A backlight module (100) having a quantum strip, comprising a backboard (20), a light guide plate (30) arranged on the backboard (20) and a light source (40) arranged on one side surface of the light guide plate (30), a quantum strip (10) being arranged between the light source (40) and the light guide plate (30), wherein a reflecting layer (101) is coated on or adhered to a part of a periphery of the quantum strip (10), the reflecting layer (101) enables the periphery of the quantum strip (10) to form a light inlet (102) and a light outlet (103), the light inlet (102) faces the light source (40), the light outlet (103) faces the light guide plate (30), and the width of the light inlet (102) is smaller than that of the light inlet (102). Also provided is a liquid crystal display device comprising the backlight module.
一种具有量子条的背光模组（100），包括背板（20）, 设于背板（20）上的导光板（30）以及设于导光板（30）一侧的光源（40），光源（40）与导光板（30）之间设置有一量子条（10），其中，量子条（10）的部分外周涂覆或粘附有反射层（101），反射层（101）使得量子条（10）的外周形成一入光口（102）和一出光口（103），入光口（102）朝向光源（40），出光口（103）朝向导光板（30），出光口（103）的宽度小于入光口（102）的宽度。还提供一种包含背光模组的液晶显示装置。
具有量子条的背光模组以及液晶显示装置

技术领域

本发明涉及液晶显示器技术领域，尤其是一种具有量子条的背光模组以及液晶显示装置。

背景技术

随着光电与半导体技术的演进，也带动了平板显示器（Flat Panel Display）的蓬勃发展，而在诸多平板显示器中，液晶显示器（Liquid Crystal Display，简称LCD）因具有高空间利用率、低消耗功率、无辐射以及低电磁干扰等诸多优势特性，已成为市场的主流。

液晶显示器通常包括液晶显示面板（Liquid Crystal Panel）与背光模组（Black Light Module，简称BL）。由于液晶显示面板本身并不具备自发光的特性，因此必须将背光模组配置在液晶显示面板下方，以提供液晶显示面板所需的面光源，如此液晶显示面板可借由背光模组提供的面光源而显示影像。

随着社会的发展，用户对液晶显示器显示画面的质量要求越来越高，为了提高画面的色彩饱和度，通过改善背光模组中灯条的色度，就可以提升画面的色彩饱和度，现有的技术是在背光模组中增加安装—量子条。量子点（Quantum Dot, QD）技术，是把电子束缚在一定范围内的半导体纳米材料结构技术，有大小在1-100nm范围内的超小化合物晶体构成，在照明与显示领域中的应用，是利用其改变入射光波长的性质，可利用不同大小结晶体控制波长。只要能精确控制结晶体的大小，即可精确控制颜色，且有相当广泛的发色范围。在液晶显示器技术领域，量子点已经被广泛应用，一般是将量子点采用透明玻璃管封装的方式形成量子条。

图1显示了现有技术中常见的量子条的纵向剖视图，图2显示了现有技术中常见的量子条的横向剖视图。参照图1，量子条10在纵向可分为位于中部的发挥作用的有效区11和位于两端的无效区12。参照图2，量子条10通常包括位于内部的功能部分13和包裹着功能部分13的封装部分14，功能部分13通常
由构成量子点的材料制成，封装部分 14 通常由玻璃材料制成。在液晶显示器的背光模组中，量子条通常由固定支架固定安装于背光源与导光板之间。

然而，由于量子条对光线的损耗较大，因此若要满足液晶显示装置的显示亮度需求，则其往往需要采用双侧入光或多侧入光，才能满足其光通量需求，由此量子条的使用量也随之增加，使得产品成本增加。

发明内容

有鉴于此，本发明提供了一种具有量子条的背光模组，该背光模组在减少光损耗的前提下达到集光的目的，在满足较大光通量的同时，不增加量子条的数量，降低了产品的成本。

为了达到上述目的，本发明采用了如下技术方案：

一种具有量子条的背光模组，包括背板、设于背板上的导光板以及设于导光板一侧面的光源，所述光源与所述导光板之间设置有一量子条，其中，所述量子条的出光端设有反射层，所述反射层使得量子条的外周形成一定入光口和一定出光口，所述入光口朝向所述光源，所述出光口朝向所述导光板，所述出光口的宽度小于所述入光口的宽度。

