
(19) United States
(12) Reissued Patent

Nagashima et al.
(10) Patent Number:
(45) Date of Reissued Patent:

USOORE42105E

US RE42,105E
Feb. 1, 2011

(54) OBJECTORIENTED PROGRAMMING
APPARATUS, OBJECTORIENTED
PROGRAMMING SUPPORTINGAPPARATUS,
COMPONENT BUILDER APPARATUS,
OBJECTORIENTED PROGRAMISTORAGE
MEDIUM, PROGRAMSTORAGEMEDIUM
FOR USE IN OBJECTORIENTED
PROGRAMMING, COMPONENT STORAGE
MEDIUM, AND OBJECT-BETWEEN
NETWORK DISPLAY METHOD

(75) Inventors: Fumio Nagashima, Kawasaki (JP);
Kaori Suzuki, Kawasaki (JP); Asako
Yumoto, Kawasaki (JP): Tsuguto
Maruyama, Kawasaki (JP); Shigeru
Sasaki, Kawasaki (JP); Ryousuke Suda,
Kawasaki (JP); Miwa Ueki, Kawasaki
(JP)

(73) Assignee: Fujitsu Limited, Kawasaki (JP)

(21) Appl. No.: 11/370,498

(22) Filed: Mar. 8, 2006

Related U.S. Patent Documents
Reissue of:
(64) Patent No.: 6,877,154

Issued: Apr. 5, 2005
Appl. No.: 09/765,408
Filed: Jan. 22, 2001

U.S. Applications:

(60) Division of application No. 08/919,254, filed on Aug. 28,
1997, now Pat. No. 6, 178,545, which is a continuation-in
part of application No. 08/855,986, filed on May 14, 1997,
now abandoned.

(30) Foreign Application Priority Data
Jun. 28, 1996 (JP) ... 8-170079
Nov. 5, 1996 (JP) 8-29.2863
Jun. 27, 1997 (JP) ... 9-171782

(51) Int. Cl.
G06F 9/44 (2006.01)

UPT ENSRUCTION
BSPORTION

GENERAING UN

ATAEEEN LS

GENERAG UN

STRCTION
CUPNG

NIT

DAA CUPLNG

UNIT

(52) U.S. Cl. 717/100; 717/108; 717/114
(58) Field of Classification Search 717/100,

717/108, 114
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,809, 170 A 2/1989 Leblang et al.
5,265,206 A 11/1993 Shackelford et al.
5,339,433 A 8, 1994 Frid-Nielsen
5,371,895 A 12/1994 Bristol
5.432,903. A 7/1995 Frid-Nielsen
5.432,932 A 7/1995 Chen et al.
5,551,035 A 8, 1996 Arnold et al.
5,557,730 A 9, 1996 Frid-Nielsen

(Continued)
FOREIGN PATENT DOCUMENTS

JP 61-245280 10, 1986

(Continued)
OTHER PUBLICATIONS

G. L. Kovacs, “Simulation-Scheduling System Using
Hybrid Software Technology”, 1994 Nishimura, “Static
Typing for Dynamic Messages. ACM POPL, pp. 266-288,
1998 Baba et al., “A Parallel Object Oriented Total Architec
ture A Net,” IEEE, pp. 276-285, 1990.*

(Continued)
Primary Examiner Ted TVo
(74) Attorney, Agent, or Firm Staas & Halsey LLP
(57) ABSTRACT

As to an object-oriented programming, reuse of Softwares is
enhanced and running speed is improved. There are made up
a data element list in which pointers to data storage areas of
object A are arranged and a pointer element list in which
pointers to pointer storage areas of object B are arranged. A
combination of the data element list and the pointer element
list makes it possible to directly refer to data of the object A
from the object B.

34 Claims, 84 Drawing Sheets

PT INSTRUCN
BSPORN

ENERATING UNT

PONEREEE
SGENERATING

NT

US RE42,105E
Page 2

U.S. PATENT DOCUMENTS

5,560,014 A 9, 1996 Imamura
5,572,731 A 11/1996 Morel et al.
5,572,733 A 1 1/1996 Ryu et al.
5,581,761 A 12/1996 Radia et al.
5,586,326 A 12/1996 Ryu et al.
5,632,034 A 5, 1997 O'Farrell
5,675,756 A 10, 1997 Benton et al.
5,682,487 A 10, 1997 Thomson
5,706,455 A 1/1998 Benton et al.
5,740,444 A 4, 1998 Frid-Nielsen
5,751,965 A 5/1998 Mayo et al.
5,758,160 A 5/1998 McInerney et al.
5,764,897 A 6, 1998 Khalidi
5,787,413 A 7, 1998 Kauffman et al.
5,850,221 A 12/1998 Macrae et al.
5,907,707 A 5/1999 Ramalingam et al.
5,926,637 A 7, 1999 Cline et al.
6,028,998 A 2, 2000 Gloudeman et al.
6,071,317 A 6/2000 Nagel
6,077.312 A 6, 2000 Bates et al.
6,178,545 B1 * 1/2001 Nagashima et al. 717/108
6,199,141 B1 * 3/2001 Weinreb et al. T11 118
6,209,003 B1 * 3/2001 Mattis et al. 707/2O6
6,272.673 B1 * 8/2001 Dale et al. 717/2OO
6,289.358 B1 * 9/2001 Mattis et al. 707/2O3
6,557,165 B1 * 4/2003 Nagashima et al. 717/108
6,634,019 B1 * 10/2003 Rice et al. 717/127
6,757,000 B2 * 6/2004 Nagashima et al. 345,835

FOREIGN PATENT DOCUMENTS

JP 2-113370 4f1990
JP 2-1282750 5, 1990

OTHER PUBLICATIONS

Nishimura, “Static typing for dynamic messages, ACM
POPL, pp. 266-288, 1998.*

Baba et al. Aparallel object oriented total architecture A Net,
IEEE, pp. 276-285, 1990.*
Austin et al. “Efficient detection of all pointers and arrays
access errors”, SIGPLAN ACM, pp. 290–301; 1994.
Edelson, “A mark and sweep collector for C++. ACM pp.
51–58, Aug. 1992.
Hayes. Using key-object opportunism to collect old objects,
ACMOOPSLA, pp. 33–46, May 1991.
Bensley et al., “An execution model for distributed object
oriented comutation”, ACM OOPSLA pp. 316–322, Oct.
1987.
Jarvinen et al., “Object oriented specification of reactive sys
tems”, IEEE, pp. 63–71, 1990.
Jacobson, “Object oriented development in an industrial
environment”, ACM OOPSLA, pp. 183–191; Oct. 1987.
Taylor et al., “An object message model for the development
of integrated workstation software'. ACM pp. 43–52, Jul.
1990.
Durham et al., “A framework for run-time systems and its
visual programming language, OOPSLA '96, ACM, pp.
406-420.
Ellis et al., The Annotated C++ Reference Manual, pp.
176-178 and 239-260, Jun. 1990.
D.A. Taylor, Object Oriented Information Systems Planning
and Implementation, Apr. 10, 1992.
G. Booch, Object Oriented Analysis and Design, pp.
473–476, 1994.
J. Martin, Principles of Object Oriented Analysis and
Design, p. 14, Oct. 1992.
Booch et al., Software Engineering with ADA pp. 242-252
and 520, Aug. 13, 1993.
Orafali et al., “The Essential Distributed Object Survival
Guide” pp. 429–452, Sep. 14, 1995.
G. L. Moore, “The G2 Development and Deployment Envi
ronment', 1992.
* cited by examiner

U.S. Patent Feb. 1, 2011 Sheet 1 of 84 US RE42,105E

U.S. Patent Feb. 1, 2011 Sheet 2 of 84 US RE42,105E

Fig. 2

1 3 2 2 1

OBJEC

BUILDER UNIT

INTER OBJECT
WRNG
ED TOR UNIT

NTERPRETER

UNIT

(RUN)

EX STING OBJECT
SOFTWARE FILE DATA FLE

INTER OBJECT
WRNG DATA
FLE

RUNNNG
OBJECT
FILE

1 3 5

WRNG DATA
FLE FOR
NTERPRETER
USE

US RE42,105E Sheet 4 of 84 Feb. 1, 2011 U.S. Patent

(INE) ETB (10H13N) (INEWERB QOHEN)

INBETE COHE?tºn 01 EINIO,
8 HOBT80 01 8E IN 100(INEWETE GOHIBW)

E

U.S. Patent Feb. 1, 2011 Sheet 5 of 84 US RE42,105E

(5.5)
OBTAIN MEB AS ARGUMENT

EXECUTE PROCESSING OF
FUNCT ON ASSOCATED
WITH MEB

CALL OBJECT B WHERE
ME IS ARGUMENT

OBTAN POINTER TO NEXT
METHOD ELEMENT

U.S. Patent Feb. 1, 2011 Sheet 6 of 84

Fig. 7

PRODUCE FRAME OF METHOD TABLE
HAVING MEBy

(7-2)
STORE POINTER TO ASSOCATED
METHOD IN COLUMN OF MEs

STORE ME AND POINTER TO
OBEC B

(83)
ADD TO METHOD ELEMENT LIST
OF ASSOCATED MAA

US RE42,105E

U.S. Patent Feb. 1, 2011 Sheet 7 of 84 US RE42,105E

(OBJECT A)

(DATA ELEMENT LIST) - OUTA
(DATA ELEMENT) DATA STORAGE AREA

(DATA EEMENT)

(DATA ELEMENT)

US RE42,105E

(1SIT INEWETE HEINIOJ) <– 8 NI

(8 10BC80)

U.S. Patent

U.S. Patent Feb. 1, 2011 Sheet 9 of 84 US RE42,105E

Fig. 12

PRODUCE FRAME OF PONEREEMEN

SUBSTITUTE POINTER

ADD TO POINTER ELEMENT LIST .

(OBJECT A)

U.S. Patent Feb. 1, 2011 Sheet 10 of 84 US RE42,105E

N

SUBSTITUTE POINTER OF D FOR POINTER
NDICATED BY POINTER OF P

NEXT DATA El EMENT -- D
NEXT POINTER ELEMENT --> P (146)

US RE42,105E

0 Z

Sheet 11 of 84 Feb. 1, 2011

8 10BT80

U.S. Patent

G |

(6 | -

W 10BT80

US RE42,105E Sheet 12 of 84 Feb. 1, 2011 U.S. Patent

0 £

8 103T80

W 10BT80

US RE42,105E Sheet 13 of 84 Feb. 1, 2011 U.S. Patent

() y

N0 i 1808 ST8

W 10BT80

US RE42,105E Sheet 14 Of 84 Feb. 1, 2011 U.S. Patent

0 9

8 103T80

W 10BT80

U.S. Patent Feb. 1, 2011 Sheet 15 of 84 US RE42,105E

Fig. 19
(METHOD ELEMENT)

MEB

POINTER TO NPUT
NSTRUCT ON TAG
ABLE

POINTER TO OUTPUT
NSTRUCTION AG
ABLE

PONTER TO INPUT

PONTER TO OUTPUT

PONTER TO

PONTER TO

PONTER TO NEXT

(INPUT INSTRUCT ON TAG TABLE)

MAB -> 2 3 ------ MABNA X

(OUTPUT INSTRUCT ON TAG TABLE)

2 3 ------ MEBAX

(NPUT DATA TAG TABLE)
mis 2 3 ----- OUTBNA X

-
(OUTPUT DATA TAG TABLE)

NB --> 2 3 - - - - - - NBAX

OUTA

U.S. Patent Feb. 1, 2011 Sheet 16 of 84 US RE42,105E

Fig. 20

OBTAN POINTER TO METHOD
ELEMENT LIST FROM MAA (201)

CALL OBJECT B WHERE MER AND PiS'PEER (20-2)

OBAN POINTER TO NEXT
METHOD ELEMENT

(211)
REFER TO INPUT INSTRUCTION TAG
TABLE, AND OBTAINMEA FROM MA

(212)
EXECUTE PROCESSING OF METHOD
ASSOCATED WITH THE OBTANED MEA

U.S. Patent Feb. 1, 2011 Sheet 17 of 84 US RE42,105E

Fig.22

REFER O NPUT INSTRUCTION TAG
TABLE, AND OBTAIN MEA FROM MAB

(221)

ADD METHOD FSFSP (22-2) ELEMENT LISTASSOCIATED WITH MAE OF
ONE'S OWN MESSAGE TABLE

Fig.23
START

(23-1)
PRODUCE OBJEC, C

REERIN SRISNASABE, (241) AND OBTAIN MEA ASSOCIATED WITH MA

ADD METHOD ELEMENT OF ME TO METHOD (24-2)
EEMENT LIST ASSOCATED WITH MAE OF ap
MESSAGE TABLE OF OBJECT C

U.S. Patent Feb. 1, 2011 Sheet 18 of 84 US RE42,105E

Fig. 25

START

REFER TO OUTPUT INSTRUCTION TAG TABLE,
AND OBTAIN MAA ASSOCATED WITH MEB

ADD METHOD ELEMENT OF ME TO METHOD
ELEMENT LIST ASSOCATED WITH MAA OF
MESSAGE TABLE OF OBJECT A

(251)

(252)

g. 26

START

RETUTSRONTAGABE, (261) AND OBTAINMA ASSOCIATED WITH MEB s

ADD METHOD ELEMENT OF MEB AND POINTER
TO OBJECT C TO METHOD ELEMENT LIST (262)
ASSOCATED WITH MA OF MESSAGE TABLE
OF ORECT A

U.S. Patent Feb. 1, 2011 Sheet 19 of 84 US RE42,105E

CA OBJECT B WHERE ME
P3, P AND P5 ARE ARGU

AND
NT

OBTAN POINTER TO NEXT
METHOD ELEMENT

REFER TO INPUT DATA TAG
TABLE, AND OBTAIN INA FROM OUT (28-1)

