a9 United States

a2 Reissued Patent
Nagashima et al.

(10) Patent Number:
(45) Date of Reissued Patent:

USOORE42105E

US RE42,105 E
Feb. 1, 2011

(54) OBIJECT-ORIENTED PROGRAMMING
APPARATUS, OBJECT-ORIENTED
PROGRAMMING SUPPORTING APPARATUS,
COMPONENT BUILDER APPARATUS,
OBJECT-ORIENTED PROGRAM STORAGE
MEDIUM, PROGRAM STORAGE MEDIUM
FOR USE IN OBJECT-ORIENTED
PROGRAMMING, COMPONENT STORAGE
MEDIUM, AND OBJECT-BETWEEN-
NETWORK DISPLAY METHOD

(75) Inventors: Fumio Nagashima, Kawasaki (JP);
Kaori Suzuki, Kawasaki (JP); Asako
Yumoto, Kawasaki (JP); Tsuguto
Maruyama, Kawasaki (JP); Shigeru
Sasaki, Kawasaki (JP); Ryousuke Suda,
Kawasaki (JP); Miwa Ueki, Kawasaki
(IP)

(73) Assignee: Fujitsu Limited, Kawasaki (JP)

(21) Appl. No.: 11/370,498

(22) Filed: Mar. 8, 2006
Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 6,877,154
Issued: Apr. 5,2005
Appl. No.: 09/765,408
Filed: Jan. 22, 2001

U.S. Applications:

(60) Division of application No. 08/919,254, filed on Aug. 28,
1997, now Pat. No. 6,178,545, which is a continuation-in-
part of application No. 08/855,986, filed on May 14, 1997,
now abandoned.

(30) Foreign Application Priority Data
Jun. 28, 1996 (JP) eeeereeieiieieienieiececeee e 8-170079
Nov. 5,1996 (JP) ... 8-292863
Jun. 27, 1997 (JP) eeeeieeiieieieieeieececeee e 9-171782
(51) Imt.ClL
GO6F 9/44 (2006.01)

(52) US.CL ...veveeee 717/100, 717/108; 717/114
(58) Field of Classification Search 717/100,
717/108, 114

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,809,170 A 2/1989 Leblang et al.
5,265,206 A 11/1993 Shackelford et al.
5,339,433 A 8/1994 Frid-Nielsen
5,371,895 A 12/1994 Bristol
5,432,903 A 7/1995 Frid-Nielsen
5,432,932 A 7/1995 Chen et al.
5,551,035 A 8/1996 Arnold et al.
5,557,730 A 9/1996 Frid-Nielsen

(Continued)

FOREIGN PATENT DOCUMENTS
Jp 61-245280 10/1986
(Continued)
OTHER PUBLICATIONS

G. L. Kovacs, “Simulation—Scheduling System Using
Hybrid Software Technology”, 1994 Nishimura, “Static
Typing for Dynamic Messages,” ACM POPL, pp. 266288,
1998 Baba et al., “A Parallel Object Oriented Total Architec-
ture A—Net,” IEEE, pp. 276-285, 1990.*

(Continued)

Primary Examiner—Ted T Vo
(74) Attorney, Agent, or Firm—Staas & Halsey LLP

(57) ABSTRACT

As to an object-oriented programming, reuse of softwares is
enhanced and running speed is improved. There are made up
a data element list in which pointers to data storage areas of
object A are arranged and a pointer element list in which
pointers to pointer storage areas of object B are arranged. A
combination of the data element list and the pointer element
list makes it possible to directly refer to data of the object A
from the object B.

34 Claims, 84 Drawing Sheets

4182

OBJECT A

0BJECT B

410

411

513 L12

OUTPUT ENSTRUCT ION
BUS PORTION
GENERATING UNIT

IW\{‘TJSIDSTWTIUI
GENERATING UNIT

514

416 415

DATA ELEMENT LIST
GENERATING UNIT

DATA COUPL ING
UNIT

POINTER ELEMENT
LIST GENERATING
UNIT

US RE42,105 E
Page 2

U.S. PATENT DOCUMENTS

5,560,014 A 9/1996 Imamura

5,572,731 A 11/1996 Morel et al.

5,572,733 A 11/1996 Ryu et al.

5,581,761 A 12/1996 Radia et al.

5,586,326 A 12/1996 Ryu et al.

5,632,034 A 5/1997 O’Farrell

5,675,756 A 10/1997 Benton et al.

5,682,487 A 10/1997 Thomson

5,706,455 A 1/1998 Benton et al.

5,740,444 A 4/1998 Frid-Nielsen

5,751,965 A 5/1998 Mayo et al.

5,758,160 A 5/1998 Mclnerney et al.

5,764,897 A 6/1998 Khalidi

5,787,413 A 7/1998 Kauffman et al.

5,850,221 A 12/1998 Macrae et al.

5,907,707 A 5/1999 Ramalingam et al.

5,926,637 A 7/1999 Cline et al.

6,028,998 A 2/2000 Gloudeman et al.

6,071,317 A 6/2000 Nagel

6,077,312 A 6/2000 Bates et al.

6,178,545 Bl * 1/2001 Nagashimaetal. 717/108
6,199,141 B1 * 3/2001 Weinreb et al.

6,209,003 Bl * 3/2001 Mattis et al.c.c....... 707/206
6,272,673 Bl * 8/2001 Daleetal.cccounn.n. 717/200
6,289,358 Bl * 9/2001 Mattis etal. 707/203
6,557,165 Bl * 4/2003 Nagashimaetal. 717/108
6,634,019 Bl * 10/2003 Riceetal.ccoevnvnnennn. 717/127
6,757,000 B2 * 6/2004 Nagashimaetal. 345/835

FOREIGN PATENT DOCUMENTS

JP 2-113370 4/1990
JP 2-1282750 5/1990
OTHER PUBLICATIONS

Nishimura, “Static typing for dynamic messages”, ACM
POPL, pp. 266-288, 1998.*

Baba et al, Aparallel object oriented total architecture A Net,
IEEE, pp. 276-285, 1990.*

Austin et al. “Efficient detection of all pointers and arrays
access errors”’, SIGPLAN ACM, pp. 290-301; 1994.
Edelson, “A mark and sweep collector for C++”, ACM pp.
51-58, Aug. 1992.

Hayes, Using key—object opportunism to collect old objects,
ACM OOPSLA, pp. 33-46, May 1991.

Bensley et al., “An execution model for distributed object
oriented comutation”, ACM OOPSLA pp. 316-322, Oct.
1987.

Jarvinen et al., “Object oriented specification of reactive sys-
tems”, IEEE, pp. 63-71, 1990.

Jacobson, “Object oriented development in an industrial
environment”, ACM OOPSLA, pp. 183-191; Oct. 1987.
Taylor et al., “An object message model for the development
of integrated workstation software”, ACM pp. 43-52, Jul.
1990.

Durham et al., “A framework for run—time systems and its
visual programming language”, OOPSLA °96, ACM, pp.
406-420.

Ellis et al., The Annotated C++ Reference Manual, pp.
176-178 and 239-260, Jun. 1990.

D.A. Taylor, Object Oriented Information Systems Planning
and Implementation, Apr. 10, 1992.

G. Booch, Object Oriented Analysis and Design, pp.
473-476, 1994.

J. Martin, Principles of Object Oriented Analysis and
Design, p. 14, Oct. 1992.

Booch et al., Software Engineering with ADA pp. 242-252
and 520, Aug. 13, 1993.

Orafali et al., “The Essential Distributed Object Survival
Guide” pp. 429-452, Sep. 14, 1995.

G. L. Moore, “The G2 Development and Deployment Envi-
ronment”, 1992.

* cited by examiner

U.S. Patent Feb. 1, 2011 Sheet 1 of 84 US RE42,105 E

I\
N
(
105 100
-
-1 - a
SEE '?2 102
=)
E e}
i
—L 1 ¥
103\2/\7%
— f

U.S. Patent

132

0BJECT

RUNN ING
OBJECT
FILE

DATA FILE

Feb. 1, 2011 Sheet 2 of 84

Fig.?2

121

8

OBJECT
BUILDER UNIT

122 JJ7
¢

INTER OBJECT
WIRING
EDITOR UNIT

123 ﬂ

2
INTERPRETER
UNIT

|

(RUN)

US RE42,105 E

EXISTING
SOFTWARE FILE

INTER OBJECT
WIRING DATA
FILE

WIRING DATA
FILE FOR

INTERPRETER
USE

US RE42,105 E

Sheet 3 of 84

Feb. 1, 2011

U.S. Patent

LINA 11NN LINA ONILVHINTO

ONILVEENEO 1S

ININIT H3IN10d ONITdNoD viva | | 1S17 INGWIT3 viva
G117 91 y 12

LINN ON|1V43N30 LINA LIND ONJLVYNTO

NO!140d sna ON1dN0D NO!140d Snd
NOILONYISN | LNdN| NOLLONYISNI | | NOTLONYISNT IndLno
217 ke L1
01°

snd
NO1LINYLSN|
1NdN|

a 13380

eg |
4 | sng

1 NOILOMMLISNI

N

1nd1no

eg|”

US RE42,105 E

Sheet 4 of 84

Feb. 1, 2011

U.S. Patent

ON1SS3004d
= {
1% “ o xﬁﬂ
XYNBY <cmmmee e 7
(I1avL GOHITW)
(8 173r80)

b1 4

(INFW313 QOHLIW)

(INFWT3 QOHLIN)

AT

INZWITI OHIIM LXIN 0L Y3INIOd

8 133rd0 OL ¥3IN(Od

(ININT T3 OOHLW)

EE ||

(1S17 INIWIT3 QOHLIW)

S

)

N s e
QOHITW 0L Y3IN10d

4] ~ YVNW
(31avl wo<wwws_vN

- €

ON1SS3004d

D N B 1

U.S. Patent Feb. 1, 2011 Sheet 5 of 84 US RE42,105 E
Fig.5
.
(A) (B))
(START) (START)
(5-1) (5.5)
OBTAIN POINTER TO METHOD OBTAIN MEg AS ARGUMENT
ELEMENT LIST FROM MA,
- (5.6)
(5-2) EXECUTE PROCESSING OF
CALL OBJECT B WHERE FUNCTION ASSOCIATED
MEg !S ARGUMENT ¥WIiTH MEg
v (5.3)
POINTER=NULL ? END

(5-4)

OBTAIN POINTER TO NEXT
METHOD ELEMENT

Fig. ©

(START)

(6-1)

PRODUCE FRAME

OF MESSAGE TABLE

HAVING WIDTH MA & pax

END

U.S. Patent Feb. 1, 2011 Sheet 6 of 84 US RE42,105 E

Fig. 7
(START)
(7-1)

PRODUCE FRAME OF METHOD TABLE
HAVING MEgysx

(7_2)

STORE POINTER TO ASSOC!ATED
METHOD N COLUMN OF MEg

END

Fig. 8
(sTART)
(8.1)

PRODUCE FRAME OF METHOD
ELEMENT

(8-.2)

STORE MEg AND POINTER TO
OBJECT B

(8-.3)

ADD TO METHOD ELEMENT LIST
OF ASSOCIATED MA,

END

U.S. Patent Feb. 1, 2011 Sheet 7 of 84 US RE42,105 E
Fig. 9
(OBJECT A) \

—

DATA STORAGE AREA 1

DATA STORAGE AREA n

DATA STORAGE AREA 2

"IIIIIIIII"<:F:::::::====:====::::::::::::::::

(DATA ELEMENT LIST) < OUT,

c/m

B POINTER 1-1

- Il

<

%

y POINTER 2-1

Ne——

Fig. 10

PRODUCE FRAME OF DATA ELEME

NTS | (10-1)

SUBSTITUTE POINTER

(10.2)

ADD TO DATA ELEMENT LIST

(10_3)

END

(DATA ELEMENT)

(DATA ELEMENT)

(DATA ELEMENT)

US RE42,105 E

Sheet 8 of 84

Feb. 1, 2011

U.S. Patent

 —
CE BN G

U VI4Y JOVH01S H3INIOd

— oo o o

CE2 N
2 VIV 39VHOLS ¥AINICd

E71 ¥AINIOd D <

| V34V JOVHOLS HIINIOd

b 177 ¥ANIOd

Aﬁ.

u

— ¢71 H3AINIOd

(8 193rdo)

(INFW3T3 H3INIOd)

(INFW3T3 ¥3INIOD)

(INFWIT3 Y3INIOd)

(1S17 INIWT13 HAUNIOd) <« NI

%
1L ‘b1 4

U.S. Patent Feb. 1, 2011 Sheet 9 of 84 US RE42,105 E

PRODUCE FRAME OF POINTER ELEMENT | (12_1)

SUBSTITUTE POINTER (12_2)
ADD TO POINTER ELEMENT LIST | (12.3)
END

Fig. 13

(OBJECT A) (OBJECT B)

CID R

I

Qo 2> <=

QoD & | T NER 0T

U.S. Patent Feb. 1, 2011 Sheet 10 of 84 US RE42,105 E
Fig. 14
START
FIRST DATA ELEMENT OF DATA ELEMENT LIST — D (14_1)

[

FIRST POINTER ELEMENT OF POINTER ELEMENT LIST — P |(14_2)

SUBSTITUTE POINTER OF D FOR POINTER
INDICATED BY POINTER OF P

i

NEXT DATA ELEMENT — D
NEXT POINTER ELEMENT — P

J

4

END
(14.5)

(14_6)

US RE42,105 E

Sheet 11 of 84

Feb. 1, 2011

U.S. Patent

0 ¢

8 103rd0

LINN DN} LVYINTO LIND LIND ONILYY3INTO LIND ONLVYINTD
NOI140d Sng ON11dN0D NO! 140d SN@ JmYL OVl
NO 1 LOMULSNI LNdN| NOILONHISNI | |NOILONYISNY LNdINO | | NOILONYISNI LNdNI
22’ €2 127 y2”
1NI..II|\II1
et \
Sne 9 | }._mﬁ vl
NOI LONYLSN!

1NdN|

Gl ‘b1 4

NOLLOMYLSNY LNdNI

SN8 NO!LONYLSNI
1Nd1N0

v 133r80

US RE42,105 E

Sheet 12 of 84

Feb. 1, 2011

U.S. Patent

0 €

8 10340

LINT ONI LVY3NTO LINA LINA ON|LVEEND LIND ONILVEIND
NO11H0d Sng ON1 N9 NOI140d Sng TIAVL V1
NOIIDMMISNT LNdNI NOJLONMISNE | | NOILONYISN Indino | | No1LonuIsNI” Indino
2¢7 ce” 1 g yg?

egg ,
SNg 5 TWvV1 oVl

NO1LONYISN|
1NdNI

1 NOILORISNI 1ndLno

SMg NOILONYLSNI
1NdLnO

Y 123r80

US RE42,105 E

Sheet 13 of 84

Feb. 1, 2011

U.S. Patent

LIND ON1LYHINDD LIND LINA N1 LVH3IND LINN ONILVHIND
0¥ NOI140d SN ON 1 1dN0D NOI140d Sn8 TVl ovl
NOILOMMLSNI AfdN] NOILONMISNI | | NOILONKISNT Indino VIVQ 1NN
29 E¥7 Tk yy7
|
e m .v [
Sn8 5)ﬁ: oV
NOI LDMMLSN | VIVQ LNdN|
11dN|
SNg NO!1ONYISN|
1Nd1N0
g 193r80 V 193780

1

B 1

4

US RE42,105 E

Sheet 14 of 84

Feb. 1, 2011

U.S. Patent

LINN ONILVHINTO LINN LIND ON1LYYINO LINN ON|1Y4INTO
0§ NO!140d sna ON11dN0) NO! 1H0d Snd Jiavl ovl
NOILONYISNI LNdNI NO1 LONYLSNI NQ| LONYISNI 1nd1no ViV 1nd1n0
267 £ 1g% yG7
Y]
BEG
sna 5 J1avyL ovl
NO | LONYLSNI { Viva Ind1no
LNdN1
SNA NO | LOMYLSN|
1nd1No
8 103r€0 ¥ 103780

81

U.S. Patent

Feb. 1, 2011

Sheet 15 of 84

US RE42,105 E

(P1)

(P2)

(P3)

(P4)

(P5)

(METHOD ELEMENT)

MEg

POINTER TO INPUT
INSTRUCTION TAG
TABLE

POINTER TO QUTPUT
INSTRUCTION TAG
TABLE

POINTER TO INPUT
DATA TAG TABLE

POINTER TO OUTPUT
DATA TAG TABLE

POINTER TO
OBJECT A

POINTER TO
OBJECT B

POINTER TO NEXT
METHCD ELEMENT

-

INg

OUT4

(INPUT INSTRUCTION TAG TABLE)
3

1 2

3

3

U.S. Patent

Feb. 1, 2011 Sheet 16 of 84 US RE42,105 E

Fig. 20

OBTAIN POINTER TO METHCD
ELEMENT LIST FROM MA,

>

(20.1)

CALL OBJECT B WHERE MEg AND
Py.P2 AND P5 ARE NT

(20.2)

(20_3) v

POINTER=NULL ?
/

N

(20_4)

OBTAIN POINTER TO NEXT
METHOD ELEMENT

Fig. 2]

(START)

END

(21.1)

REFER TO INPUT INSTRUCTION TAG
TABLE, AND OBTAIN ME, FROM MAg

(21.2)

EXECUTE PROCESSING OF METHOD

ASSOCIATED WiTH THE OBTAINED ME,

END

U.S. Patent Feb. 1, 2011 Sheet 17 of 84 US RE42,105 E

Fig.22 D)

REFER TO INPUT INSTRUCTION TAG (22_1)
TABLE, AND OBTAIN ME, FROM MAg

ADD METHOD ELEWENT OF WE TO METHOD | (22_2)
ELEMENT LIST ASSOCIATED WITH MAg OF
ORE'S ONN MESSAGE TABLE

END

Fig.23

PRODUCE OBJECT C

(23_1)

END

(START)

REFER TO INPUT INSTRUCTION TAG TABLE, | (54 1)
AND OBTAIN HE 4 ASSOCIATED WITH MAg -

ADD METHOD ELEMENT OF ME, TO METHOD (24.2)
ELEMENT LIST ASSOCIATED WITH MAg OF -
MESSAGE TABLE OF OBJECT C

END

U.S. Patent Feb. 1, 2011 Sheet 18 of 84 US RE42,105 E

Fig 25

REFER TO OUTPUT INSTRUCTION TAG TABLE,
AND OBTAIN MA, ASSOCIATED WITH ME g (25.-1)

ADD METHOD ELEMENT OF ME g TO METHOD
ELEMENT LIST ASSOCIATED WITH MA, OF |(25.2)
MESSAGE TABLE OF OBJECT A

END

Fig. 26

(START)

REFER TO OUTPUT INSTRUCTION TAG TABLE, | (5 1)
AND OBTAIN WA ASSOCIATED WITH MEg -

ADD METHOD ELEMENT OF MEg AND POINTER
70 OBJECT C TO METHOD ELEMENT LIST (26_2)
ASSOCIATED WITH MA, OF MESSAGE TABLE
OF OBJECT A

END

U.S. Patent

Feb. 1, 2011

F

ELEMENT LIST FROM MA 4

OBTAIN POINTER TO METHOD | (2

POINTER=NULL ?
/

N

CALL OBJECT B WHERE MEg AND (27_2)
P3 ,P4 AND Ps ARE ARGUMENT =

METHOD E

OBTAIN POINTER TO NEXT
LEMENT

REFER TO INPUT

DATA TAG
TABLE, AND OBTAIN [N, FROM QUT g

Sheet 19 of 84 US RE42,105 E
7-1)
(27.3) v
(27.4)
END
(28_1)
(28.2)

PRODUCE POINTER ELEMENT LIST OF OBJECT
A ASSOCIATED WITH THE OBTAINED IN

END

PRODUCE ONE'S OWN DATA ELEMENT [(28_3)
LIST ASSOCIATED WiTH OUTg
EXECUTE COUPLING PROCESSING (28.4)

U.S. Patent Feb. 1, 2011 Sheet 20 of 84

Fig. 29

US RE42,105 E

REFER TO INPUT INSTRUCTION TAG
TABLE, AND OBTAIN [N, FROM QUT g

(29.1)

A ASSOCIATED WITH THE OBTAINED IN;

PRODUCE POINTER ELEMENT LIST OF OBJECT [(29_2)

PRODUCE DATA ELEMENT LIST OF
OBJECT C ASSOCIATED WITH QUTg

(29.3)

EXECUTE COUPLING PROCESSING

(29.4)

END

REFER TO OUTPUT DATA TAG TABLE,
AND OBTAIN QUT 4 FROM INg

(30.1)

PRODUCE DATA ELEMENT LIST OF OBJECT
A ASSOCIATED WITH THE OBTAINED OUT 4

(30_2)

PRODUCE ONE'S OWN POINTER ELEMENT
LIST ASSOCIATED WITH INg

EXECUTE COUPLING PROCESSING

END

(30-3)

(30.4)

U.S. Patent

Feb. 1, 2011 Sheet 21 of 84

Fig. 31
(START)

REFER TO OUTPUT DATA TAG TABLE,
AND OBTAIN OUT , FROM INg

US RE42,105 E

(31_1)

PRODUCE DATA ELEMENT LIST OF OBJECT
A ASSOCIATED WITH THE OBTAINED QUT

(31_2)

PRODUCE POINTER ELEMENT LIST OF
OBJECT C ASSOCIATED WITH INg

EXECUTE COUPLING PROCESSING

END

(31.3)

(31.4)

PRODUCE FRAME OF INPUT INSTRUCTION
TAG TABLE HAVING WIDTH MAgyax

(32.1)

STORE ME, IN COLUMN OF MAg

(32_2)

REGISTER POINTER TC INPUT INSTRUCTION
TAG TABLE INTO ALL METHOD ELEMENTS
REGARDING OBJECT B, OF OBJECT A

(32_3)

END

U.S. Patent

Feb. 1, 2011 Sheet 22 of 84

Fig. 33
(START)

PRODUCE FRAME OF OUTPUT INSTRUCTION
TAG TABLE HAVING WIDTH MEgna X

STORE MA, IN COLUMN OF MEg

REGISTER POINTER TO OUTPUT INSTRUCTION
TAG TABLE INTO ALL METHOD ELEMENTS
REGARDING OBJECT B, OF OBJECT A

END

PRODUCE FRAME OF INPUT DATA TAG TABLE
HAVING WIDTH OUTgyax

STORE IN, IN COLUMN OF OUTg

REGISTER POINTER TO INPUT DATA TAG
TABLE INTO ALL METHOD ELEMENTS
REGARDING OBJECT B, OF OBJECT A

END

US RE42,105 E

(33_1)

(33.2)

(33_3)

(34_1)

(34.2)

(34_3)

U.S. Patent Feb. 1, 2011

Sheet 23 of 84

Fig.35

(sTART)

PRODUCE FRAME OF OUTPUT DATA TAG
TABLE HAVING WIDTH INgyax

STORE OUT, IN

COLUMN OF INg

REGISTER POINTER TO OUTPUT DATA TAG
TABLE INTO ALL METHOD ELEMENTS
REGARDING OBJECT B, OF OBJECT A

END

US RE42,105 E

(35_1)

(36_2)

(35_3)

U.S. Patent Feb. 1, 2011 Sheet 24 of 84 US RE42,105 E

Fig. 36

102a
204
C(203 7

et s s
I I(:“ : !5] j
AN
,{_- -| ! 1 I 1 1--
Mo w=fe- .- : - ; - .H

N -~
—
NETWORK

//// /! I\‘,' \ \\\
=2
z /
SUBNT WORK | SUBNETWORK 2
& y

US RE42,105 E

Sheet 25 of 84

Feb. 1, 2011

U.S. Patent

Fig.38(A)

rd
7

\ //../J//// /.,/J//
NDD o|ain a
Nu][s][=][=][=][=}[=}{=
Ojo|ojojo|o|olo
Nsl[s][=][=}[=](=}[=}[=]
‘0|o|ojojo|a|o|o
0 0|0(0jojo|o|o|o
Q<ololojojojolo|o
N =] =) [=]l=](=}[=
~ ~O|ojojo|o|ojolo
—o|o|o/o|ojololo
-o|o|ojolojolo|o
RREREIEEE

Fig. 38(B)

205

SN E—

US RE42,105 E

Sheet 26 of 84

Feb. 1, 2011

U.S. Patent

Fig.39 (A)

208

206

n|ojo|c—ololo
ojolo|c—=|o|olo
o|olo|—=|olola
o|ojo|c——lo|o|o
olo|o|c—|olo|o
OeHQ | C—|o|o|o
1olo|o
i
==
olojo|c—ajolo|o
o|o(o|c—lololo
n|ojojc—olo|o

m m,, \\\\l / —
o \
a.u 1T 1 /
L

U.S. Patent Feb. 1, 2011 Sheet 27 of 84 US RE42,105 E

Fig.40 (A)

207

205 (
(D ,,,,,,,,,, :
\ |0 g
y \(D f
1=s1=1{=]i=1[=1{=][=][=][=}{=][=][=}/
AEEE :
: O .
O ;
1 0 :
J,Df ,,,,,,,,, / ’

207

f sm— \
fr—
0| ON
gjalo

O

] /7
| O |
—

—

—

—
Ll ar

US RE42,105 E

Sheet 28 of 84

Feb. 1, 2011

U.S. Patent

i
t
+
[

B

|

nr}nn

7

1

i

T

1

1
nnoor

UPULUUUUU

|
1
f
T
-
+
§
¢

-

t
t
t
t
n'

gnooanonpaaonn

'
|
|
I

TUOuoU QUL dauU

|
l
|

g)lv b1 4

e

! L
SRR RAL bl HLEAY - NCHELIR I U LS LN 25 W .
I L o O R B R
BEiRi R ind iRy A R AR IR
1) M
N -_.._. REASE \..1."......:."...{":.1 NN AN
Sk fLiael ELabd S i A IUF A i e I B LS SR
L+ LAY 1 N LN [IE W] [J 13T
ap 8 - (! _|I — l_:.u.l .
Pl) Wl ' e v 1]
L 21] (N BULN g | [W [I
r T | N]
PN e = LI N IR) PN IO L L]
+ 1+ ' t + +—+
lT-“. .lm..ll.l._. v..M.uu..“ln-.. .T Iulull"l.“..lul_unh_uull.lﬂu 1.7._...
s W s s ks i il e S O L e
L] L)
L 41 s EURY PR R W LY Y
TS N FF et t-4 v =i 44 |-
LI} T T R 4 4
r11 A1 -fi-rt -+ 54+114 -4 |
b= N0 G L |4
= &V 1 T LI L I L - areees B [e
\..“-w, L S --.u.Tl L I .L-“.J. 1L i_ N n
dira bl CEa R RN E frbradb=tH
L oid g]t a1 0] {4 44 L pda-+1 T
FLada gl L) Lafa) 4
1 1 11 181 213 [l I N [P T NN W/ S N

US RE42,105 E

Sheet 29 of 84

Feb. 1, 2011

U.S. Patent

Fig. 42

i02a

218
Q

anoannoanooann

-

OO uUuuuayuuan

nnaognan

[~

219
(

jrgEpujapapapay

duuogoaouoguouy

pass,

M:::::::

U.S. Patent

Feb. 1, 2011 Sheet 30 of 84

US RE42,105 E

Fig. 43(A)

2523b
03 77 77~ 2230
223)
(223b
===z =
Fig.43(B)
223
223

U.S. Patent Feb. 1, 2011 Sheet 31 of 84 US RE42,105 E

-~ —)

Fig.44 (A)
\

Fig.44(B) |EEH

Fig.44(C)

U.S. Patent

Feb. 1, 2011

Sheet 32 of 84

US RE42,105 E

U.S. Patent Feb. 1, 2011 Sheet 33 of 84 US RE42,105 E

226 228 2/27'

Fig.46() [~

eP% 206 220 27

H\

(
Fig.46(B) I =

I

L

U.S. Patent Feb. 1, 2011 Sheet 34 of 84 US RE42,105 E

Fig.47 (A

STARTING POINT OF ENLARGEMENT
OBJECT HAVING SUBNETWORK

0. —
(mN

|61 8\G (G616 [61E 6 [4]E
;DDbD)ﬁDDDDDDDD?
A=161EVE EEEE EE
‘o|o|old|o|ojo|o|o|o|o|o;
SlEIEEIEEIEEEEEEE
-o|olololololo|o|olojo|o
=] [=}[=}[=][=}{=}]=]{=]]=] =]]n]]=}/
.0|o|o|o|o|o|o|o|ojo|o|o’
Alojolalo]olalolojoiolo;
: f
Fig.47 (B)
WIDTH
INCREASING SUBNETWORK
o|o|o|c—|{gye|o|o|jalo
olo|o|c——ja|o|o|ojo|o
o|o{o|c——|o|o|o|o0|0|0
El=1=
olo|o)
o|o|o sl(=1[=][=1[=1{=]
olo|olc—=|o|o|ojo|o|o
o|o|o|c—=lolo|olo|o|o

U.S. Patent

Feb. 1, 2011 Sheet 35 of 84 US RE42,105 E
Fig. 48
(START)

(48_1)

SELECT OBJECT HAVING SUBNETWORK
(48_2)

DESIGNATE DISPLAY OF SUBNETWORK
(48_3)

ENLARGE MEASURE WHEREAT SELECTED OBJECT
IS LOCATED AND LATTICES ASSOCIATED WITH
THE MEASURE IN VERTICAL AND HORIZONTAL

DIRECTIONS, VERTICALLY AND HORIZONTALLY

BY THE CORRESPONDING AREA NECESSARY FOR
DISPLAY OF SUBNETWORK GIVING THE CORNER
OF UPPER LEFT OF THE MEASURE AS STARTING

POINT
(48_4)
PERFORM DEFORMATION OF OBJECT AND EXTEN-
SION OF WIRING CAUSED BY ENLARGEMENT
(48_5)
FORM NEW LATTICE WITHIN ENLARGED
MEASURE AND DISPLAY SUBNETWORK
(48._6)

CONNECT OBJECT OF SUBNETWORK WiTH
OBJECT OF NEIGHBORING NETWORK

END

U.S. Patent Feb. 1, 2011 Sheet 36 of 84 US RE42,105 E

STARTING POINT OF ENLARGEMENT

3 MEASURES 8 MEASURES

Fig.49(A O
3 MEASURESI{ oL L ~_ 1+ QBENETWORK
Tloloiololo|c|ololalolo,
; = - |9 MEASURES
5 MEASURES 0 .
SRR ,_J.
.L 12 MEASURES J.
WIDTH INCREASING
. 3 DIVISION 8 DIVISION
F|g.49(8) ij'
3 DIMSION| - = .
V==X .
7 O :
neieHT increasing| Al CIEIE UHHDDDD:
y 8 .
5 DIVISION| ¢\, SUBNETWORK
. T T
Fig.49(C) = -
(|e=a|immmss
Aoz JUINDEE: o yeasunes
P — L
| vevmns | ="
= :
Ne=/ 111 1] :
T]

I
AY
—]
AY
il

N ™
A}

R
oY
—
~
b
N
N
\
-
Ay
N\
N
N
=

U.S. Patent Feb. 1, 2011 Sheet 37 of 84 US RE42,105 E

Fig.50

SELECT OBJECT HAVING SUBNETWORK

(50.1)

(50-2)

DESIGNATE DISPLAY OF SUBNETWORK

(50.3)

IS SUBNETWORK no
ACCOMMODATED ‘_‘!llTHlN SCREEN

yes (50_4)

ENLARGE MEASURE WHEREAT SELECTED OBJECT
IS LOCATED, VERTICALLY AND HORIZONTALLY
BY THE CORRESPONDING AREA NECESSARY FOR
DISPLAY OF SUBNETWORK GIVING THE CENTER
OF THE MEASURE AS STARTING POINT

(50.5)

DRAW STRAIGHT LINES FROM CORNERS OF THE
ENLARGED MEASURE TO CORNERS OF MEASURES

OF SCREEN EDGES IN VERTICAL AND
HORIZONTAL DIRECTIONS TO FORM TRAPEZOIDS

(50_6)

PARTITION TRAPEZOIDS AND PRODUCE MEASURES

(60_7)

DRAW STRAIGHT LINES FROM CORNERS OF
MEASURES OF TRAPEZOIDS TO CORNERS OF
MEASURES OF SCREEN EDGES TO PRODUCE
RESIDUAL MEASURES

(50.8)

PERFORM WIRING WiTH DEFORMATION OF OBJECT
CAUSED BY DEFORMATION OF MEASURES

(50.9)

CONNECT OBJECT OF SUBNETWORK WITH OBJECT
OF PERIPHERAL NETWORK

END

U.S. Patent Feb. 1, 2011 Sheet 38 of 84 US RE42,105 E

~
gTEF\’MINALS 2 TERMINALS

Fig51(AX [E[|1 F]
(., N

249 TERMINALS 30 TERMINALS

¥
2
!
I

I 1]
1 ' i
! :
! i
rgeT e
. g B 4 B
[~ =
- - e = d e e = - SR (R
Fig.51(B) 113 ¢ 7 E
g g B
foad
5 =] ‘:: -
S, S B o des —m- = R-- - -
3 9 E
5 = =
R e T - - un - -
! 3
§

|

48 TERMINALS
- r

)
aannhnopnn!

- - -

Fig.51(C) |

1
annoannnon!

1
)
|
!
T
1

=gy ULUU?UUL

R el TUUUTQUUUUD

US RE42,105 E

Sheet 39 of 84

Feb. 1, 2011

U.S. Patent

anaoaagonoononnnmn

N

N 5

g
D
»

uuguouuguuguu ay

obj 4

g
B
=

w»
¥
m_ fAdnononononooa

g

Q0
o

B

_ SCREEN 2

_/

SUuduUduugouugoy

—JH—::::A_-::::—J:

N
S
1%

guudduouuouuogu

RH::::J:J:::&

=
O

qcc::cccf—c:c:

Fig.52(B

-
sl

=
q-:abj?:

US RE42,105 E

Sheet 40 of 84

Feb. 1, 2011

U.S. Patent

(O ANV TVINOZIYOH)

T e e e o . -

b]
l
lla“ITl... u
! m L ol + n|
= ; . f
O 6 ° m|
m m - 0 S N
= 8 p
]
- u b
V1O 2 -
Iy w u
v O . ¢
"m C q H
¥ ¥ 0
o O " >
! .]
| “ _H I D
Bl = . -
! ! —
! - -
_L
(8 3NV VYIILY3A) (V 3NV TVIILH3A) A.

