OPIC

OFFICE DE LA PROPRIETE

CIPO

INTELLECTUELLE DU CANADA ProrERTY OFFICE

(72) ANDERSON, Jon, US

(72) DOSHI, Bharat Tarachand, US

(72) DRAVIDA, Subrahmanyam, US

(72) HERNANDEZ-VALENCIA, Enrique, US
(72) KRISHNASWAMY, Murali, US

(72 MANCHESTER, James S., US

(71) LUCENT TECHNOLOGIES INC., US

(12) (19) (CA) Demande-Application

CANADIAN INTELLECTUAL

1) (A1) 2,248,915
22) 1998/09/28
43) 1999/04/11

(s1y Int.C1.° HO4L 29/02, HO4L 12/24, HO4B 10/20

(30) 1997/10/11 (08/947,538) US
(54 LIAISON DE DONNEES SIMPLIFIEE
54y SIMPLIFIED DATA LINK

1000

[e 10

100

L
PROCESSOR

L~
SIZE

125: QUTPUT PROCESSOR ﬁ'

OVERHEAD

130——{_CRC_ GENERATOR 1
,:':,.—_I/ 3,

" &65 VALUE
3

135 GENERATOR

{

FRAME PAYLOAD
SCRAMBLER

POH
PROCESSOR

200

(57) L’invention est un protocole de liaison de
transmission de données simplifi¢e qui peut étre
implanté dans un systéme de transmission 4 trés grand
débit, par exemple un systeme SONET, et qui traite un
datagramme regu d’une installation IP d’aprés des
considérations QoS et brouille ce datagramme avant que

I*I Industrie Canada Industry Canada

RECEIVER

(57) A simplified data link protocol which may be
implemented in a very high-speed transmission system,
e.g., SONET, processes a datagram received from an IP
facility according to QoS considerations and scrambles a
datagram before it is again scrambled by a transmission
system, e.g., a SONET transmitter, to ensure that the

OFFICE DE LA PROPRIETE
INTELLECTUELLE DU CANADA A

OPIC CIPO

ProrERTY OFFICE

celui-ci ne soit rebrouillé par un systeme de
transmission, par exemple un émetteur SONET, pour
qu’aucune configuration de données d’utilisateur ne soit
identique 4 la configuration de brouillage de
transmission. Le brouilleur de protocoles de liaison de
transmission de données utilise une nouvelle méthode de
synchronisation. Il utilise également un systéme pointeur
qui détermine ’emplacement d’un datagramme dans un
bloc afin d’éliminer les drapeaux et le besoin de traiter
les données d’utilisateur pour s’assurer qu’elles ne
contiennent aucun drapeau de périphérie.

I*I Industrie Canada Industry Canada

CANADIAN INTELLECTUAL

1) (A1) 2,248,915
22) 1998/09/28
43) 1999/04/11

pattern of a user’s data does not match the transmission
scrambling pattern. The data link protocol scrambler also
employs a novel synchronization scheme. We also use a
pointer system which identifies the location of a
datagram in a frame to eliminate flags and the need to
process user data to ensure that it does not contain and a
boundary flag.

10

CA 02248915 1998-09-28

SIMPLIFIED DATA LINK

ABSTRACT:

A simplified data link protocol which may be implemented in a
very high-speed transmission system, e.g., SONET, processes a
datagram received from an IP facility according to QoS considerations
and scrambles a datagram before it is again scrambled by a transmission
system, e.g., a SONET transmitter, to ensure that the pattern of a user’s
data does not match the transmission scrambling pattern. The data link
protocol scrambler also employs a novel synchronization scheme. We also
use a pointer system which identifies the location of a datagram'in a
frame to eliminate flags and the need to process user data to ensure that

it does not contain and a boundary flag.

10

15

20

25

CA 02248915 1998-09-28

SIMPLIFIED DATA LINK

FIELD OF THE INVENTION:

The invention relates to the transmission of data over a high-
speed data link, e.g., a SONET facility, and more particularly relates to a
protocol governing the transmission of a datagram received from
network elements employing the Internet Protocol (IP) or similar protocol

over such a hink.

BACKGROUND OF THE INVENTION:

Optical systems use binary line coding for digital transmissions,
and scramble data that will be transmitted to ensure a random
distribution of logical ones and zeroes to maintain line synchronization.
Such scrambling also ensures that so-called pseudo-random, non-random
sequence frequency components are removed from the transmitted
stream of data as a way of improving the transmission signal-to-noise

ratio.

