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SYSTEMS AND METHODS FOR PRIORITIZING OBJECT PREDICTION FOR
AUTONOMOUS VEHICLES

PRIORITY CLAIM
[0001] The present application is based on and claims priority to United States
Provisional Application No. 62/549,407 having a filing date of August 23, 2017, and United
States Application No. 15/811,865 having a filing date of November 14, 2017, both of which

are incorporated by reference herein.

FIELD
[0002] The present disclosure relates generally to autonomous vehicles. More
particularly, the present disclosure relates to systems and methods for determining a priority
classification for objects that are perceived by autonomous vehicles and predicting a future
location for the objects based at least in part on the respective priority classification for each

object.

BACKGROUND
[0003] An autonomous vehicle is a vehicle that is capable of sensing its environment and
navigating with minimal or no human input. In particular, an autonomous vehicle can
observe its surrounding environment using a variety of sensors and can attempt to
comprehend the environment by performing various processing techniques on data collected
by the sensors. Given knowledge of its surrounding environment, the autonomous vehicle can

identify an appropriate motion path through such surrounding environment.

SUMMARY
[0004] Aspects and advantages of embodiments of the present disclosure will be set
forth in part in the following description, or can be learned from the description, or can be
learned through practice of the embodiments.
[0005] One example aspect of the present disclosure is directed to a computer-
implemented method. The method can include obtaining, by a computing system comprising
one or more processors, state data descriptive of at least a current or past state of a plurality
of objects that are perceived by an autonomous vehicle. The method can further include
determining, by the computing system, a priority classification for each object in the plurality

of objects based at least in part on the respective state data for each object. The method can
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further include determining, by the computing system, an order at which the computing
system determines a predicted future state for each object based at least in part on the priority
classification for each object. The method can further include determining, by the computing
system, the predicted future state for each object based at least in part on the determined
order.

[0006] Another example aspect of the present disclosure is directed to a computing
system. The computing system can include a perception system comprising one or more
processors. The perception system can be configured to generate, for each of a plurality of
consecutive time frames, state data descriptive of at least a current state of each of a plurality
of objects that are perceived by an autonomous vehicle. The computing system can further
include a priority classification system comprising one or more processors. The priority
classification system can be configured to, for each of the plurality of consecutive time
frames, classify each object in the plurality of objects as either high-priority or low-priority
based at least in part on the respective state data for each object. The computing system can
further include a prediction system comprising one or more processors. The prediction
system can be configured to, for each of the plurality of consecutive time frames receive the
priority classification for each respective object, determine, for the current time frame, a
predicted future state for each object classified as high-priority, and provide the predicted
future state for each object classified as high-priority for the current time frame to a motion
planning system implemented by the one or more processors.

[0007] Another example aspect of the present disclosure is directed to an autonomous
vehicle. The autonomous vehicle can include one or more processors and one or more non-
transitory computer-readable media that collectively store instructions that, when executed by
the one or more processors, cause the one or more processors to perform operations. The
operations can include obtaining state data descriptive of at least a current or past state of a
plurality of objects that are perceived by the autonomous vehicle. The operations can further
include determining a priority classification for each object in the plurality of objects based at
least in part on the respective state data for each object. The operations can further include
determining an order at which the computing system determines a predicted future state for
each object based at least in part on the priority classification for each object. The operations
can further include determining the predicted future state for each object based at least in part
on the determined order.

[0008] Other aspects of the present disclosure are directed to various systems,

apparatuses, non-transitory computer-readable media, user interfaces, and electronic devices.
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[0009] These and other features, aspects, and advantages of various embodiments of the
present disclosure will become better understood with reference to the following description
and appended claims. The accompanying drawings, which are incorporated in and constitute
a part of this specification, illustrate example embodiments of the present disclosure and,

together with the description, serve to explain the related principles.

BRIEF DESCRIPTION OF THE DRAWINGS
[0010] Detailed discussion of embodiments directed to one of ordinary skill in the art is
set forth in the specification, which makes reference to the appended figures, in which:
[0011] FIG. 1 depicts a block diagram of an example autonomous vehicle according to
example aspects of the present disclosure;
[0012] FIG. 2 depicts an example perception system according to example aspects of the
present disclosure;
[0013] FIG. 3 depicts an example prediction system according to example aspects of the
present disclosure;
[0014] FIG. 4 depicts a block diagram of an example object prediction process according
to example aspects of the present disclosure;
[0015] FIG. 5 depicts a block diagram of an example computing system according to
example aspects of the present disclosure; and
[0016] FIG. 6 depicts a flow chart diagram of an example method to determine a motion

plan for an autonomous vehicle according to example aspects of the present disclosure.

DETAILED DESCRIPTION
[0017] Generally, the present disclosure is directed to systems and methods for
determining a priority classification for objects that are perceived by autonomous vehicles
and predicting a future location for the objects based at least in part on the respective priority
classification for each object. In particular, an autonomous vehicle can include or otherwise
use a prediction system to predict the future locations of the objects such as, for example,
other vehicles, pedestrians, bicyclists, etc. based at least in part on perception information
that describes current and/or past states of the objects and/or the surrounding environment. In
some implementations, the autonomous vehicle can include or otherwise use a priority
classification system to classify a respective priority of each object perceived by the
perception system. For example, in some implementations, each object can be classified as

either high-priority or low-priority. The prediction system can determine a predicted future
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state for each object based at least in part on the priority classification for each object. For
example, in some implementations, the order at which the computing system determines the
predicted future state for each object can be determined based on the priority classification
for each object, such as, for example, by determining the predicted future state for objects
classified as high-priority before predicted future states are determined for objects classified
as low-priority.

[0018] As one example, in a system that operates iteratively over a number of time
frames, the prediction system can determine in a current time frame the predicted future state
for each object classified as high-priority in the current time frame. However, the prediction
system can wait and determine (e.g., in a subsequent time frame or at least subsequent to
providing the predicted future states for each object classified as high-priority to a motion
planning system) the predicted future state for each object classified as low-priority in the
current time frame. In such fashion, predicted future states for high-priority objects can be
delivered to the motion planning system in an advanced fashion (e.g., “ahead of the
schedule”), thereby allowing the motion planning system additional time to determine a
motion plan relative to the high-priority objects and the vehicle additional time to implement
the determined motion plan. In such fashion, the autonomous vehicle can be controlled to
react more quickly relative to objects classified as high-priority. For example, the additional
time gained through advancing the predicted future states by the prediction system can enable
to vehicle to come to a stop more quickly or otherwise make improved maneuvers which
enhance passenger and vehicle safety.

[0019] According to another aspect of the present disclosure, in some implementations,
the type of prediction system used for determining the predicted future state for each object
can be determined based on the priority classification for each object. For example, in some
implementations a high-fidelity prediction system can be used for objects classified as high-
priority, whereas a low-fidelity prediction system can be used for objects classified as low-
priority.

[0020] According to another aspect of the present disclosure, the priority classification
system described herein can include or leverage one or more machine-learned models that
assist in classifying each object perceived by the autonomous vehicle. As an example, in
some implementations, the priority classification system can include a machine-learned
object classifier configured to classify each perceived object, such as by classifying each
object as high-priority or low-priority. The use of machine-learned models can improve the

speed, quality, and/or accuracy of object priority classification. The improved ability to
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classify objects according to priority can allow for more efficient use of prediction system
resources by, for example, allowing for future states of higher priority objects to be predicted
before lower priority objects. Further, this can allow for the predicted future states for higher
priority objects to be provided to a motion planning system sooner, reducing overall latency
for determining a motion plan, thereby reducing autonomous vehicle response times and
enhancing passenger safety and vehicle efficiency.

[0021] More particularly, in some implementations, an autonomous vehicle can include
a computing system that assists in controlling the autonomous vehicle. The autonomous
vehicle can be a ground-based autonomous vehicle (e.g., car, truck, bus, etc.), an air-based
autonomous vehicle (e.g., airplane, drone, helicopter, or other aircraft), or other types of
vehicles (e.g., watercraft). In some implementations, the computing system can include a
perception system, a prediction system, and a motion planning system that cooperate to
perceive the surrounding environment of the autonomous vehicle and determine a motion
plan for controlling the motion of the autonomous vehicle accordingly. For example, the
perception system can perceive one or more objects that are proximate to an autonomous
vehicle, and provide state data indicative of the one or more objects to the prediction system.
The prediction system can then determine a predicted future state for each object perceived
by the perception system. The motion planning system can then determine a motion plan for
the autonomous vehicle based on the predicted future states for the objects. In this way, an
autonomous vehicle can perceive objects proximate to the autonomous vehicle, and, in
response, control the autonomous vehicle accordingly.

[0022] In some implementations, an autonomous vehicle can perform each of the
perception, prediction, and motion planning steps sequentially using data obtained in a
plurality of consecutive time frames. For example, for a time frame N, the perception system
can receive sensor data for the time frame N; the perception system can concurrently generate
and provide state data to the prediction system for one or more objects perceived by the
perception system for a time frame N-1; the prediction system can concurrently determine a
predicted future state for each object perceived by the perception system for a time frame N-
2; and a motion planning system can concurrently determine a motion plan for the
autonomous vehicle using predicted future states for a time frame N-3. Thus, a motion plan
for the autonomous vehicle can be iteratively determined using data from each of a plurality
of consecutive time frames.

[0023] However, in such an implementation, each of the perception, prediction, and

motion planning systems may require the preceding system to complete a respective analysis
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of data for a time frame before each system can subsequently analyze the data for the time
frame. For example, for each consecutive time frame, the perception system may need to
complete an analysis of data obtained from one or more sensors on the autonomous vehicle in
order to generate the state data used by the prediction system. Similarly, the prediction
system may need to complete an analysis of state data for a time frame to determine a
predicted future state for each object before the motion planning system can determine a
motion plan for the autonomous vehicle. Thus, the overall time from when an object is
sensed by a sensor until a motion plan is determined in response to the object may be
dependent upon each system completing its respective analysis of the object along with all
other objects perceived at the same time as the object.

[0024] In contrast, the systems and methods according to example aspects of the present
disclosure can allow for determining a priority classification for objects perceived by an
autonomous vehicle and determining a predicted future state for each object based at least in
part on the priority classification for each object, thereby enabling higher priority objects to
be analyzed before lower priority objects.