¢G°b14

US RE42,105 E

Sheet 41 of 84

Feb. 1, 2011

U.S. Patent

anN13

(97¥9)

TWNIRIL INdNT 01 dn TVNIWE3L
:cz_&gAd%N_%zm_z:E;E_zﬁa

A

"G3LN03X S1 SSI00Ud NOILIINNOD ‘INV]

“IVANOZ IHOH HLIR Q31J3NNOD NOILHOd Y AQV3dTY SI
F3HL 1 _TTYNIRY3L AndNE S0 3NVT TTVINOZ | ¥0H
01 &N 8 3NVT WOLI¥3A 3NIT HLIN JLIERIEA0

(117bG)

OL dn 3 3NV TVINOZIYOH 31T HLIK 3LINMEA0

8 3NV WOI1143A

(0179G)

‘AALOIXT S1 SS3004d NOILIINNOD

NV TVINOZIHOH HLIA QILOINNOD NOI1¥0d

Y AQVIHTY S1 RBHL 41 "3 3NV IVINOZ 180H
0L dN V 3NV WOILY3A N1 HLIA 3L14MY3A0

(67¥S)

S133r80 NI G3HOIMONYS LON

2 3NV TVINOZIYOH 30N004d

(87vG)

N3 TYNIWI3L INdNI 1V 8 3NV VO 1LH3A 30N00Yd

(L7pG)

vg b1 4

a3UN03X3 S1 SSI00Hd NOILOINNOD NV

IVANGZ 1HOH HLIM G31I3NNOD NOILI¥Od V AQV3IHTY S|
F3HL 41 _"IVNIWYAL INdNI 0 3NYT TVINOZ 1404
0L dN V 3NV TVOILY3A INIT HLIA 31148430

(G™vG) S9A

¢
TYNIWEL INdLNO LSNIVOY TYNIWY3L
IndNI SI

\J
ANV “TVOLLYIA 01 TWNIWIEL 1NdLINO WOYS VN IWi3L
1NdIN0 O 3NV “IVINGZIHOH 3NIT HLIM JLIYMYIA0

€ bS)

GN3 YNIWEL LNdIN0 1V V 3NV TVOILH3A 30na0ud

”~~

27PS)

Y3H10 HOV3 HLIM Q3LD3NNGD 38

OL TVNIWGEL INANT ONV WNIRIAL INdLINO 10313

(17vG)

(LYVLS)

US RE42,105 E

Sheet 42 of 84

Feb. 1, 2011

U.S. Patent

i

(1 HIAO_ONIHIN)

TYNIWI3L INdNT OF 9 300N WOodH SNI7T Avdd

(9766)

TYNIRI3L 1NdNI JO € NV

0L & 300N WO¥d INIT AVYQ

(§76G)

7

JUNIREEL INdNI ONIGNTONI 103780
GUVROL B 300N WOHd | 3NV NO 3N1TT Avia

(L766) ou

SsaA

GGgb14

(¢7G6G)

(2766G)

2
IWNIRYEL INdN| ISNIVOYV TYNIWMAL
. 1NdLNO SI
(+7G9)

L 3NV1 01 TWNIRYAL INdINO
WOYS “TYNIWIEL INdING 40 ¢ 3NITT NO INIT Mvia

IVNIRHEL INdINO ONIAMTONT VYUY ONIHIM Ni
iz_sxmhhgaohmﬁa_am&um_g._mn_%

Y3HI0 HOV3 HLIR GILIINNCD 38
OL “IWNIWRJAL INdNT ONV “TWNIRY3L Indln0 103138

(176G)

U.S. Patent

Feb. 1, 2011

Fig.56

DOES LINE REACH
WIRING AREA OF OBJECT HAVING

INPUT TERMINAL 2

Sheet 43 of 84

US RE42,105 E

no
—1 (56.7)
PROVIDE LANE 4 PERPEND|CULAR
yes (56.5) TO LINE ON WIRING AREA OF
| TERMINAL
EXTEND LINE TO LANE 3

DRAW LINE ON LANE 3 FROM NODE C TO
INPUT TERMINAL (WIRING OVER 2)~

DRAW LINE FROM NODE d TO
LANE 3 -

DRAW LINE FROM NODE e TO INPUT
TERMINAL (WIRING OVER 3)

(56.9)

A

(56._10)

(56.11)

;
:
B
2
:

IT NITH LiNE
INE
PROVIDE LANE ON WIRING AREA PARALLEL
TO LINE AND NEAR INPUT TERMINAL, AND

(56_13)

DRAW LINE FROM NODE TOWARD
OBJECT HAVING INPUT TERMINAL

B

US RE42,105 E

Sheet 44 of 84

Feb. 1, 2011

U.S. Patent

pua

TYNIWYAL INdNT 0L T 300N WoYd 3NIT Mvya

(11729)

NIT HLIM L1 LO3NNOD ONV ‘V3HV ONIYIA
IN3S3Hd NO 3NIT OL YYINOIONSdY3d 3NV 3aIA0Yd

(01729)

£ 3NV OL 1 3GON WOYd 1T Mvdd

(6719)

1 3NV 01 3NIT aN3LX3

(¥ YIAO_INIYIN)
TYNINYAL LndNI OL U 300N WoYd NI Mvaa
(972G)
€ 3NV 0L B 300N WOYd INITT MvHa
(6~29)
9 3NV 0L # 300N WOH4 INIT AVHC
(v~LG)

(87L4)

TYNIWYEL INdNT 0 Y34V ONIYIA NO 9 3NV 3Q1A0Yd

TYNINGEL INdNI J0 V3V
ONIYIM NO 3NIT OL dVINDIGNSAU3d L 3NV 301 A0Hd

(€7L9)

(L7LG)

V34V ONIHIM INIS3Ud NO S 3NV 3Q1A0Ed

(27LS)

& TVNIR3L

NdNI 40 € 3NYT OL EVINOION3dY3d
NS
(17L9)

U.S. Patent Feb. 1, 2011 Sheet 45 of 84 US RE42,105 E

] T
I | 1
i | LANE 2 | |
| R SR A I
OUTPUT a S t u
TERMINAL L AE |
INPUT
| b TERMNAY |
T . ! § Vi Wi X
' i LANE 3 !
: l x }
] i 1 t
Fig. 59
! : i ;
| : E :
1 } ¥ 1
! | : :
INPUT
[TERMINAL]
LLANE 3
c i
1
i

U.S. Patent Feb. 1, 2011 Sheet 46 of 84 US RE42,105 E

Fig.60

! :
! !
LANE 3 :
! {
| ——————
INPUT
TERMINAL
i }- T
! 1
! I
| I
! |
] |
Fig.o]
LANE §
| i '\ hILANE3
i : 1
I 1 I 1
U S T | _ .. - ————]
INPUT
LANE 5T~ |[TERMINAL
OUTPUT
I TERMINALY, | __ | I N
LANE 2,>\—/'1]
! a

-~
-~

U.S. Patent Feb. 1, 2011 Sheet 47 of 84 US RE42,105 E

Fig. 62

———— - — = = o
—— e e = e
—— e A v ———

LLANE 3
""""""""" T TineuT B
TERMINAL
PUT
FERMNAL _F—}LANE 4

[a}
L

LANE 2 LANE |

US RE42,105 E

Sheet 48 of 84

Feb. 1, 2011

U.S. Patent

1nd1ino .an_._..DO

T T “ 1
.v_l. Il- nllrL] “ i | __ v “Il.ll. L. |

-t

A AT SR o A S PO
(Q)¢9'b14 (8)c9 614
J 3NV 8 3NV VvV 3NV

LOdN V , N

Aj\ 1 1] 4; v__\v n

LNdNIT

-
-y .-
- e -

1 3NV

}.

o — - - - -l

_— 1 S -4~ -4 -

"“ “ :\ m_/w m ““ "v"
| 3NV 1Lnd.iLno 1Nndilno

(D)9 614 (V)9 bid

U.S. Patent Feb. 1, 2011 Sheet 49 of 84 US RE42,105 E

Fig.64

300

DISPLAY MEANS }~-3 0 1

310
3 ~
r
0BJECT HIERARCHICAL
302-AN “ > STRUCTURE -3 0 3
COUPLING MEANS CONSTRUCTION MEANS

HANDLER (30 4

U.S. Patent Feb. 1, 2011 Sheet 50 of 84 US RE42,105 E
Fig.65b
OBJECT A
OBJECT C
OBJECT OBJECT
B E
OBJECT F
0BJECT OBJECT OBJECT G
D H
Fig.66
WIRING EDITOR
OBJECT A
OBJECT B »{ OBJECT C >| OBJECT D
OBJECT E »| OBJECT F »| OBJECT G

h 2

OBJECT H

U.S. Patent Feb. 1, 2011 Sheet 51 of 84 US RE42,105 E

Fig.67/

POINTER TO HIGHER- | POINTER TO LOWER- FROM | TO
ORDER H!ERARCHY ORDER HIERARCHY

(POINTERS TO HIGHER/LOWER-ORDER H!ERARCHY) (POINTERS TO SAME-
ORDER HIERARCHY)

(0BJECT)
(POINTERS TO BUSES) (POINTERS TO CABLES)
IN ouT INSTRUCTION | DATA | TAG TAG DATA
INSTRUCT ION
v ¥ Y v Y Y
BUS1 BUS3 ; CABLE1 ; 3
v v : ¥ :
BUS2 BUS4 : CABLE2
L L y
= = CABLE3
1

Fig.68

(BUS)

POINTER TO SUBSTANTIAL OBJECT
POINTER TO BUS OF SUBSTANTIAL OBJECT
POINTER TO NEXT BUS

OTHER DATA

U.S. Patent Feb. 1, 2011

(CABLE)

Sheet 52 of 84 US RE42,105 E

Fig.69

POINTER TO TERMINAL

POINTER TO NEXT CABLE

(TERMINAL)

——>{ POINTER TO OBJECT B

POINTER TO BUS 2

POINTER TO NEXT TERMINAL

(TERMINAL)

POINTER TO OBJECT €

POINTER TO BUS 1

NULL

L

Fig.T70

OBJECT A

BUS1 E:\\\\c:

BUS1

BUS2 [

0BJECT B

BUS2
—
-

BUS1 | OBJECT C
L

] BUS3

] BUS4

U.S. Patent Feb. 1, 2011 Sheet 53 of 84 US RE42,105 E

Fig.T1

0BJECT A OBJECT E' (DUPLICATE)

OBJECT C

0BJECT D ‘.

OBJECT E

U.S. Patent Feb. 1, 2011 Sheet 54 of 84 US RE42,105 E
Fig. 12
WIRING EDITOR
OBJéET A
OBJI;CT B OBJECT C r——>{.___0_.B_-J.E—é_T~_E__j
OBJéET D » O0BJECT E
Fig. 73
START
¥
PRODUCE DUPLICATE E’ OR COPY (73_1)

OF OBJECT E (ORIGINAL)

¥

1.
2.

ON ALL BUSES OF OBJECT E :
CREATE COPY BUS FOR DUPLICATE E' ; AND

WRITE INTO THE COPY BUS

« POINTER TO SUBSTANTIAL OBJECT E, AND

« POINTER TO THE ASSOCIATED BUS

(73_2)

¥
END

U.S. Patent Feb. 1, 2011 Sheet 55 of 84 US RE42,105 E

Fig. T4
0BJECT E’ 0BJECT E
IN ouT IN ouT
T J 7 1
BUST' : /? BUS1 §
I g) '
BUS?' > BUS2
v {
Fig.T7h
OBJECT A
BUS4
| 0BJECT B 5— | OBJECT ¢ BUS1 | 0BJECT D 3
) BUS3 —
= BUS5 —c] BUS1 -
= =
- BUS2 -
— A —

R REPLACEMENT

OBJECT E —

BUS3
] 8US1 .

BUS2

0
U

U.S. Patent Feb. 1, 2011 Sheet 56 of 84 US RE42,105 E

. Fig.T8

WIRING EDITOR
OBJECT A
OBJECT B > OBJECT C > OBJECT D
OBJECT E
Fig.T1
,_ A
OBJECT A
BUS4
OBJECT B o—— 0BJECT E BUS1 | 0BJECT D O
- . —]
— BUS3 —
= BUS5 b— BUs1BUSS | o
)
] :j—c:BUSZ =) =
— -

0BJECT €

BUS3 [
— BUS1

\ —] BUSZ

U

U.S. Patent Feb. 1, 2011 Sheet 57 of 84 US RE42,105 E

EAig.78

~
0BJECT B 0BJECT C » 0BJECT D
» OBJECT E
\ v
Fig. 79
START (79__1)
VZ DRAG OBJECT
RECOGNIZE DRAGGED OBJECT (79__.2) (79_38)

< DROP OBJECT
RECOGN!ZE DROP-DESTINATION- | (7 8_4)

OBJECT
¥
ALTER OBJECT TREE (79_5)
¥

RETRIEVE WIRING OF DROP-
DEST INAT 1ON-OBJECT FROM CABLE (79__.86)
ELEMENT LIST

!

CHANGE WIRING OF DROP-
DEST INATION-OBJECT INTQ OBJECT | (7 8__7)
AFTER REPLACEMENT

¥
END

U.S. Patent Feb. 1, 2011 Sheet 58 of 84 US RE42,105 E

Fig.80
OBJECT A
INSTRUCTION | DATA | TAG INSTRUCTION | TAG DATA

J, : : :

CABLE > i cermmmcmmnanen : g
Y
|

CABLEa > TERM INAL > TERMINAL
¥)
E 15 /J\f A A4
: OBJECT C BUS3 OBJECT D BUST

.
]
1
1
‘.
1
[
]
¥
t
+
[]
[]
i

OBJECT E BUS3 OF
0BJECT E

U.S. Patent Feb. 1, 2011 Sheet 59 of 84 US RE42,105 E

0BJECT A
] OBLECT B | 0BJECT ¢ =y _JoBuecT 0 QBT €
BUS3 § = ause o]]
C = BUS1 ;
I :
{ —f Bus1 ;

L
...

N
v u Ut

U.S. Patent Feb. 1, 2011 Sheet 60 of 84 US RE42,105 E

Fig.82

WIRING EDITOR

0BJECT A
0BJECT B E » O0BJECT C > OBJECT D [——>| OBJECT E

US RE42,105 E

Sheet 61 of 84

Feb. 1, 2011

U.S. Patent

- _ e g S8 -
- = L asna
=AY ISng = =
- e {9 19380 £SNg
1Sng — = =
| 3 193°80 Q0 103rd0 pSng g 19380
ySng
4 19390 ¥ 193rd0
£g b1

U.S. Patent Feb. 1, 2011 Sheet 62 of 84 US RE42,105 E

Fig.84
!

OBJECT B [— OBJECT F |—>1 OBJECT E

\

0BJECT C

OBJECT D

A

U.S. Patent Feb. 1, 2011 Sheet 63 of 84 US RE42,105 E

Fig.85%

START
¥
RECOGNIZE SELECTED OBJECTS (85__1)
i)

BUILD NEW OBJECT ON THE SAME (85_2)
H{ERARCHY AS THE SELECTED OBJECTS

v

REPLACE THE SELECTED OBJECTS BY (85_3)
NEW OBJECT

!

RETRIEVE WIRING OF THE SELECTED (85__4)
OBJECTS FROM CABLE ELEMENT LIST

1S IT WIRING YES
BETWEEN OBJECT-TO-OBJECT INSIDE
NEW OBJECT 7 (85_6)
SHIFT WIRING TO
NEW OBJECT
BUILD BUS FOR WIRING USE ON NEW | (85__T7)

0BJECT

¥

CHANGE WIRING OF OBJECTS INSIDE (85_8)
NEW OBJECT INTO NEW OBJECT

-
<

A

END

U.S. Patent Feb. 1, 2011 Sheet 64 of 84 US RE42,105 E

Fig.86

L[-

0BJECT B ks] 0BJECT € —{ OBJECT D S

¥ OBJECT EJJ(—j OBJECT F

y

Fig.87
OBJECT A
INSTRUCTION DATA | TAG INSTRUCTION | TAG DATA
19 v ¥ ¥
CABLE
7
i
CABLEa TERMINAL -> TERMINAL
7 7 I) 7
é 0BJECT C BUS4 0BJECT D BUS1
J
CABLEb > TERMINAL > TERMINAL
’ I T 7 7

OBJECT D BUS3 OBJECT E BUS1

U.S. Patent Feb. 1, 2011 Sheet 65 of 84 US RE42,105 E

Fig.88
OBJECT A 0BJECT F
] ¥ v v v 1) ¥
CABLE
Y
i
CABLE/ Y
CABLEa
X
CABLE
Y
Fig.89
OBJECT F
IN ouT
v Bl.‘l"SZ fare——> OBJECT D
> BUS3

U.S. Patent

l

CABLEb

Y

Feb. 1, 2011 Sheet 66 of 84 US RE42,105 E
Fig.90
s TERMINAL s TERMINAL
X X
0BJECT D BUS3 0BJECT E BUS
OBJECT F BUS2

Fig.91

OBJECT A

n

BUS1

] OBJECT B

g u u

[

0BJECT C

BUS2

[l

OBJECT D

BUS2

BUS1
OBJECT E

U.S. Patent Feb. 1, 2011 Sheet 67 of 84 US RE42,105 E

Fig.92

0BJECT A

INSTRUCTION | DATA | TAG INSTRUCTION | TAG DATA
¥ ¥ v v
CABLE

!

i
CABLEa TERMINAL TERMINAL

+ ¥ ¥ v ¥
: 0BJECT B BUS1 0BJECT C BUS2

y

A

I
CABLED TERMINAL TERM{NAL

¥ ¥ ¥ ¥)
; OBJECT B BUS1 0BJECT D BUS2

h
N

§
CABLEc TERMINAL TERMINAL

¥ ¥ ¥ ¥ ¥
: OBJECT B BUST OBJECT E BUS1

A 4

h

U.S. Patent Feb. 1, 2011 Sheet 68 of 84 US RE42,105 E

Fig.93

START

Y.

RECOGNIZE SELECTED WIRING (93_1)

A

MAKE UP LIST OF WIRING, AND (93_2)

DISPLAY THE SAME (93_3)
DRAG LISTED ITEMS
RECOGNIZE DRAGGED WIRING (93_4) (93_5)

¢ DROP LISTED ITEMS
RECOGN[ZE DROP-DESTINATION- | (9 3__6)
WIRING

ALTER SEQUENCE OF LIST OF (93_7)
WIRING DATA

h

END

U.S. Patent Feb. 1, 2011 Sheet 69 of 84 US RE42,105 E

Fig.94

WIRING EDITOR

\ 4

CABLE LIST [——> CABLEa

CABLE LIST p——> CABLED

A 4

CABLE LIST —> CABLEc
L

Fig.9b

OBJECT B : BUS1 | OBJECT C : BUS2
OBJECT B : BUS1 | OBJECT D : BUS2
OBJECT B : BUS1 | OBJECT E : BUST

U.S. Patent Feb. 1, 2011 Sheet 70 of 84 US RE42,105 E

Fig.96

OBJECT A

¥ v v !
CABLE

!

|
CABLEa
Y

;

CABLEb
!

N z

CABLEc

U.S. Patent Feb. 1, 2011 Sheet 71 of 84 US RE42,105 E

Fig.97

0BJECT A

CABLE
Y

{
CABLEa
Y

{
CABLEc
¥
CABLED

!

Fig.98

WIRING EDITOR

h 4

CABLE LIST |~ CABLEa

I —
CABLE LIST —> CABLED
I
—
CABLE LIST > CABLEc
I

U.S. Patent Feb. 1, 2011 Sheet 72 of 84 US RE42,105 E

Fig.99

WIRING EDITOR

A 4

CABLE LIST |——> CABLEa

\

CABLE LIST p—— CABLEc

\

CABLE LIST |——> CABLEb
L

Fig.100

OBJECT B : BUS1 | OBJECT C : BUS2
OBJECT B : BUS1 | OBJECT E : BUSt
OBJECT B : BUS1 | OBJECT D : BUS2

US RE42,105 E

Sheet 73 of 84

Feb. 1, 2011

U.S. Patent

€ NOLingd

¢ NoLind

N

AR

| NOLLNG

n

ININSOYNYH
MOONIM

=

Y NOILYOIddV

N

—

4 : A

AJ

Inss| INIAT .

Y10 2 NOLLng
3nSS| IN3AT

YT L NOLLNg -

_ 1415 NOLLVIIIddY <
QOHLIN

NOIL1VIHOINI MOONIM
(8%3°Y) NOILYDIddY

(

S193rd0 Koud
SFOYSSIM

)

US RE42,105 E

Sheet 74 of 84

Feb. 1, 2011

U.S. Patent

-

-

A A

ON3 2 QOHLIN 40 J01LON
rm_zm |l QOHI3N 0 mo:ozL

V[ﬂ

¢ CGOHL3A

-noz._mf»

V1V
9 ININOdN)) ————

QOHL3N

)

SFOVSSIM

A

A

N

N |
Y (P) (- : Y[: 3)
N I nss| INIA o oI 0SS! INIAT
2 NNIN 40 301 LN I 2 MNGN 2 NOLLNG 40 391 LON 017 2 NOLLNG
o W1 NSS1 INIAT o3 WD NSSI 1NEAS
L nNaK 40 30140N W1 L (NN | NOLLNG 40 TDLION Y170 | NOLLNG
LHY1S NOTL¥D1TddY LHYLS NOTLVD1TddY
20 0110V <}t L4WIS NOILYOI ¥ < - 20 DI - LIS NOLLYOI T <
SIOVSSIN QOHL3N SIOVSSTH (OHLIN
NOILYRYON! HOONIM NOILVIHOINI MOGN! A
8 NOILVD1 TddY ¥ NOILYD 1 TddV
viva Y1V
g ININOJNOD J o\ ¥ ININOINOD J

201 bl

U.S. Patent Feb. 1, 2011 Sheet 75 of 84 US RE42,105 E

Fig.103

W INDOW
MANAGEMENT
USE DEPRESSES BUTTON 1

COMPONENT A
APPLICATION A g \ ‘
[EVENT MONITOR
== > ~
‘ . /./') DATA
BUTTON 1} K APPLICATION (A. exe)
| WINDOW |NFORMAT ION
BUTTON 2 METHOD
. {,
< APPLICATION START A —1—
BUTTON 3 START \
QPPLICATION MESSAGES
NOTICE OF BUTTON 1 CLICK——>
NOTICE OF BUTTON 2 CLICK
N ‘ d
Y,

U.S. Patent Feb. 1, 2011 Sheet 76 of 84 US RE42,105 E
Fig.104
WINDOW MANAGEMENT ———
EVENT PROCESSING PORTION
T — |- POINTER TO EVENT PROCESS FUNCT ION
EVENT PROCESSING T—————» TO EVENT MONITOR PORT iON
T OF COMPONENT A
EVENT PROCESSING >
Y
J
EVENT PROCESSING »| DEFAULT EVENT PROCESS FUNCTION
L
Fig.105
EVENT MONITOR PORTION
EVENT DATA EVENT TABLE
(COMPAR I SON)
- WINDOW 1D WINDOW { EVENT | OTHER | ISSUED
<—=> ID ID DATA | MESSAGES
EVENT 1D
OTHER DATA
(MATCH)
L ~1___ 7

MESSAGE 1SSUE

U.S. Patent Feb. 1, 2011

Sheet 77 of 84

US RE42,105 E

Fig.106

40

!

0

COMPONENT
BUILDER NEANS

-4 0 3

4 0 1 -~ FIRST HANDLER

1

SECOND HANDLER j~-4 0 2

Fig.107

WINDOW

NANAGEMENT
USER DEPRESSES BUTTON 1 .
2
_
$
APPLICATION A (. OBJECT BUILDER)
[Evsm nommn}———v
| e § "I 1 2 1 a
. #
./' r S
BUTTON 1% }‘/ —
METHOD
BUTTON 2
BNICL ICK
BurtoN 3| | | sTart MESSAGES
APPLICATION A
_

U.S. Patent Feb. 1, 2011 Sheet 78 of 84 US RE42,105 E

Fig.108

START
I
START APPLICATION A (108_1)
_ T
OBTAIN WINDOW [NFORMATION OF APPLICATION A| (108_2)
T
SELECT METHOD/MESSAGE, AND EVENT SORTS (108_3)
)
(108__4) MONITOR EVENTS

AN A

N EVENTS | (108_5)

4

(108_6)
IS IT EVENT ASSOCIATED NO
WITH WINDOW Q; APPLICATION

(108__7)

IS IT THE SAME SORT OF
EVENT AS SELECTED EVENT?

NO

ADD METHOD (OR MESSAGE) (108_8)

NO

IS MONITORING OF EVENT OVER?

APPLICATION END (108_10)
3

CREATE OBJECT DATA FILE AND (108_11)
RUNNING OBJECT FILE

¥
END

US RE42,105 E

Sheet 79 of 84

Feb. 1, 2011

U.S. Patent

3714 ININOJIOD

14 907 INIAT [

61

(NNY)
35N
Y31 34dY3INI
404 3114 ‘
ViVQ ONIYIN 1IN
Y3134dH31NI
(
€¢1
14 ERIE!
LINN YLYQ ONIYIN LINN 801103 133r40
ON171dN0J > 13340 HIAINI e > ONIYI R ONINNNY
ININOJHOD 133r80 H3INi
(¢
ol Pel ¢3%1
1INf} J1d HYKL0S ////// LiNn H3Q11ng ERLE R AL
ONI LVYINIO [« ONI11SIX3 > 133r40
907 IN3AJ 133rg0
¢ {
A €1 121} (A

.0

I

601°614

U.S. Patent Feb. 1, 2011 Sheet 80 of 84 US RE42,105 E

Fig.110

START

\ (110_1)
LOAD ONE EVENT FROM EVENT LOG FILE

3

X (110_2)
DOES THE ASSOCIQ;ED METHOD EXIST

NO

| YES

ADD WIRING BETWEEN LAST MESSAGE | (1 10__3)
AND THE METHOD

h

o~

(110_4) X
YES

NEXT E

NO
END

U.S. Patent Feb. 1, 2011 Sheet 81 of 84 US RE42,105 E

Fig.111

COMPONENT FILE

EVENT LOG FILE EVENT METHOD
(CONPAR| SON) (ASSOCIATION)
EVENT DATA [K———— BUTTON 1 CLICK kG=—=—> BNICLICK

BUTTON 1 CLICK

DATA

LAST MESSAGE

LAST MESSAGE
I(WIRING)

BNICLICK

U.S. Patent Feb. 1, 2011 Sheet 82 of 84 US RE42,105 E

(A) HEADER

(B) DEFINITION OF LIBRARY ——_,—— LIBRARY TO BE BUILT
() DEEINITION OF EXISTING O EXISTING PROGRA N
—— M
PROGRAM v)
(D) DEFINITION OF 0BUECT —1- - N

DEFINITION OF DATA BUS (INPUT) {

> {pnction 1 {x1,x2}
DEF INITION OF NETHOD { s Enotion 2 (228

DEFINITION OF DATA BUS (QUTPUT) { < Yg
< Y

(D) DEFINITION OF OBJECT ——
DEFINITION OF DATA BUS (INPUT)
DEFINITION OF METHOD

DEFINITION OF DATA BUS (OUTPUT) <« yi

Xi

v

fpnction j {xi}

U.S. Patent Feb. 1, 2011 Sheet 83 of 84 US RE42,105 E
Fig.113
I TENS KEYWORDS REMARKS
PROJECT LSIBuilderProject
PROJECT NAWE LSIBuilderProjectName
(A) PATH OF COMPILER SYSTEM MSVCRoot
PATH OF FIRSTSIGHT SYSTEM CareRoot
PATH OF USER AREA UserRoot
DEFINITION OF ARCHIVES Archives
(B) NAME OF ARCHIVES ArchivesName
PATH OF LIB LibPath
PATH OF DLL Dl iPath
NAYE OF LIBRARY TO BE BUILT LibName
(3} COMPILE MODE Debug
DEFINITION OF #define AND typedef Header
DEFINITION OF LS| Ls!
NAME OF LS| LSiName
COLOR OF LS| Color TREE COLORS OF
RGB (0-255)
DATA BUS DataBus
NAME OF DATA CORRECTION PROCESS ProcessName
NAME OF DATA BUS Name
TYPE OF VARIABLES VariableType CODE OF FUNCTION
DATA CORRECTION PROCESS Process
DIRECT DEVELOPMENT INTO DefineConnector Infine
DISTINCTION BETWEEN INPUT AND OUTPUT s} input OR output
COLOR OF BUS Color
(D) INSTRUCTION InstBus
NAME OF INSTRUCTION BUS Name
FUNCTION NAME OF ENTRY PGINT ProcessName

MEANING OF RETURN VALUE

ReturnValue

{NSTRUCTION PROCESS Process

Cmd 7 Cind

DJRECT DEVELOPMENT INTO Cmd OR Command Infine

COLOR OF BUS Colo
GLOBAL VARIABLES Variables
(GLOBAL VARIABLES INSIDE LSI)
DEFINITION #define AND typedef Header
INITIALIZATION PROCESS Initialize
CONSTRUCTOR Constructor
DESTRUCTOR Destructor

zero OR nonzero
OR NUMERAL
CODE OF FUNCTION

yes/no

CODE OF FUNCTION
CODE OF FUNCTION
CODE OF FUNCTION

US RE42,105 E

Sheet 84 of 84

Feb. 1, 2011

U.S. Patent

-++1Nd1N0 8 1NdNi

J1GYI4YA H0 3dAL | INVN SNE

:318v1 Sng vivd

--JNVA NanLY

--- AYIN3 | 3NVN SNd

378YL SNg NOJLONYLSNI

e3epQ)
Co_woshwwc_hv

uoljewrojui(h

uotlonsisulQ
uoijewopuid
JNVN 1S
uoj3eulou|
INYN sealyoile
21EpO
uo|3onisul
uoizeuiojuid
W 1S1

e3epQ0)
uoiloniisul

uoijeulopui
N IS

uoijeuloful
---uI4ep | HOT00 1ST | INWN IS JNYN seAiyolie
uojjeuojui -
NOTLYNHOINI ST YN 308fo.d
d13H DYN AVIdSI@ ONILIGE J1id
pLL 614

US RE42,105 E

1

OBJECT-ORIENTED PROGRAMMING
APPARATUS, OBJECT-ORIENTED
PROGRAMMING SUPPORTING APPARATUS,
COMPONENT BUILDER APPARATTUS,
OBJECT-ORIENTED PROGRAM STORAGE
MEDIUM, PROGRAM STORAGE MEDIUM
FOR USE IN OBJECT-ORIENTED
PROGRAMMING, COMPONENT STORAGE
MEDIUM, AND OBJECT-BETWEEN-
NETWORK DISPLAY METHOD

Matter enclosed in heavy brackets [] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

This application is a divisional of application Ser. No.
08/919,254, filed Aug. 28, 1997, now U.S. Pat. No. 6,178,
545; which is a CIP application of Ser. No. 08/855,986, filed
May 14, 1997, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an object-oriented pro-
gramming apparatus for performing object-oriented
programming, an object-oriented programming supporting
apparatus for supporting an object-oriented programming, a
component builder apparatus for building components form-
ing a part of an object, an object-oriented program storage
medium for storing therein object-oriented programs, a pro-
gram storage medium for use in an object-oriented
programming, the program storage medium being adapted
for storing therein a program to support an object-oriented
programming, a component storage medium for storing
therein components, and an object-between-network display
method of visually displaying in the form of a network of
objects data integration due to data sharing, integration of
control flows among objects, and the like, on a plurality of
objects produced by object-oriented programming.

2. Description of the Related Art

Hitherto, when at program, which is incorporated into a
computer so as to be operated, is described, a programming
is performed in such a manner that a function name
(command) and a variable are described in turn. In case of
such a programming scheme, since there is a need to
describe the programming with the commands in its entirety,
it is necessary for a programmer to investigate the com-
mands one by one through a manual, or to remember a lot of
commands. However, those commands are different for each
program language. Accordingly, even if a programmer
remembers a lot of commands of a certain program
language, when the programmer describes a program with
another program language, there occurs such an inconve-
nience that the programmer has to do over again learning the
commands of the program language. Further, formats of pro-
grams are also different for each program language. These
matters make a description of the program difficult, and give
such an impression that a development of programs is a spe-
cial field which is deemed that it is difficult for a nonprofes-
sional to enter thereinto. Recently, programs are increasingly
large-scaled and complicated, and thus there is emphasized
more and more a necessity that a development of programs
is made easier, and also a necessity for contributing to a
reuse of the once developed programs.

In such a technical background, recently, object-oriented
programming has been widely adopted. An object is a named
entity that combines a data structure with its associated

20

30

40

45

50

55

60

65

2

operations. That is, the object comprises “data” and “its
associated operations”. The term “object-oriented” implies a
concept that the “data” and “its associated operations”, that
is, the object, is treated in the form of units. Also in such an
object-oriented programming, there is a need to essentially
build each individual software (object). After the individual
objects are once built, however, a programming is completed
in such a manner that a coupling relation of object-to-object
is described such that a certain object calls another object. It
is expected that this concept of object-oriented programming
serves to significantly improve operability of large-scaled
and complicated software, the creation of such software, and
the maintenance thereof.

In object-oriented programming, an operation in which a
certain object calls another object uses concepts of messages
and methods such that the calling object issues a message to
the called party of the object, while the called party of the
object receives the issued message and executes its associ-
ated methods (operations). Hitherto, data necessary for a
process was provided in the form of arguments of the mes-
sages.