As is well-known, an absence of incoming logical ones (or zeroes)
for an appreciable amount of time, e.g., 2.3 ps, could cause a receiver to
lose such synchronization. Some data systems, e.g., a Synchronous
Optical NETwork SONET), deal with this problem, by generating a
particular pattern of logical ones and zeroes and combining the logical
pattern with a user’s bit stream so that an appropriate mix of such ones
and zeroes are transmitted over the transmission medium. The
particular pattern of that is combined with the user’s bit stream is called
a scramble. .At the opposite end of that medium, a receiver combines the
transmitted bit stream with the particular pattern to recover the user’s
data. The particular pattern, more particularly, is generated at the

transmitter and supplied to one input of an “Exclusive Or” circuit, and

10

15

20

25

CA 02248915 1998-09-28

the user data is supplied to another input of the circuit. The output of
the Exclusive Or is transmitted to a destination receiver which detects
the incoming ones and zeroes forming the incoming data and supplies
the latter to another “Exclusive Or” circuit to recover the user’s data.
When there is an absence of user data to send at the transmitter, then
the “Exclusive Or” outputs the aforementioned pattern, which is
transmitted to the receiver, which uses that incoming data to maintain
synchronization necessary for accurate detection of incoming ones and
zeroes forming the pattern. Similarly, the receiver performs an Exclusive
Or between the detected incoming data and the aforementioned
particular pattern, and outputs a stream of zeroes, which is the result of
the same signal pattern of ones and zeroes being supplied to both inputs
of the Exclusive Or. Thus, a sufficient stream of data is transmitted to
the receiver to allow the receiver to maintain the synchronization
necessary to detect accurately incoming ones and zeroes whenever there

is absence of user data to transmit.

Disadvantageously, as will be detailed below, such
synchronization may be disrupted even though such scrambling is being
used in SONET, as may happen when a user’s packet is larger than the

scrambler period.

For example, a user, inadvertently or otherwise, could insert the
scrambler pattern in the user’s datagram, and if such bits are aligned
with the scrambler pattern, then the Exclusive Or would output a stream
of zeroes, which could cause the system to declare a loss of signal or a

loss of timing.

In prior data systems, e.g., a SONET system implementing the
well-known HDLC protocol, the boundaries of a datagram, or data
packet containing user data are marked by leading and trailing flags

having a predetermined pattern, as is shown in FIG. 1, in which flags 10

10

15

20

25

CA 02248915 1998-09-28

and 12 define the start and end of packet 11. Such systems recognize
that user data could contain a series of ones and zeroes defining a flag --
which could cause a receiver encountering such an incorrect flag to
mistakenly conclude that the incoming datagram/packet ends at that
point. The receiver may also conclude mistakenly that the succeeding

data belongs to a next datagram/packet.

To deal with this problem, prior systems check each byte of user
data and change each user byte resembling a flag to a so-called user flag
13 (UFLG) by appending dummy bits to the byte. A receiver, in turn,
strips off the added bits. It can be appreciated that the task of checking
each byte of user data to determine if it resembles a boundary flag is
indeed a waste of system resources. Moreover, it is very difficult to
perform such checking at very high data rates, e.g., a data rate of 2.5
Gbps.

Moreover, data systems, especially data systems which transmit
and receive via the Internet, do not currently provide a mechanism that
differentiates between different data services so that the transmission of
data may be engineered on a Quality of Service basis (QoS) for
multimedia traffic, including, e.g., data characterizing video, audio,
voice, etc. For the most part, the Internet treats data associated with

different services the same.

SUMMARY OF THE INVENTION:

We address the foregoing using what we call a simplified data link
protocol which processes a datagram based on QoS considerations and
which scrambles a datagram before it is again scrambled by a
transmission system, e.g., a SONET transmitter, to ensure that the
pattern of a user’s data does not match the transmission scrambling

pattern. We also use a pointer system which identifies the location of a

10

15

20

CA 02248915 1998-09-28

datagram in a frame to eliminate flags and the need to process user data

to ensure that it does not contain and a boundary flag.

These and other aspects of the invention will be appreciated from

the following claims, detailed description and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWING:

FIG. 1 illustrates the way in which prior data systems delineate

the boundaries of a transmitted datagrams and packets;

FIG. 2 is a block diagram of a simplified data link transmitter

system in which the principles of the invention may be practiced;

FIG. 3 is a layout of a SONET (STS-1) Synchronous Transport
Signal Level 1;

FIG. 4 illustrates an alternative arrangement for building a
Synchronous Payload Envelope bearing a plurality of STS frames;

FIG. 5 is a block diagram of a simplified data link receiver system

in which the principles of the invention may be practiced;

FIG. 6 is a block diagram of the frame payload scrambler of FIG.

