

United States Patent Office

2,850,373

Patented Sept. 2, 1958

1

2,850,373

HIGH-CARBON RIMMED STEEL AND METHOD OF MAKING IT

Vincent C. Boucek, Pittsburgh, Pa., assignor to United States Steel Corporation, a corporation of New Jersey

No Drawing. Application May 26, 1955
Serial No. 511,438

7 Claims. (Cl. 75—27)

This invention relates generally to steel manufacture and, in particular to rimmed steel with a high carbon content and a method of making it.

Rimmed steel has peculiar, well known advantages for certain uses. It has been possible heretofore, however, to make rimmed steel having only a medium or low content of carbon, the maximum carbon content being .28 or .30% ("The Making, Shaping and Treating of Steel," 6th ed., p. 573). In certain applications where rimmed steel is desirable, a higher carbon content would be advantageous and it is accordingly the object of my invention to produce such steel and provide a method for making such steel. A further object is to produce ingots relatively free of pipe without the use of hot tops. A still further object is to produce high-carbon steel having good surface qualities, controlled segregation and freedom from refractory inclusions.

My invention is applicable particularly to the production of steels having a carbon content of over .35% and up to 1.10%. Briefly stated, the invention comprises adding to such steel, when it has been teemed into molds and while it is still liquid, an exothermic rimming agent of novel composition. Preferably the rimming agent is added to each mold while steel is being teemed thereinto and, specifically, before the mold is half filled. The rimming agent is composed of iron oxide and sodium fluoride, but includes also an exothermic-reaction mixture of granular aluminum and a compound affording a source of oxygen for combination therewith, such as sodium nitrate. The amount of the rimming agent used is from one to four pounds per ton of ingot weight. The following ranges are satisfactory for the several ingredients of the rimming agent:

Table I

	Percent by weight
Iron oxide	40-80
Granular aluminum	2.5-17
Sodium nitrate	5-34
Sodium fluoride	5-20

The amount of sodium nitrate should be double the amount of aluminum. The ingredients should be in such a state of subdivision as to pass through an 8-mesh screen and should be thoroughly mixed before use.

The iron oxide acts to promote rimming action in the liquid steel by furnishing oxygen for combination with some of the carbon present therein. The sodium nitrate furnishes oxygen for combination with the aluminum. This reaction results in the evolution of a large amount of heat serving to fuse the iron oxide and sodium fluoride without causing localized cooling of the ingot. The sodium fluoride acts as a flux to sweep upward the alumina resulting from the oxidation of the aluminum. The overall result of the addition of the rimming agent, therefore, is to put fused iron oxide and sodium fluoride into the liquid steel as it is being teemed into the mold so that, on standing thereafter, rimming will proceed vigorously for such period as necessary to form a case of the desired thickness. After the iron

2

oxide of the rimming agent has reacted, a sodium-aluminate scum remains which acts as a flux and scavenger for any refractory inclusions such as silicates.

As a typical example of the practice of the invention, I make a heat of steel by conventional basic open-hearth practice except that I do not add any deoxidizer such as ferrosilicon, aluminum or ferrotitanium and magnesium, either to the bath in the furnace or to the ladle after tapping the furnace. The carbon content of the heat is brought down progressively in the furnace to approximately the desired final value, e. g., 0.65%, and ferromanganese is added as required in the furnace or in the ladle. This may be as little as a half pound per ton in one case and as much as 25 pounds per ton in another. After tapping, the steel is teemed into big-end-down, bottle-top ingot molds, i. e., without hot tops, with the addition of about 2.5 pounds per ton of ingot weight, of a rimming agent composed of 68% globular iron oxide in the form of deseamer dust, 17% sodium fluoride, 10% sodium nitrate and 5% granular aluminum. After a predetermined time for rimming, depending on the thickness of case desired, i. e., from 15 seconds to 5 minutes, the rimming action is substantially arrested by chemically "precapping," viz., the addition of about 2 oz. per ton of ingot weight, of a suitable deoxidizer such as aluminum or calcium-silicon alloy, after which the molds are mechanically capped.