One of the objects of object-oriented programming
resides in the point that software (object) once made up can
be reused even if the system is altered. In order to implement
this, there is a need lo make up a relatively small and simple
object.

In general, however, it is said that an object-oriented pro-
gram is low in its execution rate because it takes a lot of time
to recognize a corresponding relation between the received
message and its associated method, and also it takes a lot of
time to transfer data from an object, which issues the
message, to an object which executes the method.

In order to improve the program execution rate, hitherto,
there was adopted a technique in which operations in one
object are increased to reduce opportunities of issuing mes-
sages directed to another object. In this case, however, the
operations in one object becomes complicated, and the
object is scaled up. This technique is contrary to the desire
for reuseable objects and thus, it is one of the causes of
prohibiting the possibility of promoting reuse of software in
the object-oriented programming.

When the object-oriented programs are promoted, the
serious problem is involved in handling of a large amount of
software accumulated up to now, which is not based on an
object-oriented concept. The object-oriented programming
technology according to the earlier development has been
associated with such a problem that the possibility of pro-
moting reuse of the existing software is extremely low.

SUMMARY OF THE INVENTION

In view of the above-mentioned problem, it is therefore an
object of the present invention to provide an object-oriented
programming apparatus having a function of coupling a plu-
rality of objects with one another so that information effi-
ciently flows among the plurality of objects, an object-
oriented program storage medium for storing therein a
plurality of objects and object-coupling programs for cou-
pling the plurality of objects with one another so that infor-
mation efficiently flows among the plurality of objects, an
object-oriented programming supporting apparatus which
contributes to facilitation of an object-oriented programming
for defining a coupling relation between objects, a program
storage medium for use in an object-oriented programming,
the program storage medium being adapted for storing
therein a program to support an object-oriented
programming, a component builder apparatus having a func-

US RE42,105 E

3

tion of building a component which serves as an object in
combination with an existing software so that the existing
software can be dealt with as the object, a component stor-
age medium for storing therein components as mentioned
above, and an object-between-network display method of
visually displaying in the form of a network of objects a data
integration due to a data sharing, an integration of control
flows among objects and the like, on a plurality of objects
produced by the object-oriented programming, the object-
between-network display method being suitable for per-
forming an object-oriented programming for defining a cou-
pling relation between objects.

To attain the above-mentioned object, according to the
present invention, there is provided a first object-oriented
programming apparatus for interconnecting a plurality of
objects each having data and operations, said object-oriented
programming apparatus comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output instruction
bus portion for performing a processing for an issue of mes-
sages directed to another object and a second object having
an input instruction bus portion responsive to messages
issued by another object and directed to self object for acti-
vating a method of self object associated with the received
message, by means of providing such a correspondence that
the message of the first object is associated with the method
of the second object;

data element list generating means for generating a data
element list, in which pointers to data storage areas for stor-
ing data are arranged, of an object;

pointer element list generating means for generating a
pointer element list, in which pointers to pointer storage
areas for storing pointers to data are arranged, of an object;
and

data coupling means for permitting a transfer of data
between a third object having the data element list and a
fourth object having the pointer element list, by means of
writing the pointers arranged in the data element list of the
third object into the pointer storage areas indicated by the
pointers arranged in the pointer element list of the fourth
object.

In the first object-oriented programming apparatus, it is
preferable that said instruction coupling means generates a
method element list in which arranged are method elements
including a method ID for specifying a method of another
object associated with a message of self object, and a pointer
to another object in which the method specified by the
method ID is executed.

To attain the above-mentioned object, according to the
present invention, there is provided a second object-oriented
programming apparatus for interconnecting a plurality of
objects each having data and operations, said object-oriented
programming apparatus comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output instruction
bus portion for performing a processing for an issue of mes-
sages directed to another object and a second object having
an input instruction bus portion responsive to messages
issued by another object and directed to self object for acti-
vating a method of self object associated with the received
message, by means of providing such a correspondence that
the message of the first object is associated with the method
of the second object; and

an input instruction tag table generating means for gener-
ating an input instruction tag table indicating an association
of messages of another object with methods of self object,
for each other object, on the output instruction bus portion of
self object.

20

25

30

35

40

45

50

55

60

65

4

In the second object-oriented programming apparatus, it
is preferable that said instruction coupling means generates a
method element list in which arranged are method elements
including a method ID for specifying a method of another
object associated with a message of self object, and a pointer
to another object in which the method specified by the
method ID is executed, and

said input instruction tag table generating means gener-
ates the input instruction tag table and adds the input instruc-
tion tag table to the method elements including the pointer to
another object associated with the input instruction tag table.

As one of ways that the input instruction tag table is added
to the method element, it is acceptable that a pointer to the
input instruction tag table is directly written to the method
element.

To attain the above-mentioned object, according to the
present invention, there is provided a third object-oriented
programming apparatus for interconnecting a plurality of
objects each having data and operations, said object-oriented
programming apparatus comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output instruction
bus portion for performing a processing for an issue of mes-
sages directed to another object and a second object having
an input instruction bus portion responsive to messages
issued by another object and directed to self object for acti-
vating a method of self object associated with the received
message, by means of providing such a correspondence that
the message of the first object is associated with the method
of'the second object; and

an output instruction tag table generating means for gen-
erating an output instruction tag table indicating an associa-
tion of methods of another object with messages of self
object, for each other object, on the output instruction bus
portion of self object.

In the third object-oriented programming apparatus, it is
preferable that said instruction coupling means generates a
method element list in which arranged are method elements
including a method ID for specifying a method of another
object associated with a message of self object, and a pointer
to another object in which the method specified by the
method ID is executed, and

said output instruction tag table generating means gener-
ates the output instruction tag table and adds the output
instruction tag table to the method elements including the
pointer to another object associated with the output instruc-
tion tag table.

As one of ways that the output instruction tag table is
added to the method element, it is acceptable that a pointer to
the output instruction tag table is directly written to the
method element.

To attain the above-mentioned object, according to the
present invention, there is provided a fourth object-oriented
programming apparatus for interconnecting a plurality of
objects each having data and operations, said object-oriented
programming apparatus comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output instruction
bus portion for performing a processing for an issue of mes-
sages directed to another object and a second object having
an input instruction bus portion responsive to messages
issued by another object and directed to self object for acti-
vating a method of self object associated with the received
message, by means of providing such a correspondence that
the message of the first object is associated with the method
of'the second object; and

US RE42,105 E

5

an input data tag table generating means for generating an
input data tag table indicating an association of a data
element list ID for identifying a data element list in
which pointers to data storage areas for storing data are
arranged with a pointer element list ID for identifying a
pointer element list in which pointers to data storage
areas for storing pointer to data are arranged, for each
other object, on the output instruction bus portion of
self object.

In the fourth object-oriented programming apparatus, it is
preferable that said instruction coupling means generates a
method element list in which arranged are method elements
including a method ID for specifying a method of another
object associated with a message of self object, and a pointer
to another object in which the method specified by the
method ID is executed, and

said input data tag table generating means generates the
input data tag table and adds the input data tag table to the
method elements including the pointer to another object
associated with the input data tag table.

As one of ways that the input data tag table is added to the
method element, it is acceptable that a pointer to the input
data tag table is directly written to the method element.

To attain the above-mentioned object, according to the
present invention, there is provided a fifth object-oriented
programming apparatus for interconnecting a plurality of
objects each having data and operations, said object-oriented
programming apparatus comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output instruction
bus portion for performing a processing for an issue of mes-
sages directed to another object and a second object having
an input instruction bus portion responsive to messages
issued by another object and directed to self object for acti-
vating a method of self object associated with the received
message, by means of providing such a correspondence that
the message of the first object is associated with the method
of the second object; and

an output data tag table generating means for generating
an output data tag table indicating an association of a pointer
element list ID for identifying a pointer element list in which
pointers to pointer storage areas for storing pointers to data
are arranged with a data element list ID for identifying a data
element list in which pointers to data storage areas for stor-
ing data are arranged, for each other object, on the output
instruction bus portion of self object.

In the fifth object-oriented programming apparatus, it is
preferable that said instruction coupling means generates a
method element list in which arranged are method elements
including a method ID for specifying a method of another
object associated with a message of self object, and a pointer
to another object in which the method specified by the
method ID is executed, and

said output data tag table generating means generates the
output data tag table and adds the output data tag table to the
method elements including the pointer to another object
associated with the output data tag table.

As one of ways that the output data tag table is added to
the method element, it is acceptable that a pointer to the
output data tag table is directly written to the method ele-
ment.

To attain the above-mentioned object, according to the
present invention, there is provided a first object-oriented
program storage medium for storing

aplurality of objects each having data and operations, said
object-oriented program storage medium storing

an object coupling program comprising:

20

25

30

35

40

45

50

55

60

65

6

instruction coupling means for permitting a transfer of
messages between a first object having an output instruction
bus portion for performing a processing for an issue of mes-
sages directed to another object and a second object having
an input instruction bus portion responsive to messages
issued by another object and directed to self object for acti-
vating a method of self object associated with the received
message, by means of providing such a correspondence that
the message of the first object is associated with the method
of the second object;

data element list generating means for generating a data
element list, in which pointers to data storage areas for stor-
ing data are arranged, of an object;

pointer element list generating means for generating a
pointer element list, in which pointers to pointer storage
areas for storing pointers to data are arranged, of an object;
and

data coupling means for permitting a transfer of data
between a third object having the data element list and a
fourth object having the pointer element list, by means of
writing the pointers arranged in the data element list of the
third object into the pointer storage areas indicated by the
pointers arranged in the pointer element list of the fourth
object.

In the first object-oriented program storage medium, it is
preferable that said instruction coupling means generates a
method element list in which arranged are method elements
including a method ID for specifying a method of another
object associated with a message of self object, and a pointer
to another object in which the method specified by the
method ID is executed, and

the first object having the output instruction bus portion
refers to, when issuing a message, a method element
arranged in the method element list associated with the
message, and calls the second object in which a pointer is
stored in the method element, giving the method ID stored in
the method element as an argument.

In this case, the second object receives messages directed
from the first object to the second object, and executes the
method identified by the method ID which is an argument of
the received message.

To attain the above-mentioned object, according to the
present invention, there is provided a second object-oriented
program storage medium for storing

a plurality of objects each having data and operations, said
object-oriented program storage medium storing

an object coupling program comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output instruction
bus portion for performing a processing for an issue of mes-
sages directed to another object and a second object having
an input instruction bus portion responsive to messages
issued by another object and directed to self object for acti-
vating a method of self object associated with the received
message, by means of providing such a correspondence that
the message of the first object is associated with the method
of'the second object; and

an input instruction tag table generating means for gener-
ating an input instruction tag table indicating an association
of messages of another object with methods of self object,
for each other object, on the output instruction bus portion of
self object.

In the second object-oriented program storage medium, it
is preferable that said instruction coupling means generates a
method element list in which arranged are method elements
including a method ID for specifying a method of another
object associated with a message of self object, and a pointer

US RE42,105 E

7

to another object in which the method specified by the
method ID is executed, and

said input instruction tag table generating means gener-
ates the input instruction tag table and adds the input instruc-
tion tag table to the method elements including the pointer to
another object associated with the input instruction tag table.

As one of ways that the input instruction tag table is added
to the method element, it is acceptable that a pointer to the
input instruction tag table is directly written to the method
element.

It is acceptable that the first object having the method
element to which the input instruction tag table is added
calls, when calling the second object identified by the
method element, the second object giving as arguments the
method ID and the input instruction tag table which are
stored in the method element.

As one of ways that the second object is called giving as
arguments the input instruction tag table, it is acceptable that
the second object is directly called giving as arguments a
pointer to the input instruction tag table.

In this case, the second object receives messages directed
from the first object to the second object, and executes the
method identified by the method ID which is an argument of
the received message.

It is acceptable that the second object receives messages
directed from the first object to the second object, and refers
to the input instruction tag table, which is an argument of the
received message, to execute the method of the first object
associated with the message of the second object.

It is preferable that the second object receives messages
directed from the first object to the second object, and refers
to the input instruction tag table, which is an argument of the
received message, to add the method element related to the
method of the first object associated with the message of the
second object to the method element list of the second object
associated with the message of the second object.

It is also preferable that the second object has means for
producing a third object, receives messages directed from
the first object to the second object, and refers to the input
instruction tag table, which is an argument of the received
message, to add the method element related to the method of
the first object associated with messages of the third object
to the method element list of the third object associated with
the message of the third object.

In this case, a timing of producing the third object by the
second object is not restricted in the present invention, and it
is acceptable that the third object is produced when the mes-
sage is issued, alternatively, the third object is produced
beforehand.

To attain the above-mentioned object, according to the
present invention, there is provided a third object-oriented
program storage medium for storing

aplurality of objects each having data and operations, said
object-oriented program storage medium storing

an object coupling program comprising:

an instruction coupling means for permitting a transfer of
messages between a first object having an output instruction
bus portion for performing a processing for an issue of mes-
sages directed to another object and a second object having
an input instruction bus portion responsive to messages
issued by another object and directed to self object for acti-
vating a method of self object associated with the received
message, by means of providing such a correspondence that
the message of the first object is associated with the method
of the second object; and

an output instruction tag table generating means for gen-
erating an output instruction tag table indicating an associa-

20

25

30

35

40

45

50

55

60

65

8

tion of methods of another object with messages of self
object, for each other object, on the output instruction bus
portion of self object.

In the third object-oriented program storage medium, it is
preferable that said instruction coupling means generates a
method element list in which arranged are method elements
including a method ID for specifying a method of another
object associated with a message of self object, and a pointer
to another object in which the method specified by the
method ID is executed, and

said output instruction tag table generating means gener-
ates the output instruction tag table and adds the output
instruction tag table to the method elements including the
pointer to another object associated with the output instruc-
tion tag table.

As one of ways that the output instruction tag table is
added to the method element, it is acceptable that a pointer to
the output instruction tag table is directly written to the
method element.

It is acceptable that the first object having the method
element to which the output instruction tag table is added
calls, when calling the second object identified by the
method element, the second object giving as arguments the
method ID and the output instruction tag table which are
stored in the method element.

As one of ways that the second object is called giving as
arguments the output instruction tag table, it is acceptable
that the second object is directly called giving as arguments a
pointer to the output instruction tag table.

In this case, the second object receives messages directed
from the first object to the second object, and executes the
method identified by the method ID which is an argument of
the received message.

It is acceptable that the second object receives messages
directed from the first object to the second object, and refers
to the output instruction tag table, which is an argument of
the received message, to add the method element related to
the method of the second object associated with the message
of'the first object to the method element list of the first object
associated with the message of the first object.

It is preferable that the second object has means for pro-
ducing a third object, receives messages directed from the
first object to the second object, and refers to the output
instruction tag table, which is an argument of the received
message, to add the method element related to the method of
the third object associated with messages of the first object
to the method element list of the first object associated with
the message of the first object.

In this case, similar to the second object-oriented program
storage medium, a timing of producing the third object by
the second object is not restricted in the present invention,
and it is acceptable that the third object is produced when the
message is issued, alternatively, the third object is produced
beforehand.

To attain the above-mentioned object, according to the
present invention, there is provided a fourth object-oriented
program storage medium for storing

a plurality of objects each having data and operations, said
object-oriented program storage medium storing

an object coupling program comprising:

an instruction coupling means for permitting a transter of
messages between a first object having an output instruction
bus portion for performing a processing for an issue of mes-
sages directed to another object and a second object having
an input instruction bus portion responsive to messages
issued by another object and directed to self object for acti-
vating a method of self object associated with the received

US RE42,105 E

9

message, by means of providing such a correspondence that
the message of the first object is associated with the method
of the second object; and

an input data tag table generating means for generating an
input data tag table indicating an association of a data ele-
ment list ID for identifying a data element list in which
pointers to data storage areas for storing data are arranged
with a pointer element list ID for identifying a pointer ele-
ment list in which pointers to data storage areas for storing
pointer to data are arranged, for each other object, on the
output instruction bus portion of self object.

In the fourth object-oriented program storage medium, it
is preferable that said instruction coupling means generates a
method element list in which arranged are method elements
including a method ID for specifying a method of another
object associated with a message of self object, and a pointer
to another object in which the method specified by the
method ID is executed, and

said input data tag table generating means generates the
input data tag table and adds the input data tag table to the
method elements including the pointer to another object
associated with the input data tag table.

As one of ways that the input data tag table is added to the
method element, it is acceptable that a pointer to the input
data tag table is directly written to the method element.

It is acceptable that the first object having the method
element to which the input data tag table is added calls, when
calling the second object identified by the method element,
the second object giving as arguments the method ID and the
input data tag table which are stored in the method element.

As one of ways that the second object is called giving as
arguments the input data tag table, it is acceptable that the
second object is directly called giving as arguments a pointer
to the input data tag table.

In this case, the second object receives messages directed
from the first object to the second object, and executes the
method identified by the method ID which is an argument of
the received message.

It is acceptable that the second object receives messages
directed from the first object to the second object, refers to
the input data tag table, which is an argument of the received
message, to obtain the pointer element list ID of the first
object, produces the pointer element list identified by the
pointer element list ID, of the first object and in addition the
data element list identified by the data element list ID asso-
ciated with the pointer element list ID, of the second, and
writes the pointers arranged in the data element list of the
second object into the pointer storage areas indicated by the
pointers arranged in the pointer element list of the first
object.

It is preferable that the second object has means for pro-
ducing a third object, receives messages directed from the
first object to the second object, refers to the input data tag
table, which is an argument of the received message, to
obtain the pointer element list ID of the first object, produces
the pointer element list identified by the pointer element list
1D, of the first object and in addition the data element list
identified by the data element list ID associated with the
pointer element list ID, of the third, and writes the pointers
arranged in the data element list of the third object into the
pointer storage areas indicated by the pointers arranged in
the pointer element list of the first object.

In this case, a timing of producing the third object by the
second object is not restricted in the present invention, and it
is acceptable that the third object is produced when the mes-
sage is issued, alternatively, the third object is produced
beforehand.

20

25

30

35

40

45

50

55

60

65

10

To attain the above-mentioned object, according to the
present invention, there is provided a fifth object-oriented
program storage medium for storing

a plurality of objects each having data and operations, said
object-oriented program storage medium storing

an object coupling program comprising:

an instruction coupling means for permitting a transter of
messages between a first object having an output instruction
bus portion for performing a processing for an issue of mes-
sages directed to another object and a second object having
an input instruction bus portion responsive to messages
issued by another object and directed to self object for acti-
vating a method of self object associated with the received
message, by means of providing such a correspondence that
the message of the first object is associated with the method
of'the second object; and

an output data tag table generating means for generating
an output data tag table indicating an association of a pointer
element list ID for identifying a pointer element list in which
pointers to pointer storage areas for storing pointers to data
are arranged with a data element list ID for identifying a data
element list in which pointers to data storage areas for stor-
ing data are arranged, for each other object, on the output
instruction bus portion of self object.

In the fifth object-oriented program storage medium, it is
preferable that said instruction coupling means generates a
method element list in which arranged are method elements
including a method ID for specifying a method of another
object associated with a message of self object, and a pointer
to another object in which the method specified by the
method ID is executed, and

said output data tag table generating means generates the
output data tag table and adds the output data tag table to the
method elements including the pointer to another object
associated with the output data tag table.

As one of ways that the output data tag table is added to
the method element, it is acceptable that a pointer to the
output data tag table is directly written to the method ele-
ment.

It is acceptable that the first object having the method
element to which the output data tag table is added calls,
when calling the second object identified by the method
element, the second object giving as arguments the method
ID and the output data tag table which are stored in the
method element.

As one of ways that the second object is called giving as
arguments the output data tag table, it is acceptable that the
second object is directly called giving as arguments a pointer
to the output data tag table.

In this case, the second object receives messages directed
from the first object to the second object, and executes the
method identified by the method ID which is an argument of
the received message.

It is acceptable that the the second object receives mes-
sages directed from the first object to the second object,
refers to the output data tag table, which is an argument of
the received message, to obtain the data element list ID of
the first object, produces the data element list identified by
the data element list ID, of the first object and in addition the
pointer element list identified by the pointer element list ID
associated with the data element list ID, of the second, and
writes the pointers arranged in the data element list of the
first object into the pointer storage areas indicated by the
pointers arranged in the pointer element list of the second
object.

It is preferable that the second object has means for pro-
ducing a third object, receives messages directed from the

US RE42,105 E

11

first object to the second object, refers to the output data tag
table, which is an argument of the received message, to
obtain the data element list ID of the first object, produces
the data element list identified by the data element list ID, of
the first object and in addition the pointer element list identi-
fied by the pointer element list ID associated with the data
element list ID, of the third, and writes the pointers arranged
in the data element list of the first object into the pointer
storage areas indicated by the pointers arranged in the
pointer element list of the third object.

In this case, a timing of producing the third object by the
second object is not restricted in the present invention, and it
is acceptable that the third object is produced when the mes-
sage is issued, alternatively, the third object is produced
beforehand.

To attain the above-mentioned object, according to the
present invention, there is provided an object-between-
network display method in which a plurality of objects pro-
duced by an object-oriented programming and wirings rep-
resentative of flow of data and control among the plurality of
objects are displayed on a display screen of an image display
apparatus for displaying images based on electronic image
information,

wherein displayed on the display screen is a first image in
which a display area consisting of one measure obtained
through partitioning the display screen into a plurality of
measures, or a display area formed through coupling a plu-
rality of adjacent measures together, comprises an object
display domain for displaying a single object, and a wiring
display domain for displaying wires for coupling a plurality
of objects to one another, the object display domain and the
wiring display domain are determined in such a manner that
the wiring display domain is formed between the object dis-
play domain-to-object display domain of the, adjacent two
display areas, and

wherein on the display screen each of the plurality of
objects is arranged on an associated object display domain
of'the display area, while the wires for coupling the plurality
of objects thus arranged are displayed on the wiring display
domains ranged across a plurality of display areas.

According to the object-between-network display method
of the present invention, it is possible to obtain an arrange-
ment in which objects are arranged in good order, and also to
obtain a display easy for an observation avoiding an overlap
of objects with wirings, since an area for displaying an
object and an area for displaying a wiring are distinguished
from each other.

In the object-between-network display method as men-
tioned above, it is preferable that a predetermined object of a
plurality of objects-constituting the first image is constituted
of a subnetwork comprising a plurality of objects, which are
of lower class in a hierarchical structure than the predeter-
mined object, and wirings for connecting the later plurality
of objects together, and

that when a second image, in which a subnetwork of said
predetermined object is displayed instead of a display of said
predetermined object in the first image, is displayed instead
of the first image, the subnetwork on the first image is dis-
played in a more enlarged display area than that of said
predetermined object, and display areas arranged upper and
lower sides and right and left sides of the display area of the
subnetwork are altered to display areas enlarged vertically
and horizontally, respectively, and regarding display areas
located at diagonal positions with respect to the display area
of the subnetwork, the display areas are displayed with a
same size as that of the first image.

An adoption of the above-mentioned display method
makes it possible to readily confirm a connecting state of a
subnetwork with the neighbor networks.

20

25

30

35

40

45

50

55

60

65

12

In the object-between-network display method as men-
tioned above, it is acceptable that a predetermined object of a
plurality of objects constituting the first image is constituted
of a subnetwork comprising a plurality of objects, which are
of lower class in a hierarchical structure than the predeter-
mined object, and wirings for connecting the later plurality
of objects together, and

wherein when a second image, in which a subnetwork of
said predetermined object is displayed instead of a display of
said predetermined object in the first image, is displayed
instead of the first image, the subnetwork on the first image
is displayed in a more enlarged display area than that of said
predetermined object, and display areas except the display
areas of the subnetwork are deformed as compared with the
associated display areas on the first image in such a manner
that display areas located at a periphery of the second image,
and position and size of sides contacting with the second
image, are substantially the same ones as display areas
located at a periphery of the first image, and position and
size of sides contacting with the first image, respectively.

An adoption of the above-mentioned display method
makes it possible to readily confirm a connecting state of a
subnetwork with the neighbor networks. In addition, accord-
ing to the above-mentioned display method, it is possible to
confirm throughout a network displayed before a display of
the subnetwork (a first image) in the state that the subnet-
work is displayed.

In the object-between-network display method as men-
tioned above, it is preferable that when the first image is
displayed, figures and sizes of the object display domains in
the display areas are standardized in accordance with figures
and sizes of the display areas.

This feature makes it possible to provide a display screen
easier to see.

In the object-between-network display method as men-
tioned above, it is preferable that when the first image is
displayed, first, the plurality of objects are displayed, and
then it is displayed that the plurality of objects are intercon-
nected with wirings in which a direction of flow of data or
control is repeatedly displayed in units of predetermined
segments.

An adoption of such a wiring makes it possible, even in
the event that an object is out of a display screen, to readily
determine as to which side of the wiring input or output
exists at. It is acceptable that after the wiring, such a wire is
replaced by the usual wire, for example, a wire in which
arrows are given for only one edge or both edges of the wire.

In the object-between-network display method as men-
tioned above, it is preferable that when the first image is
displayed, in wirings consisting of a central wire and edge
wires extended along both sides of the central wire, each of
the edge wire having a display aspect different from the
central wire, there is provided such a display of wiring that
of the intersecting wirings, with respect to wirings each rep-
resentative of a same flow of data or control, the central
wire-to-central wire are continued, and with respect to wir-
ings each representative of a mutually different flow of data
or control, the central wire of one of the wirings is divided
into parts at a position contacting with or adjacent to the
edge wires of another wiring.

An adoption of such a wiring makes it possible to readily
determine as to whether the intersecting wires are intercon-
nected or simply cross each other.

To attain the above-mentioned object, according to the
present invention, there is provided a first object-oriented
programming supporting apparatus for coupling a plurality
of objects, each having data and operations, with one another

US RE42,105 E

13

in accordance with an instruction, said object-oriented pro-
gramming supporting apparatus comprising:

display means for displaying objects each represented by
a block representative of a main frame of an object, a data
output terminal for transferring data of the object to another
object, a data input terminal for receiving data from another
object, a message terminal for issuing a message to make a
request for processing to another object, and a method termi-
nal for receiving a processing request from another object to
execute a method, the object being represented by a hierar-
chical structure which permits one or a plurality of objects to
exist in a single object, and in addition displays a wiring for
coupling terminals of a plurality of objects;

object coupling means for constructing a coupling struc-
ture among a plurality of objects in accordance with an
instruction for coupling terminals of the plurality of objects
through a wiring;

hierarchical structure construction means for constructing
a hierarchical structure of objects; and

a handler for instructing a wiring for coupling among
objects to said object coupling means, and in addition for
instructing a position of an object on the hierarchical struc-
ture to said hierarchical structure construction means,

wherein said hierarchical structure construction means
has means for producing a duplicate object of a substantial
object designated in accordance with an instruction from
said handler, and for disposing the duplicate object at a hier-
archy different from a hierarchy at which the substantial
object is disposed, and

said object coupling means receives from said handler an
instruction as to a wiring between the duplicate object and
another object in the wiring of the hierarchical structure in
which the duplicate object is disposed, and constructs a cou-
pling structure in which the duplicate object and the associ-
ated substantial object are provided in the form of a united
object.

The feature such that the duplicate object is built, and a
coupling structure, in which the duplicate object and the
associated substantial object are provided in the form of a
united object, is constructed, makes it possible to arbitrarily
dispose one object at desired plural hierarchies to conduct a
wiring (an instruction of coupling), thereby making it easy to
conduct a wiring among objects located at mutually different
hierarchies and also making it possible to provide a display
easy to see visually.

To attain the above-mentioned object, according to the
present invention, there is provided a second object-oriented
programming supporting apparatus for coupling a plurality
of objects, each having data and operations, with one another
in accordance with an instruction, said object-oriented pro-
gramming supporting apparatus comprising:

display means for displaying objects each represented by
a block representative of a main frame of an object, a data
output terminal for transferring data of the object to another
object, a data input terminal for receiving data from another
object, a message terminal for issuing a message to make a
request for processing to another object, and a method termi-
nal for receiving a processing request from another object to
execute a method, the object being represented by a hierar-
chical structure which permits one or a plurality of objects to
exist in a single object, and in addition displays a wiring for
coupling terminals of a plurality of objects;

object coupling means for constructing a coupling struc-
ture among a plurality of objects in accordance with an
instruction for coupling terminals of the plurality of objects
through a wiring;

20

25

30

35

40

45

55

60

65

14

hierarchical structure construction means for constructing
a hierarchical structure of objects; and

a handler for instructing a wiring for coupling among
objects to said object coupling means, and in addition for
instructing a position of an object on the hierarchical struc-
ture to said hierarchical structure construction means,

wherein said object coupling means releases a coupling
structure of the object before a replacement with another
object in accordance with an instruction from said handler,
and causes the object after the replacement to succeed to the
coupling structure of the object before the replacement with
another object, and

said hierarchical structure construction means disposes
the object after the replacement, instead of the object before
the replacement, at a hierarchy at which the object before the
replacement is disposed.

For a replacement of objects, usually, first, a wiring of an
object before a replacement will be removed, and then a new
wiring will be conducted for a new object by which the
object before a replacement is replaced. On the contrary,
according to the present invention, the wiring (a coupling
relation) of the object before a replacement is maintained for
the new object after a replacement. This feature makes it
possible to save trouble for a wiring between the new object
after a replacement and other object, thereby making it very
easy to conduct a replacement of objects and as a result
making the object-oriented programming easy.

To attain the above-mentioned object, according to the
present invention, there is provided a third object-oriented
programming supporting apparatus for coupling a plurality
of objects, each having data and operations, with one another
in accordance with an instruction, said object-oriented pro-
gramming supporting apparatus comprising:

display means for displaying objects each represented by
a block representative of a main frame of an object, a data
output terminal for transferring data of the object to another
object, a data input terminal for receiving data from another
object, a message terminal for issuing a message to make a
request for processing to another object, and a method termi-
nal for receiving a processing request from another object to
execute a method, the object being represented by a hierar-
chical structure which permits one or a plurality of objects to
exist in a single object, and in addition displays a wiring for
coupling terminals of a plurality of objects;

object coupling means for constructing a coupling struc-
ture among a plurality of objects in accordance with an
instruction for coupling terminals of the plurality of objects
through a wiring;

hierarchical structure construction means for constructing
a hierarchical structure of objects; and

a handler for instructing a wiring for coupling among
objects to said object coupling means, and in addition for
instructing a position of an object on the hierarchical struc-
ture to said hierarchical structure construction means,

wherein said hierarchical structure construction means is
in response to an instruction from said handler such that a
plurality of objects from among the objects disposed at a
predetermined hierarchy are designated and the plurality of
objects are rearranged on the lower-order hierarchy by one
stage, and rearranges the plurality of objects on the lower-
order hierarchy by one stage, and produces and arranges an
object including the plurality of objects on the predeter-
mined hierarchy in such a manner that a coupling structure
among the plurality of objects and a coupling structure
among the plurality of objects and objects other than the
plurality of objects are maintained.

If it is permitted, as in the present invention described
above, that a plurality of objects is rearranged in a different

US RE42,105 E

15
hierarchy while the wiring (coupling relation) is kept as it is,
it is possible to rearrange a program while the program is
made up. Further, since the part replaced by a hierarchy
serves as one object, it is possible to reuse the object of
interest as a program part.

To attain the above-mentioned object, according to the
present invention, there is provided a fourth object-oriented
programming supporting apparatus for coupling a plurality
of objects, each having data and operations, with one another
in accordance with an instruction, said object-oriented pro-
gramming supporting apparatus comprising:

display means for displaying objects each represented by
a block representative of a main frame of an object, a data
output terminal for transferring data of the object to another
object, a data input terminal for receiving data from another
object, a message terminal for issuing a message to make a
request for processing to another object, and a method termi-
nal for receiving a processing request from another object to
execute a method, the object being represented by a hierar-
chical structure which permits one or a plurality of objects to
exist in a single object, and in addition displays a wiring for
coupling terminals of a plurality of objects;

object coupling means for constructing a coupling struc-
ture among a plurality of objects in accordance with an
instruction for coupling terminals of the plurality of objects
through a wiring;

hierarchical structure construction means for constructing
a hierarchical structure of objects; and

a handler for instructing a wiring for coupling among
objects to said object coupling means, and in addition for
instructing a position of an object on the hierarchical struc-
ture to said hierarchical structure construction means,

wherein said display means has, in case of existence of a
plurality of method terminals connected to one message ter-
minal designated in accordance with an instruction through
said handler, means for displaying a list indicative of an
execution sequence of a plurality of methods associated with
the plurality of method terminals, and

said object coupling means has means for reconstructing a
coupling structure in which the execution sequence of the
plurality of methods appearing at the list displayed on said
display means are altered in accordance with an instruction
by said handler.

According to the fourth object-oriented programming
supporting apparatus, it is possible to readily and exactly
know an execution sequence of a plurality of methods for
one message, and also possible to readily alter the execution
sequence.

As to the object-oriented programming supporting
apparatuses, there exists a fifth object-oriented programming
supporting apparatus. The fifth object-oriented program-
ming supporting apparatus will be described later.

To attain the above-mentioned object, according to the
present invention, there is provided a first program storage
medium for use in an object-oriented programming, the pro-
gram storage medium being adapted for storing therein a
program to support an object-oriented programming for cou-
pling a plurality of objects, each having data and operations,
with one another,

wherein each of said objects is represented by a block
representative of a main frame of an object, a data output
terminal for transferring data of the object to another object,
a data input terminal for receiving data from another object,
a message terminal for issuing a message to make a request
for processing to another object, and a method terminal for
receiving a processing request from another object to
execute a method, the object being represented by a hierar-

5

20

25

30

35

40

45

50

55

60

65

16

chical structure which permits one or a plurality of objects to
exist in a single object, and an instruction for coupling termi-
nals of the plurality of objects through a wiring is given,

said program includes: object coupling means for con-
structing a coupling structure among a plurality of objects in
accordance with the instruction for coupling terminals of the
plurality of objects through a wiring; and hierarchical struc-
ture construction means for constructing a hierarchical struc-
ture of objects, and

said program storage medium stores such a program that
said hierarchical structure construction means has means for
producing a duplicate object of a substantial object desig-
nated in accordance with an instruction from said handler,
and for disposing the duplicate object at a hierarchy different
from a hierarchy at which the substantial object is disposed,
and said object coupling means receives from said handler
an instruction as to a wiring between the duplicate object and
another object in the wiring of the hierarchical structure in
which the duplicate object is disposed, and constructs a cou-
pling structure in which the duplicate object and the associ-
ated substantial object are provided in the form of a united
object.