PRODUCE POINTERELEMENT LIST OFOBJECT (28-2)
A ASSOCATED WITH THE OBTA NED INA

PRODUCE ONE'S OWN DATAELEMENT (28-3)
LIST ASSOCATED WITHOUT

EXECUTE COUPLNG PROCESSING (28-4)

U.S. Patent Feb. 1, 2011 Sheet 20 of 84 US RE42,105E

Fig. 29

(291) REFER TO INPUT INSTRUCT ON AG
TABLE, AND OBTAN INA FROM OUT

PRODUCE POINTERELEMENT LIST OF OBJECT (292)
A ASSOCATED WITH THE OBTA NED INA

PRODUCE DATA EEMENT LIST OF
OBJECT CASSOCATED WITHOUTB

EXECUTE COUPLNG PROCESSING

(293)

(29.4)

REFER TO OUTPUT DATA TAG TABLE,
AND OBTAIN OUTA FROM IN

PRODUCE DATA EEMENT LIST OF OBJECT
A ASSOCATED WITH THE OBTANED OUTA

PRODUCE ONE'S OWN POINTER ELEMENT
LIST ASSOCATED WITH NB

EXECUTE COUPLNG PROCESSING

(3 O-1)

(3O2)

(303)

(3O4)

U.S. Patent Feb. 1, 2011 Sheet 21 of 84 US RE42,105E

Fig. 31

REFER TO OUTPUT DATA TAG TABLE,
AND OBTAIN OUTA FROM NB

PRODUCE DATA ELEMENT LIST OF OBJECT
A ASSOCIATED WITH THE OBTANED OUTA

PRODUCE POINTER ELEMENT LIST OF
OBJECT CASSOCATED WITH IN

EXECUTE COUPLNG PROCESSING

(31-1)

(31-2)

(313)

(314)

Fig. 32

PRODUCE FRAME
TAG TABLE HAV

NPUT INSTRUCTION
DTH MABAY (321)

OF
NG W

STORE MEA IN COLUMN OF MA (32-2)

REGISTER POINTER TO INPUT INSTRUCTION
TAG TABLE INTO ALL METHOD ELEMENTS
REGARDING OBJECT B, OF OBJECT A

(32-3)

U.S. Patent Feb. 1, 2011 Sheet 22 of 84 US RE42,105E

Fig. 33

PRODUCE FRAME OF OUTPUT INSTRUCTION
TAG TABLE HAVING WIDTH MEBAY

STORE MAA IN COLUMN OF MEB

REGISTER PONER TO OUTPUT INSTRUCTION
TAG TABLE INTO ALL METHOD ELEMENTS
REGARDING OBJECT B, OF OBJECT A

(33-3)

(3 4-1) PRODUCE FRAME OF INPUT DATA TAG TABLE
HAVING WIDTHOUTBAY

STORE IN IN COLUMN OF OUTB (3 4-2)

REGISTER POINTER TO INPUT DATA TAG
TABLE INTO ALL METHOD ELEMENTS
REGARDING OBJECT B, OF OBJECT A

(34-3)

U.S. Patent Feb. 1, 2011 Sheet 23 of 84 US RE42,105E

REGISTER POINTER TO OUTPUT DATA TAG
TABLE INTO AL METHOD ELEMENTS
REGARDING OBJECT B, OF OBJECT A

U.S. Patent Feb. 1, 2011 Sheet 24 of 84

Fig. 36

NETWORK

4-2- a a Y Y

- 1 f : V
- 1 f

Y

SUBNT WORK SUBNETWORK 2

US RE42,105E

U.S. Patent Feb. 1, 2011 Sheet 25 of 84 US RE42,105E

Fig. 38 (A)
2O7

U.S. Patent Feb. 1, 2011 Sheet 26 of 84 US RE42,105E

Fig. 39 (A)
2O8

2O6

OOOOOMOOOOO
OOOOOOOOO
OOOOOOOOO

DEDI
ODC1000000

Fig. 39 (B)
2O6

Its.
El
NITAL
les

U.S. Patent Feb. 1, 2011 Sheet 27 of 84 US RE42,105E

Fig. 4 O (A)
2O7

2O5 (
M / / / / / / M 1 / / / / / 4 M / 1 1 / / 1 / / /

0
\O

O M

0

O
- M - MM M .

27%AA

NSSEE SHE
25ginal $EDE

U.S. Patent Feb. 1, 2011 Sheet 28 of 84 US RE42,105E

:
r -- ------ iii.

- "Sitti EEE Esti Nii ENIt a - st

EEE a
HH-i-H-H-------H------- - H - --4--------------

"E" it
--- n

HEEE --- i LEEEEEE
- L - - --- l -: -- -- r iii. V

CN iii. Ethitti & HiFi.

U.S. Patent Feb. 1, 2011 Sheet 29 of 84 US RE42,105E

U.S. Patent Feb. 1, 2011 Sheet 30 of 84 US RE42,105E

Fig. 43 (A)
223)

Fig. 43 (B)

223
223

U.S. Patent Feb. 1, 2011 Sheet 31 of 84 US RE42,105E

Fig. 44 (A)

Fig. 44 (B)

-HHHH.
Fig. 44(C) Hiii

HHH-H

U.S. Patent Feb. 1, 2011 Sheet 32 of 84 US RE42,105E

Fig. 45
224 225

In Hill Nii
H

U.S. Patent Feb. 1, 2011 Sheet 33 of 84 US RE42,105E

226 228 227

2O4 226 229 227

U.S. Patent Feb. 1, 2011 Sheet 34 of 84 US RE42,105E

Fig. 47 (A)

STARTING POINT OF ENLARGEMENT
OBJECT HAVING SUBNETWORK
W M a 1.

2000000000000 ZOOOOOOOOOOOO2

ODDO 11DDDD
OOOOOOOOO
OOOCAOOOOOO

IEEEID
ODOS 10OOOOO
OOOOOOOOOD
OOOOOOOOOO

HEIGHT
NCREASING

U.S. Patent Feb. 1, 2011 Sheet 35 of 84 US RE42,105E

(481)
SELECT OBJECT HAVING SUBNETWORK

(48-2)
DESIGNATE DISPLAY OF SUBNETWORK

(48-3)
ENLARGE MEASURE WHEREAT SELECTED OBJECT
IS LOCATED AND LATTCES ASSOCATED WITH
THE MEASURE IN VERTICAL AND HORIZONTAL
DIRECTIONS, VERTICALLY AND HORIZONALLY
BY THE CORRESPONDING AREA NECESSARY FOR
DISPLAY OF SUBNETWORK G WING THE CORNER
OF UPPER LEFT OF THE MEASURE AS STARTNG
POINT

(48-4)
PERFORM DEFORMATION OF OBJECT AND EXTEN
SON OF WRNG CAUSED BY ENLARGEMENT

(48.5)
FORM NEW LACE WHIN ENLARGED
MEASURE AND DISPLAY SUBNEWORK

(486)
CONNECT OBJECT OF SUBNETWORK WITH
OBJECT OF NEGHBORNG NETWORK

U.S. Patent Feb. 1, 2011 Sheet 36 of 84 US RE42,105E

STARTING POINT OF ENLARGEMENT

3 MEASURES

Fig. 49 (A)
8 MEASURES

W AD OBJECT HAVING
3 MEASURES D. SUBNETWORK HHHE

Doooooooooo

D
M M 12 MEASURES

WDTH INCREASING
3 DIVISION 8 DVISION

5 MEASURES

Fig. 49(B)

HEIGHT INCREASING

5 DIVISION

9 MEASURES

U.S. Patent Feb. 1, 2011 Sheet 37 of 84 US RE42,105E

(501)
SELECT OBJECT HAVING SUBNETWORK

(5O2)
DESIGNATE DISPLAY OF SUBNETWORK

(50-3)
S SUBNETWORK

AccooDATED THIN SCREE
in O

ENLARGE MEASURE WHEREAT SELECTED OBJECT
IS LOCATED, VERTICALLY AND HORIZONTALY
BY THE CORRESPONDING AREA NECESSARY FOR
DISPLAY OF SUBNETWORK GWING THE CENTER
OF THE MEASURE AS STARTNG PONT

DRAW STRA GHT LINES FROM CORNERS OF THE
ENLARGED MEASURE TO CORNERS OF MEASURES
OF SCREEN EDGES IN VERTICAL AND
HORIZONAL DIRECTIONS TO FORM TRAPEZODS

PARTITION FRAPEZODS AND PRODUCE MEASURES

DRAW STRA GHT LINES FROM CORNERS OF
MEASURES OF TRAPEZODS TO CORNERS OF
MEASURES OF SCREEN EDGES TO PRODUCE
RESIDUAL MEASURES

PERFORM WIRING WITH DEFORMATION OF OBJECT
CAUSED BY DEFORMATION OF MEASURES

CONNECT OBJECT OF SUBNEWORK WITH OBJECT
OF PERPHERA NETWORK

END

U.S. Patent Feb. 1, 2011 Sheet 38 of 84 US RE42,105E

6 TERMINAS 2 TERMINALS

U.S. Patent Feb. 1, 2011 Sheet 39 of 84 US RE42,105E

U.S. Patent Feb. 1, 2011 Sheet 43 of 84 US RE42,105E

Fig. 56

DOES NE (56)
COME ACROSS EISTING OBEC

DOES NE REACH (56.2)
WRNG AREA OF OBJECT HAVING

NPUT TERMINAL

y e S

O DOES LINE (56-3)
REACH WIRING AREA OF INPUT

TERMINAL7

ye S
(56-4) no

IS LINE
PERPEND CULAR TO LANE 3 OF INPUT (56.7)

TERMINAL
PERPEND CULAR

(56.9)

(56.12)
PROVIDE LANE PERPEND CULAR TO LINE LANE PERPENDCLAR

PRESENTRING AREA, AND CONNECT ON PRESENT WRNG

PROVIDE LANE ON RING AREA PARALLEL (56-13)
TO LINE AND NEAR INPUT TERMINAL AND DRAW LINE FROM NODE TOWARD
CONNECT FT WITH INPUT TERMINA OBJECT HAVING INPUT TERMINAL

US RE42,105E Sheet 44 of 84 2011 Feb. 1, U.S. Patent

TYNIWEI. IndNI 01 I BOON WOH + 3NIT MVHG
€ ENYT 01 T BOON WOH BRIT MYHO

(672.g) (8719) (2.719)

(GT1G) (#7719)

EN?T SI

(1719)

U.S. Patent Feb. 1, 2011 Sheet 45 of 84 US RE42,105E

TERMINAL

Fig. 59

U.S. Patent Feb. 1, 2011 Sheet 46 of 84 US RE42,105E

OUTPUT
TERMINA

U.S. Patent Feb. 1, 2011 Sheet 47 of 84 US RE42,105E

US RE42,105E Sheet 48 of 84 Feb. 1, 2011 U.S. Patent

| BNVT (O)29, ôl
1. Tid.LflO

(V)29, ôl

U.S. Patent Feb. 1, 2011 Sheet 49 of 84 US RE42,105E

DSPLAY MEANS

HERARCHICAL
STRUCTURE

OBJECT

3 1 0

COUPLNG MEANS CONSTRUCT ON MEANS

HANDLER 3 O A.

U.S. Patent Feb. 1, 2011 Sheet 50 of 84 US RE42,105E

Fig. 65

OBJECT A
OBJECT C

OBJECT OBJECT

B E

OBJECT F

OBJECT OBJECT OBJECT G

D H

Fig. 66

WRNG EDTOR

U.S. Patent Feb. 1, 2011 Sheet 51 of 84 US RE42,105E

Fig. 67

PONTER TO HGHER- POINTER TO LOWER- FROM TO
ORDER HERARCHY ORDER HERARCHY

(POINTERS TO HGHER/LOWER-ORDER HERARCHY) (POINTERS TO SAME
ORDER HERARCHY)

(OBJECT)

(POINTERS TO CABLES)

DATA AG TAG DATA
NSTRUCTION

(POINTERS TO BUSES)

(BUS)

U.S. Patent Feb. 1, 2011 Sheet 52 of 84 US RE42,105E

Fig. 69
(CABLE) (TERMINAL)

PONTER TO TERMINAL POINTER TO OBJECT B

POINTER TO NEXT CABLE POINTER TO BUS 2

POINTER TO NEXT TERMINAL

(TERN NAL)

POINTER TO OBJECT C

POINTER TO BUS 1

NULL

Fig. 70

OBJECT A

BUS2

OBJECT C

U.S. Patent Feb. 1, 2011 Sheet 53 of 84 US RE42,105E

// A NA f

OBJECT D
f

U.S. Patent Feb. 1, 2011 Sheet 54 of 84 US RE42,105E

Fig. 72

WRNG EDTOR

OBJECT A

OBJECT B
-------.

--i OBJECT E'

Fig. 7 3

PRODUCE DUPLICATE E OR COPY (7 31)
OF OBJECT E (ORIGINAL)

ON ALL BUSES OF OBJECT E :
1. CREATE COPY BUS FOR DUPLICATE E' ; AND
2. WRITE INTO THE COPY BUS

POINTER TO SUBSTANTIAL OBJECT E, AND
a POINTER TO THE ASSOCATED BUS

(7 32)

U.S. Patent Feb. 1, 2011 Sheet 55 of 84 US RE42,105E

Fig. 74

OBJECT A
BUS4

OBJECT BO BUS 1 OBJECT D C

...)