FIG. 7 illustrates the format of a descrambling code that the frame
payload scrambler of FIG. 2 inserts in the path overhead section of a

SONET frame; and

FIG. 8 is a block diagram of the frame payload descrambler of FIG.

10

15

20

25

30

CA 02248915 1998-09-28

DETAILED DESCRIPTION:

The Simplified Data Link (SDL) shown in FIG. 2 includes S-
processor 110 which provides an interface for receiving a datagram from
an Internet facility 115, such as an IP gateway (router), computer etc.,
and which determines the size (i.e., number of bytes) of the incoming
datagram. The S-processor may do this by either (a) counting each byte
forming the incoming datagram, or (b) checking the datagram header for
such information if the datagram was formed in accordance with the so-
called IP version IV protocol. For example, the IP version IV protocol
includes the size of the datagram in the datagram header. If that is the
case, then S-processor 110 may then simply query the datagram header.
S-processor 110 then supplies via path 111 a value indicative of the size
of the datagram to overhead generator 135, which appends that value
and other Information to the accompanying datagram header, as will be
explained below. The incoming datagram is then fed to QoS processor
115, which determines the level of priority that should be accorded to the
incoming datagram. QoS processor 115 stores a datagram associated
with the highest level of quality in data buffer 120-1; and stores a
datagram associated with the next highest level of priority in data buffer
120-2 and so on. QoS processor 115 may determine such level of priority
in a number of different ways, For example, if, as mentioned above, the
datagram was formed in accordance with the IP version IV protocol, then
the datagram header contains data indicative of the type of service
associated with the datagram. If that is the case, then the datagram
header may contain QoS properties. QoS processor 115 using either the
identified type of service or QoS properties determines the level of
priority associated with the datagram and stores the datagram in the
appropriate one of the buffers 120-1 through 120-N. Note that one or
more of the buffers 120-1 through 120-n may be a straight through path
to output processor 125, as represented by the dashed line in buffer 120-

10

15

20

25

CA 02248915 1998-09-28

1 --- meaning that the datagram is not stored in the buffer but is passed
straight through the buffer to output processor 125.

Each of the buffers 120-1 through 120-N includes a scheduling
processor (not shown) which schedules, on a priority type basis, for
access to output processor 125. Thus, for example, if a number of the
buffers contend for access to output processor 125 at the same time, then
the buffer associated with the highest level of priority is granted such
access. Specifically, each contention processor cancels its contention if it
determines that a buffer of a higher priority is also contending for access
to processor 125. Thus, output processor 125 receives the datagram from
the buffer 120-i that wins such contention, and forwards the datagram as
it is received to conventional CRC generator 130. Alternatively, processor
125 may receive a datagram from a buffer 120-i according to some other

QoS scheduling policy.

Output processor 125 also forwards a value indicative of the QoS
that is to be accorded to the datagram to overhead generator 135 via
path 126. CRC generator 130, which may be, for example, a conventional
high-speed processor/computer, generates a conventional CRC code
across the contents forming the datagram and supplies the CRC to
overhead generator 135 via path 131 and also supplies the datagram to
overhead generator via path 132. Overhead generator 135, in turn,
appends the information that it respectively receives via paths 111, 126
and 131 to the datagram header, all in accordance with an aspect of the
invention. It then supplies the resulting datagram to frame payload

scrambler 140.

As discussed above, the aforementioned synchronization process
may be disrupted irrespective of the fact that a scrambler circuit used. As
mentioned, a disruption may occur when the user’s packet is larger than

the scrambler period and when the pattern of the user’s data matches

10

15

20

25

30

CA 02248915 1998-09-28

the scrambling pattern. As was also discussed above, it is possible for a
user to insert the scrambler pattern in the user’s datagram and if those
bits are aligned with the scrambler pattern, then the scrambler circuit
would output a stream of zeroes (or all ones), which will cause the

transmission system to declare a loss of signal or a loss of timing.

We deal with this problem by using another scrambler having a
very large period between the user’s data stream and SONET scrambler.
IN particular, we scramble the bits forming the datagram that is being
processed by SDL processor 100 before the datagram is supplied to a

“set/reset scrambler 500 that is used to ensure synchronization. In this

way, the bits forming the datagram are scrambled twice, thereby making
it very unlikely that the scrambled pattern will match the scrambler
pattern that set-reset scrambler 500 uses to scramble the assembled
frame, even if the datagram contains that scrambler pattern. Accordingly
then, as will be discussed below in detail, frame payload scrambler
scrambles the bits forming the datagram that it receives from overhead
generator 135 and outputs the result to conventional SONET 300 frame
assembler and supplies, in a manner discussed below, the code that it
used to scramble the datagram bits including the header to conventional

SONET Path Overhead processor 200.