To attain the above-mentioned object, according to the
present invention, there is provided a second program stor-
age medium for use in an object-oriented programming, the
program storage medium being adapted for storing therein a
program to support an object-oriented programming for cou-
pling a plurality of objects, each having data and operations,
with one another,

wherein each of said objects is represented by a block
representative of a main frame of an object, a data output
terminal for transferring data of the object to another object,
a data input terminal for receiving data from another object,
a message terminal for issuing a message to make a request
for processing to another object, and a method terminal for
receiving a processing request from another object to
execute a method, the object being represented by a hierar-
chical structure which permits one or a plurality of objects to
exist in a single object, and an instruction for coupling termi-
nals of the plurality of objects through a wiring is given,

said program includes: object coupling means for con-
structing a coupling structure among a plurality of objects in
accordance with the instruction for coupling terminals of the
plurality of objects through a wiring; and hierarchical struc-
ture construction means for constructing a hierarchical struc-
ture of objects, and

said program storage medium stores such a program that
said object coupling means releases a coupling structure of
the object before a replacement with another object in accor-
dance with an instruction for the replacement of objects, and
causes the object after the replacement to succeed to the
coupling structure of the object before the replacement with
another object, and said hierarchical structure construction
means disposes the object after the replacement, instead of
the object before the replacement, at a hierarchy at which the
object before the replacement is disposed.

To attain the above-mentioned object, according to the
present invention, there is provided a third program storage
medium for use in an object-oriented programming, the pro-
gram storage medium being adapted for storing therein a
program to support an object-oriented programming for cou-
pling a plurality of objects, each having data and operations,
with one another,

wherein each of said objects is represented by a block
representative of a main frame of an object, a data output
terminal for transferring data of the object to another object,
a data input terminal for receiving data from another object,

US RE42,105 E

17

a message terminal for issuing a message to make a request
for processing to another object, and a method terminal for
receiving a processing request from another object to
execute a method, the object being represented by a hierar-
chical structure which permits one or a plurality of objects to
exist in a single object, and an instruction for coupling termi-
nals of the plurality of objects through a wiring is given,

said program includes: object coupling means for con-
structing a coupling structure among a plurality of objects in
accordance with the instruction for coupling terminals of the
plurality of objects through a wiring; and hierarchical struc-
ture construction means for constructing a hierarchical struc-
ture of objects, and

said program storage medium stores such a program that
said hierarchical structure construction means is in response
to an instruction such that a plurality of objects from among
the objects disposed at a predetermined hierarchy are desig-
nated and the plurality of objects are rearranged on the
lower-order hierarchy by one stage, and rearranges the plu-
rality of objects on the lower-order hierarchy by one stage,
and produces and arranges an object including the plurality
of objects on the predetermined hierarchy in such a manner
that a coupling structure among the plurality of objects and a
coupling structure among the plurality of objects and objects
other than the plurality of objects are maintained.

To attain the above-mentioned object, according to the
present invention, there is provided a fourth program storage
medium for use in an object-oriented programming, the pro-
gram storage medium being adapted for storing therein a
program to support an object-oriented programming for cou-
pling a plurality of objects, each having data and operations,
with one another,

wherein each of said objects is represented by a block
representative of a main frame of an object, a data output
terminal for transferring data of the object to another object,
a data input terminal for receiving data from another object,
a message terminal for issuing a message to make a request
for processing to another object, and a method terminal for
receiving a processing request from another object to
execute a method, the object being represented by a hierar-
chical structure which permits one or a plurality of objects to
exist in a single object, and an instruction for coupling termi-
nals of the plurality of objects through a wiring is given,

said program includes: object coupling means for con-
structing a coupling structure among a plurality of objects in
accordance with the instruction for coupling terminals of the
plurality of objects through a wiring; and hierarchical struc-
ture construction means for constructing a hierarchical struc-
ture of objects, and

said program storage medium stores such a program that
said object coupling means has, in case of existence of a
plurality of method terminals connected to one message ter-
minal designated, means for making up a list indicative of an
execution sequence of a plurality of methods associated with
the plurality of method terminals, and means for reconstruct-
ing a coupling structure in which the execution sequence of
the plurality of methods is altered in accordance with an
alteration instruction of the execution sequence of the plural-
ity of methods appearing at the list.

Of component storage mediums according to the present
invention, there is provided a first component storage
medium for storing a component which serves as one object
in combination with a predetermined existing software, said
component including a method of issuing an event of the
predetermined existing software through a firing by a mes-
sage issued in other object.

According to such a component, there is provided such a
form that an existing software is “included” or “involved”,

20

25

30

35

40

45

50

55

60

65

18

and thus it possible to take in an existing software in the
form of an object, regardless of a structure of the existing
software, or without a modification of the existing software,
thereby specially improving a reuse of the existing software.

In this case, it is preferable that said component further
includes together with said method a message for informing
other object of that said event is issued through executing
said method.

This feature makes it possible to perform an operation on
a linking basis by a coupling between the method and the
message.

Of component storage mediums according to the present
invention, there is provided a second component storage
medium for storing a component which serves as one object
in combination with a predetermined existing software, said
component including a message for informing other object,
upon receipt of occurrence of a predetermined event of the
predetermined existing software, of that the predetermined
event is generated.

According to such a component, there is provided such a
form that an existing software is “included” or “involved”,
and thus it possible to implement, independently of an
advancement of the existing software itself, such an
advanced function that when the event for the existing soft-
ware occurs, a method of other object is executed through
working together.

Further, according to the present invention, there is pro-
vided a component builder apparatus comprising:

a first handler for selectively indicating making of meth-
ods and messages;

a second handler for inputting an instruction of an issue of
a desired event of a predetermined existing software; and

a component builder means for building a component
which serves as one object in combination with said existing
software, said component builder means serving, when mak-
ing of a method is instructed by an operation of said first
handler and a predetermined event of the existing software is
issued by an operation of said second handler, to make on the
component a method which fires with a message issued by
another object and issues the event, and serving, when mak-
ing of a message is instructed by an operation of said first
handler and an issue of a predetermined event of the existing
software is instructed by an operation of said second handler,
in response to an occurrence of the event, to make on the
component a message for informing other objects of the fact
that the event occurred.

The use of the component builder apparatus mentioned
above makes it possible to easily build on an interactive
basis the components to be stored in the above-mentioned
first and second component storage mediums, without a
requirement of a deep knowledge as to a programming for
operators or users.

To attain the above-mentioned object, according to the
present invention, of the object-oriented programming sup-
porting apparatuses, there is provided a fifth object-oriented
programming supporting apparatus comprising:

a component file for storing therein a component which
serves as one object in combination with a predetermined
existing software, said component including a method of
issuing an event of the predetermined existing software
through a firing by a message issued in other object, and a
message for informing other object of that the event is issued
through executing said method, and said component being
stored in said component file with respect to one or more
existing softwares;

a handier for inputting an instruction of an issue of the
event as to the existing software;

US RE42,105 E

19

an event log file for storing a list for the events as to one or
more existing softwares, which are sequentially issued in
accordance with an operation of said handler; and

a component coupling means for taking out sequentially
the events from said event log file to combine a message of a
component including the message for informing other object
of that the same event as that taken out before is issued and a
method of a component including the method of issuing the
same event as that taken out now.

According to the fifth object-oriented programming sup-
porting apparatus, a sequential indication of an issue of a
plurality of events of one or more existing softwares in the
sequence of an actual operation desired may couple the mes-
sage and the method between objects “involving” the exist-
ing softwares in the components. Thus, it is possible to
implement an automatic operation of a plurality of events of
the existing software.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective illustration of a computer system
including an object-oriented programming apparatus
according to an embodiment of the present invention;

FIG. 2 is a block diagram of an object ware programming
system implemented in the computer system shown in FIG.
1;

FIG. 3 is a typical illustration showing a first example of a
software system implemented within the computer system
shown in FIG. 1;

FIG. 4 is a typical illustration showing an example of a
data structure of an output instruction bus portion of an
object A and an input instruction bus portion of an object B
shown in FIG. 3;

FIGS. 5(A) and (B) are flowcharts useful for understand-
ing processings for issue of a message;

FIG. 6 is a flowchart useful for understanding processings
of an output instruction bus portion generating unit of an
object coupling unit shown in FIG. 3;

FIG. 7 is a flowchart useful for understanding processings
of an input instruction bus portion generating unit of an
object coupling unit shown in FIG. 3;

FIG. 8 is a flowchart useful for understanding processings
of an instruction coupling unit of an object coupling unit
shown in FIG. 3;

FIG. 9 is a typical illustration showing an example of a
data structure of a data element list of the object A shown in
FIG. 3,

FIG. 10 is a flowchart useful for understanding process-
ings of a data element list generating unit of the object cou-
pling unit shown in FIG. 3;

FIG. 11 is a typical illustration showing an example of a
data structure of a pointer element list of the object B shown
in FIG. 3;

FIG. 12 is a flowchart useful for understanding process-
ings of a pointer element list generating unit of the object
coupling unit shown in FIG. 3;

FIG. 13 is a typical illustration showing a structure after
an execution of processings of a data coupling unit of the
object coupling unit shown in FIG. 3;

FIG. 14 is a flowchart useful for understanding process-
ings of a data coupling unit of the object coupling unit shown
in FIG. 3;

FIG. 15 is a typical illustration showing a second example
of a software system implemented within the computer sys-
tem shown in FIG. 1;

20

25

30

35

40

45

50

55

60

65

20

FIG. 16 is a typical illustration showing a third example of
a software system implemented within the computer system
shown in FIG. 1;

FIG. 17 is a typical illustration showing a fourth example
of a software system implemented within the computer sys-
tem shown in FIG. 1;

FIG. 18 is a typical illustration showing a fifth example of
a software system implemented within the computer system
shown in FIG. 1;

FIG. 19 is a typical illustration showing a part of the data
structure of objects A shown in FIGS. 15 to 18;

FIG. 20 is a flowchart useful for understanding an
example of processing for issue of a message of an object A;

FIG. 21 is a flowchart useful for understanding a first
example of a partial processing of an object B;

FIG. 22 is a flowchart useful for understanding a second
example of a partial processing of an object B;

FIG. 23 is a flowchart useful for understanding a third
example of a partial processing of an object B;

FIG. 24 is a flowchart useful for understanding a fourth
example of a partial processing of an object B;

FIG. 25 is a flowchart useful for understanding a fifth
example of a partial processing of an object B;

FIG. 26 is a flowchart useful for understanding a sixth
example of a partial processing of an object B;

FIG. 27 is a flowchart useful for understanding another
example of processing for issue of a message of an object A,
which is different from the example of that shown in FIG.
20;

FIG. 28 is a flowchart useful for understanding a seventh
example of a partial processing of an object B;

FIG. 29 is a flowchart useful for understanding a eighth
example of a partial processing of an object B;

FIG. 30 is a flowchart useful for understanding a ninth
example of a partial processing of an object B;

FIG. 31 is a flowchart useful for understanding a tenth
example of a partial processing of an object B;

FIG. 32 is a flowchart useful for understanding process-
ings of an input instruction tag table generating unit of an
object coupling unit shown in FIG. 15;

FIG. 33 is a flowchart useful for understanding process-
ings of an output instruction tag table generating unit of an
object coupling unit shown in FIG. 16;

FIG. 34 is a flowchart useful for understanding process-
ings of an input data tag table generating unit of an object
coupling unit shown in FIG. 17;

FIG. 35 is a flowchart useful for understanding process-
ings of an output data tag table generating unit of an object
coupling unit show in FIG. 18;

FIG. 36 is a typical illustration of a display screen useful
for understanding an object-between-network display
method according to an embodiment of the present inven-
tion;

FIG. 37 is an explanatory view useful for understanding
hierarchical networks;

FIGS. 38(A) and 38(B) are illustrations each showing by
way of example a display image consisting of a lot of objects
and wirings;

FIGS. 39(A) and 39(B) are illustrations each showing by
way of example a display image of a subnetwork;

FIGS. 40(A) and 40(B) are illustrations each showing an
alternative embodiment of the display method of the sub-
network;

US RE42,105 E

21

FIGS. 41(A), 41(B) and 41(C) are illustrations each show-
ing by way of example a display image having a display area
in which a plurality of measures are coupled with each other;

FIG. 42 is an illustration showing by way of example a
display image characterized by a display method of wiring;

FIGS. 43(A) and 43(B) are illustrations each showing an
alternative embodiment of the display method of the wiring;

FIGS. 44(A) 44(B) and 44(C) are illustrations useful for
understanding a procedure for producing a display area for
displaying a network of an object;

FIG. 45 is an illustration showing a state in which an
object is disposed on a display screen by users;

FIGS. 46(A) and 46(B) are illustrations each showing a
state in which a wiring among objects disposed on a display
screen is performed by users;

FIGS. 47(A) and 47(B) are illustrations showing by way
of example display screens of an object-between-network
before and after display of the subnetwork, respectively;

FIG. 48 is a flowchart useful for understanding a proce-
dure for switching from the display of FIG. 47(A) to the
display of FIG. 47(B);

FIGS. 49(A), 49(B) and 49(C) are explanatory views use-
ful for understanding a procedure of a subnetwork display;

FIG. 50 is a flowchart useful for understanding a proce-
dure of the subnetwork display;

FIGS. 51(A), 51(B) and 51(C) are typical illustrations
each showing an embodiment in which a display area repre-
sentative of an object is formed with a single measure or a
plurality of measures coupled with one another;

FIGS. 52(A) and 52(B) are illustrations useful for under-
standing by way of example a display method of wiring;

FIG. 53 is a typical illustration showing by way of
example a display of wiring;

FIG. 54 is a flowchart useful for understanding a proce-
dure of executing the wiring shown in FIG. 53;

FIG. 55 is a flowchart useful for understanding an alterna-
tive embodiment of a procedure of executing the wiring;

FIG. 56 is a flowchart useful for understanding a further
alternative embodiment of a procedure of executing the wir-
ng;

FIG. 57 is a flowchart useful for understanding a still fur-
ther alternative embodiment of a procedure of executing the
wiring;

FIGS. 58-62 are typical illustrations each showing a result
obtained from an execution of wiring according to the wiring
procedures shown in FIGS. 54-56; and

FIGS. 63(A), 63(B) and 63(C) are typical illustrations
each showing a result obtained from an execution of wiring
according to the wiring procedures shown in FIGS. 55-57.

FIG. 64 is a schematic diagram showing a basic structure
of an object-oriented programming supporting apparatus
and a program storage medium for use in an object-oriented
programming according to an embodiment of the present
invention;

FIG. 65 is a conceptual view showing exemplarily an
involving relation among objects;

FIG. 66 is a typical illustration showing a connecting rela-
tion among objects for defining a hierarchical structure;

FIG. 67 is a typical illustration showing a pointer for
determining a connecting relation of a certain object to
another object;

FIG. 68 is a typical illustration showing one of the bus
elements constituting the bus element list to be connected to
the “pointers to buses” shown in FIG. 67;

20

25

30

35

40

45

50

55

60

65

22

FIG. 69 is a typical illustration showing one of the cable
elements constituting the cable element list to be connected
to the “pointers to cables” shown in FIG. 67;

FIG. 70 is a typical illustration showing exemplarily a
wiring among objects;

FIG. 71 is a conceptual view of a duplicate object;

FIG. 72 is a typical illustration showing a hierarchical
structure (object tree) of the objects shown in FIG. 71;

FIG. 73 is a flowchart useful for understanding a building
process for the duplicate object;

FIG. 74 is a typical illustration showing a connecting rela-
tion between the substantial object (original) and the dupli-
cate object (copy)

FIG. 75 is a conceptual view showing a coupling relation
of objects before a replacement of objects;

FIG. 76 is a typical illustration showing an object tree
concerning the objects shown in FIG. 75;

FIG. 77 is a conceptual view showing a coupling relation
of objects after a replacement of objects;

FIG. 78 is a typical illustration showing a part of the
object tree after a replacement of objects;

FIG. 79 is a flowchart useful for understanding an object
replacing process;

FIG. 80 is a typical illustration showing a part of the cable
element list connected to an object A;

FIG. 81 is a conceptual view showing a coupling relation
among objects before a movement of objects;

FIG. 82 is a typical illustration showing an object tree
concerning the objects shown in FIG. 81;

FIG. 83 is a conceptual view showing a coupling relation
of objects after a movement of objects;

FIG. 84 is a typical illustration showing an object tree
concerning the objects shown in FIG. 83;

FIG. 85 is a flowchart useful for understanding a process-
ing for a movement of objects and a change of wiring of
objects;

FIG. 86 is a typical illustration showing a state of an alter-
ation of an object tree;

FIG. 87 is a typical illustration showing a part of the cable
element list connected to an object A;

FIG. 88 is an explanatory view useful for understanding a
movement of wiring to a new object;

FIG. 89 is a typical illustration of a bus for use in wiring,
the bus being built on an object F;

FIG. 90 is a typical illustration showing a state of a change
of an object in wiring from an object (object D) inside a new
object (object F) to the object F;

FIG. 91 is a typical illustration showing exemplarily a
wiring among objects:

FIG. 92 is a typical illustration showing a cable element
list giving a definition of the wiring shown in FIG. 91;

FIG. 93 is a flowchart useful for understanding process-
ings for a display of an execution sequence for methods and
an alteration of the execution sequence for the methods;

FIG. 94 is a typical illustration showing a cable list ele-
ment list;

FIG. 95 is a view exemplarily showing a cable list dis-
played on a display screen 102a;

FIG. 96 is a typical illustration showing a state in which
an arrangement sequence of the cable elements arranged on
the cable element list is altered;

FIG. 97 is a typical illustration showing a cable element
list in which an arrangement sequence of the cable elements
has been altered;

US RE42,105 E

23

FIG. 98 is a typical illustration showing a state in which
an arrangement sequence of the cable list elements arranged
on the cable list element list is altered;

FIG. 99 is a typical illustration showing a cable list ele-
ment list in which an arrangement sequence of the cable list
elements has been altered;

FIG. 100 is a view showing a cable list in which an
arrangement sequence has been altered;

FIG. 101 is a typical illustration showing an embodiment
of a component “including” an existing software having a
graphical user interface;

FIG. 102 is a typical illustration showing an alternative
embodiment of a component “including” an existing soft-
ware having a graphical user interface;

FIG. 103 is a typical illustration showing a further alterna-
tive embodiment of a component “including” an existing
software having a graphical user interface;

FIG. 104 is a typical illustration showing a structure of an
event processing portion of the window management section
shown in FIG. 103;

FIG. 105 is a typical illustration showing a structure of an
event monitor portion of the component A shown in FIG.
103;

FIG. 106 is a basic construction view of a component
builder apparatus according to the present invention;

FIG. 107 is a typical illustration of an embodiment of a
component builder apparatus according to the present inven-
tion;

FIG. 108 is a flowchart useful for understanding process-
ings of building a component using a component builder
apparatus;

FIG. 109 is a construction view of an object ware pro-
gramming system in which structural elements correspond-
ing to the embodiment of the fifth object-oriented program-
ming supporting apparatus according to the present
invention are added to the object ware programming system
shown in FIG. 2;

FIG. 110 is a flowchart useful for understanding an opera-
tion of a component coupling unit:

FIG. 111 is a flowchart useful for understanding an opera-
tion of a component coupling unit;

FIG. 112 is a conceptual view showing a state in which an
existing soft ware is “included” in a component;

FIG. 113 is a view showing a table for definition items to
give various definitions shown in FIG. 112; and

FIG. 114 is a view exemplarily showing images displayed
on a display screen 102a when definitions are given.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Hereinafter, there will be described embodiments of the
present invention.

First, there will be explained an outline of an object ware
programming system in which embodiments according to
the present invention are put together, and then each indi-
vidual embodiment will be explained.

FIG. 1 is a perspective illustration of a computer system
including each individual embodiment of the present inven-
tion of an object-oriented programming apparatus, an
object-oriented programming supporting apparatus, a com-
ponent builder apparatus, an object-oriented program stor-
age medium, a program storage medium for use in an object-
oriented programming, a component storage medium, and

20

24

an object-between-network display method. In FIG. 1, a
computer system 100 comprises: a main body unit 101
incorporating thereinto a CPU, an MO (magneto-optical
disc) drive and the like: an image display unit 102 for dis-
playing on its display screen 102a images in accordance
with an instruction from the main body unit 101; a keyboard
103 for inputting various types of information to the com-
puter system 100; a mouse 104 for designating a desired
position on the display screen 102a of the display 102; and a
storage unit 105 for storing objects, object coupling pro-
grams and the like which will be described hereinafter.

A development of programs can be implemented by the
computer system 100 shown in FIG. 1. It is acceptable that
programs, which are developed by another same type of
computer system, are stored in a portable type of recording
medium such as an MO (magneto-optical disc) 110, and the
MO 110 is loaded into the computer system 100 shown in
FIG. 1 so that the developed programs can be inputted into
the computer system 100. Likewise, it is possible to transfer
the programs developed with the use of the computer system
100 shown in FIG. 1 through the MO 110 to another com-
puter system.

FIG. 2 is a block diagram of an object ware programming
system implemented in the computer system shown in FIG.

251

30

35

40

45

50

55

60

65

An object ware programming system 120 comprises an
object builder unit 121 for building objects and/or a compo-
nent which “includes” existing softwares, an interobject wir-
ing editor unit 122 for displaying a wiring among objects (a
coupling relation) to perform an editing, and an interpreter
unit 123 for connecting and running objects (including an
object consisting of a combination of the existing software
and the component), which are generated in the object
builder unit 121, in accordance with the wiring among
objects, or the coupling relation, which is defined by the
interobject wiring editor unit 122.

While the object builder unit 121 can build directly an
object through an operation of the keyboard 103 or the
mouse 104 in the computer system 100 shown in FIG. 1, the
object ware programming system 120 is provided with an
existing application file 131 for storing existing various
types of application programs (hereinafter, it may happen
that the application program is referred to simply as an
application), which have been developed with various types
of program languages. And thus the object builder unit 121
may also build a component which serves as one object,
“involving” the existing application stored in the existing
application file 131, together with the existing application. It
is to be noted that the object-is expressed including an object
consisting of a combination of the above-mentioned compo-
nent and the existing application “involved” in the
component, unless we note the particular.

The object built in the object builder unit 121 is stored in
an object data file 132 and a running object file 133. The
object data file 132 stores therein, of data representative of
the object built in the object builder unit 121, data necessary
for a display of objects and a wiring (definition of the cou-
pling relation) among objects. On the other hand, the run-
ning object file 133 stores therein running objects in which
the object built in the object builder unit 121 is converted
into a running format of one.

The interobject wiring editor unit 122 displays, upon
receipt of data as to an object stored in the object data file
132, the object on the display screen 102a of the image
display unit 102 shown in FIG. 1, and defines a coupling
state among objects in accordance with an operation of the

US RE42,105 E

25

keyboard 103 or the mouse 104. As will be described, a
display on the display screen 102a is given with a display
style close to that of an L.SI (Large Scale Integrated Circuit)
as the hardware, and a definition of the coupling state among
objects is performed in such a sense that terminals of such a
plurality of LSI’s are wired by signal lines. Hence,
hereinafter, it may happen that the object is referred to as
“LSI”, and a definition of the coupling state among objects is
referred to as “wiring”.

When a wiring among objects is performed by the inter-
object wiring editor unit 122, an interobject wiring data file
134 is used for the purpose of saving an intermediate result
of the wiring and displaying the intermediate result through
loading. The interobject wiring data file 134 stores wiring
information which is convenient as a man-machine inter-
face. For example, in the system according to present
embodiment, there is provided a hierarchical structure of
objects for the purpose of easy understanding of wiring for
users. The interobject wiring data file 134 stores also data as
to such a hierarchical structure.

In this manner, when the interobject wiring editor unit 122
has completed the wiring, an interpreter use wiring data file
135 stores information (hereinafter, it is referred to as “wir-
ing data”) representative of a coupling state among objects.
When the interpreter use wiring data file 135 stores the wir-
ing data, information simply available for user’s
understanding, for example, information of the hierarchical
structure of objects, is omitted, and only the wiring data,
which is necessary for actuation of the object (software), is
extracted and stored in the interpreter use wiring data file
135.

In the interpreter unit 123, the running objects stored in
the running object file 133 are coupled and executed in
accordance with the wiring data stored in the interpreter use
wiring data file 135.

Hereinafter, the respective embodiments will be
described. As a matter of convenience of explanation and for
better understanding of the invention, there will be
described, taking into account of the arrangement of the
object ware programming system 120 shown in FIG. 2, first,
the embodiment concerning the interpreter unit 123 and the
associated periphery, then the embodiment concerning the
interobject wiring editor unit 122 and the associated
periphery, and finally the embodiment concerning the object
builder unit 121 and the associated periphery.

First, there will be described the embodiment concerning
the interpreter unit 123 and the associated periphery.

FIG. 3 is a typical illustration showing a first example of a
software system implemented within the computer system
shown in FIG. 1. Now referring to FIG. 3, there will be
described a schematic construction of a first object-oriented
programming apparatus and a first object-oriented program
storage medium according to one embodiment of the present
invention, and then referring to FIG. 4 et seq. there will be
described details of those.

A corresponding relation between the software system
shown in FIG. 3 and the present invention is as follows. That
is, the storage unit 105 (FIG. 1), in which the software sys-
tem shown in FIG. 3 is stored, corresponds to the first object-
oriented program storage medium according to an embodi-
ment of the present invention, and a combination of the
hardware of the computer system 100 shown in FIG. 1 and
an object coupling unit 10 which is in a state operable under
the computer system 100 corresponds to the first object-
oriented programming apparatus. Incidentally, when the
software system shown in FIG. 3 is downloaded onto the

20

25

30

35

40

45

50

55

60

65

26

MO 110, the MO 110 also corresponds to an example of the
first object-oriented program storage medium according to
an embodiment of the present invention.

Now, let us consider typically two objects A and B each
comprising data and processing (method).

An output instruction bus portion generating unit 11, in
the object coupling unit 10, generates a portion which forms
a core of an output instruction bus portion for performing an
issue process of a message of an object (for example object
A) to another object (for example object B).

An input instruction bus portion generating unit 12, in the
object coupling unit 10, generates an input instruction bus
portion of an object (for example object B). The input
instruction bus portion receives a message directed to the
self object (for example object B) issued by another object
(for example object A), and activates a method of the self
object (for example object B), which method is associated
with the received message.

Incidentally, according to the present embodiment, the
output instruction bus portion generating unit 11 and the
input instruction bus portion generating unit 12 are provided
in the object coupling unit 10. However, it is acceptable that
the objects A and B have originally structures corresponding
to the output instruction bus portion or the input instruction
bus portion. Alternatively, it is acceptable that the object
coupling unit 10 does not always comprise the output
instruction bus portion generating unit 11 and the input
instruction bus portion generating unit 12.

An instruction coupling unit 13, in the object coupling
unit 10, permits a message to be transferred between objects
(objects A and B) by means of giving an association of a
message of the object A with a method of object B.

A data element list generating unit 14, in the object cou-
pling unit 10, generates a data element list of an object
(typically object A) in which pointers to data storage areas
for storing therein data are arranged.

Likewise, a pointer element list generating unit 15, in the
object coupling unit 10, generates a pointer element list of an
object (object B) in which pointers to pointer storage areas
for storing therein pointers to data are arranged.

A data coupling unit 16, in the object coupling unit 10,
permits a message to be transferred between objects A and B
by means of writing pointers, which are arranged in the data
element list produced by the data element list generating unit
14, into pointer storage areas indicated by the pointers
arranged in the pointer element list of the object B produced
by the pointer element list generating unit 15.

FIG. 4 is a typical illustration showing an example of a
data structure of an output instruction bus portion of an
object A and an input instruction bus portion of an object B
shown in FIG. 3.

The object A has a message table consisting of an arrange-
ment of a maximum number MA , ,,, of messages of the
object A. The message table stores pointers to a method
element list, which will be described hereinafter, corre-
sponding to a message number MA, of each message
(where a message number is expressed by MA and it is
expressed by a suffix A that the message number is of a
message of the object A).

The method element list consists of an arrangement of a
single or a plurality of method elements. Each of the method
elements comprises a method number ME for specifying a
method, a pointer to an object in which the method specified
by the method number ME is executed, and a pointer to the
subsequent method element. Here, the method number is

US RE42,105 E

27

expressed by an ME, and the object in which the method
specified by the method number ME is executed is expressed
by a suffix. Specifically, the uppermost stage of the method
element shown in FIG. 3 stores a method number ME; of a
method of the object B, and a pointer to the object B.

The last stage of method element ME in FIG. 3 stores a
pointer to the subsequent method element data (referred to
as “null”) indicating that the method element is of the final
stage itself and there is no method element after itself.

The method element lists are generated at the maximum
by a number corresponding to the number of messages of the
object A. Each of the method element lists corresponds to
the associated message of the object A. When the message is
issued, the associated method element list is referred to.

While a one method element list corresponds to a one
message on a one-to-one basis, it is not always arranged that
method elements arranged on a one method element list are
the only ones related to a certain object (e.g. the object B)
and it is permitted that method elements related to a plurality
of methods of a plurality of objects are arranged on a one
method element list.

While the above-mentioned description explains a con-
struction of the output instruction bus unit of the object A,
the output instruction bus unit is provided for each of the
objects which issue messages to another object.

The object B has a method table consisting of an arrange-
ment of a maximum MEy ,,, ;- of a method number ME, of
the object B. The method table stores therein a pointer to the
method specified by the method number MEg, correspond-
ing to the method number ME of each method.

While the above-mentioned description explains a con-
struction of the input instruction bus unit of the object B, the
input instruction bus unit receives a message issued by
another object, in a similar fashion to that of the output
instruction bus unit, and is provided for each of the objects,
which executes the method associated with the received
message. In some cases, it happens that one object has both
an output instruction bus unit and an input instruction bus
unit.

FIG. 5 is a flowchart useful for understanding processings
for an issue of a message.

When it is intended to issue a message in a certain pro-
cessing in execution in the object A, a message table is
referred to so as to obtain, from a message number MA of
the message intended to be issued, a pointer to the method
element list associated with the message number MA , ,, ID
(step 5_1), so that the method elements arranged in the
method element list indicated by the pointer are referred to.
For example, when the uppermost stage of the method ele-
ment shown in FIG. 4 is referred to, the object B indicated by
a pointer stored in the method element referred to is called
wherein a method number ME stored in the method ele-
ment serves as an argument (step 5_2). Such a message
issue processing is performed on each of the method ele-
ments arranged in a one method element list for each issue of
a one message (steps 5_3,5_4).

In the object B called wherein the method number ME,
serves as an argument, the method number ME, given in the
form of an argument is obtained (step 5_5). In step 5_6
there is provided such a process that the method table is
referred to so as to obtain a pointer to a method specified by
the obtained method number ME,, and a processing of the
method indicated by the pointer is performed.

FIG. 6 is a flowchart useful for understanding processings
of an output instruction bus portion generating unit 11 of an
object coupling unit 10 shown in FIG. 3.

20

25

30

40

45

50

55

60

65

28

In step 6__1, a frame of the message table having a width
MA showninFIG. 4 is produced.

A M.
Incidentally, according to the present embodiment, it is so

arranged that when the object A issues a message, a pointer
of the method element list is identified through a message
table. However, it is acceptable that the pointer to the method
element is written directly into a process (method) of the
object A, for example, and thus in this case, there is no need
to provide the message table. In other words, the process
shown in FIG. 6, or the output instruction bus portion gener-
ating unit 11 shown in FIG. 3 is not always needed.

FIG. 7 is a flowchart useful for understanding processings
of an input instruction bus portion generating unit 12 of an
object coupling unit 10 shown in FIG. 3.

In step 7_1, a frame of the method table having a width
ME_ shown in FIG. 4 is produced. And in step 7_2, a
pointer to the method associated with the respective method
number ME is stored in a column of the respective method
number ME; within the frame.

Incidentally, according to the present embodiment, it is so
arranged that a pointer of the method is recognized through a
method table. However, there may be no need to provide an
association of the method number ME, with the pointer to
the method in form of the message table. Accordingly, the
process shown in FIG. 7, or the input instruction bus portion
generating unit 12 shown in FIG. 3 is not always needed.

FIG. 8 is a flowchart useful for understanding processings
of an instruction coupling unit 13 of an object coupling unit
10 shown in FIG. 3. Here, also it is assumed that the object B
is typical of another object.

When the method elements are produced, an operator,
who operates the computer system shown in FIG. 1, desig-
nates a corresponding relation between a message and a
method. This corresponding relation is determined by the
following designations.

(a) A pointer of the object A

(b) A pointer of the object B

(c) A message number MA , of the object A
(d) A method number ME, of the object B

It is noted that designations or the above-noted (a) to (d)
are performed, for example, in such a manner that designa-
tions for a name of the object, a processing (e.g. “display on
a screen the spreadsheet program and the spreadsheet
result”) and the like are performed by clicking through an
operation of a mouse 104 (cf. FIG. 1), of an icon displayed
on a display screen 102a. More in detail, as will be described
later, objects are displayed in the form of an LSI, and a
designation is performed through an operation for wiring
among terminals of the LSI’s using the mouse 104.

