

596505

SPRUSON & FERGUSON

FORM 1

APPLICATION ACCEPTED AND AMENDMENTS  
ALLOWED  
26-2-90

COMMONWEALTH OF AUSTRALIA

PATENTS ACT 1952

APPLICATION FOR A STANDARD PATENT

Siemens Aktiengesellschaft, incorporated in the Federal Republic of Germany, of Wittelsbacher Platz 2, 8000 Muenchen, FEDERAL REPUBLIC OF GERMANY, hereby apply for the grant of a standard patent for an invention entitled:

Combined Gas and Steam Turbine Power Plant

which is described in the accompanying complete specification.

Details of basic application(s):-

Basic Applic. No: Country:

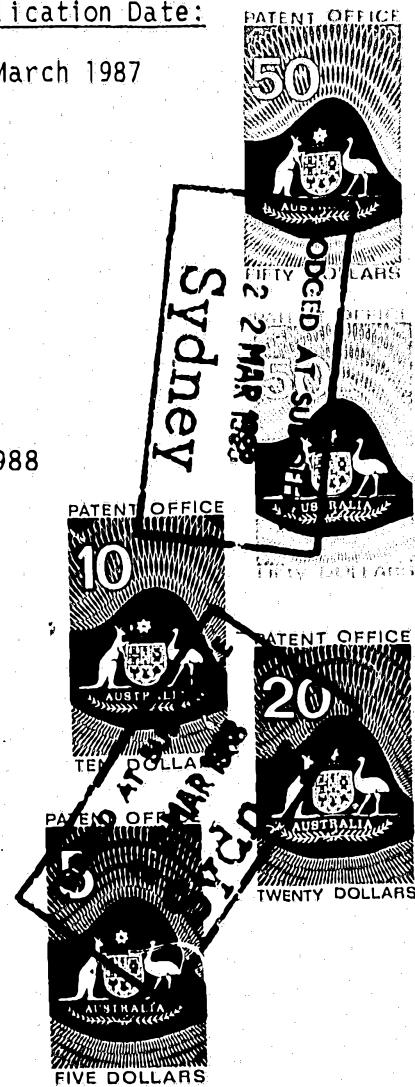
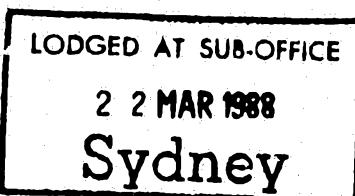
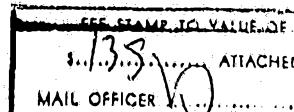
P3709469.6 FEDERAL REPUBLIC OF GERMANY

Application Date:

23 March 1987

The address for service is:-

**Spruson & Ferguson**  
Patent Attorneys  
Level 33 St Martins Tower  
31 Market Street  
Sydney New South Wales Australia




DATED this SEVENTEENTH day of MARCH 1988

Siemens Aktiengesellschaft

By:

Registered Patent Attorney

TO: THE COMMISSIONER OF PATENTS  
OUR REF: 51381  
S&F CODE: 61890



5845/2

DECLARATION IN SUPPORT OF A  
CONVENTION APPLICATION FOR A PATENTIn support of the Convention Application made for a  
patent for an invention entitled:

Title of Invention

Combined Gas and Steam Turbine Power Plant

I/We

John Gordon Hinde

Full name(s) and  
address(es) of  
Declarant(s)

Care of

Spruson & Ferguson  
St Martins Tower, 31 Market Street,  
Sydney, New South Wales, Australia

do solemnly and sincerely declare as follows:-

Full name(s) of  
Applicant(s)

1. I am/We are the applicant(s) for the patent

(or, in the case of an application by a body corporate)

1. I am/We are authorised by

Siemens Aktiengesellschaft  
the applicant(s) for the patent to make this declaration on  
its/their behalf.2. The basic application(s) as defined by Section 141 of the  
Act was/were made

in Federal Republic of Germany

on 23 March 1987

by Kraftwerk Union AG

3. I am/We are the actual inventor(s) of the invention referred  
to in the basic application(s)

(or where a person other than the inventor is the applicant)

3.

of

JUERGEN KARG  
Seuffertstr. 16, 8500 Nuernberg 70,  
(Staatsangehoerigkeit, )  
Federal Republic of Germany (respectively)is/are the actual inventor(s) of the invention and the facts upon  
which the applicant(s) is/are entitled to make the application are  
as follows:The said applicant is the assignee of Kraftwerk  
Union AG who is the assignee of the actual  
inventor.Set out how Applicant(s)  
derive title from actual  
inventor(s) e.g. The  
Applicant(s) is/are the  
assignee(s) of the  
invention from the  
inventor(s)4. The basic application(s) referred to in paragraph 2 of this  
Declaration was/were the first application(s) made in a Convention  
country in respect of the invention(s) the subject of the application.