Briefly referring to FIG. 3, a SONET frame 350 comprising nine
rows of 90 octets is formed from four sections that include the payload
(datagram(s)) 310, Path OverHead (POH) bytes 320, line overhead bytes
330 and section overhead bytes 340. Specifically, the first three columns
contain transport overhead which is divided into 27 octets such that 9
octets are allocated for section overhead 340 and 18 octets are allocated
for line gverhead. The other 87 columns which includes the path
overhead comprise the total payload (also referred to as the Synchronous
Payload Envelope (SPE)). Frame assembler 300 operating in conjunction

with POH processor 200 thus assemble the total payload of the next

10

15

20

25

30

CA 02248915 1998-09-28

frame that is to be transmitted over the optical network (represented in
FIG. 2 by optical path 501). It is likely that the payload of a frame may
be composed of one or more datagrams including a partial datagram.
That is, part of a datagram was included in a previous frame that was
transmitted over the optical network and the remainder of the datagram
is being included in the current frame that is being assembled, in which
such remainder will start the payload of the current frame. The next
datagram will then be appended to that remainder. To distinguish the
start of a new datagrah in the SPE, a pointer may be included in the
POH that points to the first byte of the new datagram, in which the
header of the datagram includes the number of bytes (size) forming the
datagram as determined by S-processor 110. Thus, the receiver of the
frame may determine the location of the first new datagram in the SPE
and the number of data bytes forming the datagram. If the SPE contains
two new datagrams, one immediately following the other, then the
receiver may easily determine from the location and size information
associated with the first datagram the location of the second datagram in

the SPE.

Thus, frame assembler 300 assembles the datagram that it
receives from scrambler 140 into an SPE in the described manner. In
doing so, it supplies the location of the datagram to POH processor 200 if
that datagram is the first new datagram in the frame that is being
assembled. POH processor 200 includes that location with other path
information in the POH overhead and supplies the POH overhead to
assembler 300 for insertion in the assembled frame. Similarly, frame
assembler 300 and conventional Transport OverHead (TOH) processor
400 cooperate with one another to form the transport overhead section of
the frame. Assembler 300 and processor 400 then respectively supply the
frame payload and transport overhead section of the frame to 1x1 MUX

350, which outputs the final version of the frame row by row to

10

15

20

25

30

CA 02248915 1998-09-28

conventional set-reset scrambler 500, which then scrambles the
information for synchronization purposes, as discussed above. Scrambler
500 then transits the scrambled result over optical network 501 for

transmission to receiver 600.

FIG. 4 illustrates an alternative embodiment of a system
employing the principles of the invention, in which a number of STS
frames are formed into an STS N payload, and in which each frame
assembler 300-11s preéeded by a Simple Data Link processor (not shown

in FIG. 4).

The receiver that is the recipient of a SPE that the transmitter of
FIG. 2 transmits over optical network 501 is shown in FIG. 5. The
receiver includes conventional set/reset descrambler 610 which
descrambles the data that has been scrambled by set/reset scrambler 500
(FIG. 2). The output from the latter circuit is supplied to demultiplexer
620, which may be a 1x1 demultiplexer if the incoming signal is a so-
called concatenated signal. Otherwise Mux 620 may be a 1xN
demultiplexer, which would demultiplex the incoming data stream from
descrambler 610 into a plurality of independent data streams forming
the incoming data stream. As a result of such demultiplexing, the
transport overhead signals are supplied to TOH processor 615 and the
accompanying payload is supplied to conventional interface
processor/frame disassembler circuit 625. TOH processor 615 removes
the datagram pointer value from the transport overhead bytes and
supplies that value to circuit 625. The latter circuit then strips off the
path overhead (POH) bytes that forms part of the SPE (as shown in FIG.
3) and supplies the path overhead bytes to conventional POH processor
630. The latter processor, inter alia, strips the scrambler code off the
path overhead in the manner discussed below and supplies the code to
frame payload descrambler 705 of SDL receiver processor 700.