In the processing shown in FIG. 8, first, a frame of the
method element is produced (step 8 _1). In step 8 2, the
method number ME; and the pointer of the object B are
stored in the frame of the method element, so that they are
added to the method element list of the associated message
number MA , (step 8_3). That is, the pointer to the method
element to be added is stored in the column of the pointer to
the next method element, of the last stage of method element
arranged in the method element list, and the “null” is stored
in the column of the pointer to the next method element, of
the method element to be added. The processing shown in
FIG. 8 is repeatedly performed, if necessary, to produce the
method element list.

Incidentally, when none of method element is arranged in
the method element list, according to the present
embodiment, a pointer to a method element intended to be

US RE42,105 E

29

registered is stored in the column of the associated message
number MA ,, of the message table.

According to the present embodiment, producing the
method element list in the manner as mentioned above may
provide an association of the message of the object A with
the method of the object B. This feature makes it possible for
an operator to easily grasp a corresponding relation between
the message and the method so as to readily recognize the
method associated with the message, thereby implementing
a high speed processing.

FIG. 9 is a typical illustration showing an example of a
data structure of a data element list of an object A shown in
FIG. 3.

The object A includes a lot of data (e.g. n pieces of data) to
be transferred to the object B. The data element list generat-
ing unit 14 of the object coupling unit 10 shown in FIG. 3
produces the data element lists shown in FIG. 8.

In the data element list, there are arranged the data
elements, the number of which corresponds to the number of
data (n pieces of data). Each of the data elements comprises
a pointer to a data storage area for storing therein data, and a
pointer to the subsequent data element. The “null” is written
into the column of the pointer to the subsequent data
element, of the last stage of the data element. Incidentally, in
FIG. 9, for example, the pointer associated with the data
storage area 1 is denoted by a pointer 1 1 but not a pointer
1. The reason this is done is so that such a pointer is distin-
guished from a pointer which will be described later.

An “OUT ,” in FIG. 9 denotes a data element list number.
As to the data element lists, there is such a possibility that a
large number of data element lists are produced in accor-
dance with a number of destinations to which data are trans-
ferred. Here, the data element lists are discriminated from
one another by the data element list number “OUT ;” (where
the suffix A denotes the object A).

FIG. 10 is a flowchart useful for understanding process-
ings of a data element list generating unit 14 of an object
coupling unit 10 shown in FIG. 3.

In order to produce a data element list, first, a frame of
data elements is produced (step 10_1). A pointer to a data
storage area is substituted into the frame (step 10__2). In step
10__3, the pointer to the data storage area is added to the data
element list. When the pointer to the data storage area is
added to the data element list, the pointer to the data element
list to be added is stored in the column of the pointer to the
next data element, of the data element arranged in the last
stage of the data element list, and the “null” is stored in the
column of the pointer to the next data element, of the data
element list to be added.

The processing shown in FIG. 10 is repeatedly performed,
if necessary, to produce the data element list.

FIG. 11 is a typical illustration showing an example of a
data structure of a pointer element list of an object B shown
in FIG. 3.

The object B includes a lot of segments (e.g. n pieces of
segments) needed to receive data from the object A. Each of
the segments has the associated pointer storage area. The
pointer storage areas 1 to n store, at the stage before data
elements are coupled with pointer elements, arbitrary point-
ers to data, 1_3,2 3,...,n_3, respectively. The pointer
element list generating unit 15 of the object coupling unit 10
shown in FIG. 3 produces the pointer element list shown in
FIG. 11.

In the pointer element list, there are arranged the pointer
elements the number of which corresponds to the number of

20

25

30

35

40

45

50

55

60

65

30

pointer storage areas (n pieces of area). Each of the pointer
elements comprises a pointer to the associated pointer stor-
age area, and a pointer to the subsequent pointer element.
Incidentally, in FIG. 11, for example, the pointer to the
pointer storage area 1 is denoted by a pointer 1_ 2 but not a
pointer 1, and an arbitrary pointer stored in the pointer stor-
age area 1 is denoted by a pointer 1 3. The reason this is
done is so that the pointers including the pointers stored in
the data elements shown in FIG. 9 can be distinguished from
one another.

As to the pointer element lists also, in a similar fashion to
that of the data element lists, there is such a possibility that a
large number of pointer element lists are produced in accor-
dance with a number of sinks which receive data. Here, the
pointer element lists are discriminated from one another by a
pointer element list number “IN;” (where the suffix B
denotes the object B).

FIG. 12 is a flowchart useful for understanding process-
ings of a pointer element list generating unit 15 of an object
coupling unit 10 shown in FIG. 3. This processing is similar
to the processing of the data element list generating unit 14,
which processing is shown in FIG. 10. Thus, the redundant
description will be omitted.

First, a frame of pointer elements is produced (step
12_1). A pointer to the associated pointer storage area is
stored in the frame (step 12_2). In step 12__3, the pointer to
the associated pointer storage area is added to the pointer
element list. The processing shown in FIG. 12 is repeatedly
performed, if necessary, to produce the pointer element list.

FIG. 13 is a typical illustration showing a structure after
an execution of processings of a data coupling unit 16 of an
object coupling unit 10 shown in FIG. 3.

Pointer storage areas 1 to n of the object B store therein
pointers 1_1to n_1stored in the data elements arranged in
the data element lists shown in FIG. 9, respectively. This
structure permits the object B to directly refer to data of the
object A.

FIG. 14 is a flowchart useful for understanding process-
ings of a data coupling unit 16 of an object coupling unit 10
shown in FIG. 3.

In step 14_1, the pointer 1_ 1 stored in the data element
arranged in the head of the data element list shown in FIG. 9
is stored in a working area D. Likewise, in step 14_ 2, the
pointer 1_ 2 stored in the pointer element arranged in the
head of the pointer element list shown in FIG. 11 is stored in
the working area D.

Next, in step 14__3, it is determined whether the working
area D is empty, in other words, it is determined whether a
mapping, which will be described on step 14_5, is com-
pleted up to the last stage of data element arranged in the
data element list shown in FIG. 9. When the working area D
is empty, the processing shown in FIG. 14 is terminated.

Likewise, in step 14_ 4, it is determined whether a work-
ing area P is empty, in other words, it is determined whether
a mapping is completed up to the last stage of pointer ele-
ment arranged in the pointer element list shown in FIG. 11.
When the working area P is empty, the processing shown in
FIG. 14 is terminated.

Instep 14_5, apointer (e.g. pointer 1__1 shown in FIG. 9)
stored in the working area D is substituted for a pointer (e.g.
pointer 1_3) stored in the pointer storage area (e.g. pointer
storage area 1) indicated by a pointer (e.g. pointer 1 2
shown in FIG. 11) stored in the working area P. Thus, there is
provided a mapping or a correspondence between the data 1
of the object A and the pointer 1_1 of the object B, which
mapping is shown in FIG. 13.

US RE42,105 E

31

In step 14_ 6, a pointer (e.g. pointer 2_ 1) stored in the
next data element arranged in the data element list shown in
FIG. 9 is stored in the working area D. Likewise, a pointer
(e.g. pointer 1_2) stored in the next pointer element
arranged in the pointer element list shown in FIG. 11 is
stored in the working area P. And the process returns to the
step 14__3. In this manner, this routine is repeated. Again in
step 14_ 5, when there is provided a mapping between the
last stage of data element of the data element list shown in
FIG. 9 and the last stage of pointer element of the pointer
element list shown in FIG. 11, the process goes to the step
14 _ 6 in which the working areas D and P are reset to be
empty. And the process returns to the step 14_ 3 and the
processing shown in FIG. 14 is terminated. While the above-
explanation was made assuming that the number of the data
elements arranged in the data element list is the same as the
number of pointer elements of the pointer element list, when
they are different from one another in the number, the work-
ing areas D or P are reset to be empty at the time when a
mapping for one less in number is terminated, and then the
processing of FIG. 14 is terminated.

After the processing of FIG. 14 or the mapping between
the data element list and the pointer element list is
terminated, the data element list and the pointer element list
become useless and thus be erased.

In the data coupling processing explained in conjunction
with FIGS. 9 to 14, an operator, who operates the computer
system 100, inputs:

(a) A pointer of the object A;

(b) A pointer of the object,B;

(c) A data element list number OUT , of the object A;

(d) A pointer element list number IN , of the object B.

It is noted that an input of data of the above-noted items
(a) to (d) are performed, in a similar fashion to that of the
input of the corresponding relation between the message and
the method explained referring to FIG. 8, by clicking of an
icon displayed on a display screen 102a (cf. FIG. 1).

In the processing shown in FIG. 14, while the mapping
between the data elements arranged in the data element list
and the pointer elements arranged in the pointer element list
is performed in accordance with the sequence of their
arrangements, for example, when the objects A and B are
made up, a provision of such a rule that the same name or the
associated name is given for the data storage area and the
pointer storage area which are associated with one another,
or such a rule that there is provided an arrangement of the
same or associated names in such a manner that the associ-
ated one-to-one are arranged in the same sequence makes it
possible to generate, by referring to their names or the
sequences of the arrangements, the data element list and the
pointer element list in which the data elements and the
pointer elements, which are associated with one another,
respectively, are arranged in the same sequence in their lists,
respectively. Thus, it is possible to provide the mapping
associated with the arrangement sequence as shown in FIG.
14.

According to the present embodiment, as shown in FIG. 3,
it is possible to directly refer to data of the object A from the
object B, thereby efficiently transferring data between the
objects and substantially improving a processing operational
speed as being over a plurality of objects. Thus, ther e is no
need to make up large objects in view of decreasing the
processing speed, and it is permitted to make up a lot of
small unit of objects thereby essentially improving a reus-
ability of the software.

According to the present embodiment mentioned above,
the object coupling unit 10 shown in FIG. 3 couples a plural-

20

25

30

35

40

45

50

55

60

65

32

ity of objects with each other at the stage of an initialization,
or at the stage in which a software system comprising a
plurality of objects is constructed, but there is considered no
re-coupling of the object-to-object after starting of the
operation of the software system thus constructed.

In view of the foregoing, next, there will be described
alternative embodiments in which after starting of the opera-
tion of the software system constructed, a re-coupling of the
object-to-object is dynamically performed, based on the
abovementioned embodiment.

Hereinafter, first, referring to FIGS. 15 to 18, there will be
described the schematic construction of each of the second
to fifth object-oriented programming apparatuses according
to embodiments of the present invention and the second to
fifth object-oriented program storage medium according to
embodiments of the present invention, and thereafter refer-
ring to FIGS. 19 to 35, there wil be described embodiments
in which the second to fifth object-oriented programming
apparatuses according to embodiments of the present inven-
tion and the second to fifth object-oriented program storage
medium according to embodiments of the present invention
are put together, respectively.

FIG. 15 is a typical illustration showing a second example
of a software system implemented within the computer sys-
tem shown in FIG. 1.

A corresponding relation between the software system
shown in FIG. 15 and the present invention is as follows.

That is, the storage unit 105 (cf. FIG. 1), in which the
software system shown in FIG. 15 is stored, corresponds to
the second object-oriented program storage medium accord-
ing to an embodiment of the present invention, and a combi-
nation of the hardware of the computer system 100 and an
object coupling unit 20 which is in a state operable under the
computer system 100 corresponds to the second object-
oriented programming apparatus. Incidentally, when the
software system shown in FIG. 15 is downloaded onto the
MO 110 shown in FIG. 1, the MO 110 also corresponds to an
example of the second object-oriented program storage
medium according to an embodiment of the present inven-
tion.

Also in FIG. 15, let us consider typically two objects A
and B among a number of objects.

In the object coupling unit 20 shown in FIG. 15, an output
instruction bus portion generating unit 21, an input instruc-
tion bus portion generating unit 22, and an instruction cou-
pling unit 23 are the same in their processing as the output
instruction bus portion generating unit 11, the input instruc-
tion bus portion generating unit 12 and the instruction cou-
pling unit 13 of the object coupling unit 10 shown in FIG. 3,
respectively. Thus, in a similar fashion to that of FIG. 3, the
instruction coupling unit 23 produces a path 23a to provide
an association of messages of the object A with messages of
the object B. It is also similar to that of FIG. 3 that the output
instruction bus portion generating unit 21 and the input
instruction bus portion generating unit 22 are not always
needed.

An input instruction tag table generating unit 24 produces,
on the output instruction bus portion of the object A, au input
instruction tag table showing a correspondence between a
message of another object (here typically the object B) and a
method of the object A.

As will be de scribed later, the input instruction tag table
is transferred to the object B in the form of an argument of a
message issued from the object A to the object B. In the
object B, during a processing of the object B there is
dynamically produced a passage for an issue of a message
directed from the object 5 to the object A, for example.

US RE42,105 E

33

FIG. 16 is a typical illustration showing a third example of
a software system implemented within the computer system
shown in FIG. 1.

A corresponding relation between the software system
shown in FIG. 16 and the present invention is as follows.

That is, the storage unit 105 (cf. FIG. 1), in which the
software system shown in FIG. 16 is stored, corresponds to
the third object-oriented program storage medium according
to an embodiment of the present invention, and a combina-
tion of the hardware of the computer system 100 and an
object coupling unit 30 which is in a state operable under the
computer system 100 corresponds to the third object-
oriented programming apparatus. Incidentally, when the
software system shown in FIG. 16 is downloaded onto the
MO 110 shown in FIG. 1, the MO 110 also corresponds to an
example of the third object-oriented program storage
medium according to an embodiment of the present inven-
tion.

Also in FIG. 16, let us consider typically two objects A
and B among a number of objects.

In the object coupling unit 30 shown in FIG. 16, an output
instruction bus portion generating unit 31, an input instruc-
tion bus portion generating unit 32, and an instruction cou-
pling unit 33 are the same in their processing as the output
instruction bus portion generating unit 11, the input instruc-
tion bus portion generating unit 12 and the instruction cou-
pling unit 13 of the object coupling unit 10 shown in FIG. 3,
respectively. Thus, in a similar fashion to that of FIG. 3, the
instruction coupling unit 33 produces a path 33a to provide
an association of messages of the object A with messages of
the object B. It is also similar to that of FIG. 3 that the output
instruction bus portion generating unit 31 and the input
instruction bus portion generating unit 32 are not always
needed.

An output instruction tag table generating unit 34
produces, on the output instruction bus portion of the object
A, an output instruction tag table showing a correspondence
between a method of another object (here typically the
object B) and a message of the object A.

As will be described later, the output instruction tag table
is transferred to the object B in the form of an argument of a
message issued from the object A to the object B. In the
object B, during a processing of the object B there is
dynamically rearranged a passage for an issue of a message
directed from the object A to the object B, for example.

FIG. 17 is a typical illustration showing a fourth example
of a software system implemented within the computer sys-
tem shown in FIG. 1.

A corresponding relation between the software system
shown in FIG. 17 and the present invention is as follows.

That is, the storage unit 105 (cf. FIG. 1), in which the
software system shown in FIG. 17 is stored, corresponds to
the fourth object-oriented program storage medium accord-
ing to an embodiment of the present invention, and a combi-
nation of the hardware of the computer system 100 and an
object coupling unit 40 which is in a state operable under the
computer system 100 corresponds to the fourth object-
oriented programming apparatus. Incidentally, when the
software system shown in FIG. 17 is downloaded onto the
MO 110 shown in FIG. 1, the MO 110 also corresponds to an
example of the fourth object-oriented program storage
medium according to an embodiment of the present inven-
tion.

Also in FIG. 17, let us consider typically two objects A
and B among a number of objects.

20

25

30

35

40

45

50

55

60

65

34

In the object coupling unit 40 shown in FIG. 17, an output
instruction .bus portion generating unit 41, an input instruc-
tion bus portion generating unit 42,and an instruction cou-
pling unit 43 are the same in their processing as the output
instruction bus portion generating unit 11, the input instruc-
tion bus portion generating unit 12 and the instruction cou-
pling unit 13 of the object coupling unit 10 shown in FIG. 3,
respectively. Thus, in a similar fashion to that of FIG. 3, the
instruction coupling unit 43 produces a path 43a to provide
an association of messages of the object A with messages of
the object B. It is also similar to that of FIG. 3 that the output
instruction bus portion generating unit 41 and the input
instruction bus portion generating unit 42 are not always
needed.

An input data tag table generating unit 44 produces, on the
output instruction bus portion of the object A, an input data
tag table showing a correspondence between a data element
list number OUT}, for specifying a data element list in which
pointers to data storage areas of another object (here typi-
cally the object B) are arranged and a pointer element list
number IN, for specifying a pointer element list in which
pointers to pointer storage areas of the object A are arranged.

The data element list number OUT, and the pointer ele-
ment list number IN, are determined at the stages when the
objects B and A are made up, respectively. However, at the
stage in which the input data tag table is simply generated,
the data element list itself and the pointer element list itself
are not yet produced. The input data tag table is transferred
to the object B in the form of argument of a message issued
from the object A to the object B. Upon receipt of the input
data tag table, the object B produces a data element list of
one’s own (the object B) dynamically during a processing of
the object B and a pointer element list of the object A as
well, so that the data element list and the pointer element list
are coupled together. Details thereof will be described later.

FIG. 18 is a typical illustration showing a fifth example of
(a software system implemented within the computer system
shown in FIG. 1.

A corresponding relation between the software system
shown in FIG. 18 and the present invention is as follows.

That is, the storage unit 105 (cf. FIG. 1), in which the
software system shown in FIG. 18 is stored, corresponds to
the fifth object-oriented program storage medium according
to an embodiment of the present invention, and a combina-
tion of the hardware of the computer system 100 and an
object coupling unit 50 which is in a state operable under the
computer system 100 corresponds to the fifth object-oriented
programming apparatus. Incidentally, when the software
system shown in FIG. 18 is downloaded onto the MO 110
shown in FIG. 1, the MO 110 also corresponds to an
example of the fifth object-oriented program storage
medium according to an embodiment of the present inven-
tion.

Also in FIG. 18, let us consider typically two objects A
and B among a number of objects.

In the object coupling unit 50 shown in FIG. 18, an output
instruction bus portion generating unit 51, an input instruc-
tion bus portion generating unit 52, and an instruction cou-
pling unit 53 are the same in their processing as the output
instruction bus portion generating unit 11, the input instruc-
tion bus portion generating unit 12 and the instruction cou-
pling unit 13 of the object coupling unit 10 shown in FIG. 3,
respectively. Thus, in a similar fashion to that of FIG. 3, the
instruction coupling unit 53 produces a path 53a to provide
an association of messages of the object A with messages of
the object B. It is also similar to that of FIG. 3 that the output

US RE42,105 E

35

instruction bus portion generating unit 51 and the input
instruction bus portion generating unit 52 are not always
needed.

An output data tag table generating unit 54 produces, on
the output instruction bus portion of the object A, an output
data tag table showing a correspondence between a pointer
element list number IN for specifying a pointer element list
in which pointers to pointer storage areas of another object
(here typically the object B) are arranged and a data element
list number OUT , for specifying a data element list in which
pointers to data storage areas of the object A are arranged.

The pointer element list number IN; and the data element
list number OUT, are determined at the stages when the
objects B and A are made up, respectively. However, at the
stage in which the output data tag table is simply generated,
the pointer element list itself and the data element list itself
are not yet produced. The output data tag table is transferred
to the object B in the form of argument of a message issued
from the object A to the object B. Upon receipt of the output
data tag table, the object B produces a data element list of the
object A dynamically during a processing of the object B and
a pointer element list of one’s own (the object B) as well, so
that the data element list and the pointer element list are
coupled together. Details thereof will be described later.

FIG. 19 is a typical illustration showing a part of the data
structure of objects A shown in FIGS. 15 to 18. FIG. 19
shows, of the data structure shown in FIG. 4, one method
element, an input instruction tag table, an output instruction
tag table, an input data tag table, and output data tag table,
these four tag tables being coupled with the method element.
FIG. 19 shows overall data structure of the embodiments
having all aspects of the respective embodiments explained
referring to FIGS. 15 to 18.

Appended to the method element shown in FIG. 19 are the
structure of the method,element shown in FIG. 4, that is, a
method number ME of another object (here typically object
B), a pointer to an object (here object B) which executes a
method specified by the method number ME, a pointer to
the subsequent method element, a pointer to an input instruc-
tion tag table (hereinafter, it happens that this pointer is
referred to as P1), a pointer to an output instruction tag table
(hereinafter, it happens that this pointer is referred to as P2),
a pointer to an input data tag table (hereinafter, it happens
that this pointer is referred to as P3), a pointer to an output
data tag table (hereinafter, it happens that this pointer is
referred to as P4), and a pointer to oneself (object A)
(hereinafter, it happens that this pointer is referred to as P5).

The input instruction tag table has the same width in its
arrangement as the maximum number MA; ,, ., of mes-
sages of another object (here object B), and stores therein the
method number ME , of the object A in association with the
message number MA of the object B.

The output instruction tag table has the same width in its
arrangement as the maximum number ME , . of method
of another object (here object B), and stores therein the mes-
sage number MA , of the object A in association with the
method number MEj of the object B.

The input data tag table has the same width in its arrange-
ment as the maximum number OUTy ,,, . of data element
lists of another object (here object B), and stores therein the
pointer element list number IN , of the object A in associa-
tion with the data element list number OUT of the object B.

The output data tag table has the same width in its
arrangement as the maximum number IN ; , . of pointer
element lists of another object (here object B), and stores
therein the data element list number OUT , of the object A in
association with the pointer element list number IN of the
object B.

20

25

30

40

45

50

55

60

65

36

Incidentally, while FIG. 19 shows, with respect to the out-
put instruction bus portion of the object A, four tag tables
related to the object B, generally, these four tag tables are
provided in set by the number of party objects which receive
messages issued by the object A, when the output instruction
bus portion of the object A is viewed as a whole. That is,
these four tag tables are provided in association with each of
the respective objects concerned. This is the similar as to the
matter of the output instruction bus portion of another object
not limited to the object A.

In the event that the object A issues messages to the object
A referring to the method element shown in FIG. 19, trans-
ferred from the object A are the method number ME of the
object B and in addition, if necessary, part or all of the point-
ers P1-P5 in the form of arguments. Alternatively, it is
acceptable that the method number ME and all of the point-
ers P1-P5 are always transferred in the form of arguments.

Hereinafter, so far as it is not noted specifically, the expla-
nation will be made presupposing the data structure in which
the data structure shown in FIG. 4 has been altered as shown
in FIG. 19.

FIG. 20 is a flowchart useful for understanding an
example of processings for an issue of a message of an
object A.

In FIG. 20, the steps 20_1, 20__3 and 20_4 are the same
asthesteps5_ 1,5 3 and5 4 of FIG. 5, respectively. Thus,
the redundant explanation will be omitted.

In step 20__2, the method number ME, and in addition the
pointers P1, P2 and P5, according to the present example,
are transferred to the object B in the form of arguments.
Upon receipt of the message, the object B executes a pro-
cessing of a method specified by the method number ME in
accordance with the flowchart shown in FIG. 5(B).

FIG. 21 is a flowchart useful for understanding a first
example of a partial processing of processings of an object
B. The partial processing is executed during a processing of
a method specified by the method number ME transferred
to the object B in the form of arguments.

In step 21_1, referring to the input instruction tag table
transferred to the object B in the form of arguments, the
method number ME , of the object A is obtained from the
message number MA; of the object B. In step 21_ 2, during
a processing of the object B, a processing of the method of
the obtained method number ME, of the object A is
executed.

FIG. 22 is a flowchart useful for understanding a second
example of a partial processing of processings of an object
B.

In step 22_ 1, referring to the input instruction tag table
transferred to the object B in the form or arguments, the
method number ME , of the object A is obtained from the
message number MA; of the object B. In step 22_2, a
method element related to the method number ME , of the
object A is added to a method element list associated with
the message number MA; of the message table of one’s own
(the object B). In this manner, thereafter, an issuance of the
message of the message number MA; of the object B per-
mits an execution of the method of the method number ME ,
of'the object A.

FIG. 23 is a flowchart useful for understanding a third
example of a partial processing of processings of an object
B. In this case, in the partial processing, the argument of the
message issued in the object A is not referred to directly.

In step 23_1, a processing of the object B causes an
object C to be produced. A processing of producing another

US RE42,105 E

37

object in one object is one of the usual processings in the
object-oriented programming. Thus, an explanation as to the
technique of producing the object C will be omitted.

FIG. 24 is a flowchart useful for understanding a fourth
example of a partial processing of processings of an object

With respect to the partial processing shown in FIG. 24,
there is a need, prior to its execution, to perform the partial
processing shown in FIG. 23 so that the object C is pro-
duced. However, with respect to timing of a producing of the
object C, it is not restricted specifically. It is acceptable that
the object C is produced during a series of processing at the
present time in the object B. Alternatively, it is acceptable
that the object C is produced in processing at the previous or
earlier time in the object B.

In the partial processing shown in FIG. 24, in step 24_ 1,
referring to the input instruction tag table transferred to the
object B in the form of arguments, the method number ME ,
of the object A, which is associated with the message num-
ber MA succeeded to the object C, originally the message
number of the object B, is obtained. In step 24 2, a method
element of the method number ME , of the object A is added
to the method element list of the object C associated with the
message number MA; of the message table of the object C.
Thus, a path of messages from the object C to the object A is
formed.

FIG. 25 is a flowchart useful for understanding a fifth
example of a partial processing of processings of an object
B.

In step 25_ 1, referring to the output instruction tag table,
the message number MA , of the object A associated with
the method number ME , of the object A is obtained. In step
25 2, a method element related to the method number ME,
of the object B is added to a method element list associated
with the message number MA , of the message table of the
object A. In this manner, thereafter, an issuance of the mes-
sage of the message number MA , of the object A permits an
execution of the method of the method number ME of the
object B.

FIG. 26 is a flowchart useful for understanding a sixth
example of a partial processing of processings of an object
B.

With respect to the partial processing shown in FIG. 26,
there is a need, prior to its execution, to perform the partial
processing shown in FIG. 23 so that the object C is pro-
duced. However, with respect to timing of a producing of the
object C, it is not restricted specifically. It is acceptable that
the object C is produced during a series of processing at the
present time in the object B. Alternatively, it is acceptable
that the object C is produced in processing at the previous or
earlier time in the object B.

In the partial processing shown in FIG. 26, in step 26_ 1,
referring to the output instruction tag table transferred to the
object B in the form of arguments, the message number
MA , of the object A, which is associated with the method
number ME succeeded to the object C, originally the mes-
sage number of the object B, is obtained. In step 26_2, a
method element, in which the method number ME and the
pointer to the object C are stored, is added to the method
element list associated with the message number MA , of the
message table of the object A.

In this manner, thereafter, it is possible to issue messages
from the object A to the newly produced object C.

FIG. 27 is a flowchart useful for understanding another
example of processings for an issue of a message of an
object A, which is different from the example of that shown
in FIG. 20.

20

25

30

35

40

45

50

55

60

65

38

In FIG. 27, steps 27_ 1,27 3 and 27 4 are the same as
the steps 201, 20_ 3 and 20_ 4 of FIG. 20, and the steps
5_1,5 3 and5_4 of FIG. 5, respectively. Thus, the redun-
dant explanation will be omitted.

In step 27_ 2, the object B is called, where the method
number ME, and in addition the pointers P3, P4 and P5 are
argument.

Upon receipt of the message, the object B executes a pro-
cessing of a method specified by the methods number ME.

FIG. 28 is a flowchart useful for understanding a seventh
example of a partial processing of processings of an object
B.

In step 28_ 1, referring to the input data tag table trans-
ferred to the object B in the form of arguments, the pointer
element list number IN , of the object A is obtained from the
data element list number OUT of the object B. In step
28 2, the pointer element list (cf. FIG. 11 wherein the
pointer element list of the object B is shown) of the object A,
which is associated with the obtained pointer element list
number IN , is produced. In step 28__3, the data element list
(cf. FIG. 9 wherein the data element list of the object A is
shown) of the object B, which is associated with the data
element list number OUTj, is produced. And in step 28_ 4, a
coupling processing of the data element list with the pointer
element list (cf. FIG. 13 wherein the pointer of the object B
indicates the data of the object A, and in this respect, posi-
tions of the object A and the object B are reversed, as com-
pared with the present case) is executed.

In this manner, according to the present embodiment, a
path for transfer of data between objects is formed during an
execution of a processing, so called dynamically.

FIG. 29 is a flowchart useful for understanding a eighth
example of a partial processing of processings of an object
B.

With respect to the partial processing shown in FIG. 29,
there is a need, prior to its execution, to perform the partial
processing shown in FIG. 23 so that the object C is pro-
duced. However, with respect to liming of a producing of the
object C, any times are acceptable if the object C is produced
before the partial processing shown in FIG..29.

In the partial processing shown in FIG. 29, in step 29 1,
referring to the input data tag table transferred to the object
B in the form of arguments, the pointer element list number
IN, of the object A is obtained from the data element list
number OUT, which is succeeded to the object C, origi-
nally the data element list number of the object B. In step
29 2, the pointer element list of the object A, which is asso-
ciated with the obtained pointer element list number IN , is
produced. In step 29 3, the data element list of the object C,
which is associated with the data element list number OUT,
is produced. And in step 29_ 4, a coupling processing of the
data element list of the object C with the pointer element list
of'the object A is executed.

In this manner, according to the present embodiment, a
path for directly referring to data of the newly produced
object C from the object A is formed during an execution of
a processing, so called dynamically.

FIG. 30 is a flowchart useful for understanding a ninth
example of a partial processing of processings of an object
B.

In the partial processing shown in FIG. 30, in step 30_ 1,
referring to the output data tag table transferred to the object
B in the form of arguments, the data element list number
OUT , of the object A is obtained from the pointer element
list number IN; of the object B. In step 30_2, the data

US RE42,105 E

39

element list of the object A, which is associated with the
obtained data element list number OUT , of the object A, is
produced. In step 30_3, the pointer element list of one’s
own (the object B), which is associated with the pointer
element list number INg, is produced. And in step 30_4, a
coupling processing of the data element list of the object A
with the pointer element list of the object B is executed.

In this manner, according to the present embodiment, a
path for directly referring to data of the object A from the
object B is formed during an execution of a processing, so
called dynamically.

FIG. 31 is a flowchart useful for understanding a tenth
example of a partial processing of processings of an object
B.

With respect to the partial processing shown in FIG. 31,
there is a need, prior to its execution, to perform the partial
processing shown in FIG. 23 so that the object C is pro-
duced. However, with respect to timing of a producing of the
object C, any times are acceptable if the object C is produced
before the partial processing shown in FIG. 31.

In the partial processing shown in FIG. 31, in step 31_ 1,
referring to the output data tag table transferred to the object
B in the form of arguments, the data element list number
OUT , of the object A is obtained from the pointer element
list number INg, which is succeeded to the object C, origi-
nally the pointer element list number of the object B. In step
31_ 2, the data element list of the object A, which is associ-
ated with the obtained data element list number OUT , is
produced. In step 31__3, the pointer element list of the object
C, which is associated with the pointer element list number
IN, is produced. And in step 31_ 4, a coupling processing
of the data element list of the object A with the pointer
element list of the object C is executed.

In this manner, according to the present embodiment, a
path for directly referring to data of the object A from the
object C is formed during an execution of a processing, so
called dynamically.

While the above description concerns various types of
partial processings during a processing of the object B, those
various types of partial processings are not always executed
independently, and if necessary, a plurality of partial pro-
cessings are performed continuously or in their combination.

FIG. 32 is a flowchart useful for understanding process-
ings of the input instruction tag table generating unit 24 of
the object coupling unit 20 shown in FIG. 15.

An operator, who operates the computer system 100 (cf.
FIG. 1) instructs the following items:

(a) A pointer of the object A

(b) A pointer of the object B

(c) A method number ME , of the object A

(d) A message number MA of the object B

In the processing shown in FIG. 32, upon receipt of the
above-noted instructions, a frame of the input instruction tag
table having the same width as the maximum number MA -
max of messages of the object B is produced (step 32_1). In
step 32_ 2, the method number ME , of the object A is stored
in the column of the message number MA ; of the object B of
the frame thus produced. In step 32_ 3, a pointer to the input
instruction tag table is registered into the whole method ele-
ments (e.g. the method element shown in FIG. 19) related to
the object B, of the object A. It is noted that FIG. 19 shows
an illustration in which the pointer (P1) to the input instruc-
tion tag table has been already registered.

While the object B is typically dealt with according to the
present embodiment, the output instruction bus portion of

20

25

30

35

40

45

50

55

60

65

40

the object A produces input instruction tag tables related to
all of the objects which have a possibility of receiving mes-
sages issued from the object A, and pointers to the input
instruction tag tables are registered into method elements
related to the objects associated with the input instruction
tag tables thus produced, respectively. This is the similar as
to the matter of the output instruction tag tables, the input
data tag tables and the output data tag tables.

FIG. 33 is a flowchart useful for understanding process-
ings of the output instruction tag table generating unit 34 of
the object coupling unit 30 shown in FIG. 16.

An operator, who operates the computer system 100 (cf.
FIG. 1), instructs the following items in a similar fashion to
that of wiring of LSI’s:

(a) A pointer of the object A

(b) A pointer of the object B

(c) A message number MA , of the object A

(d) A method number ME of the object B

In the processing shown in FIG. 33, upon receipt of the
above-noted inputs, a frame of the output instruction tag
table having the same width as the maximum number ME ;-
max of methods of the object B is produced (step 33_1). In
step 33_ 2, the message number MA ,; of the object A is
stored in the column of the method number ME; of the
object B of the frame thus produced, in step 33_ 3, a pointer
to the output instruction tag table is registered into the whole
method elements related to the object 8, of the object A. It is
noted that FIG. 19 shows an illustration in which the pointer
(P2) to the output instruction tag table has been already reg-
istered.

FIG. 34 is a flowchart useful for understanding process-
ings of the input data tag table generating unit 44 of the
object coupling unit 40 shown in FIG. 17.

