FL. PILKINGTON
LIQUID SPREADING DEVICE
Filed Jan. 10, 1964

FIG. 1.

FIG. 2.

INVENTOR.
FRANK L. PILKINGTON
BY DAVID A. RICK
ATTORNEY.
The present invention relates to cleaning devices. More particularly, the invention relates to devices for washing floors. More especially, the invention relates to a liquid laying device, i.e., a device for applying and spreading liquid to a surface in controlled manner.

In the prior art it has been the custom to apply cleaning liquids to a surface such as a plane floor surface by wetting a mop and moving the wetted mop about. Such a mechanism for wetting floor surfaces is inefficient, and extremely erratic with respect to the application of a predetermined degree of liquid as well as the depth of liquid employed. It is therefore highly desirable to provide a liquid-laying device which eliminates the need for time consuming, intermittent applications of the liquid.

It is therefore an object of the invention to provide an improved liquid spreading device for applying liquid onto a surface at a predetermined rate and in a predetermined depth.

A further object of the invention is to provide an improved liquid spreading device which is more efficient.

Still another object of the invention is to provide an improved liquid spreading device that is highly maneuverable.

Yet another object of the invention is to provide an improved liquid spreading device which is highly efficient in operation.

Other and further objects of the invention will be apparent from the following description taken in connection with the accompanying drawings and its scope will be pointed out in the appended claims.

In accordance with the invention there is provided a liquid spreading device. The device includes a movable carriage means. A vertically disposed container is coupled to the carriage for storing liquid to be spread. An elongated conduit is coupled to the carriage transverse to the direction of motion of the carriage. The conduit has linearly disposed outlets and is coupled to the container for conducting the fluid from the container to the outlets. Valving means are coupled between the container and the conduit for controlling the flow of the liquid. Pump means are coupled to the container and the carriage for propelling the liquid through the conduit at a relatively constant pressure. The pump means is inoperative when the liquid extends above a predetermined level in the container. A brush-like spreader means is coupled to the carriage and the conduit. In this manner the liquid is conducted from the conduit through the brush-like spreader onto a surface. The spreader means is retractable.

In the drawings:

FIG. 1 is a rear perspective view of a liquid spreading device embodying the invention; and

FIG. 2 is a bottom view of device in FIG. 1.

Refferring now to the drawings and with particular reference to FIG. 1, there is here illustrated a liquid spreading device embodying the invention. The device includes a movable carriage means having a bifurcated yoke structure with members 10 and 11 formed to provide handles 12 and 13. The yoke members 10 and 11 are coupled to a pair of wheels 14 and 15 which are supported by means of ball-bearings, which are not shown, carried on axles connected to the members 10 and 11. A platform 16 is carried by the flanged ends 10a and 11a of the yoke members 10 and 11. The platform supports a container 17 for storing the fluid to be spread. The cut-away view of the container reveals an opening 18 in the bottom of the container for releasing the fluid. The container has an annular band 19 surrounding it for attachment to a pair of spring members 20 and 21 to provide additional support. The members 20 and 21 are attached to the platform 16. The outlet 18 is coupled through a flexible hose 22 to a tube 23. The yoke members 10 and 11 are attached together and to the container 17 with a bracket 24. A cable release 25 is coupled to a manual control lever 26 which is attached to the members 10 and 11 by means of the enclosed shaft 27. A brush-like spreading member 28 is connected, for example, with nuts and bolts to a pair of brackets 41 and 42 which are pivotally connected to frame members 29 and 30 which are, in turn, attached to the support frame 16.

The conduit 23 is supported by a pair of brackets 31 and 32 which are connected to the frame 16, for example, by bolts and rivets. A drive pulley 33a is connected for rotation with the wheel 15. The pulley 33a is coupled to a smaller drive pulley 33 through a drive belt 34. The pulley 33 is coupled through a shaft to a pump 35 shown particularly in FIG. 2. There a flexible hose section 36 extends between the outlets 18 and the container 17 and a force pump 35. The pump is coupled to the pulley 33 through a drive shaft 37. The flexible hose 22 is coupled to a control valve 38 which is coupled through a pipe 39 to the conduit 23.