Descrambler 705 descrambles the payload using the received code to

10

15

20

25

30

CA 02248915 1998-09-28

10

recover the datagram that overhead generator 135 (FIG. 2) supplies to
frame payload scrambler 140. Descrambler 705 then supplies the
descrambled payload to SDL acquisition processor 710, which
synchronizes on the SDL overhead CRC value generated by CRC
generator 130 (FIG. 2) over the datagram. Processor 710 does this so that
the value of the CRC that it generates over what it believes to be the
datagram will equal the generator 130 CRC value. If such CRC values
are not equal, then processor 710 moves the boundaries (or window)
covering what it hopes is the datagram by one bit and recalculates the
CRC . If the latter CRC equals the generator 130 CRC, then processor
710 concludes that the new boundaries encompass the datagram. If not,
then processor 710 again moves the boundaries by one bit and again
recalculates the CRC. Processor 710 continues this process until the CRC
that it calculates equals the CRC received in the POH. When that event
occurs, then processor 710 knows such boundaries, and is thus able to
verify the value of the length byte. Processor 710 then supplies the
datagram to SDL overhead processor 720, which strips off the size and
QoS bytes and supplies those values to paths 715 and 717, respectively.
Processor 710 also supplies the datagram to QoS processor 720, which
operates similar to QoS processor 115 FIG. 2).

Specifically, (and similar to what has already been discussed in
conjunction with FIG. 2) QoS processor 720 also determines the level of
priority that should be accorded the datagram that it receives from
processor 715, in which such priority is based on the QoS value that it
receives via path 717. Similarly, QoS processor 720 stores a datagram
associated with the highest level of quality in data buffer 725-1; stores a
datagram associated with the next highest level of priority in data buffer
795-2 and so on. Similarly, one or more of the buffers 725-1 through
725-N may be a straight through path to output processor 730, as
represented by the dashed line in buffer 725-1 --- meaning that the

10

15

20

25

CA 02248915 1998-09-28

11

datagram is not stored in the buffer but is passed straight through the
buffer to output processor 730.

Each of the buffers 725-1 through 725-N also includes a
scheduling processor (not shown) which contend, on a priority type basis,
for access to output processor 730. For example, if a number of the
buffers contend for access to output processor 730, then the buffer
associated with the highest level of priority is granted such access.
Specifically, each contention processor cancels its contention if it
determines that a buffer of a higher priority is also contending for access
to processor 730. Thus, output processor 730 receives the datagram from
the buffer 725-i that wins such contention, and forwards the datagram as
it is received to a conventional interface buffer 635 that provides an
interface between SDL receiver 700 and some other Internet facility, e.g.,
an Internet router. Alternatively, processor 730 may receive a datagram

from buffer 725-i according to some other QoS scheduling policy.

A block diagram of the frame payload scrambler used in the SDL
processor at the transmitter is shown in FIG. 6. Frame payload
scrambler 800 includes scrambler section 810 comprising a shift register

whose operation is characterized by the following polynomial:

1+ x2 + x19 + x21 + x40

The polynomial function is implemented in scrambler 810 by a
shift register formed from a plurality of registers 815-1 through 815-40
that are driven by a system clock signal (not shown) to generate, in
conjunction with the adder circuits 820-1 through 820-3, a random and
continuous'pattern of logical ones zeros at the output 816 of register 815-
1 (also shown as bit a0). The random, continuos stream of logical ones

and zeroes is presented to one input of Exclusive Or (Ex Or) circuit 830

10

15

20

25

30

CA 02248915 1998-09-28

12

via an extension of path 816. The data (bits) that are to be scrambled are
supplied to another input of Ex Or circuit 830 via path 825. The
scrambled result of the Ex Or is then supplied to path 831. In Fig. 2,
input path 825 extends from overhead generator 135 and output path
831 connects to one input of frame assembler 300. It 1s noted that
scrambler 810 is initialized at start up using a 40 bit data word in which

at least one bit must be a logical one (non-zero).

To synchronize the descrambler circuit 705 that is in the receiver
600 (FIG. 5) with the scrambler 810 that is in the transmitter, scrambler
800 predicts (also referred to herein as “projects”) what the state of
transmitter scrambler 810 (i.e., the scrambler code) will be a
predetermined number of bytes in the future and supplies that
prediction/determination to the receiver so that the SDL receiver may be
properly synchronized with the transmitter and properly descramble a
received scrambled payload. Such a determination is periodically
transmitted to the receiver SDL. Accordingly, then, the receiver may
quickly restore synchronization with the transmitter whenever such

synchronization has been interrupted.

Since a SONET frame (specifically the path overhead) has a
limited amount of unused data bytes that may be used to transmit the
aforementioned prediction/determination, which comprises, for example,
five bytes of data, the predicted descrambling code is transmitted over
two consecutive frames as one embodiment. Thus, the receiver may be
out of synchronization for, at most, two frames. (It is understood that the
descrambling code could be transmitted over one frame if the appropriate
number of byte locations were available. In that case, then, the receiver
would be out of synchronization for one frame.) More specifically, the so-
called H4, Z3 and Z4 bytes of the path overhead are used to transport the
predicted state to the receiver, in which a CRC code generated over the

five byte state is also sent in one of those path overhead bytes.