OBJECT E

BUS3
BUS 1

- BUS2

U.S. Patent Feb. 1, 2011 Sheet 56 of 84 US RE42,105E

Fig. 76

WRNG ED TOR

OBJECT A

OBJECT B OBJECT D

OBJECT A

OBJECT E

BUS 1 BUS3
BUS2

OBJECT C

BUS3
BUS1

BUS2

U.S. Patent Feb. 1, 2011 Sheet 57 of 84 US RE42,105E

Fig. 78

OBJECT B OBJECT C OBJECT D

Fig. 79

START (7 91)

DRAG OBJECT

RECOGNIZE DRAGGED OBJECT (792) (793)

DROP OBJECT

RECOGNIZE DROP-DESTINATION- (7 94)
OBJECT

ALTER OBJECT TREE (7 95)

RETREVE WRING OF DROP
DESTNATON-OBJECT FROM CABLE (7 96)
ELEMENT LIST

CHANGE WRNG OF DROP
DESTINATION-OBJECT INTO OBJECT (7 97)
AFTER REPLACEMENT

E N D

U.S. Patent Feb. 1, 2011 Sheet 58 of 84 US RE42,105E

Fig. 80

OBJECT A

NSTRUCT ON DATA TAG INSTRUCTION | TAG DATA

TERMINAL

BUS3 OF
OBJECT E

U.S. Patent Feb. 1, 2011 Sheet 59 of 84 US RE42,105E

OBJECT. E.

U.S. Patent Feb. 1, 2011 Sheet 60 of 84 US RE42,105E

Fig. 82

WRNG EDITOR

OBJECT A

OBJECT B

u as so w no s s is a a n w a e s so op us to use a so as us as s a us us s up a us was

OBJECT C OBJECT E

US RE42,105E Sheet 61 of 84 Feb. 1, 2011 U.S. Patent

U.S. Patent Feb. 1, 2011 Sheet 62 of 84 US RE42,105E

Fig. 84

U.S. Patent Feb. 1, 2011 Sheet 63 of 84 US RE42,105E

Fig. 85

START

RECOGNIZE SELECTED OBJECTS (

(

8 51

BUILD NEW OBJECT ON THE SAME 8 52
HERARCHY AS THE SELECTED OBJECTS

REPLACE THE SELECTED OBJECTS BY (853)
NEW OBJECT

RETREVE WRING OF THE SELECTED (854)
OBJECTS FRON CABLE ELEMENT LIST

(85 5)

)

)

S T W RING YES
BETWEEN OBJECT-TO-OBJECT NSIDE

NEW OBJECT 7 (8 5 6)

SHIFT WRNG TO
NO NEW OBJECT

BUILD BUS FOR WRNG USE ON NEW
OBJECT

CHANGE WRING OF OBJECTS INSIDE
NEW OBJECT INTO NEW OBJECT

END

U.S. Patent Feb. 1, 2011 Sheet 64 of 84 US RE42,105E

Fig. 86

OBJECT C OBJECT D s OBJECT E OBJECT F

Fig. 87

OBJECT A

NSTRUCT ON DATA TAG INSTRUCTION | TAG DATA

TERMINAL

OBJECT C

TERNAL

OBJECT D

TERMINAL

OBJECT D

TERMINAL

OBJECT E

U.S. Patent Feb. 1, 2011 Sheet 65 of 84 US RE42,105E

Fig. 89

OBJECT D
> BUS3

U.S. Patent Feb. 1, 2011 Sheet 66 of 84 US RE42,105E

Fig. 90

CABLEb TERMINAL TERMINAL

OBJECT E

U.S. Patent Feb. 1, 2011 Sheet 67 of 84 US RE42,105E

Fig. 92

OBJECT A

NSTRUCTION DATA TAG NSTRUCTION | TAG DATA

TERMINAL

U.S. Patent Feb. 1, 2011 Sheet 68 of 84 US RE42,105E

Fig. 93

START

RECOGNIZE SELECTED WIRING (9 31)

MAKE UP LST OF WIRING, AND (932)
DISPLAY THE SAME (933)

DRAG LSTED TEMS

RECOGNIZE DRAGGED WIRING (934) (9 35)

DROP STED TEMS

RECOGNIZE DROP-DESTINATION- (936)
WRNG

ALTER SEQUENCE OF LIST OF (937)
WRNG DATA

U.S. Patent

OBJECT B : BUS 1 OBJECT C : BUS2

OBJECT B : BUS1 OBJECT D : BUS2

OBJECT B : BUS1 OBJECT E : BUS1

Feb. 1, 2011 Sheet 69 of 84

Fig. 94

CABLE LIST CABLEb

CABLE LIST CABLEc

Fig. 95

US RE42,105E

U.S. Patent Feb. 1, 2011 Sheet 70 of 84 US RE42,105E

Fig. 96

OBJECT A

U.S. Patent Feb. 1, 2011 Sheet 71 of 84 US RE42,105E

Fig. 97

Fig. 98

WRNG EDTOR

CABLE LIST

CABLE LIST

CABLE LIST

CABLEa

CABLEb

CABLEc

U.S. Patent Feb. 1, 2011 Sheet 72 of 84

Fig. 99

WRNG ED TOR

CABLE LIST

CABLE LIST

CABLE LIST

CABLEa

CABLEc

CABLEb

Fig. 100

OBJECT B : BUS 1 OBJECT C : BUS2

OBJECT B : BUS 1 OBJECT E : BUS 1

OBJECT B : BUS 1 OBJECT D : BUS2

US RE42,105E

U.S. Patent Feb. 1, 2011 Sheet 75 of 84 US RE42,105E

WINDOW
MANAGEMENT

USE DEPRESSES BUTTON 1

COMPONENT A
APPLICATION A

DATA

BUTTON 1. APPLICATION (A, exe)
WINDOW INFORMATION

BUTTON 2 METHOD

APPLICATION START A
START
APPLICATION MESSAGES
A

NOTICE OF BUTTON 1 CLICK
NOTICE OF BUTTON 2 CLICK

BUTTON 3

U.S. Patent Feb. 1, 2011 Sheet 76 of 84 US RE42,105E

Fig. 104
WINDOW. MANAGEMENT

EVENT PROCESSING PORTON

EVENT PROCESSING

EVENT PROCESSING

EVENT PROCESSENG

POINTER TO EVENT PROCESS FUNCTION

TO EVENT MONTOR PORTON
OF COMPONENT A

DEFAULT EVENT PROCESS FUNCTION

Fig. 105
EVENT MONTOR PORTION

EVEN DATA EVENT TABLE

WINDow ID (COMPAR SON

OTHER DATA

MESSAGE ISSUE

U.S. Patent Feb. 1, 2011 Sheet 77 Of 84 US RE42,105E

Fig. 106
40 0
s

CONPONENT

BUILDER MEANS

SECOND HANDLER

4 O 3

4 O 2 4 0 1 FIRST HANDLER

WINDOW
ANAGEMENT

OBJECT BUIDER

1 2 1 a

BUTTON 2 METHOD
BNCCK

BUTTON 3 START MESSAGES
APPLICATION A

U.S. Patent Feb. 1, 2011 Sheet 78 of 84 US RE42,105E

Fig. 108

START

START APPLICATION A (1 0 81)

OBTAIN WINDOW INFORMATION OF APPLICATION A (1 0 82)

SELECT METHOD/MESSAGE, AND EVENT SORTS (1 0 83)

(1 0 8 4) NONTOR EVENTS

(1 0 86)

S T EVENT ASSOCATED
WITH "No, APPLICATION

S T THE SAME SORT OF
EVENT AS SELECTED EVENT 2

ADD METHOD (OR MESSAGE)

(1 0 89)
NO

S MONITORING OF EVENT OVER2

YES

APPL CATON END (1 O 81 0)

CREATE OBJECT DATA FLE AND (1 0 81 1)
RUNNING OBJECT FILE

US RE42,105E Sheet 79 of 84 Feb. 1, 2011 U.S. Patent

U.S. Patent Feb. 1, 2011 Sheet 80 of 84 US RE42,105E

Fig. 1 1 0

(1 1 0 1)

LOAD ONE EVENT FRON EVENT LOG FILE

DOES THE AssociaID METHOD EXIST

ADD WRNG BETWEEN LAST MESSAGE
AND THE METHOD

U.S. Patent Feb. 1, 2011 Sheet 81 of 84 US RE42,105E

Fig. 1 11
COMPONENT FILE

METHOD

BNCCK

EVENT LOG FILE

BUTTON 1 CLICK

DATA

LAST MESSAGE

LAST MESSAGE

(WIRING)
BNCLICK

U.S. Patent Feb. 1, 2011 Sheet 82 of 84 US RE42,105E

Fig. 112
(A) HEADER

(B) DEFINITION OF LIBRARY LIBRARY TO BE BULT
TO BE BULT

(C) DEFINITION OF EXISTING EXSTNG PROGRAM
PROGRAM
(D) DEFINITION OF OBJECT

DEFINITION OF DATA BUS (INPUT):
function 1 {x1, x2}

DEFINITION OF METHOD{ : function 2 x2, x3}
DEFINITION OF DATA BUS (OUTPUT) {

(D) DEFINITION OF OBJECT

DEFINITION OF DATA BUS (INPUT)

DEFINITION OF METHOD function j {xi}
DEFINITION OF DATA BUS (OUTPUT) y

U.S. Patent

(A)

(B)

(C)

(D)

PROJEC
PROJECT NAE

Feb. 1, 2011

PATH OF COMPER SYSTEM
PATH OF FIRSTSIGHT SYSTEM
PATH OF USER

NAME OF ARCH
PATH OF LIB

NAME OF LIBRARY TO BE BULT
COMPLE MODE
DEFINITION OF Edefine AND typedef

AREA

DEFINITION OF ARCHIVES
IVES

DEFINITION OF LS
NAME OF LS
COLOR OF SI

DATA BS
NAME OF DATA CORRECTION PROCESS
NAME OF DATA BUS
YPE OF WARIABES
DATA CORRECTION PROCESS
DIRECT DEVELOPMENT INTO DefineConnector
DISTINCTION BETWEEN INPUT AND OUTPUT
COLOR OF BS
NSTRUCTION
NAME OF ENSTRUCTION BUS
FUNCTION NAME OF ENTRY POINT
MEANING OF RETURN WAE

NSTRUCTION PROCESS
Cnd 7
DIRECT DEVELOPMEN INTO Cnd OR Command
COR OF BUS

GLOBA WARABES
(GEOBAL VARABES INSIDES)

DEFINITION define AND typedef
NTAZATION PROCESS

CONSTRUCTOR
DESTRUCTOR

Sheet 83 of 84

Fig. 113

LSBuilderProject

US RE42,105E

LSBuilderProjectName
MSVCROot
CoreRoot
UserRoot

Archives
Archiveshare
libpath
D Path

ProcessName
Name
VariableType
Process
nine
O

Color
instBus
Name
ProcessName
Return Value

Process
Cind
nine

Colo
Variables

Header
initialize
Constructor
Destructor

RGB (0-255)

CODE OF PENCON

input CR output

Zero OR ronzero
OR NMERAL
CODE OF FUNCTION
yes/no

CODE OF FUNCTION
CODE OF FINCTION
CODE OF FUNCTON

US RE42,105E Sheet 84 of 84 Feb. 1, 2011 U.S. Patent

7
|

|

dTHH 6 |

DOET EXWN

ENW'N IST

US RE42,105E
1.

OBJECTORIENTED PROGRAMMING
APPARATUS, OBJECTORIENTED

PROGRAMMING SUPPORTINGAPPARATUS,
COMPONENT BUILDER APPARATUS,

OBJECTORIENTED PROGRAM STORAGE
MEDIUM, PROGRAM STORAGEMEDIUM

FOR USE IN OBJECTORIENTED
PROGRAMMING, COMPONENT STORAGE

MEDIUM, AND OBJECT-BETWEEN
NETWORK DISPLAY METHOD

Matter enclosed in heavy brackets appears in the
original patent but forms no part of this reissue specifica
tion; matter printed in italics indicates the additions
made by reissue.

This application is a divisional of application Ser. No.
08/919,254, filed Aug. 28, 1997, now U.S. Pat. No. 6,178,
545; which is a CIP application of Ser. No. 08/855,986, filed
May 14, 1997, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to an object-oriented pro
gramming apparatus for performing object-oriented
programming, an object-oriented programming Supporting
apparatus for Supporting an object-oriented programming, a
component builder apparatus for building components form
ing a part of an object, an object-oriented program Storage
medium for storing therein object-oriented programs, a pro
gram Storage medium for use in an object-oriented
programming, the program storage medium being adapted
for storing therein a program to support an object-oriented
programming, a component storage medium for storing
therein components, and an object-between-network display
method of visually displaying in the form of a network of
objects data integration due to data sharing, integration of
control flows among objects, and the like, on a plurality of
objects produced by object-oriented programming.

2. Description of the Related Art
Hitherto, when at program, which is incorporated into a

computer so as to be operated, is described, a programming
is performed in such a manner that a function name
(command) and a variable are described in turn. In case of
Such a programming scheme, since there is a need to
describe the programming with the commands in its entirety,
it is necessary for a programmer to investigate the com
mands one by one through a manual, or to remember a lot of
commands. However, those commands are different for each
program language. Accordingly, even if a programmer
remembers a lot of commands of a certain program
language, when the programmer describes a program with
another program language, there occurs such an inconve
nience that the programmer has to do over again learning the
commands of the program language. Further, formats of pro
grams are also different for each program language. These
matters make a description of the program difficult, and give
Such an impression that a development of programs is a spe
cial field which is deemed that it is difficult for a nonprofes
sional to enter thereinto. Recently, programs are increasingly
large-scaled and complicated, and thus there is emphasized
more and more a necessity that a development of programs
is made easier, and also a necessity for contributing to a
reuse of the once developed programs.

In Such a technical background, recently, object-oriented
programming has been widely adopted. An object is a named
entity that combines a data structure with its associated

10

15

25

30

35

40

45

50

55

60

65

2
operations. That is, the object comprises “data and “its
associated operations”. The term “object-oriented implies a
concept that the “data and “its associated operations', that
is, the object, is treated in the form of units. Also in Such an
object-oriented programming, there is a need to essentially
build each individual software (object). After the individual
objects are once built, however, a programming is completed
in Such a manner that a coupling relation of object-to-object
is described such that a certain object calls another object. It
is expected that this concept of object-oriented programming
serves to significantly improve operability of large-scaled
and complicated Software, the creation of such software, and
the maintenance thereof.