[0025] In particular, in some implementations, the perception system can receive sensor
data from one or more sensors that are coupled to or otherwise included within the
autonomous vehicle. As examples, the one or more sensors can include a Light Detection
and Ranging (LIDAR) system, a Radio Detection and Ranging (RADAR) system, one or
more cameras (e.g., visible spectrum cameras, infrared cameras, etc.), and/or other sensors.
The sensor data can include information that describes the location of objects within the
surrounding environment of the autonomous vehicle. In some implementations, the sensor
data can be obtained at a plurality of consecutive time frames. Based on sensor data received
from the one or more sensors and/or the map data, the perception system can identify one or
more objects that are proximate to the autonomous vehicle at each time frame. As an
example, in some implementations, the perception system can segment the sensor data (e.g.,
the LIDAR data) into discrete object polygons and/or track objects frame-to-frame (e.g.,
iteratively over a number of consecutive time frames or periods).

[0026] In particular, in some implementations, the perception system can generate, for
each object, state data that describes a current state of such object (also referred to as one or
more features of the object). As examples, the state data for each object can describe an
estimate of the object’s: location (also referred to as position); speed (also referred to as
velocity); acceleration; heading; yaw rate; orientation; size/footprint (e.g., as represented by a

bounding polygon or other shape); type/class (e.g., vehicle, pedestrian, bicycle); distance
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from the autonomous vehicle; minimum path to interaction with the autonomous vehicle; a
minimum time duration to interaction with the autonomous vehicle; and/or other state
information and/or covariances of the above-described forms of state information. In some
implementations, certain state data for an object can be used to determine one or more other
features for the object. For example, in some implementations, an object’s position, speed,
acceleration, and/or heading can be used to determine a minimum path to interaction with the
autonomous vehicle or a minimum time duration to interaction with the autonomous vehicle.
The perception system can provide the state data to the priority classification system and/or
the prediction system (e.g., iteratively for each time frame).

[0027] According to an aspect of the present disclosure, the autonomous vehicle can
further include a priority classification system configured to classify each object perceived by
the autonomous vehicle. In some implementations, the priority classification system can be
included in or otherwise incorporated into the perception system. In some implementations,
the priority classification system can be included in or otherwise incorporated into the
prediction system. The priority classification system can classify objects perceived by the
perception system based on the state data for each object. For example, the priority
classification system can classify each object into one of a plurality of priority categories
and/or rank each object relative to each other object. The relative priority classification
and/or rank for each object can be determined based on the state data for each object. The
priority classification for each object can be indicative of an importance of the object to a
determination for a motion plan for the autonomous vehicle. As examples, the priority
classification assigned to each object can be based on a plurality of factors, such as how
likely an object is to interact with the autonomous vehicle, how soon an object is likely to
interact with the autonomous vehicle, whether an object is likely to impact a motion plan for
the autonomous vehicle, etc. For example, a vehicle traveling at a high rate of speed towards
the autonomous vehicle can be classified as a higher priority object than a vehicle traveling
away from the autonomous vehicle.

[0028] In some implementations, the priority classification can be based on one or more
heuristic processes. For example, one or more thresholds can be used to classify objects
based on one or more features of the object. For example, a minimum time duration, a
minimum path, or a minimum distance to interaction with the autonomous vehicle can be
used to classify the objects based on how far away the objects are from the autonomous
vehicle or how soon the objects will likely interact with the autonomous vehicle. Similarly, a

heading and/or velocity can be used to classify objects. For example objects traveling on
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headings away from the autonomous vehicle can be classified as lower priority than objects
traveling towards the autonomous vehicle, and objects traveling at higher speeds towards the
autonomous vehicle can be classified as higher priority than objects traveling at lower speeds
towards the autonomous vehicle. Other features can be used as well, such as object type
(e.g., vehicle, bicycle, pedestrian, etc.), object size, position, or any other feature described
herein.

[0029] In some implementations, each object can be classified as either high-priority or
low-priority. For example, the priority classification system can classify each object as either
high-priority or low-priority based on the respective state data for each object. In some
implementations, a predicted future state for each high-priority object can be determined
before a predicted future state is determined for any low-priority object.

[0030] In some implementations, the ratio of high-priority objects and low-priority
objects can be determined based at least in part on a velocity of the autonomous vehicle. For
example, in some implementations, in order to reduce the overall latency for determining a
motion plan at higher speeds, fewer objects may be classified as high-priority than at lower
speeds. For example, one or more thresholds or ranges can be used to determine a ratio of
high-priority objects to low-priority objects based on a velocity of the autonomous vehicle.
Each object can then be classified as either high-priority or low-priority based on the ratio of
high-priority objects to low-priority objects.

[0031] According to another aspect of the present disclosure, the priority classification
systems and methods described herein can include or leverage one or more machine-learned
models that assist in classifying the objects. As an example, in some implementations, the
priority classification system can include a machine-learned object priority classifier to
classify each object perceived by the autonomous vehicle. In some implementations, the
machine-learned object priority classifier can classify each object as either high-priority or
low-priority.

[0032] According to yet another aspect of the present disclosure, the machine-learned
models included in or employed by the priority classification systems described herein can be
trained using log data collected during actual operation of autonomous vehicles on travelways
(e.g., roadways). For example, the log data can include sensor data and/or state data for
various objects perceived by an autonomous vehicle (e.g., the perception system of an
autonomous vehicle) and also the resulting future state for each object that occurred
subsequent and/or contemporaneous to collection of the sensor data and/or generation of the

state data. Thus, the log data can include a large number of real-world examples of objects
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paired with the data collected and/or generated by the autonomous vehicle (e.g., sensor data,
map data, perception data, etc.) contemporaneous to such perception, such as whether the
object became more or less likely to interact with the autonomous vehicle in the resulting
future state of the object. Training the machine-learned models on such real-world log data
can enable the machine-learned models to determine object classifications which better
mirror or mimic real-world object behavior.

[0033] According to additional aspects of the present disclosure, the prediction system
can determine a predicted future state for each object based at least in part on the priority
classification for each object. For example, the order at which the prediction system
determines the predicted future state for each object can be based at least in part on the
priority classification assigned to the objects. For example, in some implementations,
predicted future states for higher priority objects can be determined before predicted future
states for lower priority objects are determined. In some implementations, the predicted
future state for each object classified as high-priority can be determined before the predicted
future state is determined for any objects classified as low-priority. In some
implementations, the predicted future state for each object can be determined based upon an
object’s relative priority as compared to each other object. For example, each object
perceived by the autonomous vehicle can be assigned a relative priority rank (e.g., for Y
objects, a rank of 1 to Y), and a predicted future state can be determined based on the priority
rank of the objects.

[0034] The prediction system can predict the future locations of the objects based at least
in part on perception information (e.g., the state data for each object) received from the
perception system, map data, sensor data, and/or any other data that describes the past and/or
current state of the objects, the autonomous vehicle, the surrounding environment, and/or
relationship(s) therebetween. For example, the prediction system can estimate the future
motion of actors or other objects over a planning horizon which corresponds to the period of
time for which a motion plan for the autonomous vehicle is generated. In some
implementations, the prediction system can attach probability likelihoods to each predicted
motion or other future location of the objects.

[0035] In some implementations, the prediction system can receive the priority
classification for each respective object perceived by the autonomous vehicle and the
respective state data for each object for a plurality of consecutive time frames. For example,

the perception system can provide state data for a plurality of objects at a plurality of
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consecutive time frames, and the priority classification system can provide a respective
priority classification for each object for each of the plurality of consecutive time frames.
[0036] In some implementations, upon receiving the priority classifications and
respective state data for the plurality of objects for a current (i.e., most recently obtained)
time frame, the prediction system can determine a predicted future state for each object
classified as high-priority for the current time frame. As used herein, the terms “current’ or
“most recently obtained” when used in reference to a time frame refers to the time frame
most recently provided to a particular system (e.g., perception system, prediction system).
For example, using state data for the current time frame, a predicted future location can be
determined for each high-priority object. Once a predicted future state has been determined
for each object classified as high-priority for the current timeframe, the predicted future states
for each object classified as high-priority can then be provided to the motion planning
system. Thus, as soon as a predicted future state has been determined for each high-priority
object, a motion plan can be determined for the autonomous vehicle.

[0037] Further, in some implementations, after the prediction system has provided the
predicted future state for each object classified as high-priority to the motion planning
system, the prediction system can determine a predicted future state for the current timeframe
for each object classified as low-priority. Thus, each object perceived by an autonomous
vehicle can have a predicted future state determined by the prediction system for each time
frame.

[0038] Additionally, in some implementations, the prediction system can provide a
predicted future state for a previous sequential timeframe for each object classified as low-
priority to the motion planning system concurrently with the predicted future states for each
object classified as high-priority for the current timeframe. For example, as soon as a
predicted future state for the current time frame has been determined for each high-priority
object, the predicted future states for the current time frame for each high-priority object can
be provided to the motion planning system along with the predicted future state for the
previous sequential time frame for each low-priority object. For example, a predicted future
state for each object classified as low-priority can be determined by the prediction system by
selecting, obtaining, or otherwise using a predicted future state for each low-priority object
from a previous sequential time frame. Thus, rather than waiting until a predicted future state
has been determined for each object perceived by an autonomous vehicle in a current time
frame, a full set of predicted future states comprising current predicted future states for high-

priority objects and previous sequential predicted future states for low-priority objects can be
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provided to the motion planning system as soon as the prediction system determines a
predicted future state for all high-priority objects. This can reduce the overall latency for
determining a motion plan for a vehicle, thereby reducing the response time for an
autonomous vehicle and increasing passenger safety.