An operator, who operates the computer system 100 (cf.
FIG. 1), instructs the following items in a similar fashion to
that of wiring of LSI’s:

(a) A pointer of the object A

(b) A pointer of the object B

(c) A pointer element list number IN , of the object A

(d) A data element list number OUT; of the object B

In the processing shown in FIG. 34, upon receipt of the
above-noted instructions, a frame of the input data tag table
having the same width as the maximum number OUT,,,
of data element lists of the object B is produced (step 34_1).
In step 34_ 2, the pointer element list number IN, of the
object A is stored in the column of the data element list
number OUT of the object B of the frame thus produced. In
step 34__3, a pointer to the input data tag table is registered
into the whole method elements related to the object B, of
the object A. It is noted that FIG. 19 shows an illustration in
which the pointer (P3) to the input data tag table has been
already registered.

FIG. 35 is a flowchart useful for understanding process-
ings of the output data tag table generating unit 54 of the
object coupling unit 50 shown in FIG. 18.

An operator, who operates the computer system 100 (cf.
FIG. 1), instructs the following items in a similar fashion to
that of wiring of LSI’s:

(a) A pointer of the object A

(b) A pointer of the object B

(c) A data element list number of the object A

(d) A pointer element list number of the object B

In the processing shown in FIG. 35, upon receipt of the
above-noted inputs, a frame of the output data tag table hav-

US RE42,105 E

41

ing the same width as the maximum number INg,,, of
pointer element lists of the object B is produced (step 35_1).
In step 35_ 2, the data element list number OUTy of the
object A is stored in the column of the pointer element list
number IN of the object B of the frame thus produced. In
step 35__3, a pointer to the output data tag table is registered
into the whole method elements related to the object B, of
the object A. It is noted that FIG. 19 shows an illustration in
which the pointer (P4) to the output data tag table has been
already registered.

While it is acceptable that the processings in FIGS. 32 to
35 are executed independently and only one of four tag
tables shown in FIG. 19 is registered into the method
element, it is also acceptable that two or more of these four
tag tables are registered into one method element, if neces-
sary or always. Further, although FIGS. 32 to 35 fail to
clearly state, in the event that anyone of the processings
shown in FIGS. 32 to 35 is executed, the pointer (P5) to the
object A itself is registered into the method.

According to the embodiments explained referring to
FIGS. 15 to 35, not only are object-to-object coupled with
one another in the initial state, but also a coupling of a mes-
sage with a method, and a coupling of data with a pointer are
performed during an execution of processings or dynami-
cally. When a new object is produced, in a similar fashion as
to the matter of the new object, the dynamic coupling is
performed. In this manner, the new coupling is performed in
accordance with conditions, and a very higher speed of
transfer of messages and data among a plurality of objects is
implemented.

Next, there will be described an embodiment concerning
the interobject wiring editor unit 122 and the associated
periphery. Here, of the embodiment concerning the interob-
ject wiring editor unit 122 and the associated periphery,
there will be described an embodiment of an object-
between-network display method on the display screen 102a
of the display unit 102 of the computer system 100.

As described above, while the object oriented program-
ming has various drawbacks such that reuse of software is
low and a running speed is slow, there exists an idea such
that objects are wired to describe a connecting relation
among the objects. However, according to the earlier
technology, the connecting relation-among the objects is
very simple, such that data is transferred to another object in
the form of an argument of the message. As described in the
embodiment related to the above-mentioned interpreter unit
123, however, in the event that there is a need to perform a
wiring among pointers of the objects, which is more compli-
cated than a wiring among the objects, according to the con-
ventional display scheme, it is difficult for users to readily
understand the connecting relation among the objects and to
efficiently perform a wiring.

For example, hitherto, when an object-between-network
is displayed, there is no distinction between a position of
display for objects and a position of display for wirings
among the objects, and arrangement and wiring of the
objects are performed freely. Thus, a certain display device
permits an object to overlap with a wiring. This raises such a
problem that users are obliged to perform a wiring so as to
avoid an overlapping. Also a certain another display device
does not display a resultant network even if a wiring is
implemented. This raises such a problem that users cannot
readily grasp a relation between objects.

Further, according to the prior art system, the displayed
object is of a hierarchical structure, and a device for display-
ing subnetworks constituting a certain object displays such

20

25

30

35

40

45

50

55

60

65

42

subnetworks on a new screen or window. This raises such a
problem that it is difficult for users to identify a connecting
relation between a network of the parent object and the
subnetworks, and in addition such a problem that the net-
work of the parent object goes behind the new window.

Furthermore, according to the conventional object-
between-network display, an object is fixed or variable in
size. However, in the event that the object is fixed, in a case
where the number of input and output terminals of the object
is variable, there is a possibility that the selection of a large
number of input-and output terminals bring about narrow
terminal intervals and thus it will be difficult to display ter-
minal names. Also in the event that the object is variable in
size, users have to control the size of the object. This raises
such a problem that a work amount is increased.

Still further, according to the conventional object-
between-network display, in the event that directions of the
flow of data and instructions in the network wiring are
indicated, arrows are appended to only one terminal end or
only both ends. Consequently, it is impossible to identify the
flow direction in the middle of a wiring. Thus, in a case
where the objects on both the ends of a wire are out of the
display screen, there is a problem that it is impossible to
identify whether the terminal of the object, which is a start-
ing end or a terminal end, is an input terminal or an output
terminal.

Still furthermore, according to the conventional object-
between-network display, in the event that wires intersect, in
order to identify whether two wires intersect or separate
from one another, a mark such as a black point or the like is
appended to a junction, alternatively a circular arc mark or
the like is utilized. However, in the event that the mark such
as a black point or the like is appended to a junction, it is
necessary for users to understand a rule of the display. On
the other hand, in the event that the circular are mark is
utilized, there is a problem that a radius of width is needed
for a one wire.

In view of the foregoing problems involved in the object-
between-network display, an embodiment, which will be
described hereinafter, is to provide a display method easy for
users to be understood.

Hereinafter, there will be described embodiments of an
object-between-network display method according to the
present invention. First, fundamental embodiments of an
object-between network display method according to the
present invention will be explained, and then the more
descriptive embodiments will be explained.

FIG. 36 is a typical illustration of a display screen useful
for understanding an object-between-network display
method according to an embodiment of the present inven-
tion. While FIG. 35 shows a lattice 201 which appears on the
display screen 102a, it is noted that the lattice 201 is shown
for the purpose of a clarification that the display screen 102a
is partitioned into a plurality of display areas, and the lattice
201 is not displayed indeed on the display screen 102a.

The display screen 102a is partitioned by the lattice 201
into a plurality of display areas each consisting of one mea-
sure. Bach of the display areas comprises an object display
domain 203 for displaying one of a plurality of objects pro-
duced by an object-oriented programming, and a wiring dis-
play domain 204 for displaying a wiring to connect a plural-
ity of objects to one another. The term “wiring” implies
wires representative of the path 13a, 23a, 33a, 43a and 53a
for a transfer of messages shown in FIGS. 3 and 15 to 18,
and the path 16a for a transfer of data shown in FIG. 2. The
wiring display domain 204 is determined in its location in

US RE42,105 E

43

such a manner that the wiring display domain 204 is formed
between the object display domain-to-domain 203 of the
adjacent two display areas.

There is displayed on the display screen 102a an image
such that each of a plurality of objects constituting a network
is disposed on the associated one of the object display
domains 203 of the respective display areas, and wirings for
coupling the plurality of objects with one another are dis-
played on the wiring display domains 204.

According to the display method as mentioned above, it is
possible to obtain an arrangement in which objects are
arranged in good order, and in addition possible to obtain a
display easy to see involving no overlapping of the objects
with the wirings since the domains for displaying the objects
and the domains for displaying the wirings are separately
prepared.

Next, there will be explained a method of display for a
network wherein objects constituting the network are given
with a hierarchical structure.

FIG. 37 is an explanatory view useful for understanding
hierarchical networks.

FIG. 37 shows an example in which objects 1 and 2 are
constructed with subnetworks 1 and 2, respectively. Each of
the subnetworks 1 and 2 comprises a plurality of objects and
wirings for coupling the plurality of objects with one
another. While FIG. 37 shows two stages of hierarchical
structure, it is acceptable that three or more stages of hierar-
chical structure is provided.

FIGS. 38(A) and (B) are illustrations each showing by
way of example a display image consisting of a lot of objects
and wirings. FIG. 38(A) shows a display image in its
entirety, and FIG. 38(B) shows a partial image, with the
object 205 as the central part.

FIGS. 39(A) and (B) are illustrations each showing by
way of example a display image of a subnetwork 206 consti-
tuting the object 205, instead of the object 205 shown in
FIGS. 38(A) and (B). FIG. 39(A) shows a display image in
its entirety, and FIG. 39(B) shows a partial image, with the
object 206 as the central part.

In the event that the subnetwork, which comprises the
above-mentioned lower class of plurality of objects in hier-
archical structure, instead of the object 205 included in a
display image 207 shown in FIGS. 38(A) and (B), and wir-
ing for coupling those objects with one another, is displayed,
a display area broader than a display area of the object 205 is
allocated to the subnetwork 206; display areas, which are
arranged at the upper and lower sides of the display area of
the subnetwork 206, are enlarged to right and left: display
areas, which are arranged at the right and left sides of the
display area of the subnetwork 206, are enlarged up and
down; and as to display areas locate d at diagonal sides with
respect to the display area of the subnetwork 206, the same
size as that of the display areas on the display image shown
in FIGS. 38(A) and (B) in which the object 205 equivalent to
the subnetwork 206 is displayed is allocated.

As shown in FIG. 39(B), there are displayed wires among
a plurality of objects constituting the subnetwork 206, and in
addition there are displayed wires among the subnetwork
206 and the surrounding networks of the subnetwork 206.

An adoption of the abovementioned display method
makes it possible to easily confirm the connecting state of
the subnetwork with the surrounding networks, as compared
with the conventional scheme in which the subnetwork 206
is displayed on an independent window.

FIGS. 40(A) and (B) are illustrations each showing an
alternative embodiment of the display method of the subnet-

20

25

30

35

40

45

50

55

60

65

44

work. FIG. 40(A) shows an example of a display image
before a subnetwork is displayed, the display image includ-
ing an object equivalent to the subnetwork. FIG. 40(B)
shows an example of a display image in which the object is
replaced by the subnetwork.

It is assumed that the object 205 included in the display
image 207 shown in FIG. 40A) is replaced by the subnet-
work 206 equivalent to the object 205, as shown in FIG.
40(B).

The subnetwork 206 is allocated a display area broader
than that of the object 205. However, the display areas
located around the display image shown in FIG. 40(B) is
display areas in which the same object is displayed, as com-
pared with the display areas located around the display
image shown in FIG. 40(A). Further, with respect to the
position and the size of the sides adjacent to the periphery of
the display image 207, of the display areas located around
the display image, FIG. 40(A) and FIG. 40(B) are the same
as each other. That is, in FIG. 40(A) and FIG. 40(B), the
same information is displayed except for the point that the
object 205 is replaced by the subnetwork 206, while FIG.
40(B) shows that the display area except for the subnetwork
206 is distorted. Thus, it is possible to prevent display areas
located apart from the subnetwork 206 from disappearing
from the display screen owing to displaying the subnetwork
206 as a substitute for the object 205 as in FIG. 39(A) com-
pared with FIG. 37(A).

Accordingly, similar to the example of FIGS. 39(A) and
39(B), an adoption of the above-mentioned display method
makes it possible to easily confirm the connecting state of
the subnetwork with the surrounding networks, and in addi-
tion makes it possible to confirm throughout the network
displayed before a display of the subnetwork (the first
image) in a state that the subnetwork is displayed, while
deformed.

FIGS. 41(A), (B) and 1(C) are illustrations each showing
by way of example a display image having a display area in
which a plurality of measures are coupled together. FIG.
41(A) shows the display image in its entirety, and FIGS.
41(B) and (C) show partial images enlarged.

In the display image, there are shown various sizes of
objects 210-215. The object 210 of these objects 210-215 is
disposed in an display area partitioned with a measure of
domain, and the remaining objects 211-215 each having
another size are disposed in enlarged display areas in which
aplurality of adjacent measures are coupled together to form
a single display area. As shown in FIGS. 41(B) and (C), the
objects are standardized in their figure and size in accor-
dance with the figure and size of the associated display
areas, respectively.

An adoption of the above-mentioned display method
makes it possible to display various sizes of objects with
sizes easy to see, and in addition possible to display a display
screen easier to see through a standardization.

Next, there will be described a display method of wiring
for connecting object-to-object with each other.

FIG. 42 is an illustration showing by way of example a
display image characterized by a display method of wiring.

Displayed on a display screen 102a are objects 216 to 219.
An output terminal 220 is connected to an input terminal 221
by a wire 222. An output terminal implies that data or
instructions (messages) of the associated object are output-
ted to another object. An input terminal implies that data or
instructions (messages) of another object are received
thereat.

The wire 222 has information of a direction directed from
the output terminal 220 to the input terminal 221, in which

US RE42,105 E

45

directions of data or instruction flows are repeatedly indi-
cated for each short segment constituting the wire.

An adoption of the above-mentioned display method
makes it possible to readily grasp directions of data or
instruction flows even in the event that one or both of the
objects to be connected together by the wire are located out
of the display screen 102a.

FIGS. 43(A) and (B) are illustrations each showing an
alternative embodiment of the display method of the wiring.

A wire 223 comprises a central wire 223a and edge wires
223b along both ends of the central wire 223a. The central
wire 223a and edge wires 223b are representative of mutu-
ally different display aspects, for example, hue, lightness
and saturation.

In the event that the wire 223 comprising the central wire
223a and the edge wires 223b is adopted and such two wires
223 intersect, if those two wires are representative of mutu-
ally different data or control flows, as shown in FIG. 43(A),
there is provided such a display that one of the two wires is
divided into parts at the position that its central wire is in
contact with the edge wires of the other wire or at the posi-
tion that its central wire comes close to the edge wires of the
other wire (according to the present embodiment, the
former) so as to form a crossing with an overpass. On the
other hand, if the two wires are representative of the same
data or control flows, as shown in FIG. 43(B), there is pro-
vided such a display that the central wires 223a of both the
wires are continued. An adoption of the abovementioned
display method makes it possible to readily determine as to
whether the crossing wires are interconnected or simply
cross each other.

The above is an explanation of the fundamental embodi-
ment of the object-between-network display method accord-
ing to the present invention. Next, hereinafter, there will be
described more specific embodiments of the object-
between-network display method according to the present
invention.

FIGS. 44(A), (B) and (C) are illustrations useful for
understanding a procedure for producing a display area for
displaying a network of an object. In FIG. 44(A), the display
screen is divided vertically and horizontally into four parts to
form lattices. In FIG. 44(B), there is provided such an
arrangement that for each measure of the produced lattices, a
domain formed with length of 50% of the measure in length
and breadth is given for an area for disposing an object, and
the domain is located at the center of the measure. In FIG.
44(B), the screen is divided on an equal basis, and the area
for the object is located at the center of the measure.
However, it is acceptable to designate a width of the
measure, and as shown in FIG. 44(B), it is acceptable that
the area for the object is located at the corner of the measure.

FIG. 45 is an illustration showing a state in which an
object is disposed on a display screen by users. FIGS. 46(A)
and (B) are illustrations each showing a state in which a
wiring among objects disposed on a display screen is per-
formed by users.

As shown in FIG. 45, according to the present
embodiment, when a user sets up an object 224, the object
224 set up by the user is automatically positioned at an area
225 specially designed for an object disposition, which is
located closest to the set up position. Accordingly, it is pos-
sible to obtain an arrangement of objects in which objects
are arranged in good order simply through users taking it
easy to arrange objects. Further, according to the present
embodiment, it is possible to automatically display wire 229
in an area 204 for displaying wirings of a network, as shown

20

25

30

35

40

45

50

55

60

65

46

in FIG. 46(B), simply through users performing an operation
of connecting terminals of object 226 and object 227
together with a straight line directly, as shown in FIG. 46(A).
Consequently, it does not happen that the objects and the
wirings overlap with each other. Thus, it is possible to dis-
play a network easy to see for users.

FIGS. 47(A) and (B) are illustrations showing by way of
example display screens of an object-between-network
before and after display of the subnetwork, respectively.
FIG. 48 is a flowchart useful for understanding a procedure
for switching from the display of FIG. 47(A) to the display
of FIG. 47(B).

At the stage that an image shown in FIG. 47(A) is dis-
played on a display screen, an object having a subnetwork is
designated through an operation of, for example, a mouse
not illustrated or the like (step 48__1), and it is instructed that
the designated subnetwork is displayed (step 48_2). In an
image display apparatus, a measure whereat the selected
object is located and lattices associated with the measure in
vertical and horizontal directions are enlarged by the corre-
sponding area necessary for a display of the subnetwork
giving the corner of upper left of the measure as a starting
point (step 48_3). In step 48_ 4, with the enlargement, a
deformation of the objects arranged in vertical and horizon-
tal directions and an extension of wirings are performed. In
step 48_5, a new lattice is formed within a measure enlarged
for a display of the subnetwork and display the subnetwork
on the lattice thus formed. In step 48_ 6, the object of the
subnetwork and the object of the neighboring network are
connected together.

In this manner, a transfer of images from that shown in
FIG. 47(A) to that shown in FIG. 47(B) is performed.
Incidentally, according to the present embodiment, the start-
ing point of the measure for an enlargement is given with the
corner of upper left of the measure. However, it is acceptable
that the enlargement starting point of the measure is given
with another corner, or the center of the measure.

FIGS. 50(A), (B) and (C) are explanatory views useful for
understanding a procedure of a subnetwork display. FIG.
49(A) shows an object-between-network before a display of
a subnetwork, FIG. 49(B) shows a state in which the subnet-
work is displayed with an enlargement and trapezoid of mea-
sures are formed on the upper and lower sides and the left
and right sides of the enlarged measure, and FIG. 49(C)
shows a state in which the subnetwork is displayed with an
enlargement, and measures of the neighbor objects are
deformed so that the whole network may be displayed
within the screen.

FIG. 50 is a flowchart useful for understanding a proce-
dure of the subnetwork display.

As shown in FIG. 50, an object having a subnetwork is
selected through an operation of, for example, a mouse or
the like (step 50_1), and it is instructed that the selected
subnetwork is displayed (step 50_2). In an image display
apparatus, a transfer of images from that shown in FIG.
49(A) to that shown in FIG. 49(C) is performed in accor-
dance with the following procedure.

First, in step 50_3, it is determined as to whether the
subnetwork is accommodated within the display screen. If it
is decided that the subnetwork is not accommodated within
the display screen, a transfer of images from that shown in
FIG. 49(A) to that shown in FIG. 49(B) is not performed. If
it is decided that the subnetwork is accommeodated within
the display screen, the process goes to step 50_ 4 in which a
measure whereat the selected object is located is enlarged by
the corresponding area necessary for a display of the subnet-
work giving the center of the measure as a starting point (cf.
FIG. 49(A)).

US RE42,105 E

47

In step 50__5, as shown in FIG. 49(B), straight lines are
drawn from corners of the enlarged measure to corners of the
measures of the screen edges in vertical and horizontal direc-
tions to form trapezoids. In step 50__6, each of the trapezoids
is partitioned into necessary parts to produce trapezoid of
measures. In step 50__7, straight lines are drawn from cor-
ners of the measures of trapezoid to corners of the measures
of the screen edges to produce residual measures. In step
50__8, with a deformation of the measures, a deformation of
the object and wirings are performed. Finally, in step 50_9,
the object of the subnetwork and the object of the neighbor-
ing network are connected together.

In this manner, a transfer of images from that shown in
FIG. 49(A) to that shown in FIG. 49(C) is performed.

Incidentally, according to the present embodiment, the
measures formed on the upper and lower sides and the left
and right sides of the subnetwork are given with a figure of
trapezoid. However, it is acceptable that such measures are
given with a figure of curve.

FIGS. 51(A), (B) and (C) are typical illustrations each
showing an embodiment in which a display area representa-
tive of an object is formed with a single measure or a plural-
ity of measures coupled with one another. According to the
present embodiments, a number of measures to be used is
altered in accordance with a number of terminals of an
object. FIG. 51(A) shows a case where one measure is used
by one and an object has the maximum 12 terminals. FIG.
50(B) shows a case where two measures are used by two and
an object has the maximum 30 terminals. FIG. 51(C) shows
a case where four measures are used by four and an object
has the maximum 48 terminals. As a number of terminals of
the object is increased, a number of measures may be
increased.

FIGS. 52(A) and (B) are illustrations useful for under-
standing by way of example a display method of wiring. In
FIG. 52(A), a screen 1 shows a state of halfway in which a
wiring from an output terminal of an object 1 (obj 1) to an
input terminal of an object 2 (obj 2) is conducted. While the
object 1 disappears from the screen 1, it will be understood
from a figure of the line drawn out that a terminal to be
connected is an input terminal. Likewise, with respect to a
screen 2, in the event that a wiring from an input terminal of
an object 4 (obj 4) to an output terminal of an object 3 (obj 3)
is conducted, even if the object 4 disappears from the screen
2, it will be understood from a figure of the line that a termi-
nal to be connected is an output terminal. FIG. 52(B) shows
a network after a completion of wiring in which wires have
been changed to the usual solid lines. According to the
present embodiment, while the wires are changed to the
usual solid lines at the time when all of the wirings have
been completed, it is acceptable that a wire is changed to the
usual solid line whenever one wiring is completed.

FIG. 53 is a typical illustration showing by way of
example a display of wiring. FIG. 54 is a flowchart useful for
understanding a procedure of executing the wiring shown in
FIG. 53.

According to the present embodiment, there is adopted a
wiring consisting of the central wires and the edge wires, as
described referring to FIGS. 43(A) and (B), and when a user
selects the output terminal and input terminal which are con-
nected together, an automatic wiring is conducted in accor-
dance with a procedure shown in FIG. 54.

In step 54_ 1, a user selects the output terminal and input
terminal which are connected together. In step 54_ 2. a ver-
tical lane A is produced at the output terminal end. In step
54_ 3, overwritten with a line is a horizontal lane of the

20

25

35

40

45

50

55

60

65

48

output terminal from the output terminal to the vertical lane
A, so that a wiring on the overwritten portion is displayed on
the display screen. In step 54_ 4, it is determined whether
the input terminal is over against the output terminal. What
is meant by that the input terminal is over against the output
terminal is that for example, as in the relation between an
output terminal 1 and an input terminal g, the output termi-
nal and the input terminal are located so as to be opposite to
each other. On the other hand, in case of the relation between
an output terminal 7 and an input terminal r, it is determined
that they are not over against each other.

In a case where it is determined that the input Up terminal
is over against the output terminal, the process goes to step
54_ 5 in which the vertical lane A is overwritten with a line
up to the horizontal lane of the input terminal. If there is
already a portion connected with the horizontal lane, for
example, as in a case where a wiring between an output
terminal 8 and an input terminal ¢ is already conducted, and
in addition a wiring between the output terminal 8 and an
input terminal e is newly conducted, a coupling process as
shown in FIG. 43(B) is performed. In step 54_ 6, the hori-
zontal lane of the input terminal is overwritten with a line up
to the input terminal.

In a case where in step 54_ 4, it is determined that the
input terminal is not over against the output terminal, the
process goes to step 54_7 in which the vertical lane is pro-
duced at the input terminal end. In step 54 8, a horizontal
lane C not sandwiched in objects is produced. In step 54_ 9,
the vertical lane A is overwritten with a line up to the hori-
zontal lane C. If there is already a portion connected with the
horizontal lane, a coupling process is performed.

In step 54 10, the horizontal lane C is overwritten with a
line up to the vertical lane B. In step 54_ 11, the vertical lane
B is overwritten with a line up to the horizontal lane of the
input terminal. If there is already a portion connected with
the horizontal lane, a coupling process is performed.

Thereafter, the process goes to step 54_ 6 in which the
horizontal lane of the input terminal is overwritten with a
line up to the input terminal.

Each of FIGS. 55-57 are a flowchart useful for under-
standing an alternative embodiment of a procedure of
executing the wiring. FIGS. 58-62 are typical illustrations
each showing a result obtained from an execution of wiring
according to the wiring procedures shown in FIGS. 55-57.
FIGS. 63(A), (B) and (C) are typical illustrations each show-
ing a result obtained from an execution of wiring according
to the wiring procedures shown in FIGS. 55-57. An adoption
of the wiring procedures according to the present embodi-
ment makes it possible to perform an automatic wiring, even
if there exist objects which are not uniform in figure, difter-
ent from the case in which the wiring procedure shown in
FIG. 54 is adopted.

As shown in FIG. 55, in step 55 1, a user selects the
output terminal and input terminal which are connected
together. In step 552, a lane 1 (cf. FIGS. 58-62) perpen-
dicular to the output terminal is provided in an wiring area
having the output terminal. In step 55_ 3, aline is drawnon a
lane 2 (cf. FIGS. 58-61) of the output terminal from the
output terminal to the lane 1. In step 55_ 4, it is determined
whether the input terminal is over against the output termi-
nal. In a case where the input terminal is over against the
output terminal, as shown in FIG. 58 of FIGS. 58-61, the
process goes to step 55_5 in which a line is drawn from a
node a of the lane 1 and lane 2 to a lane 3 of the input
terminal. In step 55_ 6, a line is drawn from a node b, which
is a cross point of the lane 1 and lane 3, to the input terminal.

US RE42,105 E

49

Thus, the wiring is completed, in the event that the input
terminal is over against the output terminal, as shown in FIG.
58.

In a case where in step 55_ 4, it is determined that the
input terminal is not over against the output terminal, the
process goes to step 55_7 in which a line is drawn from the
node a of the lane 1 and lane 2 toward an object having the
input terminal. While the line is drawn, it is determined as to
whether the line comes across an existing object (step 56__1
in FIG. 56), whether the line reaches an wiring area an object
having the input terminal (step 56 2), whether the line
reaches an wiring area of the input terminal (step 56_ 3), and
whether the line reaches a position perpendicular to the lane
3 of the input terminal (step 56_4).

In step 56_ 1, when it is determined that the line comes
across the existing object, the process goes to step 56_ 10 in
which, as shown in FIG. 63(A), a lane A perpendicular to the
line is provided on a wiring area of a position whereat the tip
of the line is located now, and the lane A thus provided is
connected to the line. In step 56_ 11, a lane B parallel to the
line is provided on a wiring area near the input terminal, and
the line is connected along the lane A from the lane 1 to the
lane B. In step 56__13, a line is drawn along the lane B from
anode k or cross point of lane A and lane B toward the object
having the input terminal.

In step 56__2, the determination is made at the stage that a
line is drawn along the lane 1 up to a cross of area in which
the area of the object having the input terminal (including
not only the disposing area of the object itself, but also the
neighbor wiring areas, for example, in case of FIG. 58, the
area of the object having the input terminal implies all of the
partial areas p, g, 1, s, U, v, w and x) is extended vertically and
horizontally. In step 56_ 2, when it is determined that the
line does not reach the area of the object having the input
terminal (for example, in case of FIG. 58, all of the partial
areas p, g, 1, s, U, v, w and x), the process goes to step 56_ 12
in which as shown in FIG. 63(C), a lane C perpendicular to
the line is provided on a wiring area of a position whereat the
tip of the line is located now, and the lane C thus provided is
connected to the line. In step 56__13, a line is drawn along
the lane C from the node k toward the object having the input
terminal.

In a case where in step 56__3, when it is determined that
the line does not reach the wiring area of the input terminal
(for example, in case of FIG. 58, the partial areas p, s and v),
the process goes to step 57__1. This case will be described
latter.

In step 56_4, it is determined as to whether the line
reaches a position perpendicular to the lane 3 of the input
terminal, and when it is decided that the line is perpendicular
to the lane 3, the process goes to step 56_5 in which as
shown in FIG. 59, the line is extended to the lane 3. In step
56__6, the line is drawn on the lane 3 from the node C cross-
ing to the lane 3 to the input terminal. Thus, the wiring
shown in FIG. 59, for example, is completed.

On the other hand, in step 56__4, when it is decided that
the line is not perpendicular to the lane 3 of the input
terminal, the process goes to step 56__7 in which as shown in
FIG. 60, a lane 4 perpendicular to the line is provided on the
wiring area of the input terminal. In step 56_8, the line is
drawn from a node d to the lane 3. In step 56_9, the line is
drawn from a node e to the input terminal. Thus, the wiring
shown in FIG. 60, for example, is completed.

In step 56__3, when it is determined that the line does not
reach the wiring area of the input terminal, the process goes
to step 57_1 of FIG. 57 in which it is determined as to

20

25

30

35

40

45

50

55

60

65

50

whether the line reaches a position perpendicular to the lane
3 of the input terminal. When it is decided that the line is
perpendicular to the lane 3, the process goes to step 57_2 in
which as shown in FIG. 61, a lane 5 is provided on the
present wiring area. In step 57__3, alane 6 is provided on the
wiring area of the input terminal. In step 57_ 4, the line is
drawn from a node f along the lane 5 to the lane 6. In step
57 5, the line is drawn from a node g to the lane 3. In step
57 6, the line is drawn from a node h to the input terminal.
Thus, the wiring shown in FIG. 61, for example, is com-
pleted.

In step 57 1, when it is decided that the line is not per-
pendicular to the lane 3 of the input terminal, the process
goes to step 57__7 in which as shown in FIG. 62, a lane 7
perpendicular to the line is provided on the wiring area of the
input terminal. In step 578, the line is extended from the
node a to a lane 7. In step 57 9, the line is drawn from a
node i to the lane 3. In step 57__10, a lane perpendicular to
the line is provided on the present wiring area, and the lane
thus provided is connected to the line. In step 57_ 11, the
line is drawn from a node j to the input terminal. Thus, the
wiring shown in FIG. 62, for example, is completed.

Practicing the wiring procedures shown in FIGS. 55-57
makes it possible to complete the wirings in case of a dispos-
ing state of each of the objects of FIGS. 63(A) to (D) as well.

As described above, according to the object-oriented pro-
gramming apparatus and an object-oriented program storage
medium of the present invention, there is implemented a
higher speed of transfer of information among a plurality of
objects in an object-oriented programming. Thus, it is pos-
sible to realize a software system wherein a lot of small
objects are gathered, without decreasing a processing speed,
thereby dramatically improving reuse of the objects.

Further, according to the case where the object-oriented
programming apparatus of the present invention is provided
with an object display unit, and the object-between-network
display method according to the present invention, it is pos-
sible to display an object-between-network easy to be under-
stood thereby contributing to an improvement of a working
efficiency for users.

While the present invention has been described with refer-
ence to the particular illustrative embodiments, it is not to be
restricted by those embodiments but only by the appended
claims. It is to be appreciated that those skilled in the art can
change or modify the embodiments without departing from
the scope and spirit of the present invention.

As described above, according to the object-between-
network display method according to the embodiment of the
present invention, it is possible to display an object-
between-network easy to be understood thereby contributing
to an improvement of a working efficiency for users.

The above is an explanation concerning an embodiment of
an object-between-network display method on the display
screen 102a of the display unit 102 of the computer system
100 shown in FIG. 1, of embodiments concerning the inter-
object wiring editor unit 122 and the associated periphery of
the object ware programming system 120. Next, there will
be described an embodiment concerning a programming in
the interobject wiring editor unit 122 and the associated
periphery. The programming in the interobject wiring editor
unit 122 is performed in such a manner that the object-
between-network as mentioned above is displayed on the
display screen, an operator “wires” among objects through
his observation of the display.

As mentioned above, hitherto, there exists a concept of an
object-oriented programming, remaining problems as to

US RE42,105 E

51

reuse of a software and a running speed, wherein objects are
typically displayed on a display screen and “wired”, so that a
connecting relation among the objects is described. Such a
“wiring” has been associated with the following problems.

In the event that objects are of a hierarchical structure, it is
impossible to directly connect objects, which belong mutu-
ally different hierarchies, with one another. Thus, in case of a
scheme wherein a wiring is permitted only in the same hier-
archy via a one stage higher-order hierarchy of objects (this
is referred to as “parent object”) including a higher-order
hierarchy of objects (this is referred to as “child object”),
there is a need to prepare a large number of terminals for a
relay use for the purpose of connection of objects, when
objects to be connected are mutually far hierarchies. Thus, it
takes a lot of procedure for a wiring, and thus it is trouble-
some.

On the other hand, in the event that objects are of a hierar-
chical structure, and in case of a scheme wherein it is permit-
ted to directly connect objects, which belong mutually dif-
ferent hierarchies, with one another, there will be provided a
wiring diagram which does not take into account of a hierar-
chy. Thus, this raises such a problem that the wiring diagram
is not so easy to see and it is difficult to grasp the wiring
structure in its entirety.

Further, when there is a need to replace the object once
wired by another object, in order to implement the
replacement, there is a need to remove the wiring of the
previous object and do over again the wiring for the new
object. Thus, it takes a lot of procedure for the replacement.

This is a similar as to the matter of that the object once
wired on a certain hierarchy is shifted to another hierarchy,
for example, a one stage lower-order hierarchy. Also in this
case, it takes a lot of procedure such that the wiring of the
object before a shift is removed, a parent object is placed
wired thereat, the removed object is placed as a child object
of the parent object, and a wiring between the parent object
and the child object is conducted.

Further, according to the conventional scheme, there has
been associated with such a problem that as the interobject
wiring is complicated, a connecting relation among objects
is hardly to be understood from an indication of the wiring
diagram. Especially, in the event that a bus representative of
a flow of request for processing, which bus referred to as a
“instruction bus”, is connected to a plurality of objects on a
branching basis, it is difficult to grasp a running sequence of
the processing among the plurality of objects from the indi-
cation of the wiring diagram. Accordingly, it is also difficult
to alter the running sequence on the wiring diagram.

In view of problems involved in the above-mentioned
interobject wiring, the embodiment, which will be described
hereinafter, relates to a scheme of facilitating a wiring work.

FIG. 64 is a schematic diagram showing a basic structure
of an object-oriented programming supporting apparatus
and a program storage medium for use in an object-oriented
programming according to an embodiment of the present
invention.

An object-oriented programming supporting apparatus
300 supports an object-oriented programming for coupling a
plurality of objects each having data and operation with each
other in accordance with an instruction. The object-oriented
programming supporting apparatus 300 comprises a display
means 301, an object coupling means 302, a hierarchical
structure construction means 303 and a handler 304.