10

15

20

25

30

CA 02248915 1998-09-28

13

An illustrative format for the scrambling/descrambling code is
shown in FIG. 7 and includes fields 70-1 through 70-5. Field 70-1
contains a start/begin bit set to a logical one followed by field 70-2
containing 23 bits of the scrambling code (state). Fields 70-1 and 70-2
comprise three bytes which are inserted in the aforementioned fields of
the path overhead of the first transmitted frame. Field 70-3 contains an
end bit and is followed by field 70-4 containing the remaining bits of the
five byte code. A CRC generated over the five byte code is inserted in
field 70-5. The three bytes of data formed by fields 70-3 through 70-5 are
inserted in the H4, Z3 and Z4 bytes of the path overhead that is inserted
in a second succeeding transmitted frame. The POH processor 630 (FIG.
5) assembles the five byte code over the two frames and generates its
own CRC and compares that CRC with the CRC that it received in the
path overhead.

If the comparison is positive (passes) and the projected state
characterized by the five bytes matches the current state at the receiver,
then the POH processor ignores the newly received projected state,
which allows descrambler 705 to continue its descrambling using the
current code or state. Similarly, POH processor 630 ignores the newly
received state if the comparison is negative (fails), which, again, allows
descrambler 705 to continue its descrambling using the current code or
state. Also, if the comparison passes over three consecutive cycles, and
the projected transmitter state does not match the current state at
descrambler 705, then POH processor 630 supplies the latest transmitter
projected state to descrambler 705, descrambler 705 then uses that state

to descramble the newly received datagram payload.

Returning to FIG. 6, the five byte predicted state is generated by
accessing a location in each of the tables 840-1 through 840-5 each of
which may be formed from , for example, a block of memory having 256

locations each location having 40 bits (5 bytes). In an illustrative

10

15

20

25

30

CA 02248915 1998-09-28

14

embodiment of the invention, table 5 provides the most significant data
and table 1 provides the least significant data. The address that is used
to access the most significant table 840-1 is formed from the most
significant bits outputted by scrambler 810, namely, bits ass through ase,
the address that is used to access the next significant table 840-2 is
formed from the next group of significant bits outputted by scrambler
810, namely, bits as: through az4, and so on. The most significant bits
that the accessed table output are passed through an Exclusive Or
process 860 and that result is outputted as bit bss of the descrambling
code. Similarly, the next most significant that the tables output are also
passed through Exclusive or process 860 and that result is outputted as
bit bss of the code word, and so on. The projected code word from by bits
bse through bo is then supplied to POH processor 200 (FIG. 1).

The data that is stored in each table may be generated off line
using a scrambler similar to scrambler 810. Specifically, and referring to
table 840-5, the entry that is inserted in the location that is accessed by
the most significant address that may be formed from bits ass through as:
is generated by inserting the logical values for those bits (1111111 1)
respectively into registers 815-40 through 815-33 and zeroes in each of
the other registers of the off-line scrambler and then clocking the
scrambler to the projected state. The contents of registers 815-40 through
815-1 at the predicted/projected state is then inserted in table 5 at
location address 11111111. The logical values of the bits forming the
next significant address in table 5, address 11111110, are then
respectively loaded into registers 815-40 through 815-33 with zeroes in
the other registers. The off-line scrambler 810 is then clocked to the
projected state and the contents of registers 815-40 through 815-11s
inserted at location 11111110 of table 5. This process is continued for
each of the remaining address location of table 5. A similarly procedure

is used to generate the entries for table 4. Specifically, and referring to

10

15

20

25

CA 02248915 1998-09-28

15

table 840-4, the entry that is inserted in the location that is accessed by
the most significant address that may be formed from bits as1 through azs
is generated by inserting the logical values for those bits (1111111 1)
respectively into registers 815-32 through 815-25 and zeroes in each of
the other registers of the off-line scrambler and clocking the scrambler to
the projected state. The contents of registers 815-40 through 815-1 at the
predicted/projected state is then inserted in table 4 at location address
11111111. The logical values of the bits forming the next significant
address in table 4, address 111 1’1 110, are then respectively loaded into
registers 815-32 through 815-25 with zeroes in the other registers. The
off-line scrambler is then clocked to the projected state and the contents
of registers 815-40 through 815-11s inserted in table 4 at location
11111110. This process is also continued for each of the remaining

address locations of table 4 (840-2).