[0039] In some implementations, the prediction system can include a low-fidelity
prediction system and a high-fidelity prediction system. As used herein, the terms “low-
fidelity” and “high-fidelity” refer to a relative computational intensity of the prediction
system or algorithms used by the respective prediction system. For example, in some
implementations, a high-fidelity prediction system can include or otherwise leverage one or
more machine-learned models in order to predict a future location for each object. For
example, in some implementations, the prediction system can be a goal-oriented prediction
system that generates one or more potential goals, selects one or more of the most likely
potential goals, and develops one or more trajectories by which the object can achieve the one
or more selected goals. For example, the prediction system can include a scenario generation
system that generates and/or scores the one or more goals for an object and a scenario
development system that determines the one or more trajectories by which the object can
achieve the goals. In some implementations, the prediction system can include a machine-
learned goal-scoring model, a machine-learned trajectory development model, and/or other
machine-learned models. In some implementations, a high-fidelity prediction system can be
used to determine a predicted future state for objects classified as high-priority.

[0040] In some implementations, a low-fidelity prediction system can include one or
more state forward integration models. For example, a low-fidelity prediction system can
predict a future state for an object by forward integrating a current state. For example, a low-
fidelity prediction system can use a current position, a current velocity, and a current heading
of an object to determine a predicted future location for the object at a future time period. In
some implementations, a low-fidelity prediction system can be used to determine a predicted
future state for objects classified as low-priority.

[0041] In this way, the systems and methods according to example aspects of the present
disclosure can allow for determining a priority classification for objects perceived by an
autonomous vehicle. In particular, by applying one or more heuristic processes and/or using
machine-learned models, the systems and methods of the present disclosure can determine a
respective priority classification for each object perceived by an autonomous vehicle. The
order at which a predicted future state is determined for each object can then be determined

based at least upon the respective priority classification for each object. The ability to
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classify objects according to a respective priority can allow for computational resources to be
focused on higher-priority objects.

[0042] As such, one technical effect and benefit of the present disclosure is reduced
latency for determining a predicted future location for higher priority objects which are more
likely to impact a motion plan for an autonomous vehicle than low-priority objects. In
particular, the present disclosure provides techniques that enable a computing system to
determine a motion plan for an autonomous vehicle as soon as a predicted future location for
all high-priority objects has been determined. Thus, the present disclosure can allow for a
reduction in the time required for an autonomous vehicle to perceive an object and determine
a motion plan in response to the object. Further, the present disclosure can allow for higher
fidelity prediction systems to be used to determine predicted future locations for higher
priority objects, and lower fidelity prediction systems to be used to determine predicted future
locations for lower priority objects. This can allow for more efficient use of computing
resources on board an autonomous vehicle.

[0043] The present disclosure also provides additional technical effects and benefits,
including, for example, enhancing passenger safety. For example, the systems and methods
according to example aspects of the present disclosure can allow for reduced reaction times
for determining a motion plan in response to an object perceived by the autonomous vehicle.
This can allow an autonomous vehicle to come to a stop more quickly, navigate around the
object, or otherwise respond to the object more quickly, thereby reducing the likelihood of an
autonomous vehicle colliding with the object.

[0044] With reference now to the FIGS., example aspects of the present disclosure will
be discussed in further detail. FIG. 1 depicts a block diagram of an example autonomous
vehicle 10 according to example aspects of the present disclosure. The autonomous vehicle
10 can include one or more sensors 101, a vehicle computing system 102, and one or more
vehicle controls 107. The vehicle computing system 102 can assist in controlling the
autonomous vehicle 10. In particular, the vehicle computing system 102 can receive sensor
data from the one or more sensors 101, attempt to comprehend the surrounding environment
by performing various processing techniques on data collected by the sensors 101, and
generate an appropriate motion path through such surrounding environment. The vehicle
computing system 102 can control the one or more vehicle controls 107 to operate the
autonomous vehicle 10 according to the motion path.

[0045] The vehicle computing system 102 can include one or more processors 112 and a

memory 114. The one or more processors 112 can be any suitable processing device (e.g., a
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processor core, a microprocessor, an ASIC, a FPGA, a computing device, a microcontroller,
etc.) and can be one processor or a plurality of processors that are operatively connected. The
memory 114 can include one or more non-transitory computer-readable storage mediums,
such as RAM, ROM, EEPROM, EPROM, flash memory devices, magnetic disks, etc., and
combinations thereof. The memory 114 can store data 116 and instructions 118 which can be
executed by the processor 112 to cause vehicle computing system 102 to perform operations.
[0046] As illustrated in FIG. 1, the vehicle computing system 102 can include a
perception system 103, a prediction system 104, and a motion planning system 105 that
cooperate to perceive the surrounding environment of the autonomous vehicle 10 and
determine a motion plan for controlling the motion of the autonomous vehicle 10
accordingly.

[0047] In particular, in some implementations, the perception system 103 can receive
sensor data from the one or more sensors 101 that are coupled to or otherwise included within
the autonomous vehicle 10. As examples, the one or more sensors 101 can include a Light
Detection and Ranging (LIDAR) system, a Radio Detection and Ranging (RADAR) system,
one or more cameras (e.g., visible spectrum cameras, infrared cameras, etc.), and/or other
sensors. The sensor data can include information that describes the location of objects within
the surrounding environment of the autonomous vehicle 10.

[0048] As one example, for a LIDAR system, the sensor data can include the location
(e.g., in three-dimensional space relative to the LIDAR system) of a number of points that
correspond to objects that have reflected a ranging laser. For example, a LIDAR system can
measure distances by measuring the Time of Flight (TOF) that it takes a short laser pulse to
travel from the sensor to an object and back, calculating the distance from the known speed
of light.

[0049] As another example, for a RADAR system, the sensor data can include the
location (e.g., in three-dimensional space relative to the RADAR system) of a number of
points that correspond to objects that have reflected a ranging radio wave. For example,
radio waves (e.g., pulsed or continuous) transmitted by the RADAR system can reflect off an
object and return to a receiver of the RADAR system, giving information about the object's
location and speed. Thus, a RADAR system can provide useful information about the current
speed of an object.

[0050] As yet another example, for one or more cameras, various processing techniques
(e.g., range imaging techniques such as, for example, structure from motion, structured light,

stereo triangulation, and/or other techniques) can be performed to identify the location (e.g.,
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in three-dimensional space relative to the one or more cameras) of a number of points that
correspond to objects that are depicted in imagery captured by the one or more cameras.
Other sensor systems can identify the location of points that correspond to objects as well.
[0051] As another example, the one or more sensors 101 can include a positioning
system. The positioning system can determine a current position of the vehicle 10. The
positioning system can be any device or circuitry for analyzing the position of the vehicle 10.
For example, the positioning system can determine position by using one or more of inertial
sensors, a satellite positioning system, based on IP address, by using triangulation and/or
proximity to network access points or other network components (e.g., cellular towers, WiFi
access points, etc.) and/or other suitable techniques. The position of the vehicle 10 can be
used by various systems of the vehicle computing system 102.

[0052] Thus, the one or more sensors 101 can be used to collect sensor data that includes
information that describes the location (e.g., in three-dimensional space relative to the
autonomous vehicle 10) of points that correspond to objects within the surrounding
environment of the autonomous vehicle 10. In some implementations, the sensors 101 can be
located at various different locations on the autonomous vehicle 10. As an example, in some
implementations, one or more cameras and/or LIDAR sensors can be located in a pod or
other structure that is mounted on a roof of the autonomous vehicle 10 while one or more
RADAR sensors can be located in or behind the front and/or rear bumper(s) or body panel(s)
of the autonomous vehicle 10. As another example, camera(s) can be located at the front or
rear bumper(s) of the vehicle 10 as well. Other locations can be used as well.

[0053] In addition to the sensor data, the perception system 103 can retrieve or otherwise
obtain map data 126 that provides detailed information about the surrounding environment of
the autonomous vehicle 10. The map data 126 can provide information regarding: the
identity and location of different travelways (e.g., roadways), road segments, buildings, or
other items or objects (e.g., lampposts, crosswalks, curbing, etc.); the location and directions
of traffic lanes (e.g., the location and direction of a parking lane, a turning lane, a bicycle
lane, or other lanes within a particular roadway or other travelway); traffic control data (e.g.,
the location and instructions of signage, traffic lights, or other traffic control devices); and/or
any other map data that provides information that assists the vehicle computing system 102 in
comprehending and perceiving its surrounding environment and its relationship thereto.
[0054] The perception system 103 can identify one or more objects that are proximate to
the autonomous vehicle 10 based on sensor data received from the one or more sensors 101

and/or the map data 126. In particular, in some implementations, the perception system 103
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can determine, for each object, state data that describes a current state of such object (also
referred to as features of the object). As examples, the state data for each object can describe
an estimate of the object’s: current location (also referred to as position); current speed (also
referred to as velocity); current acceleration; current heading; current orientation;
size/shape/footprint (e.g., as represented by a bounding shape such as a bounding polygon or
polyhedron); type/class (e.g., vehicle versus pedestrian versus bicycle versus other); yaw rate;
distance from the autonomous vehicle; minimum path to interaction with the autonomous
vehicle; minimum time duration to interaction with the autonomous vehicle; and/or other
state information.

[0055] In some implementations, the perception system 103 can determine state data for
each object over a number of iterations. In particular, the perception system 103 can update
the state data for each object at each iteration. Thus, the perception system 103 can detect
and track objects (e.g., vehicles) that are proximate to the autonomous vehicle 10 over time.
[0056] The prediction system 104 can receive the state data from the perception system
103 and predict one or more future locations for each object based on such state data. For
example, the prediction system 104 can predict where each object will be located within the
next 5 seconds, 10 seconds, 20 seconds, etc. As one example, an object can be predicted to
adhere to its current trajectory according to its current speed. As another example, other,
more sophisticated prediction techniques or modeling can be used.

[0057] The motion planning system 105 can determine a motion plan for the
autonomous vehicle 10 based at least in part on the predicted one or more future locations for
the object and/or the state data for the object provided by the perception system 103. Stated
differently, given information about the current locations of objects and/or predicted future
locations of proximate objects, the motion planning system 105 can determine a motion plan
for the autonomous vehicle 10 that best navigates the autonomous vehicle 10 relative to the
objects at such locations. In some implementations, the motion planning system 105 can
determine the motion plan for the autonomous vehicle using one or more adjusted vehicle
parameters, as described herein.

