embedded web server. A
signal can be sent to the second memory data manager to collect desired data (e.g., for
some parts of the system).

[0093] The revenue management system 100 can create system logs that can monitor
operation of the revenue management system 100. A log monitoring GUI (e.g.,
Pipeline log viewer) can be used. Business logic style pin-logging can, for example,
aid debugging and diagnosis.

[0094] The first memory data manager 18 can have a pipeline framework tracing
model. Additional trace information can be collected from subsystems of the revenue

management system 100 on a case by case basis.

15

O 00 3 O W AW =

P W= O O 0N Y R W N =D YW 0N N R WY R, D

WO 2007/016412 PCT/US2006/029571

[0095] Figures 12a, 12b and 12c illustrate that the revenue management system 100
can be scalable to large scale expansion.

[0096] The revenue management system 100 can have multiple second memory
locations (e.g., databases 24a, 24b and 24¢). The revenue management system 100
can have separate instances of the first memory data manager 18a-18i, and the second
memory data manager 20a-201. Pairs of sets of first memory data managers and
second memory data manager, for example, 18a, 18b, 20a, and 20b can be formed
into high availability (HA) pairs 42. The HA pairs 42 can have active and backup
first data managers 18a and 18b, respectively, for example, and active and backup
second data managers 20a and 20b, respectively, for example.

[0097] The revenue management system 100 can have a capacity partitioning scheme.
[0098] Each second memory (e.g., database 24) instance can be associated (i.e., in
communication) with one or more first memory data manager 18 instances. The
revenue management system can be configured so no data is stored in overlapping
second memory instances (z Timos instances :] database). The business logic
module can have several, independent databases (7). The combination of
TIMOS/databases can be referred to as m.»n configuration.

[0099] The CM 16a-16€ can lookup in the directory server 32 to identify the first
memory data manager 18 and second memory data manager 20 (or database 24)
combination applicable for a certain object.

[0100] The revenue management system 100 can have account migration tools. The
account migration tools can move subscriber data from one first and/or second
memory location (e.g., database 24 and/or first memory data manager 18) to another
first and/or second memory location.

[0101] Multiple second memory data managers 20 can communicate with the same
database clusters 22. All the databases can be managed with one database cluster 22
(e.g., one RAC cluster) (not shown).

[0102] The SCPs 14, gateways 8 and CMs 16 can each be associated to multiple first
memory data managers 18. The gateway 8 can support load balancing over several
CMs 16. The CMs 16 can use the directory server 32 to route the requests to the
correct first memory data managers 18.

[0103] The database system 12 can run multiple database schemes in one RAC cluster
22. The revenue management system 100 can be configured to associate a dedicated

set of resources to just one SCP 14 or group of SCPs 14.

16

O 0 1 O n R W N =

W W W W RN NN N NN NN N, s e e e e e e
W N = O YW 0 1 N W PR W N=, DO YW Y W NN=, O

WO 2007/016412 PCT/US2006/029571

[0104] Figure 12b illustrates that the first memory data managers 18c and 18d can
communicate directly with the database system 12, for example with the database
clusters 22a and 22b.

[0105] Figure 12c illustrates that the revenue management system can have two or
more database systems 12a and 12b.

[0106] Figure 13 illustrates a failure protection scheme with a high availability
monitor 44 regularly checking the status of the control manager, the first memory in
the first memory data manager 18, the second memory data manager 20, the database
cluster , and the database 24.

[0107] Figure 14 illustrates a self-contained failure protection system. Each
component of the revenue management system 100 can check on the status of its
immediately downstream component (e.g., the second memory data manager 20 is
immediately downstream of the first memory data manager 18). If the immediately
downstream component has failed, or is sending a failure message regarding a further
downstream component failure, the revenue management system can take appropriate
action, including alerting a user that a failure has occurred. The revenue management
system 100 can be absent of a separate monitor component checking for system
failures.

[0108] The revenue management system 100 can have a high availability. The
revenue management system 100 can have a warm standby operation by referring to
any data remaining in the first memory (e.g., TIMOS). During warm standby, in the
case of a loss of data (e.g., during a system failure), the revenue management system
100 can recreate data from the switch 6 and/or the first memory when the switch 6
sends re-authorization data (e.g., during long calls) or end-of-call data.

[0109] The database system 24 can store the latest static high access second memory
data before a loss of data. The static high access second memory data can be
recovered to the first memory from the database system 24 after a loss of data in the
first memory.

[0110] In the revenue management system 100, higher layers (i.e., more stable during
a system failure, such as the database) of architecture with very high availabilities can
partially or completely backup lower layers (i.e., less stable during a system failure,
such as a solid state RAM variation of the first memory) with lesser availabilities in

case of failures.