Declared at Sydney this 17th day of March 1988

---

(12) PATENT ABRIDGMENT (11) Document No. AU-B-13353/88  
(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 596505

---

(54) Title

COMBINED GAS AND STEAM TURBINE POWER PLANT

International Patent Classification(s)

(51)<sup>4</sup> F02C 003/28 F01K 023/08 F02C 006/18 F02C 009/40

(21) Application No. : 13353/88

(22) Application Date : 22.03.88

(30) Priority Data

(31) Number (32) Date (33) Country  
3709469 23.03.87 DE FEDERAL REPUBLIC OF GERMANY

(43) Publication Date : 22.09.88

(44) Publication Date of Accepted Application : 03.05.90

(71) Applicant(s)

SIEMENS AKTIENGESELLSCHAFT

(72) Inventor(s)

JUERGEN KARG

(74) Attorney or Agent

SPRUSON & FERGUSON

(56) Prior Art Documents

US 4150953

US 4092825

(57) Claim

1. A combined gas and steam turbine power plant comprising an upstream coal gasifier and a gas-cooling and gas-cleaning plant downstream of the coal gasifier, the plant further comprising (a) means whereby the tar fraction obtained during the gas-cooling and gas-cleaning can be recycled to the coal gasifier for the purpose of being cracked, gasified and partial burnt therein, and (b) means whereby the naphtha and oil fractions thus obtained can be used as additional fuel for the gas turbine.

596505

S & F Ref: 51381

FORM 10

COMMONWEALTH OF AUSTRALIA

PATENTS ACT 1952

COMPLETE SPECIFICATION

(ORIGINAL)

FOR OFFICE USE:

Class      Int Class

Complete Specification Lodged:

Accepted:

Published:

Priority:

Related Art:

Name and Address  
of Applicant:

Siemens Aktiengesellschaft  
Wittelsbacher Platz 2  
8000 Muenchen  
FEDERAL REPUBLIC OF GERMANY

Address for Service: Spruson & Ferguson, Patent Attorneys  
Level 33 St Martins Tower, 31 Market Street  
Sydney, New South Wales, 2000, Australia

Complete Specification for the invention entitled:

Combined Gas and Steam Turbine Power Plant

The following statement is a full description of this invention, including the best method of performing it known to me/us

ABSTRACT

COMBINED GAS AND STEAM TURBINE POWER PLANT

In a combined gas and steam turbine power plant having an upstream coal gasifier and a gas-cooling and gas-cleaning plant downstream of the coal gasifier, the naphtha and oil fractions obtained should be extracted in such a way as to obtain energy in the most efficient way. The invention provides that the tar fractions obtained during gas-cooling and gas-cleaning be recycled to the coal gasifier and that the naphtha and oil fractions obtained be used as additional gas turbine fuel. Furthermore, the naphtha and oil fractions may be introduced into a store and, according to requirements, be fed to the combustion chamber of the gas turbine. The invention is particularly suited to coal power plants.

COMBINED GAS AND STEAM TURBINE POWER PLANT

The invention relates to a combined gas and steam turbine power plant having an upstream coal gasifier and a gas-cooling and gas-cleaning plant downstream of the coal gasifier.

Combined gas and steam turbine power plants having upstream coal gasifiers are known. In such combined gas and steam turbine power plants, the coal is converted in the coal gasifier by the use of an 5 oxygen/steam or air/steam mixture as a gasification means. The crude gas produced is cooled, if necessary after being quenched, in heat exchangers with simultaneous steam generation, and the cooled crude gas is subjected to gas cleaning. Particles of dust and 10 ash, as well as sulphur compounds, are removed from the crude gas in the course of the gas cleaning. The cleaned gas, also called pure gas, is usually reheated and fed to a gas turbine.

Fixed bed coal gasifiers are distinguished from other gasification systems in that, depending on the process, a very large proportion of the coal energy in the form of chemically bonded energy is contained in the fuel gas produced and only a relatively small proportion of the energy is converted into latent 20 heat. Because of the lower gasification temperature compared to other gasification systems, tars, oils and naphtha are obtained which condense in the gas-cooling and gas-cleaning plant. There are known methods 25 wherein the tar fractions obtained, as well as oils and naphtha, are recycled to the gasifier to be cracked, gasified and partly burnt therein in order to contribute to an increase in the yield of crude gas.