[0058] In some implementations, the motion planning system 105 can evaluate one or
more cost functions and/or one or more reward functions for each of one or more candidate
motion plans for the autonomous vehicle 10. For example, the cost function(s) can describe a
cost (e.g., over time) of adhering to a particular candidate motion plan while the reward
function(s) can describe a reward for adhering to the particular candidate motion plan. For

example, the reward can be of opposite sign to the cost.
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[0059] Thus, given information about the current locations and/or predicted future
locations of objects, the motion planning system 105 can determine a total cost (e.g., a sum of
the cost(s) and/or reward(s) provided by the cost function(s) and/or reward function(s)) of
adhering to a particular candidate pathway. The motion planning system 105 can select or
determine a motion plan for the autonomous vehicle 10 based at least in part on the cost
function(s) and the reward function(s). For example, the motion plan that minimizes the total
cost can be selected or otherwise determined. The motion planning system 105 can provide
the selected motion plan to a vehicle controller 106 that controls one or more vehicle controls
107 (e.g., actuators or other devices that control gas flow, steering, braking, etc.) to execute
the selected motion plan.

[0060] According to example aspects of the present disclosure, the vehicle computing
system 102 can also include a priority classification system 150 configured to classify one or
more objects perceived by the autonomous vehicle 10. For example, in some
implementations, the priority classification system 150 can receive state data descriptive of
one or more objects perceived by the autonomous vehicle 10 from the perception system 103.
The priority classification system 150 can then classify each object based at least in part on
the respective state data for each object.

[0061] For example, in some implementations, the priority classification for each object
can be based on an object’s position, velocity, and/or heading. For example, objects that are
closer to the autonomous vehicle can be given a higher priority classification. Similarly,
objects that are traveling in a direction towards the autonomous vehicle and/or towards a
position at which the autonomous vehicle will be at a forthcoming time period can be given a
higher priority classification. In some implementations, objects that are traveling at higher
speeds, such as objects traveling at higher speeds towards the autonomous vehicle, can be
given a higher priority classification than objects traveling at lower speeds.

[0062] In some implementations, the priority classification can be based on a likelihood
that an object will interact with the autonomous vehicle or otherwise be of importance to
determining a motion plan for the autonomous vehicle. For example, objects traveling in an
opposite direction as the autonomous vehicle can be given a lower priority classification than
objects traveling in a direction that will interact with a motion path of the autonomous
vehicle.

[0063] In some implementations, the priority classification can be based on an object

type. For example, in some implementations, pedestrians can be assigned a higher priority
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than other objects, such as a static (i.e., non-moving) vehicle. Similarly, other object types
and/or classes can be used to determine a priority classification for each object.

[0064] In some implementations, the priority classification for each object can be based
on a minimum path to interaction with the autonomous vehicle or a minimum time duration
to interaction with the autonomous vehicle. For example, a minimum path to interaction with
the autonomous vehicle can correspond to a distance along one or more travelways that the
object would have to traverse in order to interact with the object. Thus, for example, a
vehicle traveling along a highway in an opposite direction as the autonomous vehicle may
need to exit the highway, turn around, re-enter the highway, and overtake the autonomous
vehicle in order to interact with the autonomous vehicle. In such a case, the vehicle is likely
to have a long minimum path to interaction and/or minimum time duration to interaction with
the autonomous vehicle. Conversely, a vehicle approaching an intersection at a perpendicular
path of travel to the autonomous vehicle is likely to have a shorter minimum path to
interaction and/or minimum time duration to interaction with the autonomous vehicle. In
such a case, the vehicle approaching the intersection can be given a higher priority
classification than the vehicle traveling in the opposite direction.

[0065] In some implementations, the priority classification system 150 can classify each
object as high-priority or low-priority. For example, each object can be classified according
to a binary classification in which each object is either a high-priority or low-priority object.
For example, objects which have a minimum path to interaction and/or minimum time
duration to interaction with an autonomous vehicle that is less than a threshold can be
classified as high-priority objects. Similarly, objects which have a minimum path to
interaction and/or minimum time duration to interaction that exceeds the threshold can be
classified as low-priority objects. In some implementations, objects of a particular type (e.g.,
pedestrians) can always be classified as high-priority objects. In some implementations,
objects which have been determined to be unlikely to interact with the autonomous vehicle or
the determination of a motion plan for the autonomous vehicle can be classified as low-
priority objects.

[0066] In some implementations, the priority classification system 150 can classify each
object relative to other objects perceived by the autonomous vehicle. For example, in some
implementations, each object can be assigned a relative priority in relation to each other
object perceived by the autonomous vehicle. For example, each object can be assigned a
relative priority rank based on the respective priority of the object. For example, if an

autonomous vehicle perceives Y objects within a surrounding environment of the
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autonomous vehicle, each object can be assigned a relative rank on a scale of 1 to Y. In this
way, each object can be assigned a priority classification relative to each other object
perceived by the autonomous vehicle.

[0067] In some implementations, the priority classification system 150 can classify each
object based on a velocity of the autonomous vehicle. In some implementations, a ratio of
high-priority objects to low-priority objects can be determined based on a velocity of the
vehicle. For example, at higher velocities, it may be preferable to limit the number of high-
priority objects in order to reduce and/or minimize the number of high-priority objects for
which the prediction system 104 must determine a future predicted state in a current time
frame in order to reduce and/or minimize a latency for determining a motion plan in response
to such objects. In such a case, fewer objects may be classified as high-priority objects than
at lower velocities.

[0068] In some implementations, the ratio of high-priority objects to low-priority objects
can be determined based on one or more threshold velocities. For example, for a first
velocity range of 1 to X, a ratio of 1 high-priority object to Y low-priority objects can be
used, whereas for a second velocity range of X to 2X, a ratio of 1 high priority object to 2Y
low-priority objects can be used. In other implementations, other pre-determined ratios can
be used. In some implementations, each object can be classified as either high-priority or
low-priority such that the ratio of high-priority objects to low-priority objects generally
conforms to the pre-determined ratio (i.e., the ratio of high-priority to low-priority objects is
within a threshold variance of the pre-determined ratio).

[0069] In some implementations, a machine-learned model can be used to determine the
priority classification for each object based on the respective state data for each object. For
example, in some implementations, the machine-learned model can be configured to classify
each object as either high-priority or low-priority and provide the priority classification for
each object to the prediction system 104. In some implementations, the respective state data
for each object can be input into the machine-learned model, and data indicative of a
respective priority classification for the object can be received as an output of the machine-
learned model.

[0070] In some implementations, the machine-learned model can be trained based at
least in part on training data that comprises annotated vehicle data logs that were previously
collected during previous autonomous vehicle driving sessions. For example, vehicle data
logs can be recorded during one or more autonomous vehicle driving sessions, which can

include state data for objects perceived by the autonomous vehicle. In some
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implementations, the vehicle data logs can be annotated by a human reviewer in order to help
train the machine-learned model. For example, in some implementations, objects can be
labeled either high-priority or low-priority. The machine-learned model can then be trained
to determine a priority classification for objects based on the training data.

[0071] According to example aspects of the present disclosure, the vehicle computing
system 102 can determine a predicted future state for each object based at least in part on the
priority classification for each object. For example, the priority classification system 150 can
be configured to provide the priority classification for each object perceived by the
perception system 103 to the prediction system 104. The prediction system 104 can then
determine a predicted future state for each object based at least in part on the priority
classification for each object.

[0072] For example, in some implementations, the order at which the computing system
determines the predicted future state for each object can be based at least in part on the
priority classification assigned to each object. For example, in some implementations,
predicted future states for all objects classified as high-priority can be determined before
predicted future states are determined for any low-priority objects. In some implementations,
a predicted future state can be determined for each object according to a respective priority
rank for each object. For example, for Y objects, each object can be assigned a relative
priority rank of 1 to Y, and a predicted future state for each object can be determined based
on the relative priority rank for each object (i.e., starting with 1 and ending with Y).

[0073] As will be discussed in greater detail with respect to FIG. 5, in some
implementations, a future location prediction system can be selected based at least in part on
the priority classification for each object. For example, in some implementations, a low-
fidelity prediction system can be used to determine a predicted future state for low-priority
objects, and a high-fidelity prediction system can be used to determine a predicted future
state for high-priority objects.

[0074] Each of the perception system 103, the prediction system 104, the motion
planning system 105, the vehicle controller 106, and the priority classification system 150
can include computer logic utilized to provide desired functionality. In some
implementations, each of the perception system 103, the prediction system 104, the motion
planning system 105, the vehicle controller 106, and the priority classification system 150
can be implemented in hardware, firmware, and/or software controlling a general purpose
processor. For example, in some implementations, each of the perception system 103, the

prediction system 104, the motion planning system 105, the vehicle controller 106, and the
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priority classification system 150 includes program files stored on a storage device, loaded
into a memory and executed by one or more processors. In other implementations, each of
the perception system 103, the prediction system 104, the motion planning system 105, the
vehicle controller 106, and the priority classification system 150 includes one or more sets of
computer-executable instructions that are stored in a tangible computer-readable storage
medium such as RAM hard disk or optical or magnetic media.

[0075] Referring now to FIG. 2, a block diagram depicting an example perception
system 103 according to example aspects of the present disclosure is shown. Elements that
are the same or similar to those shown in FIG. 1 are referred to with the same reference
numerals.

[0076] As shown, in some implementations, the priority classification system 150 can be
implemented as a subpart of the perception system 103. For example, the perception system
103 can receive sensor data from one or more sensors 101 (as shown in FIG. 1) and map data
126. The perception system 103 can generate state data for each object perceived by the
autonomous vehicle 10, perform a priority classification for each object using the priority
classification system 150, and provide the state data and respective priority classification for
each object to the prediction system 104.

[0077] Referring now to FIG. 3, a block diagram depicting an example prediction system
104 according to example aspects of the present disclosure is shown. Elements that are the
same or similar to those shown in FIGS. 1 and 2 are referred to with the same reference
numerals.

[0078] As shown, in some implementations, the priority classification system 150 can be
implemented as a subpart of the prediction system 104. For example, the perception system
103 can receive sensor data from one or more sensors 101 (as shown in FIG. 1) and map data
126. The perception system 103 can then provide the state data indicative of one or more
objects to the prediction system 104. The prediction system 104 can then determine a priority
classification for each object using the priority classification system 150, and determine a
predicted future state for each object based at least in part on the priority classification for
each object. The prediction system 104 and then provide the predicted future states for each
object to the motion planning system 105.