17

O 0 N1 N Ut AW N

[N I & R e A e e e e e T e o
= O O 0 Y W= O

WO 2007/016412 PCT/US2006/029571

[0111] The revenue management system 100 can have spare, unused hardware and
software such as backup data managers in the high availability pairs 42, as shown in
Figures 12a through 12c. The high availability pair 42 can have active and a backup
first data managers 18 and active and backup second data managers 20. The backup
data managers can copy from the respective active data managers, for example during
a period of no other activity with the active data manager and/or from a sketchpad,
and/or the last available data from the active data manager. In case of failure of an
element, the backup or other inactive elements will be able to restore data and/or take
over the additional load.

[0112] U.S. Patent Application Nos. 10/394,409 filed 21 March 2003, and 11/478,558
filed 28 June 2006 are incorporated by reference herein in their entireties.

[0113] Accessing can include querying, updating, creating, deleting and combinations
thereof. Querying, updating, creating, and deleting for any data can be interchanged
with each other as disclosed.

[0114] It is apparent to one skilled in the art that various changes and modifications
can be made to this disclosure, and equivalents employed, without departing from the
spirit and scope of the invention. System and architecture are used as interchangeable
terms, both referring to one or more hardware and software components in
communication. All elements shown herein can be software and/or hardware
components. Elements shown with any embodiment are exemplary for the specific

embodiment and can be used on other embodiments within this disclosure.

18

O 0 3 O R WD

W W W W W NN N NN NN NN R, = P s e e ke Read e e
B2WOND = OO 0NN NN RW N R, DO YW NN WY =R, o

WO 2007/016412 PCT/US2006/029571

CLAIMS

We claim:
1. A computer-based telecommunications network account management system
comprising:

a first memory having a first memory access speed,

a second memory having a second memory access speed,

a first memory manager configured to route a first request for a first object to
the first memory, and configured to route a second request for a second object not to
the first memory,

wherein the first memory has a faster access speed than the second memory.

2. The system of Claim 1, further comprising a second memory manager configured

to route the second object to the second memory.

3. The system of Claim 1, wherein the second memory comprises a hard drive.

4. The system of Claim 1, wherein the first memory comprises solid state memory.

5. The system of Claim 1, wherein the first memory comprises RAM.

6. The system of Claim 1, wherein the second memory comprises a relational

database.

7. The system of Claim 1, further comprising a database cluster.

8. The system of Claim 1, further comprising a gateway configured to interface with

a telecommunications network.

9. The system of Claim 1, wherein the first request comprises a query.

10. The system of Claim 9, wherein the second request comprises a query.

11. The system of Claim 1, wherein the first request comprises a request to write.

19

O 0 N1 SN i B W N

LW W W LW W R N N DN RN RN R e e e e e e e e el
W= O O 0N R WD = O YW Yy kW N R O

WO 2007/016412 PCT/US2006/029571

12. The system of Claim 11, wherein the second request comprises a request to write.

13. A computer-based telecommunications network account management system
comprising:

a first in-memory object store, wherein the in-memory object store comprises
solid state memory, and wherein the memory is configured to store data, and

a first hard drive configured to store a database.

14. The system of Claim 13, further comprising a second in-memory object store,
wherein the second in-memory object store is configured to substantially backup the

data on the first in-memory object store.

15. The system of Claim 13, further comprising a second hard drive configured to
substantially backup the database stored on the first hard drive.

16. A method of tracking telecommunications network use, using an account
management system comprising a first memory and a second memory wherein the
first memory has a first access speed and the second memory has a second access
speed and the first access speed is faster than the second access speed, the method
comprising:

requesting a first action in the first memory.

17. The method of Claim 16, wherein requesting comprises sending a request to a
first memory data manager, and wherein the first memory data manager analyzes the

request.

18. The method of Claim 17, wherein requesting further comprises routing the
request by the first memory data manager after the first data manager analyzes the

request.

19. The method of Claim 18, wherein routing comprises performing the request.

20. The method of Claim 19, wherein routing comprises sending the request to a

second data manager.

20

O 0 3 & i A W N =

W W W W W N NN N NN NN NN R e e e e R e
B O N = © WO 60 -1 &8 h H W N — © v 0 1 v bW DN = O

WO 2007/016412 PCT/US2006/029571

21. The method of Claim 16, wherein the first action comprises querying.

22. The method of Claim 16, wherein the first action comprises writing.

23. The method of Claim 16, further comprising requesting a second action in the

second memory.

24. The method of Claim 16, wherein the second action comprises querying.

25. The method of Claim 16, wherein the second action comprises writing.

26. A method of tracking telecommunications network use, using an account
management system comprising a first memory and a second memory wherein the
first memory has a first access speed and the second memory has a second access
speed and the first access speed is faster than the second access speed, the method
comprising:

storing first data on the first memory;

storing second data on the second memory; and

backing up the first data on a first backup memory.

27. The method of Claim 26, further comprising; backing up the second data on a

second backup memory.

28. A method of tracking telecommunications network use, using an account
management system comprising:

storing a first data in a first memory location, wherein the first memory
location is subject to memory loss during a system failure;

storing a second data in the first memory location;

storing the first data in a second memory location, wherein the first data can
be recovered from the second memory location after a system failure;

recovering the first data from the second memory location after a system

failure.