其中，所述背板上设有一量子条固定架，所述量子条固定架设置有相互连通的容置槽、入光槽和出光槽，所述容置槽用于放置所述量子条，所述入光槽对应于所述入光口，所述出光槽对应于所述出光口。

其中，所述反射层上下对称的设置于所述量子条的上部和下部，所述入光口和出光口相对地置于所述量子条的两侧。

其中，所述入光槽的宽度不小于所述入光口的宽度，所述出光槽的宽度不小于所述出光口的宽度。

其中，所述光源包括至少一个 LED 灯条。

其中，所述入光口的宽度不小于所述光源的宽度；所述出光口的宽度不大于所述导光板入光面的厚度。

其中，该背光模组还包括一反光板，设置于所述背板与所述导光板之间。

其中，该背光模组还包括光学膜片组，设置于所述导光板上；所述量子条固定架的上部延伸至所述导光板上方，所述光学膜片组的至少部分放置于所述
量子条固定架的上部。

其中，所述背板内还设置有一散热板，所述光源安装于所述散热板上。

本发明的还提供了一种液晶显示装置，包括液晶面板及背光模组，所述液晶面板与所述背光模组相对设置，所述背光模组提供显示光源给所述液晶面板，以使所述液晶面板显示影像，其中，所述背光模组为前述的背光模组。

有益效果：

本发明实施例提供的背光模组中，通过在量子条的部分外周涂覆或粘附有反射层，该反射层使得量子条的外周形成一入光口和一出光口，并且出光口的宽度小于入光口的宽度。光源发出的光从宽度较大的入光口入射到量子条，部分光线由反射层反射后再入射到量子条，光线再从宽度较小的出光口射出进入导光板。具有反射层的量子条实现漫光和聚光的效果，在满足较大光通量的同时，不增加量子条的数量，降低了产品的成本。

附图说明

图 1 是现有技术中常见的量子条的纵向剖视图。

图 2 是现有技术中常见的量子条的横向剖视图。

图 3 是本发明实施例提供的液晶显示装置的结构示意图。

图 4 是本发明实施例提供的背光模组的结构示意图。

图 5 是本发明实施例提供的背光模组的局部结构示意图。

图 6 是本发明实施例中光线通过量子条的传播路径图示。

具体实施方式

下面将结合附图以及具体实施例，对本发明实施例中的技术方案进行详细地描述，显然，所描述的实施例仅仅是本发明一部分实施例，而不是全部实施例。基于本发明中的实施例，本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例，都属于本发明保护范围。

图 3 为本实施例提供的液晶显示装置的结构示意图。如图 3 所示，该液晶显示装置包括：背光模组 100，安装于背光模组 100 上的胶框 200，设于胶框 200 上的液晶面板 300 及连接所述液晶面板 300 和背光模组 100 的前框 400。其中，
液晶面板 300 与背光模组 100 相对设置，背光模组 100 提供显示光源给液晶面板 300，以使液晶面板 300 显示影像。

其中，参阅图 4，液晶显示装置中的背光模组 100 至少包括背板 20、设于背板 20 上的导光板 30 以及设于导光板 30 一侧的光源 40，光源 40 安装于散热板 50 上。光源 40 和导光板 30 之间设有量子条 10，量子条 10 安装于量子条固定架 60 中。

进一步地，该背光模组 100 还包括反射板 70 和光学膜片组 80。反射板 70 设置于背板 20 与导光板 30 之间，光学膜片组 80 设置于导光板 30 上方。

更进一步地，在本实施例中，量子条固定架 60 的上部 60a 延伸至导光板 30 上方，光学膜片组 80 的至少部分放置于量子条固定架 60 的上部 60a。

光源 40 发出的光通过量子条 10 后，激发量子条 10 中的荧光物质，使其发出色域更广的光线，入射到导光板 30 中。光线从导光板 30 上方射出，穿过光学膜片组 80 后入射到液晶面板 300。