[0079] Thus, as shown in FIGS. 1-3, the priority classification system 150 can be
implemented as a stand-alone priority classification system 150, or as a sub system of either a

perception system 103 or a prediction system 104.
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[0080] Referring now to FIG. 4, a diagram of an example object prediction process
according to example aspects of the present disclosure is shown. As represented in FIG. 4, in
some implementations, a vehicle computing system can iteratively determine a motion plan
using data obtained in a plurality of consecutive time frames. For example, each of the
perception, prediction, and motion planning systems illustrated in FIGS. 1-3 can concurrently
perform analysis on data from a plurality of consecutive time frames. As an example, for a
time frame N, the perception system can receive sensor data for the time frame N; the
perception system can concurrently generate and provide state data to the prediction system
for one or more objects perceived by the perception system for a time frame N-1; the
prediction system can concurrently determine a predicted future state for each object
perceived by the perception system for a time frame N-2; and a motion planning system can
concurrently determine a motion plan for the autonomous vehicle using predicted future
states for a time frame N-3. In a subsequent time frame N+1, each of the perception,
prediction, and motion planning systems can receive and perform a respective analysis of
data received from an upstream system, resulting in the motion planning system determining
a motion plan using predicted future states for a time frame N-2. In this way, a motion plan
for the autonomous vehicle can be iteratively determined using data from each of a plurality
of consecutive time frames.

[0081] For example, as shown in FIG. 4, block 410 represents analysis by a perception
system for data from a frame N. As shown, the perception system’s analysis of data for
frame N can include a plurality of objects 411A-J. Each of the objects can have associated
state data descriptive of the object generated by the perception system. For example, for each
object 411A-J, the perception system can generate state data describing a position, velocity,
acceleration, heading, size, type, yaw rate, or other state data descriptive of the object as
described herein.

[0082] As represented by the arrow from block 410 to block 430, the state data
descriptive of the objects 411A-J generated by the perception system for frame N can be
provided to the prediction system once the perception system has completed its analysis.
[0083] According to example aspects of the present disclosure, however, the prediction
system can also receive a priority classification for each object. For example, in some
implementations, each object can be classified as either high-priority (“HP”) or low-priority
(“LP”). As described herein, the priority classification for each object can be determined
based on the respective state data for each object. Further, in some implementations, the

priority classification can be determined by a machine-learned model.
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[0084] Thus, as represented by block 430, the prediction system can receive the
respective priority classifications for each object as well as the respective state data
describing each object from the perception system. The perception system can then
determine a predicted future state for each object based at least in part on the respective
priority classification for each object. For example, in some implementations, the prediction
system can first determine a predicted future state for each object classified as high-priority.
For example, as shown in FIG. 4, the prediction system can first determine a predicted future
state for HP objects 431A-D. Stated differently, the prediction system can determine a
predicted future state for each object classified as high-priority based at least in part on the
state data obtained for the most recent time frame (Frame N).

[0085] According to additional example aspects of the present disclosure, once the
prediction system has determined a predicted future state for each object classified as high-
priority, the prediction system can provide the predicted future state for each object classified
as high-priority for the current timeframe to the motion planning system. For example, as
shown by the arrow from the dashed block 440 to the block 450, once the prediction system
has determined a predicted future state for each high-priority object HP 431A-D, the
prediction system can provide the predicted future states for the objects HP 431A-D to the
motion planning system. In this way, the motion planning system can begin determining a
motion plan in an advanced fashion (e.g., “ahead of schedule”).

[0086] According to additional example aspects of the present disclosure, once the
prediction system has determined a predicted future state for each object classified as high-
priority, the prediction system can determine a predicted future state for each object identified
as low-priority. For example, after the prediction system has provided the high-priority
objects HP 431A-D to the motion planning system, the prediction system can determine a
predicted future state for each low priority object LP 431E-J. In this way, each object
perceived in a particular frame (e.g., frame N) can have a predicted future state determined by
the prediction system.

[0087] In some implementations, the prediction system can further be configured to
provide a predicted future state for the previous sequential timeframe for each object
classified as low-priority to the motion planning system concurrently with the predicted
future state for each object classified as high-priority for the current timeframe. Stated
differently, in some implementations, a predicted future state for a low-priority object can be
determined by selecting, obtaining, or otherwise determining a predicted future state for the

object based on state data obtained for a previous sequential time frame.
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[0088] For example, as shown by block 420, the prediction system can have previously
determined a predicted future state for objects 421A-J, including high-priority objects HP
421A-D and low-priority objects LP 421E-J. For example, as the perception system
generated state data for objects 411A-J for time frame N in block 410, the prediction system
could concurrently determine predicted future states for high-priority objects HP 421A-D and
low-priority objects LP 421E-J for time frame N-1 in block 420. Further, as an example,
each high-priority object HP 421A-D can respectively correspond to each high-priority object
HP 431A-D for the time frame N-1, whereas each low-priority object LP 421E-J can
respectively correspond to each low-priority object LP 431E-J for the time frame N-1.

[0089] Thus, as represented by the arrow from block 440 to block 450, when the
prediction system provides the predicted future states for high-priority objects HP 431A-D to
the motion planning system, the prediction system can be configured to concurrently provide
a previously determined predicted future state for each low-priority object (i.e., LP 431E-J)
for the previous sequential time frame (i.e., LP 421E-J). In this way, a full set of predicted
future states comprising the predicted future states for all high-priority objects (HP 431A-D)
for a current time frame and a previously determined predicted future state for all low-priority
objects (LP 421E-J) for a previous sequential time frame can be concurrently provided to a
motion planning system as soon as the prediction system has determined a predicted future
state for each object classified as high-priority (HP 431A-D).

[0090] An advantage provided by the object prediction process depicted in FIG. 4 is that
the time required to determine a motion plan for an autonomous vehicle can be reduced. For
example, for a vehicle autonomy system such as the sequential vehicle autonomy system
described herein, the motion planning system can receive a predicted future state for each
object much sooner, thereby allowing a motion plan to be determined ahead of schedule.
Further, the reduction in time for the prediction system to determine a predicted future state
for each object can correspond to the ratio of high-priority objects to low-priority objects.
For example, as depicted in FIG. 4, the prediction system would only need to determine a
predicted future state for high-priority objects HP 431A-D (i.e., 4 out of 10 objects) for time
frame N before providing the predicted future states for each object 431A-D and 421E-J to
the motion planning system, allowing for a reduction of approximately 60% of the required
processing time.

[0091] Further, because low-priority objects can be classified as such based on their
negligible impact on a motion plan, using a predicted future state for a low-priority object

from a previous sequential time frame can allow for a net increase in passenger and
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autonomous vehicle safety. For example, low-priority objects, such as objects positioned far
away from an autonomous vehicle and traveling away from the autonomous vehicle, may be
unlikely to impact the motion plan for the autonomous vehicle. However, high-priority
objects, such as objects travelling towards the autonomous vehicle or positioned near the
autonomous vehicle, may be much more likely to impact a motion plan for the autonomous
vehicle. By allowing for such high-priority objects to be sensed by the sensors, perceived by
the perception system, predicted by the prediction system, and planned for by the motion
planning system in a reduced amount of time, the autonomous vehicle can respond to high-
priority objects in a quicker fashion, thereby reducing the likelihood of unsafe conditions,
such as a collision.

[0092] Referring now to FIG. 5, a block diagram of an example computing system 100
according to example embodiments of the present disclosure is depicted. Elements that are
the same or similar to those in FIGS. 1-3 are referred to with the same reference numerals.
As shown, the example computing system 100 can include a computing system 102 (e.g., a
vehicle computing system 102 on an autonomous vehicle 10) and a machine learning
computing system 130 that are communicatively coupled over one or more communication
networks 180.

[0093] The computing system 102 can include one or more processor(s) 112 and memory
114. The one or more processors 112 can be any suitable processing device (e.g., a processor
core, a microprocessor, an ASIC, a FPGA, a controller, a microcontroller, etc.) and can be
one processor or a plurality of processors that are operatively connected. The memory 114
can include one or more non-transitory computer-readable storage media, such as RAM,
ROM, EEPROM, EPROM, one or more memory devices, flash memory devices, etc., and
combinations thereof.

[0094] The memory 114 can store information that can be accessed by the one or more
processors 112. For instance, the memory 114 (e.g., one or more non-transitory computer-
readable storage mediums, memory devices) can store data 116 that can be obtained,
received, accessed, written, manipulated, created, and/or stored. The memory 114 can also
store computer-readable instructions 118 that can be executed by the one or more processors
112. The instructions can be software written in any suitable programming language or can
be implemented in hardware. Additionally, or alternatively, the instructions can be executed
in logically and/or virtually separate threads on processor(s) 112. For example, the memory

114 can store instructions that when executed by the one or more processors 112 cause the
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one or more processors 112 to perform any of the operations and/or functions described
herein.

[0095] The computing system 102 can also include a network interface 128 used to
communicate with one or more systems or devices, including systems or devices that are
remotely located from the computing system 102. The network interface 128 can include any
circuits, components, software, etc. for communicating with one or more networks (e.g.,
180). In some implementations, the network interface 128 can include, for example, one or
more of a communications controller, receiver, transceiver, transmitter, port, conductors,
software and/or hardware for communicating data.

[0096] The computing system 102 can also include a perception system 103, a prediction
system 104, a motion planning system 105, a vehicle controller 106, and a priority
classification system 150, as described herein. Each of the perception system 103, the
prediction system 104, the motion planning system 105, the vehicle controller 106, and the
priority classification system 150 can include computer logic utilized to provide desired
functionality. In some implementations, each of the perception system 103, the prediction
system 104, the motion planning system 105, the vehicle controller 106, and the priority
classification system 150 can be implemented in hardware, firmware, and/or software
controlling a general purpose processor. For example, in some implementations, each of the
perception system 103, the prediction system 104, the motion planning system 105, the
vehicle controller 106, and the priority classification system 150 can include program files
stored on a storage device, loaded into a memory and executed by one or more processors. In
other implementations, each of the perception system 103, the prediction system 104, the
motion planning system 105, the vehicle controller 106, and the priority classification system
150 can include one or more sets of computer-executable instructions that are stored in a
tangible computer-readable storage medium such as RAM hard disk or optical or magnetic
media.