A method is also known wherein the oil and naphtha 30 fractions obtained are sold as products or are supplied for a separate use. The combustible condensates can, for example, be used for undergrate firing of process

steam generators.

However all of these known processes, in the case of a combined gas and steam turbine power plant, result in the chemical energy of the naphtha and oil fractions in the gas turbine only being able to be partly used or being not used at all. Based on the energy of the coal, all these processes represent energetic and exergonic sources of loss, which restrict the overall attainable efficiency.

The underlying object of the present invention, therefore, is to increase the overall efficiency of the conversion of coal into electrical energy, in a combined gas and steam turbine power plant having an upstream coal gasifier.

According to the present invention, there is provided a combined gas and steam turbine power plant comprising an upstream coal gasifier and a gas-cooling and gas-cleaning plant downstream of the coal gasifier, the plant further comprising (a) means whereby the tar fraction obtained during the gas-cooling and gas-cleaning can be recycled to the coal gasifier for the purpose of being cracked, gasified and partial burnt therein, and (b) means whereby the naphtha and oil fractions thus obtained can be used as additional fuel for the gas turbine.

Preferably, the plant comprises means whereby the naphtha and oil fractions continuously obtained can be continually mixed with the cleaned and reheated fuel gas. In this case, the plant preferably comprises means whereby the naphtha and oil fractions obtained can be heated to the approximate temperature of the fuel gas before being mixed with the cleaned fuel gas.

Preferably, the plant comprises means whereby the naphtha and oil fractions condensed-out can be introduced into a store and according to requirements fed to a combustion chamber of the gas turbine. In

this case, the plant preferably comprises means whereby the naphtha and oil fractions can be injected directly into the combustion chamber of the gas turbine as liquid fuel. Alternatively, the plant preferably 5 comprises means whereby the naphtha and oil portions, following prior vaporization, can be mixed with the fuel gas of the gas turbine.

In another preferred embodiment, the plant comprises means whereby the continuously obtained 10 naphtha and oil fractions can be continually injected directly into the combustion chamber of the gas turbine.

Preferably the coal gasified is a fixed bed coal 15 gasifier.

The invention is particularly suited to coal power plants.

Thus according to the invention, the tar fractions obtained during gas-cooling and gas-cleaning are recycled to the coal gasifier for the purpose of 20 cracking, gasifying or partial combustion, and the naphtha and oil fractions obtained are used as additional gas turbine fuel. By this measure, the full heat value of the naphtha and oil fractions for the generation of electrical energy is obtained without 25 further loss with regard to gas generation. The overall efficiency of the combined gas and steam turbine power plant having the upstream coal gasifier is clearly improved by this process compared to other known systems.

In an advantageous embodiment of the invention, the naphtha and oil fractions, continuously obtained, can be continually mixed with the cleaned and reheated 30 fuel gas. This has the result that the heat value of the fuel gas is raised and in this way the chemically bonded energy delivered to the gas turbine is 35 increased.

In a particularly advantageous embodiment of the invention, the naphtha and oil fractions condensed-out can be introduced into a store and, according to requirements, led to the combustion chamber of the gas turbine. Thus, the naphtha and oil fractions can be held back in the case of a part-load and then used in the event of a full-load, an over-load or a sudden load increase. A more flexible reaction to fluctuations in the load can thus be achieved than was possible by reversal of the coal gasifier and of the air-separation plant upstream thereof. Moreover the naphtha and oil fractions in the store can be used for starting the turbine instead of the auxiliary fuels otherwise required.

Further details of the invention are illustrated by the exemplary embodiment represented in the Figure, which shows a schematic representation of a combined gas and steam turbine power plant according to the invention having an upstream fixed bed coal gasifier.

The combined gas and steam turbine power plant 1 shown in the drawing consists of a gas turbine power plant 2 and a steam turbine power plant 8. In the gas turbine power plant, there are located a gas turbine 3 and associated air compressor 4 and generator 5 and a combustion chamber 7 upstream of the gas turbine 3 and attached to a fresh air line 6 of the air compressor 4. In the steam turbine power plant 8, there are located a waste heat steam generator 10 attached to a waste gas line 9 of the gas turbine power plant 2, a flue 11 downstream on the waste gas side, and a steam turbine 12 and associated generator 13 and condenser 14.