具体地，如图 5 所示，量子条固定架 60 设置有相互连通的容置槽 61、入光槽 62 和出光槽 63；容置槽 61 用于放置量子条 10，入光槽 62 朝向光源 40，出光槽 63 朝向导光板 30。进一步地，量子条 10 的部分外周涂覆或粘附有反射层 101，反射层 101 使得量子条 10 的外周形成入光口 102 和出光口 103。具体到本实施例中，反射层 101 使用银浆分别涂覆于量子条 10 的上部和下部，且更多地偏向量子条 10 中的一侧，且呈上下对称的结构，未涂覆银浆的部分分别形成入光口 102 和出光口 103，相对地位于量子条 10 的左右两侧面，并且，出光口 103 的宽度小于入光口 102 的宽度。

进一步地，入光口 102 对应于入光槽 62，出光口 103 对应于出光槽 63。具体地，入光槽 62 的宽度不小于入光口 102 的宽度，出光槽 63 的宽度不小于出光口 103 的宽度。本实施例中，入光口 102 的宽度设置为与入光槽 62 的宽度相等，出光口 103 的宽度设置为与出光槽 63 的宽度相等。

其中，光源 40 主要采用 LED 灯，可以是一条或多条 LED 灯条 40a。

更进一步地，参阅图 5 和图 6，入光口 102 的宽度 w1 应不小于光源 40 的宽度 H，出光口 103 的宽度 w2 应不小于导光板 30 入光面的厚度 T。在此，光源 40 的宽度 H 主要是指发光区域的宽度。例如，当光源 40 仅包括一条 LED 灯条 40a 时，光源 40 的宽度 H 是指该 LED 灯条 40a 的宽度；当光源 40 包括多条并排的
LED 灯条 40a 时，光源 40 的宽度 H 是指该多条 LED 灯条 40a 的宽度总和。具体地，如图 5 示出的，光源 40 包括 2 条并排的 LED 灯条 40a，则光源 40 的宽度 H 是指该 2 条 LED 灯条 40a 的宽度总和。

如图 6 所示的传播路线图示，光源发出的光从宽度较大的入光口 102 入射到量子条 10，部分光线由反射层 101 反射后再入射到量子条 10，光线再从宽度较小的出光口 103 射出，由此，具有反射层 101 的量子条 10 实现了混光和聚光的效果。

综上所述，本发明实施例提供的背光模组中，通过在量子条的部分外周涂覆或粘附有反射层，该反射层使得量子条的外周形成一入光口和一出光口，并且出光口的宽度小于入光口的宽度。光源发出的光从宽度较大的入光口入射到量子条，部分光线由反射层反射后再入射到量子条，光线再从宽度较小的出光口射出进入到导光板。具有反射层的量子条实现混光和聚光的效果，在满足较大光通量的同时，不增加量子条的数量，降低了产品的成本。

需要说明的是，在本文中，诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来，而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且，术语 “包括”、“包含” 或者其任何其他变体意在涵盖非排他性的包含，从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素，而且还包括没有明确列出的其他要素，或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下，由语句 “包括一个……” 限定的要素，并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

显然，本发明的保护范围并不局限于上述的具体实施方式，本领域技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样，倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内，则本发明也意图包含这些改动和变型在内。
权利要求书

1、一种具有量子条的背光模组，包括背板、设于背板上的导光板以及设于导光板一侧的光源，所述光源与所述导光板之间设置有一量子条，其中，所述量子条的部分外周涂覆或粘附有反射层，所述反射层使得量子条的外周形成一定入光口和一出光口，所述入光口朝向所述光源，所述出光口朝向所述导光板，所述出光口的宽度小于所述入光口的宽度。

2、根据权利要求1所述的具有量子条的背光模组，其中，所述背板上设有一定量子条固定架，所述量子条固定架设置有相互连通的容置槽、入光槽和出光槽，所述容置槽用于放置所述量子条，所述入光槽对应于所述入光口，所述出光槽对应于所述出光口。