In object-oriented programming, an operation in which a
certain object calls another object uses concepts of messages
and methods such that the calling object issues a message to
the called party of the object, while the called party of the
object receives the issued message and executes its associ
ated methods (operations). Hitherto, data necessary for a
process was provided in the form of arguments of the mes
Sages.
One of the objects of object-oriented programming

resides in the point that software (object) once made up can
be reused even if the system is altered. In order to implement
this, there is a need lo make up a relatively small and simple
object.

In general, however, it is said that an object-oriented pro
gram is low in its execution rate because it takes a lot of time
to recognize a corresponding relation between the received
message and its associated method, and also it takes a lot of
time to transfer data from an object, which issues the
message, to an object which executes the method.

In order to improve the program execution rate, hitherto,
there was adopted a technique in which operations in one
object are increased to reduce opportunities of issuing mes
sages directed to another object. In this case, however, the
operations in one object becomes complicated, and the
object is scaled up. This technique is contrary to the desire
for reuseable objects and thus, it is one of the causes of
prohibiting the possibility of promoting reuse of Software in
the object-oriented programming.
When the object-oriented programs are promoted, the

serious problem is involved in handling of a large amount of
Software accumulated up to now, which is not based on an
object-oriented concept. The object-oriented programming
technology according to the earlier development has been
associated with such a problem that the possibility of pro
moting reuse of the existing Software is extremely low.

SUMMARY OF THE INVENTION

In view of the above-mentioned problem, it is therefore an
object of the present invention to provide an object-oriented
programming apparatus having a function of coupling a plu
rality of objects with one another so that information effi
ciently flows among the plurality of objects, an object
oriented program storage medium for storing therein a
plurality of objects and object-coupling programs for cou
pling the plurality of objects with one another so that infor
mation efficiently flows among the plurality of objects, an
object-oriented programming Supporting apparatus which
contributes to facilitation of an object-oriented programming
for defining a coupling relation between objects, a program
storage medium for use in an object-oriented programming,
the program storage medium being adapted for storing
therein a program to support an object-oriented
programming, a component builder apparatus having a func

US RE42,105E
3

tion of building a component which serves as an object in
combination with an existing Software so that the existing
Software can be dealt with as the object, a component stor
age medium for storing therein components as mentioned
above, and an object-between-network display method of
visually displaying in the form of a network of objects a data
integration due to a data sharing, an integration of control
flows among objects and the like, on a plurality of objects
produced by the object-oriented programming, the object
between-network display method being suitable for per
forming an object-oriented programming for defining a cou
pling relation between objects.

To attain the above-mentioned object, according to the
present invention, there is provided a first object-oriented
programming apparatus for interconnecting a plurality of
objects each having data and operations, said object-oriented
programming apparatus comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output instruction
bus portion for performing a processing for an issue of mes
sages directed to another object and a second object having
an input instruction bus portion responsive to messages
issued by another object and directed to self object for acti
vating a method of self object associated with the received
message, by means of providing such a correspondence that
the message of the first object is associated with the method
of the second object;

data element list generating means for generating a data
element list, in which pointers to data storage areas for Stor
ing data are arranged, of an object;

pointer element list generating means for generating a
pointer element list, in which pointers to pointer storage
areas for storing pointers to data are arranged, of an object;
and

data coupling means for permitting a transfer of data
between a third object having the data element list and a
fourth object having the pointer element list, by means of
writing the pointers arranged in the data element list of the
third object into the pointer storage areas indicated by the
pointers arranged in the pointer element list of the fourth
object.

In the first object-oriented programming apparatus, it is
preferable that said instruction coupling means generates a
method element list in which arranged are method elements
including a method ID for specifying a method of another
object associated with a message of self object, and a pointer
to another object in which the method specified by the
method ID is executed.
To attain the above-mentioned object, according to the

present invention, there is provided a second object-oriented
programming apparatus for interconnecting a plurality of
objects each having data and operations, said object-oriented
programming apparatus comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output instruction
bus portion for performing a processing for an issue of mes
sages directed to another object and a second object having
an input instruction bus portion responsive to messages
issued by another object and directed to self object for acti
vating a method of self object associated with the received
message, by means of providing such a correspondence that
the message of the first object is associated with the method
of the second object; and

an input instruction tag table generating means for gener
ating an input instruction tag table indicating an association
of messages of another object with methods of self object,
for each other object, on the output instruction bus portion of
self object.

5

10

15

25

30

35

40

45

50

55

60

65

4
In the second object-oriented programming apparatus, it

is preferable that said instruction coupling means generates a
method element list in which arranged are method elements
including a method ID for specifying a method of another
object associated with a message of self object, and a pointer
to another object in which the method specified by the
method ID is executed, and

said input instruction tag table generating means gener
ates the input instruction tag table and adds the input instruc
tion tag table to the method elements including the pointer to
another object associated with the input instruction tag table.
As one of ways that the input instruction tag table is added

to the method element, it is acceptable that a pointer to the
input instruction tag table is directly written to the method
element.
To attain the above-mentioned object, according to the

present invention, there is provided a third object-oriented
programming apparatus for interconnecting a plurality of
objects each having data and operations, said object-oriented
programming apparatus comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output instruction
bus portion for performing a processing for an issue of mes
sages directed to another object and a second object having
an input instruction bus portion responsive to messages
issued by another object and directed to self object for acti
vating a method of self object associated with the received
message, by means of providing such a correspondence that
the message of the first object is associated with the method
of the second object; and

an output instruction tag table generating means for gen
erating an output instruction tag table indicating an associa
tion of methods of another object with messages of self
object, for each other object, on the output instruction bus
portion of self object.

In the third object-oriented programming apparatus, it is
preferable that said instruction coupling means generates a
method element list in which arranged are method elements
including a method ID for specifying a method of another
object associated with a message of self object, and a pointer
to another object in which the method specified by the
method ID is executed, and

said output instruction tag table generating means gener
ates the output instruction tag table and adds the output
instruction tag table to the method elements including the
pointer to another object associated with the output instruc
tion tag table.
As one of ways that the output instruction tag table is

added to the method element, it is acceptable that a pointer to
the output instruction tag table is directly written to the
method element.
To attain the above-mentioned object, according to the

present invention, there is provided a fourth object-oriented
programming apparatus for interconnecting a plurality of
objects each having data and operations, said object-oriented
programming apparatus comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output instruction
bus portion for performing a processing for an issue of mes
sages directed to another object and a second object having
an input instruction bus portion responsive to messages
issued by another object and directed to self object for acti
vating a method of self object associated with the received
message, by means of providing such a correspondence that
the message of the first object is associated with the method
of the second object; and

US RE42,105E
5

an input data tag table generating means for generating an
input data tag table indicating an association of a data
element list ID for identifying a data element list in
which pointers to data storage areas for storing data are
arranged with a pointer element list ID for identifying a
pointer element list in which pointers to data storage
areas for storing pointer to data are arranged, for each
other object, on the output instruction bus portion of
self object.

In the fourth object-oriented programming apparatus, it is
preferable that said instruction coupling means generates a
method element list in which arranged are method elements
including a method ID for specifying a method of another
object associated with a message of self object, and a pointer
to another object in which the method specified by the
method ID is executed, and

said input data tag table generating means generates the
input data tag table and adds the input data tag table to the
method elements including the pointer to another object
associated with the input data tag table.
As one of ways that the input data tag table is added to the

method element, it is acceptable that a pointer to the input
data tag table is directly written to the method element.

To attain the above-mentioned object, according to the
present invention, there is provided a fifth object-oriented
programming apparatus for interconnecting a plurality of
objects each having data and operations, said object-oriented
programming apparatus comprising:

instruction coupling means for permitting a transfer of
messages between a first object having an output instruction
bus portion for performing a processing for an issue of mes
sages directed to another object and a second object having
an input instruction bus portion responsive to messages
issued by another object and directed to self object for acti
vating a method of self object associated with the received
message, by means of providing such a correspondence that
the message of the first object is associated with the method
of the second object; and

an output data tag table generating means for generating
an output data tag table indicating an association of a pointer
element list ID for identifying a pointer element list in which
pointers to pointer storage areas for storing pointers to data
are arranged with a data element list ID for identifying a data
element list in which pointers to data storage areas for Stor
ing data are arranged, for each other object, on the output
instruction bus portion of self object.

In the fifth object-oriented programming apparatus, it is
preferable that said instruction coupling means generates a
method element list in which arranged are method elements
including a method ID for specifying a method of another
object associated with a message of self object, and a pointer
to another object in which the method specified by the
method ID is executed, and

said output data tag table generating means generates the
output data tag table and adds the output data tag table to the
method elements including the pointer to another object
associated with the output data tag table.
As one of ways that the output data tag table is added to

the method element, it is acceptable that a pointer to the
output data tag table is directly written to the method ele
ment.

To attain the above-mentioned object, according to the
present invention, there is provided a first object-oriented
program storage medium for storing

a plurality of objects each having data and operations, said
object-oriented program Storage medium storing

an object coupling program comprising:

10

15

25

30

35

40

45

50

55

60

65

6
instruction coupling means for permitting a transfer of

messages between a first object having an output instruction
bus portion for performing a processing for an issue of mes
sages directed to another object and a second object having
an input instruction bus portion responsive to messages
issued by another object and directed to self object for acti
vating a method of self object associated with the received
message, by means of providing such a correspondence that
the message of the first object is associated with the method
of the second object;

data element list generating means for generating a data
element list, in which pointers to data storage areas for Stor
ing data are arranged, of an object;

pointer element list generating means for generating a
pointer element list, in which pointers to pointer storage
areas for storing pointers to data are arranged, of an object;
and

data coupling means for permitting a transfer of data
between a third object having the data element list and a
fourth object having the pointer element list, by means of
writing the pointers arranged in the data element list of the
third object into the pointer storage areas indicated by the
pointers arranged in the pointer element list of the fourth
object.

In the first object-oriented program storage medium, it is
preferable that said instruction coupling means generates a
method element list in which arranged are method elements
including a method ID for specifying a method of another
object associated with a message of self object, and a pointer
to another object in which the method specified by the
method ID is executed, and

the first object having the output instruction bus portion
refers to, when issuing a message, a method element
arranged in the method element list associated with the
message, and calls the second object in which a pointer is
stored in the method element, giving the method ID stored in
the method element as an argument.

In this case, the second object receives messages directed
from the first object to the second object, and executes the
method identified by the method ID which is an argument of
the received message.
To attain the above-mentioned object, according to the

present invention, there is provided a second object-oriented
program storage medium for storing

a plurality of objects each having data and operations, said
object-oriented program Storage medium storing

an object coupling program comprising:
instruction coupling means for permitting a transfer of

messages between a first object having an output instruction
bus portion for performing a processing for an issue of mes
sages directed to another object and a second object having
an input instruction bus portion responsive to messages
issued by another object and directed to self object for acti
vating a method of self object associated with the received
message, by means of providing such a correspondence that
the message of the first object is associated with the method
of the second object; and

an input instruction tag table generating means for gener
ating an input instruction tag table indicating an association
of messages of another object with methods of self object,
for each other object, on the output instruction bus portion of
self object.

In the second object-oriented program storage medium, it
is preferable that said instruction coupling means generates a
method element list in which arranged are method elements
including a method ID for specifying a method of another
object associated with a message of self object, and a pointer

US RE42,105E
7

to another object in which the method specified by the
method ID is executed, and

said input instruction tag table generating means gener
ates the input instruction tag table and adds the input instruc
tion tag table to the method elements including the pointer to
another object associated with the input instruction tag table.
As one of ways that the input instruction tag table is added

to the method element, it is acceptable that a pointer to the
input instruction tag table is directly written to the method
element.

It is acceptable that the first object having the method
element to which the input instruction tag table is added
calls, when calling the second object identified by the
method element, the second object giving as arguments the
method ID and the input instruction tag table which are
stored in the method element.
As one of ways that the second object is called giving as

arguments the input instruction tag table, it is acceptable that
the second object is directly called giving as arguments a
pointer to the input instruction tag table.

In this case, the second object receives messages directed
from the first object to the second object, and executes the
method identified by the method ID which is an argument of
the received message.

It is acceptable that the second object receives messages
directed from the first object to the second object, and refers
to the input instruction tag table, which is an argument of the
received message, to execute the method of the first object
associated with the message of the second object.

It is preferable that the second object receives messages
directed from the first object to the second object, and refers
to the input instruction tag table, which is an argument of the
received message, to add the method element related to the
method of the first object associated with the message of the
second object to the method element list of the second object
associated with the message of the second object.

It is also preferable that the second object has means for
producing a third object, receives messages directed from
the first object to the second object, and refers to the input
instruction tag table, which is an argument of the received
message, to add the method element related to the method of
the first object associated with messages of the third object
to the method element list of the third object associated with
the message of the third object.

In this case, a timing of producing the third object by the
second object is not restricted in the present invention, and it
is acceptable that the third object is produced when the mes
sage is issued, alternatively, the third object is produced
beforehand.

To attain the above-mentioned object, according to the
present invention, there is provided a third object-oriented
program storage medium for storing

a plurality of objects each having data and operations, said
object-oriented program Storage medium storing

an object coupling program comprising:
an instruction coupling means for permitting a transfer of

messages between a first object having an output instruction
bus portion for performing a processing for an issue of mes
sages directed to another object and a second object having
an input instruction bus portion responsive to messages
issued by another object and directed to self object for acti
vating a method of self object associated with the received
message, by means of providing such a correspondence that
the message of the first object is associated with the method
of the second object; and

an output instruction tag table generating means for gen
erating an output instruction tag table indicating an associa

10

15

25

30

35

40

45

50

55

60

65

8
tion of methods of another object with messages of self
object, for each other object, on the output instruction bus
portion of self object.