The foregoing procedure is also applied to tables 3, 2 and 1 to
populate those tables in the described manner. Other ways may be used
to determine the projected state. For example, a transmitted may use two
scramblers running in parallel such that a scrambler would operate on
the current bits and the second scrambler would operate ahead of the
first scrambler at the projected point. As another example, a single
scrambler could be running at the projected point such that the output of
the scrambler between the current bit and the projected bit is stored in a

buffer for ExOring with the output.

As mentioned above, the architecture of descrambler 705 is similar
to scrambler 810, as can be seen from FIG. 8, and thus operates
similarly. In particular, it can be seen from FIG. 8 that the bits forming
the code word that POH processor 630 supplies to descrambler 705 via
path 706 are loaded into register bss through bo, respectively. Scrambler
705 applies the code word to the payload that it receives from interface

CA 02248915 1998-09-28

16

processor 625 and outputs the descrambled result via the ExOr circuit to

SDL acquisition processor 710.

The foregoing is merely illustrative of the principles of the
invention. Those skilled in the art will be able to devise numerous
arrangements, which, although not explicitly shown or described herein,
nevertheless embody those principles that are within the spirit and scope

of the invention.

10

15

20

25

CA 02248915 1998-09-28

17

CLAIMS:

1. Apparatus for processing, in accordance with a simplified data
link protocol, a datagram received from an Internet facility and
supplying the processed datagram to a Synchronous Optical NETwork
apparatus for transmission over an optical path, said datagram being
formed from a particular number of data bytes and being associated with

a predetermined quality of service, said apparatus comprising

a simplified data link processor that receives the datagram from
the Internet, assigns a size value to the datagram, the size value being
determined as a function of the number of data bytes forming the
datagram, and forwards the datagram for storage in a buffer, in which
the buffer is selected as a function of a quality of service indicator
indicative of a level of priority assigned to the datagram and in which
the contents of the selected buffer is then processed at a level
commensurate with the assigned priority level, the simplified data link

processor including

first apparatus which generates a cyclic redundancy code (CRC)
over the datagram and inserts the CRC, a quality of service indicator
and size value in a header section of the datagram, and which then

supplies the resulting datagram to second apparatus,

the second apparatus being operative for receiving the data bits
forming the resulting datagram and scrambling the bits of the datagram
in accordance with a particular code and then supplying the scrambled
result to the Synchronous Optical NETwork apparatus, the Synchronous
Optical NETwork apparatus including a frame assembler which
assembles the scrambled result and path overhead information into a

payload and a scrambler circuit which then scrambles the payload and

10

15

20

25

CA 02248915 1998-09-28

18

associated transport overhead Information and outputs that scrambled

result as a frame of data to an optical path.

2. The simplified data link apparatus of claim 1 wherein the
second apparatus scrambling process 1s characterized by a polynomial of

1 +X2+xl9+x21 +x40.

3. The simplified data link apparatus of claim 1 wherein the
Synchronous Optical NETwork apparatus further includes a path
overhead processor which generates path overhead information that is
included as part of the payload, the path overhead information including
a descrambling code derived as a function of the particular code that was

used by the second apparatus to scramble the datagram.

4. The simplified data link apparatus of claim 1 wherein the
Synchronous Optical NETwork apparatus further includes a path
overhead processor which generates path overhead information that is
included as part of the payload, the path overhead information including
a first part of a descrambling code derived as a function of the particular
code that was used by the second apparatus to scramble the datagram
and wherein the path overhead information contained in a next
succeeding frame that is outputted to the optical path includes a second

part of the second apparatus descrambling code.

5. Apparatus for processing a datagram received from Internet
facilities and supplying the processed datagram to a facility which
transmits data over a network at a very high data rate, said apparatus

comprising

a first scrambler for scrambling the datagram bits starting with a
current scrambling code to form a scrambled datagram and for

determining a projected descrambling code that succeeds the current

CA 02248915 1998-09-28

19

code by a predetermined number of bits and is operable for descrambling
the datagram at a receiver, and for including the projected descrambling

code in the transmission of the scrambled datagram to the receiver, and

at the receiver, receiving the scrambled datagram and forming the
projected descrambling code into a scrambling code and descrambling the

scrambled datagram.

CA 02248915 1998-09-28

1/6

FIG.1
(PRIOR ART)
FLAG | PACKET | FLAG | PACKET ! UFLG! | FLAG |-—=------—— %
g) S g
10 1 12 13
FIG.3
9 ROWS
. 90 OCTETS -
3 OCTETS
- 87 OCTETS -
1 | SECTION | P
340‘7 OVERHEAD | A
:
3 H
4 0
51 \E/ PAYLOAD 3
6 | OVERHEAD | -
7 H
E
8 A
Y |0 [
Yy))
330 320 310

CA

2/6

FIG.2

INTERNET

1000

105

02248915 1998-09-28

100
/

110

15
120-1
[

!
S-PROCESSOR

i

oL
PROCESSOR

QS-PROCESSOR

12022 ‘ \ 120N

BUFFER

BUFFER

BUFFER

125

130

e

QUTPUT PROCESSOR

A1
SIZE

!