As shown in FIG. 2 the brush member 28 is retracted from its spreading position. The member 28 is rotatable against the spring tension of a spring member 40 shown particularly in FIG. 1. Member 28 is fastened to a pair of brackets 41 and 42 which are pivotally attached to the support frame members 29 and 30. Attached to the members 29 and 30 is a support base member 43. A caster wheel assembly 44 is attached to the frame members 29 and 30 as shown in FIG. 2 to provide additional movable bearing support for the container 17. Referring again to FIG. 2 it may be seen that the conduit 23 has formed therein a linearly disposed series of orifices 45 providing outlets for the liquid.

In operation the lever 26 is rotated in a position for controlling the valve 38 to permit free fluid flow through the outlets 45 of the conduit 23. The handles 12 and 13 are manually grasped and the yoke structure is pushed to rotate the wheels 14 and 15. When the container 17 is fully filled the force of gravity is sufficient to provide a relatively steady pressure to control the flow of fluid through the conduit 23. The brush member 28 is extended into contact with the surface to be wetted. Fluid flows from the container 17 through the opening 18, hose 38, pump 35, hose section 22, valve 38, pipe 39 through the conduit 23 out through the orifices 45. The fluid flow is directed to the member 28 by introducing the flow of liquid ahead of the member 28. The motion of the carriage forwards causes the brush member 28 to capture the liquid and spread it on the surface. When the fluid level drops to a point below which the force of gravity overcomes the action of the pump 35, the pump 35 operates to maintain fluid under relatively constant pressure flowing through the conduit 23.

Any of a number of well-known rotary force pumps for liquids may be useful in the invention. The valve may be the well-known on-off hot water control valve and operated mechanically as shown or with an intermediate solenoid.

It will be apparent from the foregoing description that the present invention has broad application to the problem of spreading liquid in a controlled manner on a surface.

While there has been herebefore presented what is at present considered to be the preferred embodiment of the invention, it will be apparent to those of ordinary
skill in the art that many and various changes and modifications may be made with respect to the embodiment described and illustrated without departing from the spirit of the invention. It will be understood, therefore, that all such changes and modifications as fall fairly within the scope of the present invention, as defined in the appended claims, are to be considered as a part of the present invention.

What is claimed is:

1. A liquid cleaning solution spreading device, comprising:
 a movable carriage means having a bifurcated yoke structure with yoke members formed to provide handles;
 a pair of bearing supported wheels carried on axles coupled to the ends of said yoke members;
 a platform means coupled between said yoke member ends and carried thereby;
 a container carried by said platform for storing said liquid cleaning solution and having an outlet in the bottom of said container for releasing said cleaning solution;
 valve means coupled through a flexible hose to said container outlet;
 elongated, perforated conduit means coupled to said valve means for releasing said cleaning solution through said perforations;
 rotary force pump means coupled between said valve means and said flexible hose to said container outlet;
 drive means coupling one said wheel and said pump means for driving said pump when said device is in motion, said pump operating to maintain fluid pressure relatively constant through said elongated, perforated conduit after the fluid level in said container drops to a point below which the force of gravity overcomes the action of said pump; and
 a retractable brush-like spreader means pivotally coupled to said carriage means and said conduit whereby said liquid solution is conducted from said conduit through said brush-like spreader onto a surface.

2. The device of claim 1, wherein:
 an additional front wheel is coupled to said platform to provide extra support for said container.

3. The device of claim 1, wherein:
 a cable release control is coupled from said yoke structure to said valve means.

4. The device of claim 1, wherein:
 an annular band surrounds said container and is resiliently coupled to said platform.

References Cited by the Examiner

UNITED STATES PATENTS
1,548,383 8/25 Pickersgill 15——544 X
FOREIGN PATENTS
427,049 4/35 Great Britain.

CHARLES A. WILLMUTH, Primary Examiner.