3、根据权利要求2所述的具有量子条的背光模组，其中，所述反射层上下对称的设置于所述量子条的上部和下部，所述入光口和出光口相对地位于所述量子条的两侧面。

4、根据权利要求2所述的具有量子条的背光模组，其中，所述入光槽的宽度不小于所述入光口的宽度，所述出光槽的宽度不小于所述出光口的宽度。

5、根据权利要求2所述的具有量子条的背光模组，其中，所述光源包括至少一个LED灯条。

6、根据权利要求1所述的具有量子条的背光模组，其中，所述入光口的宽度不小于所述光源的宽度；所述出光口的宽度不大于所述导光板入光面的厚度。

7、根据权利要求5所述的具有量子条的背光模组，其中，所述入光口的宽度不小于所述光源的宽度；所述出光口的宽度不大于所述导光板入光面的厚度。

8、根据权利要求6所述的具有量子条的背光模组，其中，该背光模组还包括一反光板，设置于所述背板与所述导光板之间。

9、根据权利要求6所述的具有量子条的背光模组，其中，该背光模组还包括光学膜片组，设置于所述导光板上；所述量子条固定架的上部延伸至所述导光板上方，所述光学膜片组的至少部分放置于所述量子条固定架的上部。

10、根据权利要求6所述的具有量子条的背光模组，其中，所述背板内还设置有一散热板，所述光源安装于所述散热板上。
11、一种液晶显示装置，包括液晶面板及背光模组，所述液晶面板与所述背光模组相对设置，所述背光模组提供显示光源给所述液晶面板，以使所述液晶面板显示影像，其中，所述背光模组包括背板、设于背板上的导光板以及设置于导光板一侧面的光源，所述光源与所述背光模组之间设置有一量子条，其中，所述量子条的部分外周涂覆或粘附有反射层，所述反射层使得量子条的外周形成一入光口和一出光口，所述入光口朝向所述光源，所述出光口朝向所述导光板，所述出光口的宽度小于所述入光口的宽度。

12、根据权利要求11所述的液晶显示装置，其中，所述背板内还设置有一散热板，所述光源安装于所述散热板上。

13、根据权利要求12所述的液晶显示装置，其中，所述反射层上下对称的设置于所述量子条的上部和下部，所述入光口和出光口相对地位于所述量子条的两侧面。

14、根据权利要求12所述的液晶显示装置，其中，所述入光槽的宽度不小于所述出光口的宽度，所述出光槽的宽度不小于所述出光口的宽度。

15、根据权利要求12所述的液晶显示装置，其中，所述光源包括至少一个LED灯条。

16、根据权利要求11所述的液晶显示装置，其中，所述入光口的宽度不小于所述光源的宽度，所述出光口的宽度不等于所述导光板入光面的厚度。

17、根据权利要求15所述的液晶显示装置，其中，所述入光口的宽度不小于所述光源的宽度，所述出光口的宽度不等于所述导光板入光面的厚度。

18、根据权利要求16所述的液晶显示装置，其中，该背光模组还包括一反射光板，设置于所述背板与所述导光板之间。

19、根据权利要求16所述的液晶显示装置，其中，该背光模组还包括光学膜片组，设置于所述导光板上；所述量子条固定架的上部延伸至所述导光板上方，所述光学膜片组的至少部分放置于所述量子条固定架的上部。

20、根据权利要求16所述的液晶显示装置，其中，所述背板内还设置有一散热板，所述光源安装于所述散热板上。
图 6
INTERNATIONAL SEARCH REPORT

INTERNATIONAL APPLICATION NO.

INTERNATIONAL SEARCH REPORT

INTERNATIONAL CLASSIFICATION OF SUBJECT MATTER

G02F 1/13357 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G02F, F21V, F21S, G02B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNABS; VEN: bar, strip, dot, quantum

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CN 103775925 A (SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.), 07 May 2014 (07.05.2014), see description, paragraphs 26-34, and figures 3-5</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>CN 103823320 A (SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.), 28 May 2014 (28.05.2014), the whole document</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>CN 103775923 A (SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.), 07 May 2014 (07.05.2014), the whole document</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>CN 103681990 A (SHENZEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD.), 26 March 2014 (26.03.2014), the whole document</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US 2011141769 A I (LG INNOTEK CO., LTD.), 16 June 2011 (16.06.2011), the whole document</td>
<td>1-20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

A document: defining the general state of the art which is not considered to be of particular relevance

E earlier application or patent but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

S document member of the same patent family

Date of the actual completion of the international search

01 December 2015 (01.12.2015)

Date of mailing of the international search report

08 December 2015 (08.12.2015)

Name and mailing address of the ISA/CN:

State Intellectual Property Office of the P.R.China

No. 6, Xitucheng Road, Jimenqiao

Haidian District, Beijing 100088, China

Facsimile No.: (86-10) 62019451

Authorized officer: HU, Yang

Telephone No.: (86-10) 62085567

Form PCT/IS A/210 (second sheet) (July 2009)
INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/CN2015/073862