In the third object-oriented program storage medium, it is
preferable that said instruction coupling means generates a
method element list in which arranged are method elements
including a method ID for specifying a method of another
object associated with a message of self object, and a pointer
to another object in which the method specified by the
method ID is executed, and

said output instruction tag table generating means gener
ates the output instruction tag table and adds the output
instruction tag table to the method elements including the
pointer to another object associated with the output instruc
tion tag table.
As one of ways that the output instruction tag table is

added to the method element, it is acceptable that a pointer to
the output instruction tag table is directly written to the
method element.

It is acceptable that the first object having the method
element to which the output instruction tag table is added
calls, when calling the second object identified by the
method element, the second object giving as arguments the
method ID and the output instruction tag table which are
stored in the method element.
As one of ways that the second object is called giving as

arguments the output instruction tag table, it is acceptable
that the second object is directly called giving as arguments a
pointer to the output instruction tag table.

In this case, the second object receives messages directed
from the first object to the second object, and executes the
method identified by the method ID which is an argument of
the received message.

It is acceptable that the second object receives messages
directed from the first object to the second object, and refers
to the output instruction tag table, which is an argument of
the received message, to add the method element related to
the method of the second object associated with the message
of the first object to the method element list of the first object
associated with the message of the first object.

It is preferable that the second object has means for pro
ducing a third object, receives messages directed from the
first object to the second object, and refers to the output
instruction tag table, which is an argument of the received
message, to add the method element related to the method of
the third object associated with messages of the first object
to the method element list of the first object associated with
the message of the first object.

In this case, similar to the second object-oriented program
storage medium, a timing of producing the third object by
the second object is not restricted in the present invention,
and it is acceptable that the third object is produced when the
message is issued, alternatively, the third object is produced
beforehand.
To attain the above-mentioned object, according to the

present invention, there is provided a fourth object-oriented
program storage medium for storing

a plurality of objects each having data and operations, said
object-oriented program Storage medium storing

an object coupling program comprising:
an instruction coupling means for permitting a transfer of

messages between a first object having an output instruction
bus portion for performing a processing for an issue of mes
sages directed to another object and a second object having
an input instruction bus portion responsive to messages
issued by another object and directed to self object for acti
vating a method of self object associated with the received

US RE42,105E
9

message, by means of providing such a correspondence that
the message of the first object is associated with the method
of the second object; and

an input data tag table generating means for generating an
input data tag table indicating an association of a data ele
ment list ID for identifying a data element list in which
pointers to data storage areas for storing data are arranged
with a pointer element list ID for identifying a pointer ele
ment list in which pointers to data storage areas for storing
pointer to data are arranged, for each other object, on the
output instruction bus portion of self object.

In the fourth object-oriented program storage medium, it
is preferable that said instruction coupling means generates a
method element list in which arranged are method elements
including a method ID for specifying a method of another
object associated with a message of self object, and a pointer
to another object in which the method specified by the
method ID is executed, and

said input data tag table generating means generates the
input data tag table and adds the input data tag table to the
method elements including the pointer to another object
associated with the input data tag table.
As one of ways that the input data tag table is added to the

method element, it is acceptable that a pointer to the input
data tag table is directly written to the method element.

It is acceptable that the first object having the method
element to which the input data tag table is added calls, when
calling the second object identified by the method element,
the second object giving as arguments the method ID and the
input data tag table which are stored in the method element.
As one of ways that the second object is called giving as

arguments the input data tag table, it is acceptable that the
second object is directly called giving as arguments a pointer
to the input data tag table.

In this case, the second object receives messages directed
from the first object to the second object, and executes the
method identified by the method ID which is an argument of
the received message.

It is acceptable that the second object receives messages
directed from the first object to the second object, refers to
the input data tag table, which is an argument of the received
message, to obtain the pointer element list ID of the first
object, produces the pointer element list identified by the
pointer element list ID, of the first object and in addition the
data element list identified by the data element list ID asso
ciated with the pointer element list ID, of the second, and
writes the pointers arranged in the data element list of the
second object into the pointer storage areas indicated by the
pointers arranged in the pointer element list of the first
object.

It is preferable that the second object has means for pro
ducing a third object, receives messages directed from the
first object to the second object, refers to the input data tag
table, which is an argument of the received message, to
obtain the pointer element list ID of the first object, produces
the pointer element list identified by the pointer element list
ID, of the first object and in addition the data element list
identified by the data element list ID associated with the
pointer element list ID, of the third, and writes the pointers
arranged in the data element list of the third object into the
pointer storage areas indicated by the pointers arranged in
the pointer element list of the first object.

In this case, a timing of producing the third object by the
second object is not restricted in the present invention, and it
is acceptable that the third object is produced when the mes
sage is issued, alternatively, the third object is produced
beforehand.

10

15

25

30

35

40

45

50

55

60

65

10
To attain the above-mentioned object, according to the

present invention, there is provided a fifth object-oriented
program storage medium for storing

a plurality of objects each having data and operations, said
object-oriented program Storage medium storing

an object coupling program comprising:
an instruction coupling means for permitting a transfer of

messages between a first object having an output instruction
bus portion for performing a processing for an issue of mes
sages directed to another object and a second object having
an input instruction bus portion responsive to messages
issued by another object and directed to self object for acti
vating a method of self object associated with the received
message, by means of providing such a correspondence that
the message of the first object is associated with the method
of the second object; and

an output data tag table generating means for generating
an output data tag table indicating an association of a pointer
element list ID for identifying a pointer element list in which
pointers to pointer storage areas for storing pointers to data
are arranged with a data element list ID for identifying a data
element list in which pointers to data storage areas for Stor
ing data are arranged, for each other object, on the output
instruction bus portion of self object.

In the fifth object-oriented program storage medium, it is
preferable that said instruction coupling means generates a
method element list in which arranged are method elements
including a method ID for specifying a method of another
object associated with a message of self object, and a pointer
to another object in which the method specified by the
method ID is executed, and

said output data tag table generating means generates the
output data tag table and adds the output data tag table to the
method elements including the pointer to another object
associated with the output data tag table.
As one of ways that the output data tag table is added to

the method element, it is acceptable that a pointer to the
output data tag table is directly written to the method ele
ment.

It is acceptable that the first object having the method
element to which the output data tag table is added calls,
when calling the second object identified by the method
element, the second object giving as arguments the method
ID and the output data tag table which are stored in the
method element.
As one of ways that the second object is called giving as

arguments the output data tag table, it is acceptable that the
second object is directly called giving as arguments a pointer
to the output data tag table.

In this case, the second object receives messages directed
from the first object to the second object, and executes the
method identified by the method ID which is an argument of
the received message.

It is acceptable that the the second object receives mes
sages directed from the first object to the second object,
refers to the output data tag table, which is an argument of
the received message, to obtain the data element list ID of
the first object, produces the data element list identified by
the data element list ID, of the first object and in addition the
pointer element list identified by the pointer element list ID
associated with the data element list ID, of the second, and
writes the pointers arranged in the data element list of the
first object into the pointer storage areas indicated by the
pointers arranged in the pointer element list of the second
object.

It is preferable that the second object has means for pro
ducing a third object, receives messages directed from the

US RE42,105E
11

first object to the second object, refers to the output data tag
table, which is an argument of the received message, to
obtain the data element list ID of the first object, produces
the data element list identified by the data element list ID, of
the first object and in addition the pointer element list identi
fied by the pointer element list ID associated with the data
element list ID, of the third, and writes the pointers arranged
in the data element list of the first object into the pointer
storage areas indicated by the pointers arranged in the
pointer element list of the third object.

In this case, a timing of producing the third object by the
second object is not restricted in the present invention, and it
is acceptable that the third object is produced when the mes
sage is issued, alternatively, the third object is produced
beforehand.

To attain the above-mentioned object, according to the
present invention, there is provided an object-between
network display method in which a plurality of objects pro
duced by an object-oriented programming and wirings rep
resentative of flow of data and control among the plurality of
objects are displayed on a display screen of an image display
apparatus for displaying images based on electronic image
information,

wherein displayed on the display Screen is a first image in
which a display area consisting of one measure obtained
through partitioning the display screen into a plurality of
measures, or a display area formed through coupling a plu
rality of adjacent measures together, comprises an object
display domain for displaying a single object, and a wiring
display domain for displaying wires for coupling a plurality
of objects to one another, the object display domain and the
wiring display domain are determined in Such a manner that
the wiring display domain is formed between the object dis
play domain-to-object display domain of the, adjacent two
display areas, and

wherein on the display screen each of the plurality of
objects is arranged on an associated object display domain
of the display area, while the wires for coupling the plurality
of objects thus arranged are displayed on the wiring display
domains ranged across a plurality of display areas.

According to the object-between-network display method
of the present invention, it is possible to obtain an arrange
ment in which objects are arranged in good order, and also to
obtain a display easy for an observation avoiding an overlap
of objects with wirings, since an area for displaying an
object and an area for displaying a wiring are distinguished
from each other.

In the object-between-network display method as men
tioned above, it is preferable that a predetermined object of a
plurality of objects-constituting the first image is constituted
of a Subnetwork comprising a plurality of objects, which are
of lower class in a hierarchical structure than the predeter
mined object, and wirings for connecting the later plurality
of objects together, and

that when a second image, in which a Subnetwork of said
predetermined object is displayed instead of a display of said
predetermined object in the first image, is displayed instead
of the first image, the Subnetwork on the first image is dis
played in a more enlarged display area than that of said
predetermined object, and display areas arranged upper and
lower sides and right and left sides of the display area of the
Subnetwork are altered to display areas enlarged vertically
and horizontally, respectively, and regarding display areas
located at diagonal positions with respect to the display area
of the subnetwork, the display areas are displayed with a
same size as that of the first image.
An adoption of the above-mentioned display method

makes it possible to readily confirm a connecting state of a
subnetwork with the neighbor networks.

10

15

25

35

40

45

50

55

60

65

12
In the object-between-network display method as men

tioned above, it is acceptable that a predetermined object of a
plurality of objects constituting the first image is constituted
of a Subnetwork comprising a plurality of objects, which are
of lower class in a hierarchical structure than the predeter
mined object, and wirings for connecting the later plurality
of objects together, and

wherein when a second image, in which a subnetwork of
said predetermined object is displayed instead of a display of
said predetermined object in the first image, is displayed
instead of the first image, the Subnetwork on the first image
is displayed in a more enlarged display area than that of said
predetermined object, and display areas except the display
areas of the subnetwork are deformed as compared with the
associated display areas on the first image in Such a manner
that display areas located at a periphery of the second image,
and position and size of sides contacting with the second
image, are substantially the same ones as display areas
located at a periphery of the first image, and position and
size of sides contacting with the first image, respectively.
An adoption of the above-mentioned display method

makes it possible to readily confirm a connecting state of a
subnetwork with the neighbor networks. In addition, accord
ing to the above-mentioned display method, it is possible to
confirm throughout a network displayed before a display of
the subnetwork (a first image) in the state that the subnet
work is displayed.

In the object-between-network display method as men
tioned above, it is preferable that when the first image is
displayed, figures and sizes of the object display domains in
the display areas are standardized in accordance with figures
and sizes of the display areas.

This feature makes it possible to provide a display screen
easier to see.

In the object-between-network display method as men
tioned above, it is preferable that when the first image is
displayed, first, the plurality of objects are displayed, and
then it is displayed that the plurality of objects are intercon
nected with wirings in which a direction of flow of data or
control is repeatedly displayed in units of predetermined
Segments.
An adoption of Such a wiring makes it possible, even in

the event that an object is out of a display Screen, to readily
determine as to which side of the wiring input or output
exists at. It is acceptable that after the wiring, such a wire is
replaced by the usual wire, for example, a wire in which
arrows are given for only one edge or both edges of the wire.

In the object-between-network display method as men
tioned above, it is preferable that when the first image is
displayed, in wirings consisting of a central wire and edge
wires extended along both sides of the central wire, each of
the edge wire having a display aspect different from the
central wire, there is provided Such a display of wiring that
of the intersecting wirings, with respect to wirings each rep
resentative of a same flow of data or control, the central
wire-to-central wire are continued, and with respect to wir
ings each representative of a mutually different flow of data
or control, the central wire of one of the wirings is divided
into parts at a position contacting with or adjacent to the
edge wires of another wiring.
An adoption of Such a wiring makes it possible to readily

determine as to whether the intersecting wires are intercon
nected or simply cross each other.
To attain the above-mentioned object, according to the

present invention, there is provided a first object-oriented
programming Supporting apparatus for coupling a plurality
of objects, each having data and operations, with one another

US RE42,105E
13

in accordance with an instruction, said object-oriented pro
gramming Supporting apparatus comprising:

display means for displaying objects each represented by
a block representative of a main frame of an object, a data
output terminal for transferring data of the object to another
object, a data input terminal for receiving data from another
object, a message terminal for issuing a message to make a
request for processing to another object, and a method termi
nal for receiving a processing request from another object to
execute a method, the object being represented by a hierar
chical structure which permits one or a plurality of objects to
exist in a single object, and in addition displays a wiring for
coupling terminals of a plurality of objects;

object coupling means for constructing a coupling struc
ture among a plurality of objects in accordance with an
instruction for coupling terminals of the plurality of objects
through a wiring;

hierarchical structure construction means for constructing
a hierarchical structure of objects; and

a handler for instructing a wiring for coupling among
objects to said object coupling means, and in addition for
instructing a position of an object on the hierarchical struc
ture to said hierarchical structure construction means,

wherein said hierarchical structure construction means
has means for producing a duplicate object of a substantial
object designated in accordance with an instruction from
said handler, and for disposing the duplicate object at a hier
archy different from a hierarchy at which the substantial
object is disposed, and

said object coupling means receives from said handler an
instruction as to a wiring between the duplicate object and
another object in the wiring of the hierarchical structure in
which the duplicate object is disposed, and constructs a cou
pling structure in which the duplicate object and the associ
ated substantial object are provided in the form of a united
object.
The feature such that the duplicate object is built, and a

coupling structure, in which the duplicate object and the
associated substantial object are provided in the form of a
united object, is constructed, makes it possible to arbitrarily
dispose one object at desired plural hierarchies to conduct a
wiring (an instruction of coupling), thereby making it easy to
conduct a wiring among objects located at mutually different
hierarchies and also making it possible to provide a display
easy to see visually.