In the Figure, a coal gasifier 15 is also shown, in the present embodiment a fixed bed gasifier 15, and gas-cooling and gas-cleaning plant 16 is located downstream of the coal gasifier 15. The gas-cooling and gas-cleaning plant 16 is attached to the combustion

chamber 7 of the gas turbine power plant 2 by a pure gas line 17. Moreover, a waste water treatment plant 18 and an oil and naphtha store 19 are associated with the gas-cooling and gas-cleaning plant 16.

5 When the combined gas and steam turbine power plant 1 with the upstream coal gasifier 15 is in operation, steam 27 and coal by way of the fuel line 20 (either separately or, in some cases, together) and oxygen 21 as gasification means from an air-separation 10 plant (not shown) are delivered to the coal gasifier 15. The crude gas obtained by the gasification is delivered to the gas-cooling and gas-cleaning plant 16. The slag obtained by the gasification is removed 15 separately by way of an outlet line 22. In the gas-cooling and gas-cleaning plant 16, on the crude gas side, downstream of the coal gasifier, the gas is separated from the dust, ash, sulphur, tar, oil and naphtha fractions thereof and delivered as pure gas by way of the pure gas line 17 to the combustion chamber 7 20 of the combined gas and steam turbine power plant 1. It is burnt in the combustion chamber by the use of compressed fresh air from the air compressor 4. The hot waste gas of the gas turbine 3 is extracted in a known way in the waste heat boiler 10 for the 25 generation of steam for use in the steam turbine 12 of the steam turbine power plant 8.

The tar fraction obtained by the gas-cooling and gas-cleaning are recycled by way of a return line 23 to the gasifier 15. They are then cracked, gasified 30 and partly burned, the resulting products being accordingly present in the crude gas issuing from the coal gasifier 15. In the illustrated embodiment, the oil and naphtha fractions condensed-out during the gas-cooling are delivered to an oil and naphtha store 19 by 35 way of a separate line 24. The fuel collecting in the oil and naphtha store 19 can be delivered to the

combustion chamber 7 of the gas turbine 3 for starting the gas turbine 3 or as an additional fuel when the gas turbine 3 is operating under full load. Even in the case of sudden increases in load, the performance of  
5 the gas and steam turbine power plant 1 can be raised relatively quickly by use of the fuel from the store 19. Auxiliary fuels such as natural gas and oil, which are in some cases required for starting the gas and steam turbine power plant, are thus not required.

10 The supply of oil and naphtha fractions as liquid fuel, to the combustion chamber 7 of the gas turbine 3 can be effected by way of an auxiliary line 25. In this case, oil and naphtha are injected directly into the combustion chamber 7. It is also possible, however, to heat these oil and naphtha fractions by use of a separate heat exchanger 26, shown by dotted lines, and to add these fractions as a gas to the pure gas flowing into the combustion chamber 7 of the gas turbine 3.

15 20 A particular advantage of this arrangement is that a larger proportion of chemically bonded fuel energy, in relation to the coal energy used, can be fed to the combustion chamber 7 of the gas turbine 3, than in the case of all other known processes. By the reduction of the energy loss achieved in this way and the thermodynamically advantageous increase in the performance of the gas turbine, a clear improvement in the overall efficiency is achieved. This is particularly so in the case of fixed bed coal  
25 30 gasifiers.

CLAIMS. The claims defining the invention are as follows:

1. A combined gas and steam turbine power plant comprising an upstream coal gasifier and a gas-cooling and gas-cleaning plant downstream of the coal gasifier, the plant further comprising (a) means whereby the tar fraction obtained during the gas-cooling and gas-cleaning can be recycled to the coal gasifier for the purpose of being cracked, gasified and partial burnt therein, and (b) means whereby the naphtha and oil fractions thus obtained can be used as additional fuel for the gas turbine.

5 2. A plant according to Claim 1, comprising means whereby the naphtha and oil fractions continuously obtained can be continually mixed with the cleaned and reheated fuel gas.