CRC GENERATOR

135 —

!

QVERHEAD
GENERATOR

!

FRAME PAYLOAD

SCRAMBLER
1

1% VALUE

Q0S

POH
PROCESSOR

—

[
FRAME Ix1] |
ASSEMBLER MUX
3007 !

SET - RESET
SCRAMBLER

200 f

TOH PROCESSOR

350
— 400

501

" - an oy e

RECEIMER

600 /

CA 02248915 1998-09-28

3/6

FIG.4

/300-1 \4360

— [RAME

ASSEMBLER

p——————————-

300-2 510
/

—T— A ,
SRR wox BN SET~ RESET
° AMBLER

on
O
—_—
iR

o 0 0 o

° ISOO—N

FRAME
ASSEMBLER

400 /1/
TOH

| PROCESSOR

FIG.7
70-1 10-2 70-3 70-4 70-5
f f f f f
BEGIN | SCRAMBLER STATE [END | SCRAMBLER STATE | CRC
|- 23 -1 17 ~—6—

- 48 BITS (6 BYTES) -

02248915 1998-09-28

CA

4/6

ALMIOVS LINAAINI OL

*

—————=1 434409 VAN 59
)
05/ —1.40553308d 1NdLNO 40SS3004d
\ “ AW 1S 00
I - - - (EEE CEPE: CII1d
N-SZ! / V2 2qu 1gzL
07/ —1 40S53004d-S00 01l
s [S
0SSN <9
B AL *sm mmN “ 029
NS R
[woss;oud || umewveosia | W ||y oyl (TS0
01 A NOLLISINDY 10 QYOVd NV / ¥40SS300¥4d 1353 / 135
) VAN N
019
3000 ¥TAVS
ocq 20550044 HOd | [(M0SSI008d HOL |—c1g

02248915 1998-09-28

CA

* (-] (-] (-] o o (] o] o (] (]]] -] E
VIS 3193°04d 118 Ov
40 AISNT0X3 o0
! *
— ul_m<.—. (-] (-] © -] o (-] (] -] (-] o -] (] o (-] c ul—m<._.
© ¢—gygLALVLS cwsuag VIS QWEB%_ —1-0¥8
ab — — — —4 ©o o o 0 o © © 0o o o0 o0 o a* » — A
oo,\. —cz\, Nc,\ mc,\ .\,Nc ch..\ .\;wmc .\,mnc
J 1041
€8 0¢8
‘w cc [~ —c - Nc amameatalaly m_.c oNc.l| —Nc ch‘l.nn..rll wmc‘. mmc
9g .)) S S S) S)
|-GI8 |C-GI8 €-GI8 0¢-GI8 |1-GI8 T7-GI8 | €¢-GI8 6¢-GI8 0v-GI8
N\
+ + +
Tomm%\ ¢-0c8 1-078
08—

02248915 1998-09-28

CA

(J40M 3009

- 7, N\
/
> ~0q |- 1q |~ 1q -6lg [~00q ~1q |~Tq ~88q |~ 68g
_ 1 ! ! 1 1 1 { 1 e
-~ (g g 4] - b g|~=r{ 02q|=—{ 2 q|=1{Zq 86 q|=— 65
+ +
0L

[e 10 100

L
PROCESSOR

/
—PROCESSOR
120-2 XQ)’—N
[BUFFER] - - - [EUETER

135

L~
SIZE
125 QUTPUT PROCESSOR VALUE
L~126
130~ _CRC GENERATOR _I—-I/m ws
CRC

QVERHEAD
GENERATOR

{

TRANE PAYLOAD
SCRAMBLER [~ 140

POH
PROCESSOR

200

501

RECEIVER

500]

	Page 1 - COVER_PAGE
	Page 2 - COVER_PAGE
	Page 3 - ABSTRACT
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - CLAIMS
	Page 21 - CLAIMS
	Page 22 - CLAIMS
	Page 23 - DRAWINGS
	Page 24 - DRAWINGS
	Page 25 - DRAWINGS
	Page 26 - DRAWINGS
	Page 27 - DRAWINGS
	Page 28 - DRAWINGS
	Page 29 - REPRESENTATIVE_DRAWING