21

O 0 3 O i b W N e

e S e S e g Sy
W 00 1 S o b~ WN = O

WO 2007/016412 PCT/US2006/029571

29. The method of Claim 28, further comprising not storing the second data in the

second memory location.

30. A method of tracking telecommunications network use, using an account
management system comprising a first system component, a second system
component, and a third system component, the method comprising:

a first checking for a failure, wherein the first checking for a failure is
performed by a first system component on a second system component; and

a second checking for a failure, wherein the second checking for a failure is

performed by the second system component on a third system component.

31. The method of Claim 30, wherein the first system component comprises a

gateway.

32. The method of Claim 31, wherein the second system component comprises a first

data manager.

33. The method of Claim 32, wherein the third system component comprises a

second data manager.

22

WO 2007/016412 PCT/US2006/029571

100

Figure 1

Figure 2

110

WO 2007/016412

PCT/US2006/029571

100
12
/10 \

8 16a 18 20a 22a
M '7}.‘ y T

26 16b 20b - 22b

Figure 3

10

32

16— 2

100 /

30 .18
[N
|
20 . 12
Figure 4a

2/10

WO 2007/016412 PCT/US2006/029571

10

28 30 | 32

100 / Figure 4b

10 100

-

34 . 36 . \

Figure 5 102

3/10

WO 2007/016412 PCT/US2006/029571

10
38 18
16 J 36 20 12
o //"
40
Figure 6
100
16| (18] [34][36 |[20 J[12]
1: Create Obj
: 2: Add Obj.
Create l
' 3. return
4: return i
i
5
¥5: Update O .
s 6: Change Obj
Update l :
N 7: retrn
1.8 return
= ’ 9; Delete Obj
Flgure7 j' : ; 10: Rémove Obj
Delete
11:refurn
12:return
13 Search / Read Obj
search] 14: Find Obj
Read
15: refurn
16:return
!
|
i

4/10

PCT/US2006/029571

WO 2007/016412
10

38 18
34
20 12

A 4
Y

A 4

16

[

Figure 8
|20 [12]

| {36

100
16 | [18 |[34
i

1:Create i
2: Create Obj
Create 3: Insert Row
5:return 4: return l
6: Add Obj
L
7: return
8: return
3
i 9:Update Qb
::‘El a 10: Update Obj - e R
: Update Row
Update

. iU

; ., 13: return 12{rpdurn

. 14: Change i

15: return
16: return
?
18: Delete_ Obij

i 17: Delete Qhbj

Delete l
1 3 21: return
22: Remove Obj

23: return

24: return

e
{
} i
i 25 simple arch / Read Obj
| 26: Find Object
Simple l
Search / 27: return
Read 28: return
i
= {
i H
i 29 comple Search
30: Search L
Complex 31:3r L ct Row(s)
search |} |V} 1 | e meeaen e o I
33: return 32 pturn
34: return
i
i

Figure 9

5/10

100 /

1: Create Obj

Create

2: Craate Obj

5: return

3: Insert Row|

4: return

Update l

8: Update Obj

11: relurn

grUpdate Row

10: return

Delete

U

' 14: Délete Obj

17: return

TST
16: return

6: return i
i
i
|
i :
i 7: Update Qb
12: return
§
| 13:Delete Qb
18: return

T

19: Search {Read Obj

Search /
Read

5

20: Search / Read Obj

23:return

21 -SetectRowy
22:return

24 return

Figure 11

6/10

WO 2007/016412 PCT/US2006/029571
/ 10
38 18
16 36 20 12
Figure 10
16] [18 [34 [3 J[20 12]

WO 2007/016412 PCT/US2006/029571

10

AN

100 l

\ 18i 207 | /42a

=y

.
=
1)
——
»
i
-
e

A RN
(e}
o

e
128
—
3 |||
(@]
]
(o]
o

—
n
o
0
's}
[
B
o
1)
B
3

> ||
=

law

l_;
D
N
(@]

|

42d

Figure 12a

710

WO 2007/016412 PCT/US2006/029571

42
il /
20c:
= | /

14a 1 8a =\ 1
20a r - 22a

) ML 12 e

/i 8b — M 1=
: 20b H 22b

18d
26 1 16e 18c| =
Figure 12b

8/10

WO 2007/016412 PCT/US2006/029571

100

10 \

32

18e

LN
>
D -

—
1]
]
(o]
Q)

;
3 -
(o

<=

=
(o
‘\\-. N “’_‘,—‘
; (0]
(@]
—
=
(@]

Y
(@]
(oX

—
=
(9]

— 1 [-
N
o
(9]
N
N
(o]
|I\J
B
O

L
\"“ %,

;’_\.:_
- loo
Q.
N
o
o
AN
@lmg
?I\Jz—%l
o
N
I
Q.

42b
Figure 12c 120

9/10

WO 2007/016412

100

Figure 13

PCT/US2006/029571

100
Figure 14

10/10

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings