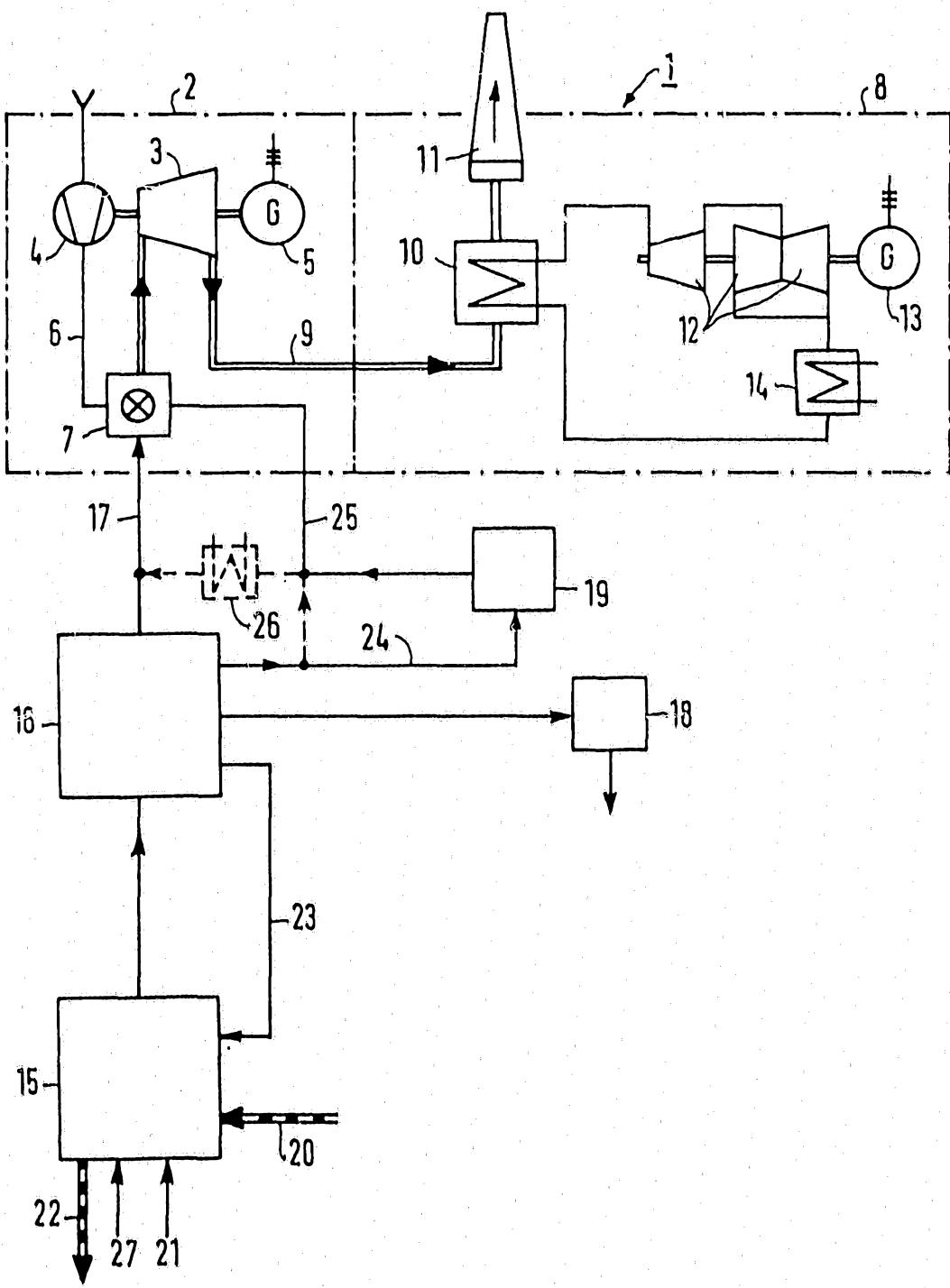
10 3. A plant according to Claim 1, comprising means whereby the naphtha and oil fractions condensed-out can be introduced into a store and according to requirements fed to a combustion chamber of the gas turbine.

15 4. A plant according to Claim 3, comprising means whereby the naphtha and oil fractions can be injected directly into the combustion chamber of the gas turbine as liquid fuel.

20 5. A plant according to Claim 3, comprising means whereby the naphtha and oil portions, following prior vaporization, can be mixed with the fuel gas of the gas turbine.

25 6. A plant according to Claim 2, comprising means whereby the naphtha and oil fractions obtained can be heated to the approximate temperature of the fuel gas before being mixed with the cleaned fuel gas.

30 7. A plant according to Claim 1, comprising means whereby the continuously obtained naphtha and oil fractions can be continually injected directly into the combustion chamber of the gas turbine.


8. A plant according to any of Claims 1 to 7,  
wherein the coal gasifier is a fixed bed coal gasifier.

9. A plant according to Claim 1, substantially  
as hereinbefore described with reference to, and as  
5 shown in, the drawing.

DATED this SEVENTEENTH day of MARCH 1988

Siemens Aktiengesellschaft

Patent Attorneys for the Applicant  
SPRUSON & FERGUSON