One example of steel made in accordance with the invention gave the following analyses:

30

Table II

	Percent C	Percent Mn	Percent P	Percent S	Percent Si	Percent Al
Ladle analysis	.67	.22	.015	.024	.02	—
Recheck analysis of billets:						
Entire cross section—						
Top of ingot	.66	.20	.015	.025	.01	.006
Bottom of ingot	.62	.19				
Surface of billet—Top of ingot	.45	.20	.010	.015		
$\frac{3}{8}$ " center drillings on 2" x 2" billet—Top of ingot	.95	.23	.019	.069	.01	.006

Other examples of the composition of the rimming agent are:

45

Table III

No.	Percent deseamer dust	Percent NaF	Percent Al	Percent NaNO ₃
1.	74	17	3	6
2.	71	20	3	6
3.	65	5	10	20
4.	53	17	10	20
5.	60	10	10	20
6.	41	17	14	28
7.	40	9	17	34

The cross-section of ingots of high-carbon steel produced according to my invention is characterized by an outer zone or rim area of a predetermined thickness, and this area persists in the billets rolled from the ingots. In this area, the carbon and sulphur contents are approximately two-thirds of the average concentration (ladle analysis) and there is an almost complete freedom from inclusions, giving the steel exceptionally good drawing properties. The carbon and sulphur contents at the center of the cross-section are 1.5 or more times the average concentration.

60
65
70
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
55410
55411
55412
55413
55414
55415
55416
55417
55418
55419
55420
55421
55422
55423
55424
55425
55426
55427
55428
55429
55430
55431
55432
55433
55434
55435
55436
55437
55438
55439
55440
55441
55442
55443
55444
55445
55446
55447
55448
55449
55450
55451
55452
55453
55454
55455
55456
55457
55458
55459
55460
55461
55462
55463
55464
55465
55466
55467
55468
55469
55470
55471
55472
55473
55474
55475
55476
55477
55478
55479
55480
55481
55482
55483
55484
55485
55486
55487
55488
55489
55490
55491
55492
55493
55494
55495
55496
55497
55498
55499
55500
55501
55502
55503
55504
55505
55506
55507
55508
55509
55510
55511
55512
55513
55514
55515
55516
55517
55518
55519
55520
55521
55522
55523
55524
55525
55526
55527
55528
55529
55530
55531
55532
55533
55534
55535
55536
55537
55538
55539
55540
55541
55542
55543
55544
55545
55546
55547
55548
55549
55550
55551
55552
55553
55554
55555
55556
55557
55558
55559
55560
55561
55562
55563
55564
55565
55566
55567
55568
55569
55570
55571
55572
55573
55574
55575
55576
55577
55578
55579
55580
55581
55582
55583
55584
55585
55586
55587
55588
55589
55590
55591
55592
55593
55594
55595
55596
55597
55598
55599
555100
555101
555102
555103
555104
555105
555106
555107
555108
555109
555110
555111
555112
555113
555114
555115
555116
555117
555118
555119
555120
555121
555122
555123
555124
555125
555126
555127
555128
555129
555130
555131
555132
555133
555134
555135
555136
555137
555138
555139
555140
555141
555142
555143
555144
555145
555146
555147
555148
555149
555150
555151
555152
555153
555154
555155
555156
555157
555158
555159
555160
555161
555162
555163
555164
555165
555166
555167
555168
555169
555170
555171
555172
555173
555174
555175
555176
555177
555178
555179
555180
555181
555182
555183
555184
555185
555186
555187
555188
555189
555190
555191
555192
555193
555194
555195
555196
555197
555198
555199
555200
555201
555202
555203
555204
555205
555206
555207
555208
555209
555210
555211
555212
555213
555214
555215
555216
555217
555218
555219
555220
555221
555222
555223
555224
555225
555226
555227
555228
555229
555230
555231
555232
555233
555234
555235
555236
555237
555238
555239
555240
555241
555242
555243
555244
555245
555246
555247
555248
555249
555250
555251
555252
555253
555254
555255
555256
555257
555258
555259
555260
555261
555262
555263
555264
555265
555266
555267
555268
555269
555270
555271
555272
555273
555274
555275
555276
555277
555278
555279
555280
555281
555282
555283
555284
555285
555286
555287
555288
555289
555290
555291
555292
555293
555294
555295
555296
555297
555298
555299
555300
555301
555302
555303
555304
555305
555306
555307
555308
555309
555310
555311
555312
555313
555314
555315
555316
555317
555318
555319
555320
555321
555322
555323
555324
555325
555326
555327
555328
555329
555330
555331
555332
555333
555334
555335
555336
555337
555338
555339
555340
555341
555342
555343
555344
555345
555346
555347
555348
555349
555350
555351
555352
555353
555354
555355
555356
555357
555358
555359
555360
555361
555362
555363
555364
555365
555366
555367
555368
555369
555370
555371
555372
555373
555374
555375
555376
555377
555378
555379
555380
555381
555382
555383
555384
555385
555386
555387
555388
555389
555390
555391
555392
555393
555394
555395
555396
555397
555398
555399
555400
555401
555402
555403
555404
555405
555406
555407
555408
555409
555410
555411
555412
555413
555414
555415
555416
555417
555418
555419
555420
555421
555422
555423
555424
555425
555426
555427
555428
555429
555430
555431
555432
555433
555434
555435
555436
555437
555438
555439
555440
555441
555442
555443
555444
555445
555446
555447
555448
555449
555450
555451
555452
555453
555454
555455
555456
555457
555458
555459
555460
555461
555462
555463
555464
555465
555466
555467
555468
555469
555470
555471
555472
555473
555474
555475
555476
555477
555478
555479
555480
555481
555482
555483
555484
555485
555486
555487
555488
555489
555490
555491
555492
555493
555494
555495
555496
555497
555498
555499
555500
555501
555502
555503
555504
555505
555506
555507
555508
555509
555510
555511
555512
555513
555514
555515
555516
555517
555518
555519
555520
555521
555522
555523
555524
555525
555526
555527
555528
555529
555530
555531
555532
555533
555534
555535
555536
555537
555538
555539
555540
555541
555542
555543
555544
555545
555546
555547
555548
555549
555550
555551
555552
555553
555554
555555
555556
555557
555558
555559
555560
555561
555562
555563
555564
555565
555566
555567
555568
555569
555570
555571
555572
555573
555574
555575
555576
555577
555578
555579
555580
555581
555582
555583
555584
555585
555586
555587
555588
555589
555590
555591
555592
555