The display means 301 displays objects each represented
by ablock representative of a main frame of an object, a data
output terminal for transferring data of the object to another

20

25

40

45

50

55

60

65

52

object, a data input terminal for receiving data from another
object, a message terminal for issuing a message to make a
request for processing to another object, and a method termi-
nal for receiving a processing request from another object to
execute a method, the object being represented by a hierar-
chical structure which permits one or a plurality of objects to
exist in a single object, and in addition displays a wiring for
coupling terminals of a plurality of objects. On the computer
system 100 shown in FIG. 1, the display means 301 is con-
stituted of the image display unit 102, a software for display-
ing the above-mentioned objects and wirings on the display
screen 102a of the image display unit 102, and a CPU for
executing the software.

The object coupling means 302 constructs a coupling
structure among a plurality of objects in accordance with an
instruction for coupling terminals of the plurality of objects
through a wiring. On the computer system 100 shown in
FIG. 1, the object coupling means 302 is constituted of the
software for constructing the coupling structure and a CPU
for executing the software.

The hierarchical structure construction means 303 con-
structs a hierarchical structure of objects. On the computer
system 100 shown in FIG. 1, the hierarchical structure con-
struction means 303 is constituted of the software for con-
structing the hierarchical structure and a CPU for executing
the software.

The handler 304 instructs a wiring for coupling among
objects to the object coupling means 302 in accordance with
an operation by an operator (or user), and in addition
instructs a position of an object on the hierarchical structure
to the hierarchical structure construction means 303. On the
computer system 100 shown in FIG. 1, the handler 304 is
constituted of the keyboard 103, the mouse 104 and the soft-
ware for taking in operations of the keyboard 103 and the
mouse 104 inside the computer system.

It is noted that the software itself for implementing the
object coupling means 302 is also referred to as the object
coupling means, and likewise the software itself for imple-
menting the hierarchical structure construction means 303 is
also referred to as the hierarchical structure construction
means. A program, in which the object coupling means 302
and the hierarchical structure construction means 303 are
combined in the form of software, corresponds to the object-
oriented programming program referred to in the present
invention. The recording medium 310, in which the object-
oriented programming program is stored, corresponds to the
program storage medium for use in an object-oriented pro-
gramming referred to in the present invention. In the com-
puter system 100 shown in FIG. 1, the storage unit 105, in
which the object-oriented programming program has been
stored, corresponds to the program storage medium for use
in an object-oriented programming referred to in the present
invention. When the object-oriented programing program is
stored in the MO 110, the MO 110 also corresponds to the
program storage medium for use in an object-oriented pro-
gramming referred to in the present invention.

FIG. 65 is a conceptual view showing exemplarily an
involving relation among objects. FIG. 66 is a typical illus-
tration showing a connecting relation among objects for
defining a hierarchical structure.

As shown in FIG. 65, the whole is considered as one
object, and this is referred to as an object A. The object A
includes three objects, that is, an object B, an object C and an
object D. The object C includes an object E, an object F and
an object G. The object F includes an object H.

If this is expressed with a hierarchical structure, the
expression is given as shown in FIG. 66. The hierarchical

US RE42,105 E

53

structure of objects expressed in this manner is referred to as
an “object tree”.

In FIG. 66, the objects arranged in a horizontal direction
implies that they are disposed in the same-order hierarchy.
With respect to the objects connected with each other in a
vertical direction, the object disposed at higher-order hierar-
chy implies a parent object, and the object disposed at lower-
order hierarchy implies a child object of the parent object.

FIG. 67 is a typical illustration showing a pointer for
determining a connecting relation of a certain object to
another object.

Each of the objects has, as pointers for defining a parent-
child relationship, “pointers to higher/lower-order hierar-
chy” comprising a “pointer to higher-order hierarchy™ and a
“pointer to lower-order hierarchy”, and as pointers for con-
necting objects arranged in the same-order hierarchy, “point-
ers to same-order hierarchy” comprising two pointers of a
“FROM?” and a “TO”. Further, each of the objects has, point-
ers for use in wiring representative of a flow of data and
instructions among objects, “pointers to buses” comprising
two pointers of an “IN” and an “OUT”, and “pointers to
cables” comprising four pointers of an “instruction”, a
“data”, a “tag instruction” and a “tag data”.

The “pointer to higher-order hierarchy” and the “pointer
to lower-order hierarchy”, which constitute the “pointers to
higher/lower-order hierarchy”, are, for example, in case of
the object A shown in FIG. 66, the pointer to the wiring
editor and the pointer to the object B, respectively.

The two pointers of the “FROM” and the “TO”, which
constitute the “pointers to same-order hierarchy”, are, for
example, in case of the object C shown in FIG. 66, the
pointer to the object B and the pointer to the object D,
respectively.

In this manner, there is constructed a hierarchical
structure, for example, as shown in FIG. 66, comprising the
“pointer to lower-order hierarchy” and the “pointers to
same-order hierarchy”.

FIG. 68 is a typical illustration showing one of the bus
elements constituting the bus element list to be connected to
the “pointers to buses” shown in FIG. 67. FIG. 69 is a typical
illustration showing one of the cable elements constituting
the cable element list to be connected to the “pointers to
cables”shown in FIG. 67. FIG. 70 is a typical illustration
showing exemplarily a wiring among objects.

Each of the bus elements arranged on the bus element list
defines a bus (terminal) to be connected to another object.
Each of the cable elements arranged on the cable element list
defines a coupling relation (wiring) between terminals of
child object-to-child object when the associated object is
given as a parent object.

FIG. 67 shows two pointers “IN” and “OUT” as pointers
constituting pointers to the bus. Connected to the pointer
“IN” is the bus element list defining a bus which feeds data
or messages to the object shown in FIG. 67. Connected to the
pointer “OUT” is the bus element list defining a bus which
outputs data or messages from the object shown in FIG. 67
toward other object.

In FIG. 67, connected to the pointer “IN” is the bus ele-
ment list comprising two bus elements BUS 1 and BUS 2.
Specifically, the bus element BUS 1 is connected to the
pointer “IN”, and the bus element BUS 2 is connected to the
bus element BUS 1. Connected to the pointer “OUT” is the
bus element list comprising two bus elements BUS 3 and
BUS 4. Specifically, the bus element BUS 3 is connected to
the pointer “OUT”, and the bus element BUS 4 is connected
to the bus element BUS 3.

20

30

40

45

50

55

60

65

54

As shown in FIG. 68, each of the bus elements comprises
a “pointer to substantial object”, “pointer to bus of substan-
tial object”, “pointer to next bus element (BUS)” and “other
data”. It is noted that a terminal of an object is referred to as
a “bus”.

In the arrangement shown in FIG. 70, in the event that the
object shown in FIG. 67 is object A shown in FIG. 70, the
bus element BUS 1 corresponds to, for example, “BUS 1” of
the object A shown in FIG. 70, and the “pointer to substantial
object” corresponds to a pointer to an object (here object B)
connected to BUS 1 of object A, of object B and object C
included in object A shown in FIG. 70. The “pointer to bus of
substantial object” of the bus element BUS 1 corresponds to
a pointer to a bus (in case of FIG. 70, BUS 1, of object B) of
object B as the substantial object, which bus is connected to
“BUS 17 of the object A. The “pointer to next bus element
(BUS)” constituting the bus element BUS 1 corresponds, in
case of the bus element BUS 1 in FIG. 67, to a pointer to the
bus element BUS 2. The “other data” constituting the bus
element BUS 1 includes a distinction as to whether the bus
(in this case, “BUS 1” of the object A shown in FIG. 70)
associated with the bus element is a bus for transfer of data
or a bus for transfer of a message (or instruction).
Incidentally, as to an identification between a bus (IN) at the
end of receiving data or instruction and a bus (OUT) at the
end of transmitting data or instruction, as shown in FIG. 67,
it is implemented by separating the “pointers to buses” into
“IN” and “OUT”.

In FIG. 67, “pointers to cables” comprises four pointers,
that is, “instruction”, “data”, “tag instruction”, and “tag
data”, to each of which a cable element list is connected.
FIG. 67 exemplarily shows only a cable element list con-
nected to the “data”. Connected to the “data” is directly a
cable element CABLE 1. Connected to the cable element
CABLE 1 is a cable element CABLE 2. And connected to
the cable element CABLE 2 is a cable element CABLE 3.

The “pointers to cables” is used for management of a
connecting state (wiring) of buses of child object-to-child
object by a parent object. In the example shown in FIG. 70,
the wiring of buses between the object B and the object C is
managed. Incidentally, the wiring between the object A as a
parent object and the object B as a child object, or the wiring
between the parent object A and the object C as a child
object is managed, as mentioned above, by the bus element
list connected to the “pointers to buses”.

The four pointers, that is, “instruction”, “data”, “tag
instruction”, and “tag data”, which constitute the “pointers
to cables”, manage a wiring indicative of a flow of messages
(instruction), a wiring indicative of a flow of data, a wiring
indicative of a flow of an instruction, which is formed
dynamically during an execution, as mentioned above, and a
wiring indicative of a flow of data, which is formed dynami-
cally during an execution, respectively.

As shown in FIG. 69, a cable element “CABLE” is asso-
ciated with two terminal elements “TERMINAL”. The cable
element “CABLE” comprises a pointer to the first terminal
element of the two terminal elements “TERMINAL”, and a
pointer to the next cable element. The terminal element
“TERMINAL” comprises a “pointer to an object”, a “pointer
to a bus of the object”, and a “pointer to the next terminal
pointer”.

FIG. 69 shows exemplarily a cable element for managing
a wiring for connecting the bus 2 of the object B with the bus
1 of the object C, shown in FIG. 70, in which the first termi-
nal element stores therein a pointer to an object B and a
pointer to a bus 2 of the object B, and the second terminal

US RE42,105 E

55

element stores therein a pointer to an object C and a pointer
to a bus 1 of the object C. In this manner, the bus 2 of the
object B and the bus 1 of the object C are coupled with each
other through the wiring. It is noted that the first terminal
element of the two terminal elements is associated with the
bus of the output end of data or instruction, and the second
terminal element is associated with the bus of the input end
of data or instruction.

The cable element shown in FIG. 69 is managed, as men-
tioned above, by the object A which is a common parent
object for both the objects B and C.

The above are the general explanations of a management
of pointers for determining a hierarchical structure of
objects, a management of pointers for determining buses of
objects, and a management of pointers for determining a
wiring for connecting buses of objects. Next, there will be
explained more specific embodiments of the object-oriented
programming supporting apparatuses according to the
present invention, and programs for an object-oriented
programming, which are stored in a program storage medi-
ums for use in an object-oriented programming according to
the present invention.

According to the first object-oriented programming sup-
porting apparatus of the object-oriented programming sup-
porting apparatuses according to the present invention, and
programs for an object-oriented programming, which are
stored in the first program storage medium for use in an
object-oriented programming, of the program storage medi-
ums for use in an object-oriented programming according to
the present invention, the hierarchical structure construction
means 303 shown in FIG. 64 has means for producing a
duplicate object of a substantial object designated in accor-
dance with an instruction from the handler 304, and for dis-
posing the duplicate object at a hierarchy different from a
hierarchy at which the substantial object is disposed, and the
object coupling means 302 receives from the handler 304 an
instruction as to a wiring between the duplicate object and
another object in the wiring of the hierarchical structure in
which the duplicate object is disposed, and constructs a cou-
pling structure in which the duplicate object and the associ-
ated substantial object are provided in the form of a united
object.

FIG. 71 is a conceptual view of a duplicate object. FIG. 72
is a typical illustration showing a hierarchical structure
(object tree) of the objects shown in FIG. 71.

An object A is connected to an wiring editor. Connected to
the object A is an object B in a lower-order hierarchy. Con-
nected to the object B is an object C in the same-order hier-
archy. Connected to the object C is an object D in a lower-
order hierarchy. Connected to the object D is an object E in
the same-order hierarchy.

In the event that the objects B and E, which are disposed at
mutually different hierarchy, are connected with each other
through a wiring, it is acceptable that a bus (terminal) is
formed on the object C which is a parent object of the object
E, and the terminal of the object C is connected to the bus of
the object E, and in addition the terminal of the object, C is
connected to the terminal of the object B. However, this
work takes a trouble for wiring. In order to avoid such a
trouble, according to the present embodiment, a duplicate
object E' of which the substantial object is the object E is
disposed at the hierarchy at which the objects B and D are
disposed, and the bus of the duplicate object E' is connected
to the bus of the object B through a wiring on the hierarchy
at which the object B and the duplicate object E' are dis-
posed.

20

25

30

35

40

45

50

55

60

65

56

FIG. 73 is a flowchart useful for understanding a building
process for the duplicate object.

First, in step 73__1, with respect to the designated object
(e.g. object E), a duplicate object E' is built through copying
the object E. Here a wiring among objects is aimed. Thus,
there is no need to copy even the substance of the program
constituting the object E and only information necessary for
a display and a wiring of objects is copied. In this meaning,
the “copy” referred to as the present invention means a copy
of information necessary for a display and a wiring of
objects.

Next, in step 73__2, with respect to all buses ;of the object
Es

1. a copy bus (copy bus element) is created on the dupli-
cate object E', and

2. a pointer to the substantial object E and a pointer to the
bus associated with the substantial object E, are written.

FIG. 74 is a typical, illustration showing a connecting
relation between the substantial object (original) and the
duplicate object (copy).

Copied on the duplicate object E' are the bus elements
BUS 1, BUS 2, . .. arranged in the “pointers to buses™ of the
substantial object E in the form of an arrangement as it is.
Each of the bus elements BUS 1', BUS 2, . . . of the duplicate
object E' copied stores a pointer to the substantial object E
and a pointer to the associated bus, of the substantial object
E (cf. FIG. 68). After the duplicate object is built in this
manner, when a wiring between the object B and the dupli-
cate object E' is instructed, as shown in FIG. 71, the associ-
ated cable element and two terminal elements are arranged
on the “pointers to cables” of the object A which is a parent
object of the object B and the duplicate object E' (cf. FIG.
69).

After a wiring work, and when wiring data for interpreter
use, which is stored in the wiring data for interpreter use
shown in FIG. 2, is generated, the associated bus element of
the substantial object E is found from the bus element list of
the duplicate object E' to construct an interobject coupling
structure in which the duplicate object E' and the substantial
object E are formed in a united body as one object.

Next, there will be explained embodiments of the second
object-oriented programming supporting apparatus of the
object-oriented programming supporting apparatuses
according to the present invention, and programs for an
object-oriented programming, which are stored in the sec-
ond program storage medium for use in an object-oriented
programming, of the program storage mediums for use in an
object-oriented programming according to the present
invention.

According to the second object-oriented programming
supporting apparatus of the object-oriented programming
supporting apparatuses according to the present invention,
and programs for an object-oriented programming, which
are stored in the second program storage medium for use in
an object-oriented programming, of the program storage
mediums for use in an object-oriented programming accord-
ing to the present invention, the object coupling means 302
shown in FIG. 64 releases a coupling structure of the object
before a replacement with another object in accordance with
an instruction from the handler 304, and causes the object
after the replacement to succeed to the coupling structure of
the object before the replacement with another object, and
the hierarchical structure construction means 303 disposes
the object after the replacement, instead of the object before
the replacement, at a hierarchy at which the object before the
replacement is disposed.

US RE42,105 E

57

FIG. 75 is a conceptual view showing a coupling relation
of objects before a replacement of objects. FIG. 76 is a typi-
cal illustration showing an object tree concerning the objects
shown in FIG. 75.

An object A is connected to an wiring editor. Connected to
the object A is an object B in a lower-order hierarchy. Con-
nected to the object B is an object C in the same-order hier-
archy. Connected to the object C is an object D in the same-
order hierarchy. There exists an object E which is not
incorporated into the hierarchical structure. The object C is
replaced by the object E.

FIG. 77 is a conceptual view showing a coupling relation
of objects after a replacement of objects. FIG. 78 is a typical
illustration showing a part of the object tree after a replace-
ment of objects.

When the object C is replaced by the object E, the object E
succeeds to the wiring of the object C as it is. Also in the
hierarchical structure, the object E is disposed at the hierar-
chy at which the object C was disposed.

FIG. 79 is a flowchart useful for understanding an object
replacing process.

While an interobject network as shown in FIG. 75 is dis-
played on the display screen 102a (cf. FIG. 1), the mouse
104 is operated to drag an object after replacement (here, the
object E) and superimpose the object E on the object C
Where the term drag means such an operation that a mouse
cursor is placed on the object E displayed on the display
screen 102a and a mouse button is depressed, and then a
mouse is moved keeping depression of the mouse button.
When the the object E is dragged, the object coupling means
302 shown in FIG. 64 identifies that the dragged object is the
object E (step 79_ 2).

When the dragged object E is superimposed on the object
C and then dropped, that is, the mouse button is released, in
step 79__ 3, the object coupling means 302 identifies that the
object concerned in drop is the object C (step 79__4). In this
manner, when it is identified that the dragged object is the
object E and the object concerned in drop is the object 0, the
object tree is altered from the state shown in FIG. 76 to the
state shown in FIG. 78.

This change is implemented in which a manner that, of the
pointers of the objects shown in FIG. 76, the pointer to the
object E is written, instead of the pointer to the object C, into
“TO” of the object B; the pointer to the object B and the
object E are written into “FROM” and “TO” of the object E,
respectively; and the pointer to the object E is written,
instead of the pointer to the object C, into “FROM” of the
object D.

Next, the wiring of the object C concerned in drop is
retrieved from the cable element list of the object A which is
a parent of the object C concerned in drop (step 79_6).

FIG. 80 is a typical illustration showing a part of the cable
element list connected to an object A.

It is recorded in this part that the bus 3 of the object C and
the bus 4 of the object D are connected to the terminals
indicated by the cable element CABLE a. In this manner, the
cable elements are sequentially retrieved to identify the wir-
ing connected to the object concerned in drop.

When the wiring connected to the object concerned in
drop is identified, as shown in FIG. 80, the wiring is released
and connected to the associated bus of the object E after
replacement (step 79__7). When the associated bus of the
object E after replacement does not exist and the wire cannot
be altered, it is displayed on the display screen 102a and the
wiring is cancelled.

20

25

30

35

40

45

50

55

60

65

58

Next, there will be explained embodiments of the third
object-oriented programming supporting apparatus of the
object-oriented programming supporting apparatuses
according to the present invention, and programs for an
object-oriented programming, which are stored in the third
program storage medium for use in an object-oriented
programming, of the program storage mediums for use in an
object-oriented programming according to the present
invention.

According to the third object-oriented programming sup-
porting apparatus of the object-oriented programming sup-
porting apparatuses according to the present invention, and
programs for an object-oriented programming, which are
stored in the third program storage medium for use in an
object-oriented programming, of the program storage medi-
ums for use in an object-oriented programming according to
the present invention, the hierarchical structure construction
means 303 is in response to an instruction from the handler
304 such that a plurality of objects from among the objects
disposed at a predetermined hierarchy are designated and the
plurality of objects are rearranged on the lower-order hierar-
chy by one stage, and rearranges the plurality of objects on
the lower-order hierarchy by one stage, and produces and
arranges an object including the plurality of objects on the
predetermined hierarchy in such a manner that a coupling
structure among the plurality of objects and a coupling struc-
ture among the plurality of objects and objects other than the
plurality of objects are maintained.

FIG. 81 is a conceptual view showing a coupling relation
among objects before a movement of objects. FIG. 82 is a
typical illustration showing an object tree concerning the
objects shown in FIG. 81.

As shown in FIG. 82, an object A is connected to an
wiring editor. Connected to the object A is an object B in a
lower-order hierarchy. Connected to the object B is an object
C in the same-order hierarchy. Connected to the object C is
an object D in the same-order hierarchy. Connected to the
object D is an object E in the same-order hierarchy.

It is assumed that the interobject network as shown in
FIG. 81 is displayed on the display screen 102a, and the
mouse 104 is operated to select the object C and the object D
as the objects to be moved to the lower-order hierarchy by
one stage.

FIG. 83 is a conceptual view showing a coupling relation
of objects after a movement of objects. FIG. 84 is a typical
illustration showing an object tree concerning the objects
shown in FIG. 83.

An object F is built on the same hierarchy as that of an
object B. An object C and an object E are arranged on a
lower-order hierarchy of the object F in the form of children
objects of which a parent is the object F.

Before a movement, as shown in FIG. 81, the bus 3 of the
object B is directly connected to the bus 1 of the object C.
After a movement, however, as shown in FIG. 83, the bus 3
of the object B is connected to the bus 1 of the object F, and
the bus 1 of the object F is connected to the bus 1 of the
object C. And with respect to a connection of the object D
with the object E, the bus 3 of the object D is connected to
the bus 2 of the object F, and the bus 2 of the object F is
connected to the bus 1 of the object E.

FIG. 85 is a flowchart useful for understanding a process-
ing for a movement of objects and a change of wiring of
objects.

When the object, which is to be moved to a lower-order
hierarchy by one stage, is selected, it is identified as to what
objects (here, objects C and D shown in FIG. 82) have been

US RE42,105 E

59

selected (step 85_1). And a new object (here, object F) is
built on the same hierarchy as the selected objects (step
85_2). In step 85_3, the selected objects (here, objects C
and D) are replaced by the new object (object F).

FIG. 86 is a typical illustration showing a state of an alter-
ation of an object tree.

In step 85_ 2, when the object F is built, the connection
between the object B and the object C is cancelled, and the
object B is connected to the object F in the same-order hier-
archy. And the connection between the object D and the
object E is cancelled, and the object F is connected to the
object E in the same hierarchy. And the object C is connected
to the object F in the lower-order hierarchy. In this manner,
the object tree after an object movement, as shown in FIG.
84, is completed.

Incidentally, it is noted that the alternation of the pointer
for the alternation of the object tree can be performed in a
similar fashion to that of the explanation made referring lo
FIG. 78, and thus the redundant explanation will be omitted.

Next, as shown in step 85_ 4 of FIG. 85, the wiring con-
nected to the selected objects (objects B and C) is retrieved
from the cable element list connected to the parent object
(object A) of the selected objects (objects B and C).

FIG. 87 is a typical illustration showing a part of the cable
element list connected to the object A.

In FIG. 87, there are shown that the wiring of the bus 4 of
the object C and the bus 1 of the object D are made on the
cable element CABLEa, and that the wiring of the bus 3 of
the object D and the bus 1 of the object E are made on the
cable element CABLED. Here, it is noted that the wiring of
the bus 4 of the object C and the bus 1 of the object D shown
on the cable element CABLEa is typically representative of
the wiring between the objects (objects B and C) selected to
be moved to the lower-order hierarchy by one stage, as
shown in FIG. 81, and the wiring of the bus 3 of the object D
and the bus 1 of the object E shown on the cable element
CABLED is typically representative of the wiring between
the object (object D) to be moved to the lower-order hierar-
chy by one stage and the object (objects E) not to be moved
and to stay at the same-order hierarchy.

In the step 85_4 of FIG. 85, when the retrieval of the
cable element list is carried out as mentioned above, the
process goes to step 85__5 in which it is determined whether
the wiring connected to the selected objects (here objects B
and C) located through the retrieval is the wiring between the
objects (objects B and C) inside of the new object (object F),
or the wiring between the internal object and the external
object with respect to the the new object (object F). In this
determination, when it is determined that the wiring of inter-
est is the wiring (corresponding to the wiring of the cable
element CABLEa shown in FIG. 87) between the objects
inside of the new object (object F), the process goes to step
85_ 6 in which the wiring is moved from the parent object
(object A) to the new object (object F).

FIG. 88 is an explanatory view useful for understanding a
movement of wiring to a new object.

The cable element CABLEa is removed from among the
cable element list connected to the object A, and is incorpo-
rated into the cable element list connected to the object F.

Inthe step 855 of FIG. 85, when it is determined that the
wiring of interest is the wiring (corresponding to the wiring
of the cable element CABLEb shown in FIG. 87) between
the internal object and the external object with respect to the
the new object (object F), the process goes to step 857 in
which a wiring bus is produced on the new object (object F).

20

25

30

35

40

50

55

60

65

60

FIG. 89 is a typical illustration of a bus for use in wiring,
the bus being built on an object F.

In FIG. 89, a bus element BUS 2 is connected to “OUT”
(cf. FIG. 67) of the object F. The bus element BUS 2 corre-
sponds to the bus 2 of the object F shown in FIG. 83, and has
a pointer to the object D and a pointer to the bus 3 of the
object D. That is, the bus element BUS 2 forms, as shown in
FIG. 83, a wiring between the bus 2 of the object F and the
bus 3 of the object D. It is to be noted that the bus element
BUS 2 shown in FIG. 89 is exemplarily shown, and in case
of the wiring shown in FIG. 83, a connecting bus element is
disposed also in “IN” of the object F so that a wiring
between the bus 1 of the object F and the bus 1 of the object
C is implemented.

In step 85_ 8 of FIG. 85, a wiring connected to the object
inside a new object (object F) is changed in connection to the
new object (object F).

FIG. 90 is a typical illustration showing a state of a change
of an object in wiring from an object (object D) inside a new
object (object F) to the object F.

The cable element CABLED of the object A shown in FIG.
87 is indicative of a wiring between the bus 3 of the object D
inside the object F and a wiring between the bus 1 of the
object E outside the object F. As shown in FIG. 90, the bus 3
of'the object D is changed to the bus 2 of the object F (hereby
forming a wiring between the bus 2 of the object F and the
bus 1 of the object E.

Incidentally, the step 854 in FIG. 85 is repeatedly per-
formed by a necessary number of times.

Next, there will be explained embodiments of the fourth
object-oriented programming supporting apparatus of the
object-oriented programming supporting apparatuses
according to the present invention, and programs for an
object-oriented programming, which are stored in the fourth
program storage medium for use in an object-oriented
programming, of the program storage mediums for use in an
object-oriented programming according to the present
invention.

According to the fourth object-oriented programming
supporting apparatus of the object-oriented programming
supporting apparatuses according to the present invention,
the display means 301 shown in FIG. 64 has, in case of
existence of a plurality of method terminals (messages or
instructions) connected to one message terminal (a bus for
outputting a message or an instruction) designated in accor-
dance with an instruction through the handler 304, means for
displaying a list indicative of an execution sequence of a
plurality of methods associated with the plurality of method
terminals, and the object coupling means 302 has means for
reconstructing a coupling structure in which the execution
sequence of the plurality of methods appearing at the list
displayed on the display means 301 are altered.

Further, according to programs for an object-oriented
programming, which are stored in the fourth program stor-
age medium for use in an object-oriented programming, of
the program storage mediums for use in an object-oriented
programming according to the present invention, the object
coupling means 302 has, in case of existence of a plurality of
method terminals connected to a designated one message
terminal, means for making up a list indicative of an execu-
tion sequence of a plurality of methods associated with the
plurality of method terminals, and means for reconstructing
a coupling structure in which the execution sequence of the
plurality of methods are altered in accordance with an alter-
ation instruction of the execution sequence of the plurality of
methods appearing at the list.

US RE42,105 E

61

FIG. 91 is a typical illustration showing exemplarily a
wiring among objects. FIG. 92 is a typical illustration show-
ing a cable element list giving a definition of the wiring
shown in FIG. 91.

According to the example shown in FIG. 91, an object A
includes an object B, an object C, an object D and an object
E. A bus 1 of the object B is connected to a bus 2 of the
object C, a bus 2 of the object D and a bus 1 of the object E.
Where the bus 1 of the object B serves as a bus (message
terminal) for outputting an instruction, and each of the bus 2
of'the object C, the bus 2 of the object D and the bus 1 of the
object E serves as a bus (method terminal) for receiving an
instruction.

A wiring among these elements is defined, as shown in
FIG. 92, by a cable element list connected to the object A
(parent object). A number of cable elements are listed on the
cable element list shown in FIG. 92. Of those cable
elements, a cable element CABLEa defines a wiring
between the bus 1 of the object B and the bus 2 of the object
C, a cable element CABLEDb defines a wiring between the
bus 1 of the object B and the bus 2 of the object D, and a
cable element CABLEc defines a wiring between the bus 1
of the object B and the bus 1 of the object E.

An instruction (message) outputted from the object B is
transmitted to three objects C, D and E in each of which the
associated method is executed. In this case, however, it hap-
pens that a problem as to an execution sequence among
those methods is raised. For example, assuming that the
object B serves as an object for inputting data from the
exterior, the object C serves as an object for performing an
arithmetic operation based on the data inputted, the object D
serves as an object for making a graph based on a result of
the operation, and the object E serves as an object for dis-
playing the graph, there is a need to execute the respective
methods in the order named of the object C, the object D and
the object E in accordance with an instruction indicative of
that inputting of the data from the object B is completed.

Here, the wiring shown in FIG. 91 is unclear as to the
execution sequence, and consequently, the execution
sequence is displayed in the following manner and if neces-
sary the execution sequence is altered.

FIG. 93 is a flowchart useful for understanding process-
ings for a display of an execution sequence for methods and
for an alteration of the execution sequence for the methods.

First, for example, while an image as shown in FIG. 91 is
displayed, a desired wiring (here, the wiring shown in FIG.
91) is clicked through the mouse 104 to select the wiring of
interest. In step 93__ 1, the object coupling means 302 identi-
fies the selected wiring. In step 93_ 2, a cable list as to the
selected wiring (cable) thus identified is made up and dis-
played.

FIG. 94 is a typical illustration showing a cable list ele-
ment list.

When the cable list is made up, a cable element list of the
parent object (object A) shown in FIG. 92 is retrieved, the
cable elements CABLEa, CABLEb and CABLEc, which
constitute the selected wiring, are identified, and pointers to
cable elements are stored in cable list elements constituting
the cable list element list shown in FIG. 94 in the order listed
in the cable element list. That is, in case of the present
example, the pointers to three cable elements CABLEa,
CABLEDb and CABLEc, which constitute the selected
wiring, shown in FIG. 92, are stored in the order named in
the respective associated cable list elements arranged in the
cable list element list shown in FIG. 94.

FIG. 95 is a view exemplarily showing a cable list dis-
played on a display screen 102a.

20

25

30

35

40

45

50

55

60

65

62

When the cable list element list as shown in FIG. 94 is
made up, a state of the respective wiring for coupling two
objects with each other is displayed with an arrangement
according to the order listed in the cable list element list.
Specifically, according to the example shown in FIG. 95, it is
displayed on the first line that the bus 1 of the object B is
connected to the bus 2 of the object C; it is displayed on the
second line that the bus 1 of the object B is connected to the
bus 2 of the object D; and it is displayed on the third line that
the bus 1 of the object B is connected to the bus 1 of the
object E. Where the line is referred to as a “list item”. The
left side of the cable list denotes a bus of the end for gener-
ating an message (instruction), and the right side of the cable
list denotes a bus of the end for receiving and executing the
message (instruction) generated. In the practical operation,
when the bus 1 of the object B issues the associated message
(instruction), the respective methods are executed in accor-
dance with the sequence shown in the cable list.

In step 93_ 3 in FIG. 93, it is assumed that a line of list
item indicated in the display list is dragged. Here it is
assumed that the list item “object B: bus 1 object E: bus 1~
appearing on the third line of the cable list shown in FIG. 95.
In step 93_ 4, the object coupling means 302 (cf. FIG. 64)
identifies that a wiring for connecting the bus 1 of the object
B to the bus 1 of the object E, that is, the wiring defined by
the cable element CABLEc shown in FIG. 92 is dragged. In
step 93_5, the dragged list item is dropped. Where it is
assumed that the dragged list item is dropped on the second
list item “object B: bus 1 object D: bus 2” of the cable list
shown in FIG. 95. In step 93__6, the object coupling means
302 identifies that the wiring concerned in drop is a wiring
for connecting the bus 1 of the object B to the bus 2 of the
object D, that is, the wiring defined by the cable element
CABLED shown in FIG. 92.

Thus, when the dragged wiring and the wiring concerned
in drop are identified, an arrangement sequence or the execu-
tion sequence is altered in such a manner that the dragged
wiring is arranged before the wiring concerned in drop on
the cable list shown in FIG. 95 (step 93_ 7).

FIG. 96 is a typical illustration showing a state in which
an arrangement sequence of the cable elements arranged on
the cable element list is altered. FIG. 97 is a typical illustra-
tion showing a cable element list in which an arrangement
sequence of the cable elements has been altered.

As shown in FIG. 69, each of the cable elements CABLE
has a pointer to the next cable element. Thus, when the drag
and drop operations for the list item are performed in the
manner as mentioned above, the pointer is rewritten. In this
example, as shown in FIG. 96, an arrangement sequence of
the cable elements is altered in such a manner that the cable
element CABLEc is arranged before the cable element
CABLEDb, and thus the cable element list, in which the cable
elements are arranged as shown in FIG. 97, is made up.

FIG. 98 is a typical illustration showing a state in which
an arrangement sequence of the cable list elements arranged
on the cable list element list is altered. FIG. 99 is a typical
illustration showing a cable list element list in which an
arrangement sequence of the cable list elements has been
altered.

When the drag and drop operations for the list item are
performed in the manner as mentioned above, an arrange-
ment sequence of the cable elements, in which the cable
elements are arranged in the cable element list as shown in
FIG. 96, is altered. Following this, an arrangement sequence
of the cable list elements, in which the cable list elements are
arranged in the cable list element list as shown in FIG. 98, is

US RE42,105 E

63

altered. According to this example, an arrangement sequence
of the cable list elements is altered in such a manner that the
cable list element storing therein the pointer to the cable
element CABLEc is arranged before the cable list element
storing therein the pointer to the cable element CABLED, so
that the cable list element list shown in FIG. 99 is made up.

FIG. 100 is a view showing a cable list in which an
arrangement sequence has been altered.

As a result of alterations of the arrangement sequences of
the cable elements and the cable list elements as mentioned
above, the cable list for a display is also altered in a sequence
of the list item, as shown in FIG. 100.