To attain the above-mentioned object, according to the
present invention, there is provided a second object-oriented
programming Supporting apparatus for coupling a plurality
of objects, each having data and operations, with one another
in accordance with an instruction, said object-oriented pro
gramming Supporting apparatus comprising:

display means for displaying objects each represented by
a block representative of a main frame of an object, a data
output terminal for transferring data of the object to another
object, a data input terminal for receiving data from another
object, a message terminal for issuing a message to make a
request for processing to another object, and a method termi
nal for receiving a processing request from another object to
execute a method, the object being represented by a hierar
chical structure which permits one or a plurality of objects to
exist in a single object, and in addition displays a wiring for
coupling terminals of a plurality of objects;

object coupling means for constructing a coupling struc
ture among a plurality of objects in accordance with an
instruction for coupling terminals of the plurality of objects
through a wiring;

5

10

15

25

30

35

40

45

50

55

60

65

14
hierarchical structure construction means for constructing

a hierarchical structure of objects; and
a handler for instructing a wiring for coupling among

objects to said object coupling means, and in addition for
instructing a position of an object on the hierarchical struc
ture to said hierarchical structure construction means,

wherein said object coupling means releases a coupling
structure of the object before a replacement with another
object in accordance with an instruction from said handler,
and causes the object after the replacement to succeed to the
coupling structure of the object before the replacement with
another object, and

said hierarchical structure construction means disposes
the object after the replacement, instead of the object before
the replacement, at a hierarchy at which the object before the
replacement is disposed.

For a replacement of objects, usually, first, a wiring of an
object before a replacement will be removed, and then a new
wiring will be conducted for a new object by which the
object before a replacement is replaced. On the contrary,
according to the present invention, the wiring (a coupling
relation) of the object before a replacement is maintained for
the new object after a replacement. This feature makes it
possible to save trouble for a wiring between the new object
after a replacement and other object, thereby making it very
easy to conduct a replacement of objects and as a result
making the object-oriented programming easy.
To attain the above-mentioned object, according to the

present invention, there is provided a third object-oriented
programming Supporting apparatus for coupling a plurality
of objects, each having data and operations, with one another
in accordance with an instruction, said object-oriented pro
gramming Supporting apparatus comprising:

display means for displaying objects each represented by
a block representative of a main frame of an object, a data
output terminal for transferring data of the object to another
object, a data input terminal for receiving data from another
object, a message terminal for issuing a message to make a
request for processing to another object, and a method termi
nal for receiving a processing request from another object to
execute a method, the object being represented by a hierar
chical structure which permits one or a plurality of objects to
exist in a single object, and in addition displays a wiring for
coupling terminals of a plurality of objects;

object coupling means for constructing a coupling struc
ture among a plurality of objects in accordance with an
instruction for coupling terminals of the plurality of objects
through a wiring;

hierarchical structure construction means for constructing
a hierarchical structure of objects; and

a handler for instructing a wiring for coupling among
objects to said object coupling means, and in addition for
instructing a position of an object on the hierarchical struc
ture to said hierarchical structure construction means,

wherein said hierarchical structure construction means is
in response to an instruction from said handler Such that a
plurality of objects from among the objects disposed at a
predetermined hierarchy are designated and the plurality of
objects are rearranged on the lower-order hierarchy by one
stage, and rearranges the plurality of objects on the lower
order hierarchy by one stage, and produces and arranges an
object including the plurality of objects on the predeter
mined hierarchy in Such a manner that a coupling structure
among the plurality of objects and a coupling structure
among the plurality of objects and objects other than the
plurality of objects are maintained.

If it is permitted, as in the present invention described
above, that a plurality of objects is rearranged in a different

US RE42,105E
15

hierarchy while the wiring (coupling relation) is kept as it is,
it is possible to rearrange a program while the program is
made up. Further, since the part replaced by a hierarchy
serves as one object, it is possible to reuse the object of
interest as a program part.

To attain the above-mentioned object, according to the
present invention, there is provided a fourth object-oriented
programming Supporting apparatus for coupling a plurality
of objects, each having data and operations, with one another
in accordance with an instruction, said object-oriented pro
gramming Supporting apparatus comprising:

display means for displaying objects each represented by
a block representative of a main frame of an object, a data
output terminal for transferring data of the object to another
object, a data input terminal for receiving data from another
object, a message terminal for issuing a message to make a
request for processing to another object, and a method termi
nal for receiving a processing request from another object to
execute a method, the object being represented by a hierar
chical structure which permits one or a plurality of objects to
exist in a single object, and in addition displays a wiring for
coupling terminals of a plurality of objects;

object coupling means for constructing a coupling struc
ture among a plurality of objects in accordance with an
instruction for coupling terminals of the plurality of objects
through a wiring;

hierarchical structure construction means for constructing
a hierarchical structure of objects; and

a handler for instructing a wiring for coupling among
objects to said object coupling means, and in addition for
instructing a position of an object on the hierarchical struc
ture to said hierarchical structure construction means,

wherein said display means has, in case of existence of a
plurality of method terminals connected to one message ter
minal designated in accordance with an instruction through
said handler, means for displaying a list indicative of an
execution sequence of a plurality of methods associated with
the plurality of method terminals, and

said object coupling means has means for reconstructing a
coupling structure in which the execution sequence of the
plurality of methods appearing at the list displayed on said
display means are altered in accordance with an instruction
by said handler.

According to the fourth object-oriented programming
Supporting apparatus, it is possible to readily and exactly
know an execution sequence of a plurality of methods for
one message, and also possible to readily alter the execution
Sequence.
As to the object-oriented programming Supporting

apparatuses, there exists a fifth object-oriented programming
Supporting apparatus. The fifth object-oriented program
ming Supporting apparatus will be described later.

To attain the above-mentioned object, according to the
present invention, there is provided a first program storage
medium for use in an object-oriented programming, the pro
gram storage medium being adapted for storing therein a
program to Support an object-oriented programming for cou
pling a plurality of objects, each having data and operations,
with one another,

wherein each of said objects is represented by a block
representative of a main frame of an object, a data output
terminal for transferring data of the object to another object,
a data input terminal for receiving data from another object,
a message terminal for issuing a message to make a request
for processing to another object, and a method terminal for
receiving a processing request from another object to
execute a method, the object being represented by a hierar

5

10

15

25

30

35

40

45

50

55

60

65

16
chical structure which permits one or a plurality of objects to
exist in a single object, and an instruction for coupling termi
nals of the plurality of objects through a wiring is given,

said program includes: object coupling means for con
structing a coupling structure among a plurality of objects in
accordance with the instruction for coupling terminals of the
plurality of objects through a wiring; and hierarchical struc
ture construction means for constructing a hierarchical struc
ture of objects, and

said program storage medium stores such a program that
said hierarchical structure construction means has means for
producing a duplicate object of a Substantial object desig
nated in accordance with an instruction from said handler,
and for disposing the duplicate object at a hierarchy different
from a hierarchy at which the substantial object is disposed,
and said object coupling means receives from said handler
an instruction as to a wiring between the duplicate object and
another object in the wiring of the hierarchical structure in
which the duplicate object is disposed, and constructs a cou
pling structure in which the duplicate object and the associ
ated substantial object are provided in the form of a united
object.
To attain the above-mentioned object, according to the

present invention, there is provided a second program Stor
age medium for use in an object-oriented programming, the
program storage medium being adapted for storing therein a
program to support an object-oriented programming for cou
pling a plurality of objects, each having data and operations,
with one another,

wherein each of said objects is represented by a block
representative of a main frame of an object, a data output
terminal for transferring data of the object to another object,
a data input terminal for receiving data from another object,
a message terminal for issuing a message to make a request
for processing to another object, and a method terminal for
receiving a processing request from another object to
execute a method, the object being represented by a hierar
chical structure which permits one or a plurality of objects to
exist in a single object, and an instruction for coupling termi
nals of the plurality of objects through a wiring is given,

said program includes: object coupling means for con
structing a coupling structure among a plurality of objects in
accordance with the instruction for coupling terminals of the
plurality of objects through a wiring; and hierarchical struc
ture construction means for constructing a hierarchical struc
ture of objects, and

said program storage medium stores such a program that
said object coupling means releases a coupling structure of
the object before a replacement with another object in accor
dance with an instruction for the replacement of objects, and
causes the object after the replacement to Succeed to the
coupling structure of the object before the replacement with
another object, and said hierarchical structure construction
means disposes the object after the replacement, instead of
the object before the replacement, at a hierarchy at which the
object before the replacement is disposed.
To attain the above-mentioned object, according to the

present invention, there is provided a third program storage
medium for use in an object-oriented programming, the pro
gram storage medium being adapted for storing therein a
program to support an object-oriented programming for cou
pling a plurality of objects, each having data and operations,
with one another,

wherein each of said objects is represented by a block
representative of a main frame of an object, a data output
terminal for transferring data of the object to another object,
a data input terminal for receiving data from another object,

US RE42,105E
17

a message terminal for issuing a message to make a request
for processing to another object, and a method terminal for
receiving a processing request from another object to
execute a method, the object being represented by a hierar
chical structure which permits one or a plurality of objects to
exist in a single object, and an instruction for coupling termi
nals of the plurality of objects through a wiring is given,

said program includes: object coupling means for con
structing a coupling structure among a plurality of objects in
accordance with the instruction for coupling terminals of the
plurality of objects through a wiring; and hierarchical struc
ture construction means for constructing a hierarchical struc
ture of objects, and

said program storage medium stores such a program that
said hierarchical structure construction means is in response
to an instruction Such that a plurality of objects from among
the objects disposed at a predetermined hierarchy are desig
nated and the plurality of objects are rearranged on the
lower-order hierarchy by one stage, and rearranges the plu
rality of objects on the lower-order hierarchy by one stage,
and produces and arranges an object including the plurality
of objects on the predetermined hierarchy in Such a manner
that a coupling structure among the plurality of objects and a
coupling structure among the plurality of objects and objects
other than the plurality of objects are maintained.

To attain the above-mentioned object, according to the
present invention, there is provided a fourth program storage
medium for use in an object-oriented programming, the pro
gram storage medium being adapted for storing therein a
program to Support an object-oriented programming for cou
pling a plurality of objects, each having data and operations,
with one another,

wherein each of said objects is represented by a block
representative of a main frame of an object, a data output
terminal for transferring data of the object to another object,
a data input terminal for receiving data from another object,
a message terminal for issuing a message to make a request
for processing to another object, and a method terminal for
receiving a processing request from another object to
execute a method, the object being represented by a hierar
chical structure which permits one or a plurality of objects to
exist in a single object, and an instruction for coupling termi
nals of the plurality of objects through a wiring is given,

said program includes: object coupling means for con
structing a coupling structure among a plurality of objects in
accordance with the instruction for coupling terminals of the
plurality of objects through a wiring; and hierarchical struc
ture construction means for constructing a hierarchical struc
ture of objects, and

said program storage medium stores such a program that
said object coupling means has, in case of existence of a
plurality of method terminals connected to one message ter
minal designated, means for making up a list indicative of an
execution sequence of a plurality of methods associated with
the plurality of method terminals, and means for reconstruct
ing a coupling structure in which the execution sequence of
the plurality of methods is altered in accordance with an
alteration instruction of the execution sequence of the plural
ity of methods appearing at the list.
Of component storage mediums according to the present

invention, there is provided a first component storage
medium for storing a component which serves as one object
in combination with a predetermined existing Software, said
component including a method of issuing an event of the
predetermined existing Software through a firing by a mes
sage issued in other object.

According to Such a component, there is provided such a
form that an existing software is “included or “involved’.

10

15

25

30

35

40

45

50

55

60

65

18
and thus it possible to take in an existing Software in the
form of an object, regardless of a structure of the existing
Software, or without a modification of the existing software,
thereby specially improving a reuse of the existing software.

In this case, it is preferable that said component further
includes together with said method a message for informing
other object of that said event is issued through executing
said method.

This feature makes it possible to perform an operation on
a linking basis by a coupling between the method and the
message.
Of component storage mediums according to the present

invention, there is provided a second component storage
medium for storing a component which serves as one object
in combination with a predetermined existing Software, said
component including a message for informing other object,
upon receipt of occurrence of a predetermined event of the
predetermined existing software, of that the predetermined
event is generated.

According to Such a component, there is provided such a
form that an existing software is “included or “involved’.
and thus it possible to implement, independently of an
advancement of the existing software itself. Such an
advanced function that when the event for the existing soft
ware occurs, a method of other object is executed through
working together.