[0097] According to an example aspect of the present disclosure, in some
implementations, the prediction system 104 can include a low-fidelity prediction system 122
and a high-fidelity prediction system 124. For example, in some implementations, a high-
fidelity prediction system 124 can include or otherwise leverage one or more machine-
learned models in order to predict a future location for each object. For example, in some
implementations, the high-fidelity prediction system 124 can be a goal-oriented prediction
system that generates one or more potential goals, selects one or more of the most likely

potential goals, and develops one or more trajectories by which the object can achieve the one
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or more selected goals. For example, the high-fidelity prediction system 124 can include a
scenario generation system that generates and/or scores the one or more goals for an object
and a scenario development system that determines the one or more trajectories by which the
object can achieve the goals. In some implementations, the high-fidelity prediction system
124 can include a machine-learned goal-scoring model, a machine-learned trajectory
development model, and/or other machine-learned models.

[0098] In some implementations, a low-fidelity prediction system 122 can include one or
more state forward-integration models. For example, a low-fidelity prediction system 122
can predict a future state for an object by forward integrating a current state. For example, a
low-fidelity prediction system can use a current position, a current velocity, and a current
heading of an object to determine a predicted future location for the object at a future time
period.

[0099] In some implementations, the computing system 102 can determine a predicted
future state for each object based at least in part on the priority classification for the object by
selecting a future location prediction system based at least in part on the priority classification
for the object and determining the predicted future state for the object using the selected
future location prediction system. For example, in some implementations, the low-fidelity
prediction system 122 can be used to determine a predicted future state for objects classified
as low-priority, and the high-fidelity prediction system 124 can be used to determine a
predicted future state for objects classified as high-priority.

[0100] An advantage provided by using a low-fidelity prediction system and a high-
fidelity prediction system to determine the predicted future state for each object based at least
in part on the priority classification for each object is that computing resources can be
allocated more efficiently. For example, low-priority objects which have been classified as
such due to their likely negligible impact on a vehicle motion plan may not require a
sophisticated prediction system, such as the high-fidelity prediction system 124, in order to
determine a predicted future state for such objects. For example, low-priority objects located
far away from an autonomous vehicle and/or travelling in a direction away from the
autonomous vehicle may have little to no impact on the motion plan for the autonomous
vehicle. As such, the granularity provided by a goal-oriented prediction system as described
herein may provide little to no benefit over a low-fidelity prediction model 122, such as a
simple state forward-integration model. Accordingly, by first determining a priority
classification for each object, computational resources can be more efficiently allocated for

determining predicted future states for each object.
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[0101] According to another example aspect of the present disclosure, the priority
classification system 150 can store or include one or more machine-learned models 120. For
example, the machine-learned model 120 can be or can otherwise include various machine-
learned models such as decision tree-based models, support vector machines, k-Nearest
Neighbor models, neural networks (e.g., deep neural networks), or other multi-layer non-
linear models. Example neural networks include feed-forward neural networks, recurrent
neural networks (e.g., long short-term memory recurrent neural networks), or other forms of
neural networks.

[0102] In some implementations, the one or more machine-learned models 120 can
include a machine-learned object priority classifier. For example, in some implementations,
a machine-learned object priority classifier can be configured to classify objects perceived by
the perception system 103 as either high-priority or low-priority. In some implementations,
the machine-learned object priority classifier can be configured to rank objects according to a
respective object priority, as described herein.

[0103] In some implementations, the computing system 102 can determine a priority
classification for each object using the machine-learned model 120. For example, the
computing system 102 can obtain data descriptive of the machine-learned model, input the
respective state data for each object perceived by the perception system 103 into the machine-
learned model 120, and receive data indicative of a respective priority classification for each
object as an output of the machine-learned model. In some implementations, the machine-
learned model 120 and/or the priority classification system 150 can be configured to provide
the respective priority classification for each object to the prediction system 104.

[0104] In some implementations, the vehicle computing system 102 can receive the one
or more machine-learned models 120 from the machine learning computing system 130 over
network 180 and can store the one or more machine-learned models 120 in the memory 114.
The vehicle computing system 102 can then use or otherwise implement the one or more
machine-learned models 120 (e.g., by processor(s) 112).

[0105] In some implementations, certain operations described herein can be performed
by a machine learning computing system 130 that is remotely located to the computing
system 102 and in communication with the computing system 102 over one or more wireless
networks 180 (e.g., cellular data networks, satellite communication networks, wide area
networks, etc.). As an example, the machine learning computing system 130 can include one

or more server computing devices. In the event that plural server computing devices are
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used, the server computing devices can be arranged according to a parallel computing
architecture, a sequential computing architecture, or combinations thereof.

[0106] The machine learning computing system 130 can include one or more processors
132 and a memory 134. The one or more processors 132 can be any suitable processing
device (e.g., a processor core, a microprocessor, an ASIC, a FPGA, a controller, a
microcontroller, etc.) and can be one processor or a plurality of processors that are
operatively connected. The memory 134 can include one or more non-transitory computer-
readable storage media, such as RAM, ROM, EEPROM, EPROM, one or more memory
devices, flash memory devices, etc., and combinations thereof.

[0107] The memory 134 can store information that can be accessed by the one or more
processors 132. For instance, the memory 134 (e.g., one or more non-transitory computer-
readable storage mediums, memory devices) can store data 136 that can be obtained,
received, accessed, written, manipulated, created, and/or stored. In some implementations,
the machine learning computing system 130 can obtain data from one or more memory
device(s) that are remote from the system 130.

[0108] The memory 134 can also store computer-readable instructions 138 that can be
executed by the one or more processors 132. The instructions 138 can be software written in
any suitable programming language or can be implemented in hardware. Additionally, or
alternatively, the instructions 138 can be executed in logically and/or virtually separate
threads on processor(s) 132. For example, the memory 134 can store instructions 138 that
when executed by the one or more processors 132 cause the one or more processors 132 to
perform any of the operations and/or functions described herein.

[0109] The machine learning computing system 130 can also include a network interface
164 used to communicate with one or more systems or devices, including systems or devices
that are remotely located from the machine learning computing system 130. The network
interface 164 can include any circuits, components, software, etc. for communicating with
one or more networks (e.g., 180). In some implementations, the network interface 164 can
include, for example, one or more of a communications controller, receiver, transceiver,
transmitter, port, conductors, software and/or hardware for communicating data.

[0110] In some implementations, the machine learning computing system 130 includes
one or more server computing devices. If the machine learning computing system 130
includes multiple server computing devices, such server computing devices can operate
according to various computing architectures, including, for example, sequential computing

architectures, parallel computing architectures, or some combination thereof.
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[0111] In addition or alternatively to the model(s) 110 at the computing system 102, the
machine learning computing system 130 can include one or more machine-learned models
140. For example, the machine learned model(s) 140 can be or can otherwise include various
machine-learned models such as decision tree-based models, support vector machines, k-
Nearest Neighbor models, neural networks (e.g., deep neural networks), or other multi-layer
non-linear models. Example neural networks include feed-forward neural networks,
recurrent neural networks (e.g., long short-term memory recurrent neural networks), or other
forms of neural networks.

[0112] As an example, the machine learning computing system 130 can communicate
with the computing system 102 according to a client-server relationship. For example, the
machine learning computing system 140 can implement the machine-learned model(s) 140 to
provide a web service to the computing system 102. For example, the web service can
provide object priority classifications to the computing system 102.

[0113] Thus, machine-learned models 110 can be located and used at the computing
system 102 and/or machine-learned models 140 can be located and used at the machine
learning computing system 130.

[0114] In some implementations, the machine learning computing system 130 and/or the
computing system 102 can train the machine-learned models 110 and/or 140 through use of a
model trainer 160. The model trainer 160 can train the machine-learned models 110 and/or
140 using one or more training or learning algorithms. One example training technique is
backwards propagation of errors. In some implementations, the model trainer 160 can
perform supervised training techniques using a set of labeled training data 162. In other
implementations, the model trainer 160 can perform unsupervised training techniques using a
set of unlabeled training data 162. The model trainer 160 can perform a number of
generalization techniques to improve the generalization capability of the models being
trained. Generalization techniques include weight decays, dropouts, or other techniques.
[0115] In particular, the model trainer 160 can train a machine-learned model 110 and/or
140 based on a set of training data 162. The training data 162 can include, for example,
vehicle data logs from previously completed autonomous vehicle driving sessions. The
vehicle data logs can include, for example, sensor data obtained by one or more sensors of the
autonomous vehicle, state data descriptive of one or more objects perceived by the perception
system 103 of the autonomous vehicle, predicted future states for objects perceived by the
autonomous vehicle determined by the prediction system 104, previous motion plans

determined by the motion planning system 105, or other vehicle data as described herein. In
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some implementations, the model trainer 160 can be configured to train the machine-learned
models 110 and/or 140 by determining whether objects perceived by the autonomous vehicle
impacted a motion plan of the autonomous vehicle.

[0116] According to another aspect of the present disclosure, the training data 162 can
include vehicle data logs that include object priority classification labels recorded by a human
reviewer can be used to train the machine-learned model(s) 110 and/or 140. In particular, a
human reviewer can review the vehicle data logs and label object priority classifications for
objects perceived by the perception system 103.

[0117] The model trainer 160 includes computer logic utilized to provide desired
functionality, and can be implemented in hardware, firmware, and/or software controlling a
general purpose processor. For example, in some implementations, the model trainer 160
includes program files stored on a storage device, loaded into a memory and executed by one
or more processors. In other implementations, the model trainer 160 includes one or more
sets of computer-executable instructions that are stored in a tangible computer-readable
storage medium such as RAM hard disk or optical or magnetic media.

[0118] The network(s) 180 can be any type of network or combination of networks that
allows for communication between devices. In some embodiments, the network(s) 180 can
include one or more of a local area network, wide area network, the Internet, secure network,
cellular network, mesh network, peer-to-peer communication link and/or some combination
thereof and can include any number of wired or wireless links. Communication over the
network(s) 180 can be accomplished, for instance, via a network interface using any type of
protocol, protection scheme, encoding, format, packaging, etc.