<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 103775925 A</td>
<td>07 May 2014</td>
<td>WO 2015127704 A</td>
<td>03 September 2015</td>
</tr>
<tr>
<td>CN 103823320 A</td>
<td>28 May 2014</td>
<td>WO 2015135239 A</td>
<td>17 September 2015</td>
</tr>
<tr>
<td>CN 103775923 A</td>
<td>07 May 2014</td>
<td>US 2015260906 A</td>
<td>17 September 2015</td>
</tr>
<tr>
<td>CN 103681990 A</td>
<td>26 March 2014</td>
<td>US 2015241617 A</td>
<td>27 August 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2015123910 A</td>
<td>27 August 2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 1508284 B</td>
<td>06 April 2015</td>
</tr>
</tbody>
</table>

Form PCT/IS A/210 (patent family annex) (July 2009)
国际检索报告

A. 主题的分类
G02F 1/13357 (2006.01)

按照国际专利分类 (IPC) 或者同时按照国家分类和 IPC 两种分类

B. 检索领域

检索的最低限度文献 (标明分类系统和分类号)
G02F, F21V, F21S, G02B

包含在检索领域中的除最低限度文献以外的检索文献

在国际检索时查阅的电子数据库 (数据库的名称，和使用的检索词 (如使用))
CNABS ; VEN : 量子, 点, 条, bar, strip, dot, quantum

C. 相关文件

<table>
<thead>
<tr>
<th>类型</th>
<th>引用文件，必要时，指明相关段落</th>
<th>相关的权利要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CN 103775925 A (深圳市华星光电技术有限公司) 2014 年 5 月 7 日 (2014 - 05 - 07) 参见说明书 26-34 段，附图 3-5</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>CN 103823320 A (深圳市华星光电技术有限公司) 2014 年 5 月 28 日 (2014 - 05 - 28) 全文</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>CN 103775923 A (深圳市华星光电技术有限公司) 2014 年 5 月 7 日 (2014 - 05 - 07) 全文</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>CN 103681990 A (深圳市华星光电技术有限公司) 2014 年 3 月 26 日 (2014 - 03 - 26) 全文</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>US 2011141769 AI (LG INNOTEK CO LTD) 2011 年 6 月 16 日 (2011 - 06 - 16) 全文</td>
<td>1-20</td>
</tr>
</tbody>
</table>

国际检索实际完成的日期

2015 年 12 月 1 日

国际检索报告邮寄日期

2015 年 12 月 8 日

ISA/CN 的名称和地址

中华人民共和国国家知识产权局 (ISA/CN)
北京市海淀区蓟门桥西土城路 6 号
100088 中国

传 真 号 (86-10) 62018451

授权官员

胡 阳

电 话 号 码 (86-10) 62085567

表 PCT/ISA/210 (第 2 页) (2009 年 7 月)
<table>
<thead>
<tr>
<th>检索报告引用的专利文件</th>
<th>公布日（年/月/日）</th>
<th>同族专利</th>
<th>公布日（年/月/日）</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN 103775925 A</td>
<td>2014年5月7日</td>
<td>wo 2015127704 Al</td>
<td>2015年9月3日</td>
</tr>
<tr>
<td>CN 103823320 A</td>
<td>2014年5月28日</td>
<td>wo 2015135239 Al</td>
<td>2015年9月17日</td>
</tr>
<tr>
<td>us 2015260906 Al</td>
<td>2015年9月17日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 103775923 A</td>
<td>2014年5月7日</td>
<td>us 2015241617 Al</td>
<td>2015年8月27日</td>
</tr>
<tr>
<td>wo 2015123910 Al</td>
<td>2015年8月27日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN 103681990 A</td>
<td>2014年3月26日</td>
<td>us 2015214445 Al</td>
<td>2015年7月30日</td>
</tr>
<tr>
<td>us 9142736 B2</td>
<td>2015年9月22日</td>
<td>wo 2015085657 Al</td>
<td>2015年6月18日</td>
</tr>
<tr>
<td>KR 1508284 Bl</td>
<td>2015年4月6日</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 PCT/ISA210 （同族专利附件）（2009年7月）