Further, according to the present invention, there is pro
vided a component builder apparatus comprising:

a first handler for selectively indicating making of meth
ods and messages:

a second handler for inputting an instruction of an issue of
a desired event of a predetermined existing software; and

a component builder means for building a component
which serves as one object in combination with said existing
Software, said component builder means serving, when mak
ing of a method is instructed by an operation of said first
handler and a predetermined event of the existing software is
issued by an operation of said second handler, to make on the
component a method which fires with a message issued by
another object and issues the event, and serving, when mak
ing of a message is instructed by an operation of said first
handler and an issue of a predetermined event of the existing
Software is instructed by an operation of said second handler,
in response to an occurrence of the event, to make on the
component a message for informing other objects of the fact
that the event occurred.
The use of the component builder apparatus mentioned

above makes it possible to easily build on an interactive
basis the components to be stored in the above-mentioned
first and second component storage mediums, without a
requirement of a deep knowledge as to a programming for
operators or users.
To attain the above-mentioned object, according to the

present invention, of the object-oriented programming Sup
porting apparatuses, there is provided a fifth object-oriented
programming Supporting apparatus comprising:

a component file for storing therein a component which
serves as one object in combination with a predetermined
existing software, said component including a method of
issuing an event of the predetermined existing software
through a firing by a message issued in other object, and a
message for informing other object of that the event is issued
through executing said method, and said component being
stored in said component file with respect to one or more
existing softwares;

a handier for inputting an instruction of an issue of the
event as to the existing software;

US RE42,105E
19

an event log file for storing a list for the events as to one or
more existing softwares, which are sequentially issued in
accordance with an operation of said handler, and

a component coupling means for taking out sequentially
the events from said event log file to combine a message of a
component including the message for informing other object
of that the same event as that taken out before is issued and a
method of a component including the method of issuing the
same event as that taken out now.

According to the fifth object-oriented programming Sup
porting apparatus, a sequential indication of an issue of a
plurality of events of one or more existing softwares in the
sequence of an actual operation desired may couple the mes
sage and the method between objects “involving the exist
ing softwares in the components. Thus, it is possible to
implement an automatic operation of a plurality of events of
the existing software.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective illustration of a computer system
including an object-oriented programming apparatus
according to an embodiment of the present invention;

FIG. 2 is a block diagram of an object ware programming
system implemented in the computer system shown in FIG.
1;

FIG. 3 is a typical illustration showing a first example of a
Software system implemented within the computer system
shown in FIG. 1;

FIG. 4 is a typical illustration showing an example of a
data structure of an output instruction bus portion of an
object A and an input instruction bus portion of an object B
shown in FIG. 3;

FIGS. 5(A) and (B) are flowcharts useful for understand
ing processings for issue of a message;

FIG. 6 is a flowchart useful for understanding processings
of an output instruction bus portion generating unit of an
object coupling unit shown in FIG. 3;

FIG. 7 is a flowchart useful for understanding processings
of an input instruction bus portion generating unit of an
object coupling unit shown in FIG. 3;

FIG. 8 is a flowchart useful for understanding processings
of an instruction coupling unit of an object coupling unit
shown in FIG. 3;

FIG. 9 is a typical illustration showing an example of a
data structure of a data element list of the object A shown in
FIG.3:

FIG. 10 is a flowchart useful for understanding process
ings of a data element list generating unit of the object cou
pling unit shown in FIG. 3;

FIG. 11 is a typical illustration showing an example of a
data structure of a pointer element list of the object B shown
in FIG. 3;

FIG. 12 is a flowchart useful for understanding process
ings of a pointer element list generating unit of the object
coupling unit shown in FIG. 3;

FIG. 13 is a typical illustration showing a structure after
an execution of processings of a data coupling unit of the
object coupling unit shown in FIG. 3;

FIG. 14 is a flowchart useful for understanding process
ings of a data coupling unit of the object coupling unit shown
in FIG. 3;

FIG. 15 is a typical illustration showing a second example
of a Software system implemented within the computer sys
tem shown in FIG. 1;

10

15

25

30

35

40

45

50

55

60

65

20
FIG. 16 is a typical illustration showing a third example of

a software system implemented within the computer system
shown in FIG. 1;

FIG. 17 is a typical illustration showing a fourth example
of a Software system implemented within the computer sys
tem shown in FIG. 1;

FIG. 18 is a typical illustration showing a fifth example of
a software system implemented within the computer system
shown in FIG. 1;

FIG. 19 is a typical illustration showing a part of the data
structure of objects A shown in FIGS. 15 to 18;

FIG. 20 is a flowchart useful for understanding an
example of processing for issue of a message of an object A:

FIG. 21 is a flowchart useful for understanding a first
example of a partial processing of an object B;

FIG. 22 is a flowchart useful for understanding a second
example of a partial processing of an object B;

FIG. 23 is a flowchart useful for understanding a third
example of a partial processing of an object B;

FIG. 24 is a flowchart useful for understanding a fourth
example of a partial processing of an object B;

FIG. 25 is a flowchart useful for understanding a fifth
example of a partial processing of an object B;

FIG. 26 is a flowchart useful for understanding a sixth
example of a partial processing of an object B;

FIG. 27 is a flowchart useful for understanding another
example of processing for issue of a message of an object A,
which is different from the example of that shown in FIG.
20;

FIG. 28 is a flowchart useful for understanding a seventh
example of a partial processing of an object B;

FIG. 29 is a flowchart useful for understanding a eighth
example of a partial processing of an object B;

FIG. 30 is a flowchart useful for understanding a ninth
example of a partial processing of an object B;

FIG. 31 is a flowchart useful for understanding a tenth
example of a partial processing of an object B;

FIG. 32 is a flowchart useful for understanding process
ings of an input instruction tag table generating unit of an
object coupling unit shown in FIG. 15:

FIG. 33 is a flowchart useful for understanding process
ings of an output instruction tag table generating unit of an
object coupling unit shown in FIG. 16;

FIG. 34 is a flowchart useful for understanding process
ings of an input data tag table generating unit of an object
coupling unit shown in FIG. 17:

FIG. 35 is a flowchart useful for understanding process
ings of an output data tag table generating unit of an object
coupling unit show in FIG. 18;

FIG. 36 is a typical illustration of a display screen useful
for understanding an object-between-network display
method according to an embodiment of the present inven
tion;

FIG. 37 is an explanatory view useful for understanding
hierarchical networks:

FIGS. 38(A) and 38(B) are illustrations each showing by
way of example a display image consisting of a lot of objects
and wirings;

FIGS. 39(A) and 39(B) are illustrations each showing by
way of example a display image of a Subnetwork;

FIGS. 40(A) and 40(B) are illustrations each showing an
alternative embodiment of the display method of the sub
network;

US RE42,105E
21

FIGS. 41(A), 41(B) and 41(C) are illustrations each show
ing by way of example a display image having a display area
in which a plurality of measures are coupled with each other;

FIG. 42 is an illustration showing by way of example a
display image characterized by a display method of wiring;

FIGS. 43(A) and 43(B) are illustrations each showing an
alternative embodiment of the display method of the wiring:

FIGS. 44(A) 44(B) and 44(C) are illustrations useful for
understanding a procedure for producing a display area for
displaying a network of an object;

FIG. 45 is an illustration showing a state in which an
object is disposed on a display Screen by users;

FIGS. 46(A) and 46(B) are illustrations each showing a
state in which a wiring among objects disposed on a display
screen is performed by users;

FIGS. 47(A) and 47(B) are illustrations showing by way
of example display screens of an object-between-network
before and after display of the subnetwork, respectively;

FIG. 48 is a flowchart useful for understanding a proce
dure for switching from the display of FIG. 47(A) to the
display of FIG. 47(B):

FIGS. 49(A), 49(B) and 49(C) are explanatory views use
ful for understanding a procedure of a Subnetwork display;

FIG. 50 is a flowchart useful for understanding a proce
dure of the subnetwork display;

FIGS. 51(A), 51(B) and 51(C) are typical illustrations
each showing an embodiment in which a display area repre
sentative of an object is formed with a single measure or a
plurality of measures coupled with one another;

FIGS. 52(A) and 52(B) are illustrations useful for under
standing by way of example a display method of wiring;

FIG. 53 is a typical illustration showing by way of
example a display of wiring;

FIG. 54 is a flowchart useful for understanding a proce
dure of executing the wiring shown in FIG. 53;

FIG.55 is a flowchart useful for understanding an alterna
tive embodiment of a procedure of executing the wiring;

FIG. 56 is a flowchart useful for understanding a further
alternative embodiment of a procedure of executing the wir
1ng

FIG. 57 is a flowchart useful for understanding a still fur
ther alternative embodiment of a procedure of executing the
wiring;

FIGS. 58-62 are typical illustrations each showing a result
obtained from an execution of wiring according to the wiring
procedures shown in FIGS. 54-56; and

FIGS. 63(A), 63(B) and 63(C) are typical illustrations
each showing a result obtained from an execution of wiring
according to the wiring procedures shown in FIGS. 55-57.

FIG. 64 is a schematic diagram showing a basic structure
of an object-oriented programming Supporting apparatus
and a program storage medium for use in an object-oriented
programming according to an embodiment of the present
invention;

FIG. 65 is a conceptual view showing exemplarily an
involving relation among objects;

FIG. 66 is a typical illustration showing a connecting rela
tion among objects for defining a hierarchical structure;

FIG. 67 is a typical illustration showing a pointer for
determining a connecting relation of a certain object to
another object;

FIG. 68 is a typical illustration showing one of the bus
elements constituting the bus element list to be connected to
the “pointers to buses' shown in FIG. 67:

10

15

25

30

35

40

45

50

55

60

65

22
FIG. 69 is a typical illustration showing one of the cable

elements constituting the cable element list to be connected
to the “pointers to cables' shown in FIG. 67:

FIG. 70 is a typical illustration showing exemplarily a
wiring among objects;

FIG. 71 is a conceptual view of a duplicate object;
FIG. 72 is a typical illustration showing a hierarchical

structure (object tree) of the objects shown in FIG. 71;
FIG. 73 is a flowchart useful for understanding a building

process for the duplicate object;
FIG. 74 is a typical illustration showing a connecting rela

tion between the substantial object (original) and the dupli
cate object (copy)

FIG. 75 is a conceptual view showing a coupling relation
of objects before a replacement of objects;

FIG. 76 is a typical illustration showing an object tree
concerning the objects shown in FIG. 75:

FIG. 77 is a conceptual view showing a coupling relation
of objects after a replacement of objects;

FIG. 78 is a typical illustration showing a part of the
object tree after a replacement of objects:

FIG. 79 is a flowchart useful for understanding an object
replacing process;
FIG.80 is a typical illustration showing a part of the cable

element list connected to an object A:
FIG. 81 is a conceptual view showing a coupling relation

among objects before a movement of objects;
FIG. 82 is a typical illustration showing an object tree

concerning the objects shown in FIG. 81;
FIG. 83 is a conceptual view showing a coupling relation

of objects after a movement of objects;
FIG. 84 is a typical illustration showing an object tree

concerning the objects shown in FIG. 83;
FIG. 85 is a flowchart useful for understanding a process

ing for a movement of objects and a change of wiring of
objects;

FIG. 86 is a typical illustration showing a state of an alter
ation of an object tree;

FIG. 87 is a typical illustration showing a part of the cable
element list connected to an object A:

FIG. 88 is an explanatory view useful for understanding a
movement of wiring to a new object;

FIG. 89 is a typical illustration of a bus for use in wiring,
the bus being built on an object F:

FIG.90 is a typical illustration showing a state of a change
of an object in wiring from an object (object D) inside a new
object (object F) to the object F;

FIG. 91 is a typical illustration showing exemplarily a
wiring among objects:

FIG. 92 is a typical illustration showing a cable element
list giving a definition of the wiring shown in FIG.91;

FIG. 93 is a flowchart useful for understanding process
ings for a display of an execution sequence for methods and
an alteration of the execution sequence for the methods:

FIG. 94 is a typical illustration showing a cable list ele
ment list;

FIG. 95 is a view exemplarily showing a cable list dis
played on a display screen 102a:

FIG. 96 is a typical illustration showing a state in which
an arrangement sequence of the cable elements arranged on
the cable element list is altered;

FIG. 97 is a typical illustration showing a cable element
list in which an arrangement sequence of the cable elements
has been altered;

US RE42,105E
23

FIG. 98 is a typical illustration showing a state in which
an arrangement sequence of the cable list elements arranged
on the cable list element list is altered;

FIG. 99 is a typical illustration showing a cable list ele
ment list in which an arrangement sequence of the cable list
elements has been altered;

FIG. 100 is a view showing a cable list in which an
arrangement sequence has been altered;

FIG. 101 is a typical illustration showing an embodiment
of a component “including an existing Software having a
graphical user interface;

FIG. 102 is a typical illustration showing an alternative
embodiment of a component “including an existing soft
ware having a graphical user interface;

FIG. 103 is a typical illustration showing a further alterna
tive embodiment of a component “including an existing
Software having a graphical user interface;

FIG. 104 is a typical illustration showing a structure of an
event processing portion of the window management section
shown in FIG. 103;

FIG. 105 is a typical illustration showing a structure of an
event monitor portion of the component A shown in FIG.
103;

FIG. 106 is a basic construction view of a component
builder apparatus according to the present invention;

FIG. 107 is a typical illustration of an embodiment of a
component builder apparatus according to the present inven
tion;

FIG. 108 is a flowchart useful for understanding process
ings of building a component using a component builder
apparatus;

FIG. 109 is a construction view of an object ware pro
gramming system in which structural elements correspond
ing to the embodiment of the fifth object-oriented program
ming Supporting apparatus according to the present
invention are added to the object ware programming system
shown in FIG. 2;

FIG. 110 is a flowchart useful for understanding an opera
tion of a component coupling unit:

FIG. 111 is a flowchart useful for understanding an opera
tion of a component coupling unit;

FIG. 112 is a conceptual view showing a state in which an
existing software is “included in a component;

FIG. 113 is a view showing a table for definition items to
give various definitions shown in FIG. 112; and

FIG. 114 is a view exemplarily showing images displayed
on a display screen 102a when definitions are given.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Hereinafter, there will be described embodiments of the
present invention.

First, there will be explained an outline of an object ware
programming system in which embodiments according to
the present invention are put together, and then each indi
vidual embodiment will be explained.