[0119] FIG. 5 illustrates one example computing system 100 that can be used to
implement the present disclosure. Other computing systems can be used as well. For
example, in some implementations, the computing system 102 can include the model trainer
160 and the training dataset 162. In such implementations, the machine-learned models 110
can be both trained and used locally at the computing system 102. As another example, in
some implementations, the computing system 102 is not connected to other computing
systems.

[0120] In addition, components illustrated and/or discussed as being included in one of
the computing systems 102 or 130 can instead be included in another of the computing
systems 102 or 130. Such configurations can be implemented without deviating from the
scope of the present disclosure. The use of computer-based systems allows for a great variety

of possible configurations, combinations, and divisions of tasks and functionality between
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and among components. Computer-implemented operations can be performed on a single
component or across multiple components. Computer-implements tasks and/or operations
can be performed sequentially or in parallel. Data and instructions can be stored in a single
memory device or across multiple memory devices.

[0121] Referring now to FIG. 6, an example method (600) to determine a predicted
future state for objects perceived by an autonomous vehicle based at least in part on a priority
classification for the objects according to example aspects of the present disclosure is
depicted. Although FIG. 6 depicts steps performed in a particular order for purposes of
illustration and discussion, the methods of the present disclosure are not limited to the
particularly illustrated order or arrangement. The various steps of method (600) can be
omitted, rearranged, combined, and/or adapted in various ways without deviating from the
scope of the present disclosure. The method (600) can be implemented by a computing
system, such as a computing system comprising one or more computing devices.

[0122] At (602), the method (600) can include obtaining, by a computing system, state
data descriptive of at least a current or past state of a plurality of objects that are perceived by
an autonomous vehicle. For example, the state data can include data descriptive of one or
more features of an object, such as a position, a velocity, an acceleration, a heading, a yaw
rate, a shape, a size, a type, a distance from the autonomous vehicle, a minimum path to
interaction with the autonomous vehicle, a minimum time duration to interaction with the
autonomous vehicle, any other state data described herein, or any state data descriptive of an
object perceived by an autonomous vehicle. In some implementations, the state data can be
obtained from a perception system of the autonomous vehicle configured to generate the state
data based on sensor data obtained from one or more sensors of the autonomous vehicle.
[0123] At (604) the method (600) can include determining, by the computing system, a
priority classification for each object in the plurality of objects based at least in part on the
respective state data for each object. For example, in some implementations, the priority
classification for each object can be determined by a priority classification system. In some
implementations, the priority classification can be either a high-priority or low-priority
classification for each object. In some implementations, the priority classification can be a
respective priority rank for each object relative to each other object perceived by the
autonomous vehicle.

[0124] In some implementations, the priority classification for each object can be
determined by a machine-learned model. For example, at (606), the method can include

obtaining data descriptive of a machine-learned model. In some implementations, data
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descriptive of the machine-learned model can be obtained from a memory (e.g., non-
transitory computer readable media) of the computing system. In some implementations, the
machine-learned model can be a machine-learned object priority classifier configured to
classify each object as either high-priority or low-priority based on the respective state data
for each object.

[0125] At (608), the method (600) can include inputting the respective state data for an
object into the machine-learned model. For example, state data generated by a perception
system can be received by a machine-learned model of a priority classification system. The
respective state data for each object can be input into the machine-learned model in order to
determine a priority classification for each respective object.

[0126] At (610), the method (600) can include receiving data indicative of a respective
priority classification as an output of the machine-learned model. For example, in some
implementations, the machine-learned model can be a machine-learned object priority
classifier configured to classify each object as either high-priority or low-priority, and the
machine-learned model can output a respective high-priority or low-priority classification
based on the respective state data for each object.

[0127] At (612), the method (600) can include determining, by the computing system, an
order at which the computing system determines a predicted future state for each object based
at least in part on the priority classification for each object. For example, in some
implementations, each object can be classified as either high-priority or low-priority, and the
order can be determined such that each high-priority object has a predicted future state
determined before a predicted future state is determined for any low-priority objects. In some
implementations, determining an order at which the computing system determines a predicted
future state for each object can be based on the priority rank assigned to each object. For
example, the highest ranked object can have a predicted future state determined first, with
each successive ranked object successively determined according to the respective priority
rank for each object.

[0128] At (614), the method (600) can include determining, by the computing system,
the predicted future state for each object based at least in part on the determined order. For
example, in some implementations, the prediction system can determine an order in which a
predicted future state for each object classified as high-priority before determining a
predicted future state for each object classified as low-priority. In some implementations, as
soon as the prediction system has determined a predicted future state for each object

classified as high-priority, the prediction system can be configured to provide the predicted
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future states for each high-priority object to a motion planning system. In some
implementations, determining a predicted future state for each object classified as high-
priority can include determining a future state for each high-priority object based at least in
part on state data obtained for the most recent time frame. In some implementations,
determining a predicted future state for each object classified as low-priority can include
determining a predicted future state for the object that was determined based on state data
obtained for a previous sequential time frame. For example, in some implementations, the
prediction system can provide a previously-determined future predicted state for each low-
priority object for a previous sequential time frame to a motion planning system at the same
time that the prediction system provides a future predicted state for each high-priority object
for a current time frame to the motion planning system.

[0129] In some implementations, determining a predicted future state for each object
based at least in part on the determined order can include selecting a future location
prediction system at least in part on the priority classification for the object and determining
the predicted future state for the object using the selected future location prediction system.
For example, in some implementations, a prediction system can include a low-fidelity
prediction system and a high-fidelity prediction system. In some implementations, the low-
fidelity protection system can be used to determine a predicted future state for each low-
priority object, and the high-fidelity prediction system can be used to determine a predicted
future state for each high-priority object.

[0130] At (616), the method (600) can include determining a motion plan for the
autonomous vehicle based at least in part on the predicted future state for at least one of the
objects. For example, a motion planning system can receive one or more predicted future
states for one or more objects perceived by the autonomous vehicle, and can determine a
motion plan for the autonomous vehicle based at least in part on the predicted future states for
the one or more objects.

[0131] In this way, the systems and methods according to example aspects of the present
disclosure can allow for determining a priority classification for objects perceived by an
autonomous vehicle, determining a predicted future state for each object based on the
respective priority classification for each object, and determining a motion plan for the
autonomous vehicle based at least in part on the predicted future states.

[0132] The technology discussed herein makes reference to servers, databases, software
applications, and other computer-based systems, as well as actions taken and information sent

to and from such systems. The inherent flexibility of computer-based systems allows for a
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great variety of possible configurations, combinations, and divisions of tasks and
functionality between and among components. For instance, processes discussed herein can
be implemented using a single device or component or multiple devices or components
working in combination. Databases and applications can be implemented on a single system
or distributed across multiple systems. Distributed components can operate sequentially or in
parallel.

[0133] While the present subject matter has been described in detail with respect to
various specific example embodiments thereof, each example is provided by way of
explanation, not limitation of the disclosure. Those skilled in the art, upon attaining an
understanding of the foregoing, can readily produce alterations to, variations of, and
equivalents to such embodiments. Accordingly, the subject disclosure does not preclude
inclusion of such modifications, variations and/or additions to the present subject matter as
would be readily apparent to one of ordinary skill in the art. For instance, features illustrated
or described as part of one embodiment can be used with another embodiment to yield a still
further embodiment. Thus, it is intended that the present disclosure cover such alterations,

variations, and equivalents.
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WHAT IS CLAIMED IS:

1. A computer-implemented method, comprising:

obtaining, by a computing system comprising one or more processors, state data
descriptive of at least a current or past state of a plurality of objects that are perceived by an
autonomous vehicle;

determining, by the computing system, a priority classification for each object in the
plurality of objects based at least in part on the respective state data for each object;

determining, by the computing system, an order at which the computing system
determines a predicted future state for each object based at least in part on the priority
classification for each object; and

determining, by the computing system, the predicted future state for each object based
at least in part on the determined order.

2. The computer-implemented method of claim 1, further comprising:

determining, by the computing system, a motion plan for the autonomous vehicle
based at least in part on the predicted future state for at least one of the objects.

3. The computer-implemented method of claim 1 or 2, wherein determining, by
the computing system, the priority classification for each object in the plurality based at least
in part on the respective state data for each object comprises classifying, by the computing
system, each object as either high-priority or low-priority.

4. The computer-implemented method of any of the preceding claims, wherein
obtaining, by the computing system, state data descriptive of at least a current or past state of
a plurality of objects that are perceived by an autonomous vehicle comprises obtaining, by
the computing system for a plurality of consecutive time frames, state data descriptive of a
current state of the plurality of objects that are perceived by the autonomous vehicle.

5. The computer-implemented method of claim 4, wherein determining, by the
computing system, the predicted future state for an object classified as high-priority
comprises determining, by the computing system, the predicted future state for the object
based at least in part on state data obtained for a most recent time frame.

6. The computer-implemented method of claim 4 or 5, wherein determining, by the

computing system, the predicted future state for an object classified as low-priority comprises
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determining, by the computing system, a predicted future state for the object that was
determined based on state data obtained for a previous sequential time frame.

7. The computer-implemented method of any preceding claim, wherein
determining, by the computing system, a predicted future state for an object based at least in
part on the priority classification for the object comprises:

selecting, by the computing system, a future location prediction system based at least
in part on the priority classification for the object; and

determining, by the computing system, the predicted future state for the object using
the selected future location prediction system.

8. The computer-implemented method of claim 7, wherein the future location
prediction system comprises either a low-fidelity prediction system or a high-fidelity
prediction system;

wherein the priority classification for each object comprises either a high-priority or
low-priority classification;

wherein determining, by the computing system, the predicted future state for each
low-priority object comprises determining, by the computing system, the predicted future
state for the object using the low-fidelity prediction system; and

wherein determining, by the computing system, the predicted future state for each
high-priority object comprises determining, by the computing system, the predicted future
state for the object using the high-fidelity prediction system.

0. The computer-implemented method of any preceding claim, wherein
determining, by the computing system, a priority classification for each object comprises
determining, by the computing system, a ratio between a first number of the objects to be
classified as high-priority versus a second number of the objects to be classified as low-
priority based at least in part on a velocity of the autonomous vehicle.