The above is an explanation of the embodiments of the
interobject wiring editor unit 122 and its periphery. Next,
there will be explained an explanation of the embodiments
of the object builder unit 121 and its periphery.

The object ware programming system aims to perform an
efficient programming through replacing programs by
objects. For this reason, it is very important as to whether the
existing software can be readily replaced by an object.
Particularly, if it is possible to directly replace the existing
software by an object, the number of the available objects is
dramatically increased all at once, and as a result, a program
development efficiency is extremely improved. Hitherto,
there have been proposed several types of methods in which
the existing software is replaced by an object. An OLE and a
DDE in Windows are raised by way of example. However,
according to those methods, it is needed to estimate before-
hand at the existing software end that the existing software is
replaced by an object. And thus, it is difficult to replace all of
the existing softwares by objects. Further, even if the associ-
ated existing softwares are concerned, many of those soft-
wares are involved in one which is very few in number of
messages to be acceptable as compared with, for example,
that of the graphical user interface. Accordingly, it is impos-
sible to handle the existing softwares in a similar fashion to
that of the graphical user interface.

With respect to a continuous operation for the existing
softwares, hitherto, there is known a method in which a
description is performed by the shell script. However,
according to the earlier technology, it is difficult to perform
an operation for the software after the actuation in a similar
fashion to that of the graphical user interface. Further, with
respect to the description of the shell script, it must be per-
formed by a user self and thus it will be difficult for a begin-
ner user poor in experience of a programming to do so.

In view of the problems on building the objects as men-
tioned above, the embodiments, which will be described
*hereinafter, relate to a scheme of replacing the existing
software by an object independently of types of the existing
software, and a component which serves as an object in com-
bination with the existing software. Here, there will be
described, with the existing software having the graphical
user interface as a main software, a scheme of replacing the
existing software by an object, and a component which
serves as an object in combination with the existing soft-
ware.

A corresponding relation between the component
described hereinafter and the present invention is as follows.

When the component, which will be described
hereinafter, is stored in the storage unit 105 of the computer
system 100 shown in FIG. 1, the storage unit 105 storing the
component corresponds to one example of the component
storage medium referred to in the present invention. In a case
where the component is stored in the MO 110 shown in FIG.
1, the MO 110 storing the component corresponds to an

20

25

30

35

40

45

50

55

60

65

64

alternative example of the component storage medium
referred to in the present invention.

FIG. 101 is a typical illustration showing an embodiment
of' a component “including” an existing software having a
graphical user interface.

In FIG. 101, an application A is an existing software in
which while icons such as “button 17, “button 2”, and “but-
ton 3” are displayed on the display screen 102a (cf. FIG. 1),
anyone of those icons is clicked through an operation of the
mouse so that a processing associated with the clicked icon
is executed.

A window management unit manages a graphical user
interface of all applications incorporated into the system,
including the application A. For instance, if it is a Windows,
the window management unit denotes a Windows system
itself. A component A “including” the application A has a
basic structure as an object, for connecting with other
objects, and in addition data related to the application A. The
component A has further as a method an application drive
program and a window event generation program (e.g. a
button 1 click event issue program for executing the equiva-
lence to such a matter that a user clicks the button 1 through
an operation of the mouse 104). When a message is transmit-
ted from another object to an application A drive method of
the component A, the method is executed to drive the appli-
cation A so that information (e.g. ID information and the
like) related to the window is read and the component A
maintains the window information.

Further, when a message is transmitted from another
object (or one’s own self) to a method which issues an event
such as a button click or the like, the associated event is
issued through the window management unit to the window
of the application A in accordance with the event issue pro-
gram described in the method which received the massage.

In this case, it is possible to replace the existing applica-
tion by an object by means of simply adding the component
A, maintaining the existing application A as it is.

FIG. 102 is a typical illustration showing an alternative
embodiment of a component “including” an existing soft-
ware having a graphical user interface.

In the embodiment explained referring to FIG. 101, added
to the last of the event generation program for the existing
application A, the existing software and the like is a program
for issuing a message to inform other object of that an execu-
tion of the method is finished. The message thus issued is
connected to a method of other component or other object.
Thus it is possible to execute a plurality of methods on a
chain basis. In FIG. 102, the existing software is omitted,
and there is shown the state that the messages of the compo-
nent A are connected to the methods of the components B
and C.

FIG. 103 is a typical illustration showing a further alterna-
tive embodiment of a component including an existing soft-
ware having a graphical user interface.

The component shown in FIG. 103 is an example of a
component having such a function that events for the exist-
ing software are monitored and when a predetermined event
is issued, the associated message is issued.

When a method for driving an application A of a compo-
nent A being an existing software receives a message, the
method is executed to drive the application A. The compo-
nent A has a function to monitor all window events and
investigates as to whether the issued event is involved in the
application A. When it is identified that the issued event is
involved in the application A, the component A issues a mes-

US RE42,105 E

65

sage for informing another object (or one’s own self) of the
fact that the event was issued for the application A. For
example, when the icon “button 1” of three icons “button 17,
“button 2 and “button 3” related to the application A, which
are displayed on the display screen 102a, is clicked through
an operation of the mouse 104 by a user, the component A
identifies that the icon “button 1” of the application A was
clicked, and issues a message for informing that the button 1
was clicked.

In this manner, it is possible, upon receipt of an issue of
the event of an existing software, to execute on a cooperative
basis a method which does not appear on a specification of
the existing software, without adding advanced functions to
the existing software.

FIG. 104 is a typical illustration showing a structure of an
event processing portion of the window management section
shown in FIG. 103. FIG. 105 is a typical illustration showing
a structure of an event monitor portion of the component A
shown in FIG. 103.

The event processing portion of the window management
section is a part in which upon receipt of the issue of an
event, a processing associated with the event is carried out.
The event processing portion has an event processing ele-
ment list consisting of a plurality of event processing ele-
ments each storing therein pointers to various types of event
processing functions. When a window event is generated, the
event processing functions indicated by the pointers stored
in each of the event processing elements are sequentially
executed. The event processing element, which is arranged
at the last of the event processing element list, indicates a
default event process function. The default event process
function serves, for example, when a button is clicked, to
perform such a processing that a button on the display screen
is moved as if the button on the display screen is depressed.

At the last of a drive method of the application A of the
component A show in FIG. 103, there is described a program
for requesting the window management unit to transmit the
window event to one’s own self (component A). Specifically,
the event processing element, which stores therein a pointer
to an event monitor portion of the component A, is added to
the event processing list possessed by the event processing
portion of the window management unit. In this manner, it is
possible thereafter to refer to the occurred event at the event
monitor portion of the component A, whenever the window
event occurs.

The event monitor portion of the component A stores an
event table shown in FIG. 105 in which described are a
window 1D for defining events concerning the application A,
an event ID, other data, and a message issued when the event
issued, in their corresponding relation.

When any of the window events occurs and event data
related to the occurred window event is inputted through the
window management unit shown in FIG. 104 to the event
monitor portion of the component A, the event table is
referred to by the window ID and the event ID of the event
data to retrieve as to whether a window 1D and an event 1D,
which match the window ID and the event ID of the event
data, respectively, exist in the event table. When it is deter-
mined that a window ID and an event ID, which match the
window ID and the event ID of the event data, respectively,
exist in the event table, the component A issues a message
associated with the matched window ID and event ID.

FIG. 106 is a basic construction view of a component
builder apparatus according to the present invention.

The component builder apparatus 400 comprises a first
handier 401, a second handler 401 and a component builder
means 403.

20

25

35

40

45

50

55

60

65

66

The first handler 401 serves to selectively indicate making
of methods and messages.

The second handler 402 serves to input an instruction of
an issue of a desired event of a predetermined existing soft-
ware.

It is to be noted that while the first handler and the second
handler are functionally separately distinguished from one
another, it is acceptable that these handlers are constructed in
form of a united body on a hardware basis. In the computer
system shown in FIG. 1, the mouse 104 typically corre-
sponds to both the first handler and the second handler.

The component builder means 403 builds a component
which serves as one object in combination with an existing
software. Specifically, the component builder means 403
serves, when making of a method is instructed by an opera-
tion of the first handler 401 and a predetermined event of the
existing software is issued by an operation of the second
handler 402, to make on the component a method which fires
with a message issued by another object and issues the event,
and serves, when making of a message is instructed by an
operation of the first handler 401 and an issue of a predeter-
mined event of the existing software is instructed by an
operation of the second handler 402, in response to an occur-
rence of the event, to make on the component a message for
informing other objects of the fact that the event occurred.

The component builder means 403 corresponds to the
object builder unit 121 of the object ware programming sys-
tem 120 shown in FIG. 2.

FIG. 107 is a typical illustration useful for understanding
an embodiment of a component builder apparatus according
to the present invention. FIG. 108 is a flowchart useful for
understanding processings of building a component using a
component builder apparatus.

An object builder portion 121 has a program 121a for
building a component “including” or “involving” an existing
software, which serves as one object together with the exist-
ing software. In step 108_1, the existing software (here
application A) “included” from the program is driven in
accordance with an instruction from a user. In step 108_ 2,
window information of the application A is obtained and
maintained.

Next, in step 108__3, the user makes a selection as to
whether a method or a message is added to the component
“including” the driven application A, and further makes a
selection as to types of events (for example, a distinction
between the button click and the menu click). The selection
between the method and the message mentioned above is
carried out in accordance with such a way that either one of
the icons of a method and a message on the display screen is
clicked by the mouse. A name of the method or the message
to be added is registered into the selected column through an
operation of the keyboard.

In step 108_4, an occurrence of events is monitored.
When an event is generated by the button click or the like
using a mouse (step 108__5), it is determined as to whether
the generated event relates to a window of the application A
(step 108__6). Further, in step 108__7, it is determined as to
whether the generated event is the same type of event as the
type (e.g. a distinction between the button click and the
menu click) of the event selected in step 108__3.

With respect to the mechanism (functions of the window
management unit and the event monitor portion) for deter-
mining as to whether the generated event is a desired event,
it is the same as that explained referring to FIGS. 103 to 105.
Thus, the redundant explanation will be omitted.

When the generated event is concerned with the window
of'the application A and in addition is of the same type as the

US RE42,105 E

67

selected event, the event is added to the component A in the
form of the method or the message in accordance with a
distinction between the method and the message selected in
step 108_ 3 together with the type of event. In other words,
there is added a program such that when a message is
received from another object at the component A “involv-
ing” the application A, a method of causing the event to
generate is created, or when the event is generated, a
message, which stands for that the event is generated, is
informed to another object.

The above-mentioned operation is continued until a user
gives an instruction for termination of monitoring an event
(step 108__9). Upon receipt of the event monitoring termina-
tion instruction given by the user, the application
(application A) now on drive is terminated in drive. Further,
with respect to an object comprising the application A and
the component A “involving” the application A, object data
for display and wiring as to such an object is created and
stored in the object data file 132, and the object is compiled
to create running object data and the running object data is
stored in the running object file 133. In this manner, the
component “involving” a desired existing software is built
on an interactive basis.

Next, there will be explained embodiments of the fifth
object-oriented programming supporting apparatus of the
object-oriented programming supporting apparatuses
according to the present invention.

FIG. 109 is a construction view of an object ware pro-
gramming system in which structural elements correspond-
ing to the embodiment of the fifth object-oriented program-
ming supporting apparatus according to the present
invention are added to the object ware programming system
120 shown in FIG. 2. In FIG. 109, the same parts are denoted
by the same reference numbers as those of FIG. 2, and the
redundant description will be omitted.

An object ware programming system 120 shown in FIG.
109 comprises, in addition to the structural elements of the
object ware programming system 120 shown in FIG. 2, an
event log generating unit 141, a component coupling unit
142, an event log file 151 and a component file 152.

According to the embodiments of the component builder
apparatus explained referring to FIGS. 107 and 108, the built
component is stored in the object data file 132 and the run-
ning object file 133. On the contrary, according to the
present embodiment shown in FIG. 109, while it is the same
as the former embodiment with respect to the running object
file, data for display and wiring of the built component is
stored in the component file 152 instead of the object data
file 132. It is to be noted that for the purpose of better
understanding, the component file 152 is formed indepen-
dently of the object data file 132, but it is acceptable that the
component file 152 and the object data file 132 are con-
structed in the form of united body.

First, in accordance with the scheme explained referring
to FIGS. 107 and 108, upon receipt of a message, an event of
an existing software is issued, and a component, which out-
puts it in the form of a message that the event is issued, is
built on each of a plurality of existing softwares and stored in
the component file 152.

Next, a user drives simultaneously or sequentially those
existing softwares in many number to generate a various
types of events. Then, the event log generating unit 141 gen-
erates an event log indicative of as to what event is generated
in what order. The event log thus generated is stored in the
event log file 151.

When a generation of the event log is terminated, the com-
ponent coupling unit 142 sequentially reads the events stored

20

25

35

40

45

50

55

60

65

68

in the event log file 151 and wires the components stored in
the component file 152 so that the events read out are
sequentially generated.

A wiring result is stored in the interobject wiring data file
134. Further, if necessary, an additional wiring is conducted
by the interobject wiring editor unit 122, and then the wiring
is converted into wiring data for an interpreter use and stored
in the wiring data file 135 for an interpreter use.

FIG. 110 is a flowchart useful for under standing an opera-
tion of a component coupling unit. FIG. 111 is a flowchart
useful for understanding an operation of a component cou-
pling unit.

As shown in FIG. 111, the event log file stores therein an
event log in which a number of event data are arranged,
which is generated in the event log generating unit 141 (cf.
FIG. 109). The component file (cf. FIG. 109) stores therein a
number of components in which the event is associated with
the method in accordance with a manner mentioned above.

In the component coupling unit, as show in FIG. 110, an
event is loaded by one from the event log file (step 110__1).
In step 110__2, the loaded event is compared with a descrip-
tion of a corresponding relation between an event and a
method, the description being possessed by a component
stored in the component file, and the same event as the
loaded event is retrieved from the component file. When the
same event is identified, a wiring between a method associ-
ated with the event thus identified and a previous message
(which will be described below) is conducted (step 110__3).
A message, which is issued when the method is executed, is
saved in the form of the “previous message”. Regarding the
“previous message”, it is noted that the component file stores
therein, as shown in FIG. 102, such a type of component that
when a method is executed, a message indicative of that an
event associated with the method is issued is issued. When
the succeeding event remains in the event log stored in the
event log file 141 (step 110__4), the process returns to step
110__1 in which the succeeding event is loaded, and a wiring
is conducted in a similar fashion to that of the above.

Incidentally, with respect to the event which is arranged at
the first of the event log, no “previous message” exists. Thus
the wiring between a method and the previous message, as
shown in FIG. 111, is not conducted, and a message, which
is issued when the method issuing the event is executed, is
saved in the form of the “previous message”

In this manner, it is possible to implement an automatic
wiring among components. This wiring makes it possible in
execution by the interpreter unit 123 to automatically
sequentially issue events in accordance with the sequence of
generation of the event log by a user, and thus an automatic
operation for the existing software is possible.

When the event log is once produced, the automatic wir-
ing is conducted sequentially in accordance with the
sequence of the events arranged on the produced event log. It
is also acceptable, however, that the event log once produced
is displayed in the form of a table, and a user selects a neces-
sary event from the table displayed so that an automatic
wiring is conducted in accordance with a sequence selected
by the user. According to this way, it is possible, when errors
occur during a generation of an event log, to correct the
errors without doing over again in generation of the event
log.

In this manner, it is possible to implement, for example,
an autopilot function of the WWW browser, by means of
implementing an automatic operation of the application.

Next, there will be explained an alternative embodiment
of'a scheme in which an existing software is “involved” and

US RE42,105 E

69

replaced by an object, and an alternative embodiment of a
component which serves as an object in combination with an
existing software.

FIG. 112 is a conceptual view showing a state in which an
existing software is “included” in a component. FIG. 113 is a
view showing a table for definition items to give various
definitions shown in FIG. 112. In FIG. 113, the object is
referred to as “LSI”.

Here, the existing software is an existing program consist-
ing of a function or a set of functions, not solely executed but
executed when called from other application program or the
like.

In the existing programming, there exist data x;, X,, X5, . .
., X;, to be received from other programming, functions
function 1, function 2 . . ., function j, . . . for performing a
processing based on the received data, and data y,, y,, . . . 75
... 1o be transmitted to other program, which are representa-
tive of a result of processing.

When such a program is “involved”, as shown in FIG.
112, it is assumed that an object is defined with a separation
into two parts. The separating way is given with a certain
degree of option, and may be determined by a user.

Here, various types of definitions are given as shown in
FIG. 112. First, as (A) a header, there are defined a project
name for specifying the whole of works or processings and
an environment for executing the processings.

(A) a header is followed by (B) a definition to be made up,
(C) a definition of an existing program (defining as to which
existing program is to be replaced by an object), and (D) a
definition of an object. It is noted that (D) a definition of an
object is given with a plurality of definitions when the exist-
ing program is partitioned into a plurality of objects.

In (D) a definition of an object, there exist a definition of a
data bus (a data input terminal) for use in data input for
identifying a pointer which receives data from other object, a
definition of a method (a method terminal) for identifying a
pointer of an entrance of the processing to be executed, and a
definition of a data bus (a data output terminal) for use in
data output for identifying a pointer for data to be transmit-
ted to other object. It is to be noted that according to the
present embodiment, since the existing program adapted for
executing a processing when called from other program is
assumed, it is not considered that this existing program
requests (an issue of message) of another object a process-
ing.

FIG. 113 is a view showing a table for definition items to
give various definitions shown in FIG. 112.

The keyword groups appearing on the table are of a kind
of program language useful for giving the above-mentioned
various definitions. A detailed explanation of the individual
keywords will be omitted, since it is not essential to the
present invention.

FIG. 114 is a view exemplarily showing images displayed
on a display screen 102a when definitions are given.

The left side of the screen shows structures of definitions,
each of which serves as an icon. When any of the icons is
clicked, there is displayed as shown at the right side of the
screen a frame of a table for giving a definition of the item
associated with the clicked icon. Filling the frames one by
one completes a definition table.

An adoption of such a type of scheme that the frames of
the table is filled makes it possible to readily give a definition
on an interactive basis.

When the definition table is completed, an existing pro-
gram and a component comprising the definition table

20

25

30

35

40

45

50

55

60

65

70

related to the existing program are stored in the object data
file 132 with an extraction of data for display and wiring by
the object builder unit 121 shown in FIG. 2, and also are
stored in the running object file 133 through a conversion
into a running format by a compiler.
In this manner, it is possible to take in an existing software
to the object ware programming system in the form of the
object, regardless of a format of the existing software, main-
taining the existing software as it is.
As described above, according to the present invention, it
is possible to specially enhance reuse of the software, and
also to implement the software higher in the running speed.
While the present invention has been described with refer-
ence to the particular illustrative embodiments, it is not to be
restricted by those embodiments but only by the appended
claims. It is to he appreciated that those skilled in the art can
change or modify the embodiments without departing from
the scope and spirit of the present invention.
What is claimed is:
1. An object-oriented programming apparatus for inter-
connecting a plurality of objects each having data and
operations, said object-oriented programming apparatus
comprising:
instruction coupling means for permitting a transfer of
messages between a first object, having an output
instruction bus portion for performing processing for
issue of messages directed to at least one other object
and a second object having an input instruction bus
portion responsive to the messages issued by the first
object and directed to the second object for activating a
method of the second object associated with each
received message, by detecting a correspondence
between the message of the first object the method of
the second object; and
input instruction tag table generating means for generat-
ing an input instruction tag table indicating an associa-
tion of messages of the at least one other object with
methods of the first object upon detection of the corre-
spondence therebetween by said instruction coupling
means, for each other object generating one of the
messages, on the output instruction bus portion of the
first object.
2. An object-oriented programming apparatus according
to claim 1,
wherein said instruction coupling means generates a
method element list in which arranged are method ele-
ments including a method ID for specifying the method
of the second object associated with the message of the
first object, and a pointer to the second object in which
the method specified by the method ID is executed, and

wherein said input instruction tag table generating means
generates the input instruction tag table and adds the
input instruction tag table to the method elements
including the pointer to the second object associated
with the input instruction tag table.

3. An object-oriented programming apparatus for inter-
connecting a plurality of objects each having data and
operations, said object-oriented programming apparatus
comprising:

instruction coupling means for permitting transfer of mes-

sages between a first object having an output instruc-
tion bus portion for performing processing for issue of
messages directed to at least one other object and a
second object having an input instruction bus portion
responsive to messages issued by the first object and
directed to the second object for activating a method of

US RE42,105 E

71

the second object associated with each received
message, by detecting a correspondence between the
message of the first object and the method of the second
object; and

an output instruction tag table generating means for gen-

erating an output instruction tag table indicating an
association of methods of the at least one other object
with messages of the first object upon detection of the
correspondence therebetween by said instruction cou-
pling means, for each other object receiving one of the
messages, on the output instruction bus portion of the
first object.

4. An object-oriented programming apparatus according
to claim 3, wherein said instruction coupling means gener-
ates a method element list in which arranged are method
elements including a method ID for specifying a method of
the second object associated with a message of the first
object, and a pointer to the second object in which the
method specified by the method ID is executed, and

wherein said output instruction tag table generating means
generates the output instruction tag table and adds the
output instruction tag table to the method elements
including the pointer to the second object associated
with the output instruction tag table.

5. An object-oriented programming apparatus for inter-
connecting a plurality of objects each having data and
operations, said object-oriented programming apparatus
comprising:

instruction coupling means for permitting transfer of mes-

sages between a first object having an output instruc-
tion bus portion for performing processing for issue of
messages directed to at least one other object and a
second object having an input instruction bus portion
responsive to messages issued by the first object and
directed to the second object for activating a method of
the second object associated with each received
message, by detecting a correspondence between the
message of the first object and the method of the second
object; and

an input data tag table generating means for generating,

upon detection of the correspondence between the mes-
sage of the first object and the method of the second
object by said instruction coupling means, an input data
tag table indicating an association of a data element list
ID for identifying a data element list in which pointers
to data storage areas for storing data are arranged with a
pointer element list ID for identifying a pointer element
list in which pointers to data storage areas for storing
pointers to data are arranged, for each other object, on
the output instruction bus portion of the first object.

6. An object-oriented programming according to claim 5,
wherein said instruction coupling means generates a method
element list in which arranged are method elements includ-
ing a method ID for specifying a method of the second
object associated with a message of the first object, and a
pointer to the second object in which the method specified
by the method ID is executed, and

wherein said input data tag table generating means gener-

ates the input data tag table and adds the input data tag
table to the method elements including the pointer to
the second object associated with the input data tag
table.

7. An object-oriented programming apparatus for inter-
connecting a plurality of objects each having data and
operations, said object-oriented programming apparatus
comprising:

20

25

30

35

40

45

50

55

60

65

72

instruction coupling means for permitting transfer of mes-
sages between a first object having an output instruc-
tion bus portion for performing processing for issue of
messages directed to at least one other and a second
object having an input instruction bus portion respon-
sive to messages issued by the first object and directed
to the second object for activating a method of the sec-
ond object associated with each received message, by
detecting a correspondence between the message of the
first object and the method of the second object; and

an output data tag table generating means for generating,
upon detection of the correspondence between the mes-
sage of the first object and the method of the second
object by said instruction coupling means, an output
data tag table indicating an association of a pointer ele-
ment list ID for identifying a pointer element list in
which pointers to pointer storage areas for storing
pointers to data are arranged with a data element list ID
for identifying a data element list in which pointers to
data storage areas for storing data are arranged, for each
other object, on the output instruction bus portion of the
first object.
8. An object-oriented programming apparatus according
to claim 7,
wherein said instruction coupling means generates a
method element list in which arranged are method ele-
ments including a method ID for specifying a method
of the second object associated with a message of the
first object, and a pointer to the second object in which
the method specified by the method ID is executed, and

wherein said output data tag table generating means gen-
erates the output data tag table and adds the output data
tag table to the method elements including the pointer
to the second object associated with the output data tag
table.

9. An object-oriented program storage medium for storing
a plurality of objects each having data and operations, said
object-oriented program storage medium storing an object
coupling program to control a computer to perform a method
comprising:

transferring messages between a first object having an

output instruction bus portion for performing process-
ing for issue of messages directed to at least one other
object and a second object having an input instruction
bus portion responsive to messages issued by the first
object and directed to the second object for activating a
method of the second object associated with each
received message, by providing a correspondence
between the message of the first object and the method
of the second object; and

generating an input instruction tag table indicating an

association of messages of the at least one other object
with messages of the first object, for each other object,
on the output instruction bus portion of the first object.

10. An object-oriented program storage medium accord-
ing to claim 9,

wherein said transferring generates a method element list

in which arranged are method elements including a
method ID for specifying a method of the second object
associated with a message of the first object, and a
pointer to the second object in which the method speci-
fied by the method ID is executed, and

wherein said generating generates the output instruction

tag table and adds the output instruction tag table to the
method elements including the pointer to the second
object associated with the output instruction tag table.

US RE42,105 E

73

11. An object-oriented program storage medium accord-
ing to claim 10, wherein the first object having a method
element to which the input instruction tag table is added
calls, when calling the second object identified by the
method element, the second object giving as arguments the
method ID and the input instruction tag table which are
stored in the method element.

12. An object-oriented program storage medium accord-
ing to claim 11, wherein the second object receives messages
directed from the first object to the second object and refers
to the input instruction tag table, which is an argument of the
received message, to execute the method of the first object
associated with the message of the second object.

13. An object-oriented program storage medium accord-
ing to claim 11, wherein the second object receives the mes-
sages directed from the first object to the second object, and
refers to the input instruction tag table, which is an argument
of the received message, to add the method element related
to the method of the first object associated with the message
of the second object to the method element list of the second
object associated with the message of the second object.

14. An object-oriented program storage medium accord-
ing to claim 11, wherein the second object produces a third
object, receives the messages directed from the first object to
the second object, and refers to the input instruction tag
table, which is an argument of the received message, to add
the method element related to the method of the first object
associated with messages of the third object to the method
element list of the third object associated with the message
of the third object.

15. An object-oriented program storage medium accord-
ing to claim 11, wherein the second object receives messages
directed from the first object to the second object, and
executes the method identified by the method ID which is an
argument of the received message.

16. An object-oriented program storage medium for stor-
ing a plurality of objects each having data and operations
and an object coupling program to control a computer to
perform a method comprising:

transferring messages between a first object having an

output instruction bus portion for performing process-
ing for issue of messages directed to at least one other
object and a second object having an input instruction
bus portion responsive to messages issued by the first
object and directed to the second object for activating a
method of the second object associated with each
received message, by providing a correspondence that
between the message of the first object and the method
of'the second object; and

generating an output instruction tag table indicating an

association of methods of another object with messages
of self object, for each other object, on the output
instruction bus portion of the first object.

17. An object-oriented program storage medium accord-
ing to claim 16,

wherein said transferring generates a method element list

in which arranged are method elements including a
method ID for specifying a method of the second object
associated with a message of the first object, and a
pointer to the second object in which the method speci-
fied by the method ID is executed, and

wherein said generating generates the output instruction

tag table and adds the output instruction tag table to the
method elements including the pointer to the second
object associated with the output instruction tag table.

18. An object-oriented program storage medium accord-
ing to claim 17, wherein the first object having a method

20

25

30

35

40

45

50

55

60

65

74

element to which the output instruction tag table is added
calls, when calling the second object identified by the
method element, the second object giving as arguments the
method ID and the output instruction tag table which are
stored in the method element.

19. An object-oriented program storage medium accord-
ing to claim 18, wherein the second object receives messages
directed from the first object to the second object, and refers
to the output instruction tag table, which is an argument of
the received message, to add the method element related to
the method of the second object associated with the message
of'the first object to the method element list of the first object
associated with the message of the first object.

20. An object-oriented program storage medium accord-
ing to claim 18, wherein the second object produces a third
object, receives messages directed from the first object to the
second object, and refers to the output instruction tag table,
which is an argument of the received message, to add the
method element related to the method of the third object
associated with messages of the first object to the method
element list of the first object associated with the message of
the first object.

21. An object-oriented program storage medium accord-
ing to claim 18, wherein the second object receives messages
directed from the first object to the second object, and
executes the method identified by the method ID which is an
argument of the received message.

22. An object-oriented program storage medium for stor-
ing a plurality of objects each having data and operations
and an object coupling program to control a computer to
perform a method comprising:

transferring messages between a first object having an

output instruction bus portion for performing process-
ing for issue of messages directed to at least one other
object and a second object having an input instruction
bus portion responsive to messages issued by the first
object and directed the second object for activating a
method of the second object associated with each
received message, by providing a correspondence that
between the message of the first object and the method
of the second object; and

generating an input data tag table indicating an associa-

tion of a data element list ID for identifying a data
element list in which pointer to data storage area for
storing data are arranged with a pointer element list ID
for identifying a pointer element list in which pointers
to data storage areas for storing pointers to data are
arranged, for each other object, on the output instruc-
tion bus portion of the first object.

23. An object-oriented program storage medium accord-
ing to claim 22,

wherein said transferring generates a method element list

in which arranged are method elements including a
method ID for specifying a method of the second object
associated with a message of first object, and a pointer
to the second object in which the method specified by
the method ID is executed, and

wherein said generating generates the input data tag table

and adds the input data tag table to the method elements
including the pointer to the second object associated
with the input data tag table.

24. An object-oriented program storage medium accord-
ing to claim 23, wherein the first object having a method
element to which the input data tag table is added calls, when
calling the second object identified by the method element,
the second object giving as arguments the method ID and the
input tag table which are stored in the method element.

US RE42,105 E

75

25. An object-oriented program storage medium accord-
ing to claim 24, wherein the second object receives messages
directed from the first object to the second object, refers to
the input data tag table, which is an argument of the received
message, to obtain the pointer element list ID of the first
object, produces the pointer element list identified by the
pointer element list ID of the first object and the data ele-
ment list identified by the data element list ID associated
with the pointer element list ID of the second object, and
writes the pointers arranged in the data element list of the
second object into the pointer storage areas indicated by the
pointers arranged in the pointer elements list of the first
object.

26. An object-oriented program storage medium accord-
ing to claim 24, wherein the second object produces a third
object, receives messages directed from the first object to the
second object, refers to the input data tag table, which is an
argument of the received message, to obtain the pointer ele-
ment list ID of the first object, produces the pointer element
list identified by the pointer element list ID, of the first object
and the data element list identified by the data element list
1D associated with the pointer element list ID of the third
object, and writes the pointers arranged in the data element
list of the third object into the pointer storage areas indicated
by the pointers arranged in the pointer element list of the first
object.

27. An object-oriented program storage medium accord-
ing to claim 24, wherein the second object receives messages
directed from the first object to the second object, and
executes the method identified by the method ID which is an
argument of the received message.

28. An object-oriented program storage medium for stor-
ing a plurality of objects each having data and operations
and an object coupling program to control a computer to
perform a method comprising:

transferring messages between a first object having an

output instruction bus portion for performing process-
ing for issue of messages directed to at least one other
object and a second object having an input instruction
bus portion responsive to messages issued by the first
object and directed to the second object for activating a
method the second object associated with each received
message, by providing a correspondence that between
the message of the first object and the method of the
second object; and

generating, upon detection of the correspondence between

the message of the first object and the method of the
second object by said instruction coupling means, an
output data tag table indicating an association of a
pointer element list ID for identifying a pointer element
list in which pointers to pointer storage areas for storing
pointers to data are arranged with a data element list ID
for identifying a data element list in which pointers to
data storage areas for storing data are arranged, for each
other object, on the output instruction bus portion of the
first object.

29. An object-oriented program storage medium accord-
ing to claim 28,

further comprising generating a method element list in

which arranged are method elements including a
method ID for specifying a method of the second object
associated with a message of the first object, and a
pointer to the second object in which the method speci-
fied by the method ID is executed, and

20

25

30

35

40

45

50

55

60

76

wherein said generating generates the output data tag
table and adds the output data tag table to the method
elements including the pointer to the second object
associated with the output data tag table.

30. An object-oriented program storage medium accord-
ing to claim 29, wherein the first object having the method
element to which the output data tag table is added calls,
when calling the second object identified by the method
element, the second object giving as arguments the method
ID and the output data tag table which are stored in the
method element.

31. An object-oriented program storage medium accord-
ing to claim 30, wherein the second object receives messages
directed from the first object to the second object, refers to
the output data tag table, which is an argument of the
received message, to obtain the data element list ID of the
first object, produces the data element list identified by the
data element list ID, of the first object and the pointer ele-
ment list identified by the pointer element list ID associated
with the data element list ID, of the second, and writes the
pointers arranged in the data element list of the first object
into the pointer storage areas indicated by the pointers
arranged in the pointer element list of the second object.

32. An object-oriented program storage medium accord-
ing to claim 30, wherein the second object produces a third
object, receives messages directed from the first object to the
second object, refers to the output data tag table, which is an
argument of the received message, to obtain the data element
list ID of the first object, produces the data element list iden-
tified by the data element list ID of the first object and in
addition the pointer element list identified by the pointer
element list ID associated with the data element list ID of the
third object, and writes the pointers arranged in the data
element list of the first object into the pointer storage areas
indicated by the pointers arranged in the pointer element list
of' the third object.

33. An object-oriented program storage medium accord-
ing to claim 30, wherein the second object receives messages
directed from the first object to the second object, and
executes the method identified by the method ID which is an
argument of the received message.

34. A method performed by a computer to establish com-
munication between first and second objects, each having
data and at least one method, comprising:

detecting a correspondence between a message of the first

object and a method of the second object;

generating a data element list for first pointers to data

storage areas in the first object;

generating a pointer element list for second pointers to

pointer storage areas in the second object;

generating a data tag table associating a data list identifier

with a pointer list identifier, the data list identifier iden-
tifying the data element list for the first object, and the
pointer list identifier identifying the pointer element list
for the second object; and

after the first pointers have been stored in the data element

list, using the data list identifier and the pointer list
identifier to write the first pointers into the pointer stor-
age areas indicated by the second pointers for reference
by the second object to obtain the data in the first
object.