FIG. 1 is a perspective illustration of a computer system
including each individual embodiment of the present inven
tion of an object-oriented programming apparatus, an
object-oriented programming Supporting apparatus, a com
ponent builder apparatus, an object-oriented program Stor
age medium, a program storage medium for use in an object
oriented programming, a component storage medium, and

10

15

25

30

35

40

45

50

55

60

65

24
an object-between-network display method. In FIG. 1, a
computer system 100 comprises: a main body unit 101
incorporating thereinto a CPU, an MO (magneto-optical
disc) drive and the like: an image display unit 102 for dis
playing on its display Screen 102a images in accordance
with an instruction from the main body unit 101; a keyboard
103 for inputting various types of information to the com
puter system 100; a mouse 104 for designating a desired
position on the display screen 102a of the display 102; and a
storage unit 105 for storing objects, object coupling pro
grams and the like which will be described hereinafter.
A development of programs can be implemented by the

computer system 100 shown in FIG. 1. It is acceptable that
programs, which are developed by another same type of
computer system, are stored in a portable type of recording
medium such as an MO (magneto-optical disc) 110, and the
MO 110 is loaded into the computer system 100 shown in
FIG. 1 so that the developed programs can be inputted into
the computer system 100. Likewise, it is possible to transfer
the programs developed with the use of the computer system
100 shown in FIG. 1 through the MO 110 to another com
puter system.

FIG. 2 is a block diagram of an object ware programming
system implemented in the computer system shown in FIG.
1.
An object ware programming system 120 comprises an

object builder unit 121 for building objects and/or a compo
nent which “includes’ existing softwares, an interobject wir
ing editor unit 122 for displaying a wiring among objects (a
coupling relation) to perform an editing, and an interpreter
unit 123 for connecting and running objects (including an
object consisting of a combination of the existing Software
and the component), which are generated in the object
builder unit 121, in accordance with the wiring among
objects, or the coupling relation, which is defined by the
interobject wiring editor unit 122.

While the object builder unit 121 can build directly an
object through an operation of the keyboard 103 or the
mouse 104 in the computer system 100 shown in FIG. 1, the
object ware programming system 120 is provided with an
existing application file 131 for storing existing various
types of application programs (hereinafter, it may happen
that the application program is referred to simply as an
application), which have been developed with various types
of program languages. And thus the object builder unit 121
may also build a component which serves as one object,
“involving the existing application stored in the existing
application file 131, together with the existing application. It
is to be noted that the object-is expressed including an object
consisting of a combination of the above-mentioned compo
nent and the existing application “involved in the
component, unless we note the particular.
The object built in the object builder unit 121 is stored in

an object data file 132 and a running object file 133. The
object data file 132 stores therein, of data representative of
the object built in the object builder unit 121, data necessary
for a display of objects and a wiring (definition of the cou
pling relation) among objects. On the other hand, the run
ning object file 133 stores therein running objects in which
the object built in the object builder unit 121 is converted
into a running format of one.
The interobject wiring editor unit 122 displays, upon

receipt of data as to an object stored in the object data file
132, the object on the display screen 102a of the image
display unit 102 shown in FIG. 1, and defines a coupling
state among objects in accordance with an operation of the

US RE42,105E
25

keyboard 103 or the mouse 104. As will be described, a
display on the display screen 102a is given with a display
style close to that of an LSI (Large Scale Integrated Circuit)
as the hardware, and a definition of the coupling state among
objects is performed in Such a sense that terminals of Such a
plurality of LSIs are wired by signal lines. Hence,
hereinafter, it may happen that the object is referred to as
“LSI, and a definition of the coupling State among objects is
referred to as “wiring”.
When a wiring among objects is performed by the inter

object wiring editor unit 122, an interobject wiring data file
134 is used for the purpose of saving an intermediate result
of the wiring and displaying the intermediate result through
loading. The interobject wiring data file 134 stores wiring
information which is convenient as a man-machine inter
face. For example, in the system according to present
embodiment, there is provided a hierarchical structure of
objects for the purpose of easy understanding of wiring for
users. The interobject wiring data file 134 stores also data as
to Such a hierarchical structure.

In this manner, when the interobject wiring editor unit 122
has completed the wiring, an interpreter use wiring data file
135 stores information (hereinafter, it is referred to as “wir
ing data') representative of a coupling state among objects.
When the interpreter use wiring data file 135 stores the wir
ing data, information simply available for users
understanding, for example, information of the hierarchical
structure of objects, is omitted, and only the wiring data,
which is necessary for actuation of the object (software), is
extracted and stored in the interpreter use wiring data file
135.

In the interpreter unit 123, the running objects stored in
the running object file 133 are coupled and executed in
accordance with the wiring data stored in the interpreter use
wiring data file 135.

Hereinafter, the respective embodiments will be
described. As a matter of convenience of explanation and for
better understanding of the invention, there will be
described, taking into account of the arrangement of the
object ware programming system 120 shown in FIG. 2, first,
the embodiment concerning the interpreter unit 123 and the
associated periphery, then the embodiment concerning the
interobject wiring editor unit 122 and the associated
periphery, and finally the embodiment concerning the object
builder unit 121 and the associated periphery.

First, there will be described the embodiment concerning
the interpreter unit 123 and the associated periphery.

FIG. 3 is a typical illustration showing a first example of a
Software system implemented within the computer system
shown in FIG. 1. Now referring to FIG. 3, there will be
described a schematic construction of a first object-oriented
programming apparatus and a first object-oriented program
storage medium according to one embodiment of the present
invention, and then referring to FIG. 4 et seq. there will be
described details of those.
A corresponding relation between the Software system

shown in FIG.3 and the present invention is as follows. That
is, the storage unit 105 (FIG. 1), in which the software sys
tem shown in FIG. 3 is stored, corresponds to the first object
oriented program storage medium according to an embodi
ment of the present invention, and a combination of the
hardware of the computer system 100 shown in FIG. 1 and
an object coupling unit 10 which is in a state operable under
the computer system 100 corresponds to the first object
oriented programming apparatus. Incidentally, when the
software system shown in FIG. 3 is downloaded onto the

10

15

25

30

35

40

45

50

55

60

65

26
MO 110, the MO 110 also corresponds to an example of the
first object-oriented program storage medium according to
an embodiment of the present invention.
Now, let us consider typically two objects A and B each

comprising data and processing (method).
An output instruction bus portion generating unit 11, in

the object coupling unit 10, generates a portion which forms
a core of an output instruction bus portion for performing an
issue process of a message of an object (for example object
A) to another object (for example object B).
An input instruction bus portion generating unit 12, in the

object coupling unit 10, generates an input instruction bus
portion of an object (for example object B). The input
instruction bus portion receives a message directed to the
self object (for example object B) issued by another object
(for example object A), and activates a method of the self
object (for example object B), which method is associated
with the received message.

Incidentally, according to the present embodiment, the
output instruction bus portion generating unit 11 and the
input instruction bus portion generating unit 12 are provided
in the object coupling unit 10. However, it is acceptable that
the objects A and B have originally structures corresponding
to the output instruction bus portion or the input instruction
bus portion. Alternatively, it is acceptable that the object
coupling unit 10 does not always comprise the output
instruction bus portion generating unit 11 and the input
instruction bus portion generating unit 12.
An instruction coupling unit 13, in the object coupling

unit 10, permits a message to be transferred between objects
(objects A and B) by means of giving an association of a
message of the object A with a method of object B.
A data element list generating unit 14, in the object cou

pling unit 10, generates a data element list of an object
(typically object A) in which pointers to data storage areas
for storing therein data are arranged.

Likewise, a pointer element list generating unit 15, in the
object coupling unit 10, generates a pointer element list of an
object (object B) in which pointers to pointer storage areas
for storing therein pointers to data are arranged.
A data coupling unit 16, in the object coupling unit 10.

permits a message to be transferred between objects A and B
by means of writing pointers, which are arranged in the data
element list produced by the data element list generating unit
14, into pointer storage areas indicated by the pointers
arranged in the pointer element list of the object B produced
by the pointer element list generating unit 15.

FIG. 4 is a typical illustration showing an example of a
data structure of an output instruction bus portion of an
object A and an input instruction bus portion of an object B
shown in FIG. 3.
The object A has a message table consisting of an arrange

ment of a maximum number MA of messages of the
object A. The message table stores pointers to a method
element list, which will be described hereinafter, corre
sponding to a message number MA of each message
(where a message number is expressed by MA and it is
expressed by a suffix A that the message number is of a
message of the object A).
The method element list consists of an arrangement of a

single or a plurality of method elements. Each of the method
elements comprises a method number ME for specifying a
method, a pointer to an object in which the method specified
by the method number ME is executed, and a pointer to the
subsequent method element. Here, the method number is

US RE42,105E
27

expressed by an ME, and the object in which the method
specified by the method number ME is executed is expressed
by a suffix. Specifically, the uppermost stage of the method
element shown in FIG. 3 stores a method number ME of a
method of the object B, and a pointer to the object B.
The last stage of method element ME in FIG. 3 stores a

pointer to the subsequent method element data (referred to
as “null) indicating that the method element is of the final
stage itself and there is no method element after itself.
The method element lists are generated at the maximum

by a number corresponding to the number of messages of the
object A. Each of the method element lists corresponds to
the associated message of the object A. When the message is
issued, the associated method element list is referred to.

While a one method element list corresponds to a one
message on a one-to-one basis, it is not always arranged that
method elements arranged on a one method element list are
the only ones related to a certain object (e.g. the object B)
and it is permitted that method elements related to a plurality
of methods of a plurality of objects are arranged on a one
method element list.
While the above-mentioned description explains a con

struction of the output instruction bus unit of the object A,
the output instruction bus unit is provided for each of the
objects which issue messages to another object.
The object B has a method table consisting of an arrange

ment of a maximum ME of a method number ME of
the object B. The method table stores therein a pointer to the
method specified by the method number ME, correspond
ing to the method number ME of each method.

While the above-mentioned description explains a con
struction of the input instruction bus unit of the object B, the
input instruction bus unit receives a message issued by
another object, in a similar fashion to that of the output
instruction bus unit, and is provided for each of the objects,
which executes the method associated with the received
message. In some cases, it happens that one object has both
an output instruction bus unit and an input instruction bus
unit.

FIG. 5 is a flowchart useful for understanding processings
for an issue of a message.
When it is intended to issue a message in a certain pro

cessing in execution in the object A, a message table is
referred to so as to obtain, from a message number MA of
the message intended to be issued, a pointer to the method
element list associated with the message number MA, ID
(step 5 1), so that the method elements arranged in the
method element list indicated by the pointer are referred to.
For example, when the uppermost stage of the method ele
ment shown in FIG. 4 is referred to, the object B indicated by
a pointer stored in the method element referred to is called
wherein a method number ME stored in the method ele
ment serves as an argument (step 5 2). Such a message
issue processing is performed on each of the method ele
ments arranged in a one method element list for each issue of
a one message (steps 5 3, 5 4).

In the object B called wherein the method number ME
serves as an argument, the method number ME, given in the
form of an argument is obtained (step 5 5). In step 5 6
there is provided such a process that the method table is
referred to so as to obtain a pointer to a method specified by
the obtained method number ME, and a processing of the
method indicated by the pointer is performed.

FIG. 6 is a flowchart useful for understanding processings
of an output instruction bus portion generating unit 11 of an
object coupling unit 10 shown in FIG. 3.

10

15

25

30

35

40

45

50

55

60

65

28
In step 6 1, a frame of the message table having a width

MA shown in FIG. 4 is produced.
Incidentally, according to the present embodiment, it is so

arranged that when the object A issues a message, a pointer
of the method element list is identified through a message
table. However, it is acceptable that the pointer to the method
element is written directly into a process (method) of the
object A, for example, and thus in this case, there is no need
to provide the message table. In other words, the process
shown in FIG. 6, or the output instruction bus portion gener
ating unit 11 shown in FIG. 3 is not always needed.

FIG. 7 is a flowchart useful for understanding processings
of an input instruction bus portion generating unit 12 of an
object coupling unit 10 shown in FIG. 3.

In step 7 1, a frame of the method table having a width
ME, shown in FIG. 4 is produced. And in step 7 2, a
pointer to the method associated with the respective method
number ME is stored in a column of the respective method
number ME, within the frame.

Incidentally, according to the present embodiment, it is so
arranged that a pointer of the method is recognized through a
method table. However, there may be no need to provide an
association of the method number ME, with the pointer to
the method in form of the message table. Accordingly, the
process shown in FIG. 7, or the input instruction bus portion
generating unit 12 shown in FIG. 3 is not always needed.

FIG. 8 is a flowchart useful for understanding processings
of an instruction coupling unit 13 of an object coupling unit
10 shown in FIG. 3. Here, also it is assumed that the object B
is typical of another object.
When the method elements are produced, an operator,

who operates the computer system shown in FIG. 1, desig
nates a corresponding relation between a message and a
method. This corresponding relation is determined by the
following designations.

(a) A pointer of the object A
(b) A pointer of the object B
(c) A message number MA of the object A
(d) A method number ME of the object B
It is noted that designations or the above-noted (a) to (d)

are performed, for example, in Such a manner that designa
tions for a name of the object, a processing (e.g. "display on
a screen the spreadsheet program and the spreadsheet
result') and the like are performed by clicking through an
operation of a mouse 104 (cf. FIG. 1), of an icon displayed
on a display screen 102a. More in detail, as will be described
later, objects are displayed in the form of an LSI, and a
designation is performed through an operation for wiring
among terminals of the LSIs using the mouse 104.

In the processing shown in FIG. 8, first, a frame of the
method element is produced (step 8 1). In step 8 2, the
method number ME, and the pointer of the object B are
stored in the frame of the method element, so that they are
added to the method element list of the associated message
number MA (step 8 3). That is, the pointer to the method
element to be added is stored in the column of the pointer to
the next method element, of the last stage of method element
arranged in the method element list, and the “null is stored
in the column of the pointer to the next method element, of
the method element to be added. The processing shown in
FIG. 8 is repeatedly performed, if necessary, to produce the
method element list.

Incidentally, when none of method element is arranged in
the method element list, according to the present
embodiment, a pointer to a method element intended to be