10. The computer-implemented method of any preceding claim, wherein
determining, by the computing system, a priority classification for each object comprises
determining, by the computing system, the priority classification for each object based at
least in part on one or more features of the object;

wherein the one or more features for each object comprise one or more of: a position,

a velocity, an acceleration, a heading, a yaw rate, a shape, a size, a type, a distance from the
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autonomous vehicle, a minimum path to interaction with the autonomous vehicle, or a
minimum time duration to interaction with the autonomous vehicle.

11.  The computer-implemented method of any preceding claim, wherein
determining, by the computing system, a priority classification for each object based at least
in part on the respective state data for each object comprises determining, by the computing
system, the priority classification for each object using a machine-learned model.

12.  The computer-implemented method of claim 11, wherein the machine-learned
model has been trained based at least in part on training data that comprises annotated vehicle
data logs that were previously collected during previous autonomous vehicle driving sessions.

13. The computer-implemented method of claim 11 or 12, wherein determining,
by the computing system, the priority classification for each object using the machine-learned
model comprises:

obtaining, by the computing system, data descriptive of the machine-learned model,;

inputting, by the computing system, the respective state data for each object into the
machine-learned model; and

receiving, by the computing system, data indicative of a respective priority
classification for each object as an output of the machine-learned model.

14. The computer-implemented method of any preceding claim, wherein the
computing system is on-board the autonomous vehicle.

15. A computing system, comprising:

a perception system comprising one or more processors, wherein the perception
system is configured to generate, for each of a plurality of consecutive time frames, state data
descriptive of at least a current state of each of a plurality of objects that are perceived by an
autonomous vehicle;

a priority classification system comprising one or more processors, wherein the
priority classification system is configured to, for each of the plurality of consecutive time
frames, classify each object in the plurality of objects as either high-priority or low-priority
based at least in part on the respective state data for each object; and

a prediction system comprising one or more processors, wherein the prediction system
is configured to, for each of the plurality of consecutive time frames:

receive the priority classification for each respective object;
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determine, for a current time frame, a predicted future state for each object
classified as high-priority; and

provide the predicted future state for each object classified as high-priority for
the current time frame to a motion planning system implemented by the one or more
processors.

16. The computing system of claim 15, wherein following providing the predicted
future state for each object classified as high-priority to the motion planning system, the
prediction system is further configured to:

determine a predicted future state for the current time frame for each object classified
as low-priority.

17. The computing system of claim 15 or 16, wherein the prediction system is further
configured to:

provide, to the motion planning system, a predicted future state for a previous
sequential time frame for each object classified as low-priority;

wherein the predicted future state for the previous sequential time frame for each
object classified as low-priority is provided to the motion planning system concurrently with
the predicted future state for each object classified as high priority for the current time frame.

18.  The computing system of any one of claims 15, 16, or 17, wherein the priority
classification system comprises a machine-learned object priority classifier configured to
classify each respective object as either high-priority or low-priority.

19. The computing system of any one of claims 15, 16, 17, or 18 wherein the
prediction system is further configured to perform a low-fidelity prediction for objects
classified as low-priority; and

wherein the prediction system is further configured to perform a high-fidelity
prediction for objects classified as high-priority.

20. An autonomous vehicle, comprising:

one or more processors; and

one or more non-transitory computer-readable media that collectively store
instructions that, when executed by the one or more processors, cause the one or more
processors to perform operations, the operations comprising:

obtaining state data descriptive of at least a current or past state of a plurality

of objects that are perceived by the autonomous vehicle;
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determining a priority classification for each object in the plurality of objects

based at least in part on the respective state data for each object;
determining an order at which the computing system determines a predicted

future state for each object based at least in part on the priority classification for each object;

and

determining the predicted future state for each object based at least in part on

the determined order.

39



PCT/US2018/047032

WO 2019/040349

~ 051
1
]
WAISAS
HOLIVIHISSYD
01 901 501 ¥01 ALTOTN £01 101
O < - - 1 )
WALSAS
CIOUINGY | WITIONINGY L - WALSAS | WEISAS | |
™ M mmwm%m 1 WOIDIOMd [™ ] NOLdD¥I {SHOSN3S
4 ) w
91
O SNOIDMAISHI
gl — VIV VIV AW
" RUOWIN 921
2 SHOSSII0N | WILSAS SNLLGWOD TDIHIA
\.  IDIHIASNONONOLRY
}
201 Col




WO 2019/040349

PCT/US2018/047032

126
I
MAP DATA
]
PERCEPTION SYSTEM |
MOTION
PRIGRITY - PREDICION PLANNING
CLASSTFICATION SYSTEM
SYSTEM
rJ 4 j gg}g 'ﬁﬂg’
03 150
FIG.2
126
I
MAP DATA
gy “ |
PREDICTION SYSTEM F
MOTION
PERCEPTION | PRIORITY PLANNING
SYSTEM CLASSIFICATION SYSTEM
SYSTEM
~ 7 r
03 105
o 150

FiG. 3



Wvid)

PCT/US2018/047032

WO 2019/040349

¥id NOLLOW
- O
NI IWl) NOIDIO3N
m. HiEY ngy || Wy [ odwy | oauy || oa
d a1 41 dl dl dH dH
1£h 16 | nge || sy || uw | ey | vig
4l &1 d 41 4l dl aH dH
(N 3V) NOIDICN (1N 3w} NOIDIGI
C oy
NIRRT T
DIfE0 | | Dargo | | Dardo || DIrso | | Dirgo
ny | osie (1o || e ] v
Dirg0 | | DIrgo | | Darso || DIrso | | Lo
(N 3Wvad) NOLLIDNd

mfﬁw



PCT/US2018/047032

WO 2019/040349

¢ 9H

VIV{ SHINIVAL

SINIVEL 00w

{STI00W GNEVIT-INIDWW

ISNOIIMYISHI TIVUIINI
HUOMIIN
n Yivd

AS0VEW {SHOSSD0Nd |
WALSAS SNILNdWOD JNINEYIT INTHOVW

SN W W

YITI0EINGD FDIHIA

WALSAS ONINNYId NOLLOW

WALSAS AL HOM

E
/

W3LSAS ALTHEL-ROT

—

WILSAS NOIDIGHHS

(SYT3GOW GINUVIT-INTHOVW

WALSAS NOLVOLIISSVD) A0

WH1SAS NOLId1)43d

}

SHOIIDNYISHI TVIH3INI
FHOMIN
yivd

k)

- AIOWIW {SHI0SS1D08d

VHISAS SNIINAWED

A 001



WO 2019/040349 PCT/US2018/047032

5/5
800
éﬂém OBTAIN STATE DATA DESCRIPTIVE OF AT LEAST A CURRENT OR PAST STATE OF
A PLURALITY OF OBJECTS THAT ARE PERCEIVED BY AN AUTONOMOUS VEHIGE
¥
6%33% DETERMINE A PRIORITY CLASSIFICATION FOR EACH OBIECT IN THE PLURALIYY
(F OBJECYS BASED AT LEAST IN PART ON RESPECTIVE STATE DATA
606 L
p- OBTAIN DATA DESCRIPTIVE OF MACHIME-LEARKED MODEL
608 L
] TNPUT RESPECTIVE STATE DATA INTO MACHINE-LEARNED MODEL
¥
63\?;% RECEIVE DATA INDICATIVE OF RESPECTIVE PRIORITY CLASSIFICATION
AS QUTPUT OF MACHINE-LEARNED MODEL
%
ME@ DETERMINE AN ORDER AT WHICH THE (OMPUTING SYSTEM DETERMINES A
PREDICTED FUTURE STATE FOR FACH ORIECT BASED AT LEAST IN PART ON
THE PRIORITY CLASSIFICATION FOR EACH OBIECY
t
635; DETERMINE THE PREDICTED FUTURE STATE FOR RACH OBETY
BASED AT LEAST IN PART ON THE DETERMINED ORDER
¥
6%% DETERMINE A MOTION PLAN FOR AUTONOMOUS VEHICLE BASED AT LEASTIN
PART ON THE PREDICTED FUTURE STATE FOR AT LEAST ONE OF THE OBIECTS

FIG. 6



INTERNATIONAL SEARCH REPORT

International application No

PCT/US2018/047032

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO8Gl/01 GO5D1/00
ADD.

B60W30/095

B60W40/00

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

B6OW GO8G GO5D

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

2 February 2017 (2017-02-02)
abstract

[0080]

paragraph [0006] - paragraphs [0009],

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2014/330479 Al (DOLGOV DMITRI [US] ET 1-20
AL) 6 November 2014 (2014-11-06)
the whole document
X US 2017/120804 Al (KENTLEY TIMOTHY DAVID 1-20
[US] ET AL) 4 May 2017 (2017-05-04)
paragraph [0048] - paragraph [0101]
A US 2017/031361 Al (OLSON EDWIN [US] ET AL) 8,19

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

19 November 2018

Date of mailing of the international search report

28/11/2018

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Tonet, Oliver

Form PCT/ISA/210 (second sheet) (April 2005)




INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2018/047032
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2014330479 Al 06-11-2014  CN 105358397 A 24-02-2016
CN 106828492 A 13-06-2017
CN 107097787 A 29-08-2017
EP 2991875 Al 09-03-2016
JP 6192812 B2 06-09-2017
JP 6411595 B2 24-10-2018
JP 2016523751 A 12-08-2016
JP 2017202828 A 16-11-2017
JP 2017214065 A 07-12-2017
KR 20150127745 A 17-11-2015
KR 20160049017 A 04-05-2016
us 9381917 Bl 05-07-2016
US 2014330479 Al 06-11-2014
US 2016272207 Al 22-09-2016
WO 2014179109 Al 06-11-2014

US 2017120804 Al 04-05-2017 CN 108292356 A 17-07-2018
EP 3371740 Al 12-09-2018
US 2017120804 Al 04-05-2017
US 2018136654 Al 17-05-2018

US 2017031361 Al 02-02-2017 CN 106428009 A 22-02-2017
DE 102016113903 Al 02-03-2017
RU 2016130094 A 23-01-2018
US 2017031361 Al 02-02-2017

Form PCT/ISA/210 (patent family annex) (April 2005)




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - wo-search-report
	Page 48 - wo-search-report