Segregation in the ingots is well controlled and may easily be kept below the limits established for many applications. The case or rim is cleaner and freer of inclusions than normal killed steel and this condition persists even at the top center of the ingots. The carbon gradient from surface to center gives desirable hardening properties. The steel when rolled into wire rod draws well into fine wire and is also easy to cold-roll into strip. The absence of silicon and aluminum and freedom from inclusions improve the electrical conductivity, making the steel particularly desirable for the production of the high-strength wire used in communication lines.

Although I have disclosed herein the preferred practice and embodiment of my invention, I intend to cover as well any change or modification therein which may be made without departing from the spirit and scope of the invention.

I claim:

1. In a method of producing steel, the steps consisting in making a heat of steel containing over .35% carbon, teeming the steel while liquid into ingot molds and, not substantially later than the early part of teeming each mold, adding to the steel contained therein from one to four pounds per ton of the ultimate weight of the ingot, of a mixture consisting essentially of from 40 to 80% iron oxide, from 5 to 20% sodium fluoride, from 2.5 to 17% granular aluminum and from 5 to 35% sodium nitrate, and then when teeming is completed, permitting rimming of the steel to proceed unchecked for a predetermined time.

2. In a method as defined in claim 1, characterized by said mixture consisting essentially of about 68% iron oxide, about 17% sodium fluoride, about 10% sodium nitrate and about 5% aluminum.

3. In a method as defined in claim 1, characterized by chemically precapping the ingot after said predetermined rimming time.

4. In a method as defined in claim 1 characterized by finally capping the molds mechanically.

5. An exothermic reaction mixture effective to produce rimming of high-carbon steel, consisting essentially of from 40 to 80% iron oxide, from 5 to 20% sodium fluoride, from 2.5 to 17% granular aluminum and from 5 to 35% sodium nitrate.

6. As an article of manufacture, a rolled billet of ductile rimmed open-hearth steel containing from .35 to 1.10% carbon, having an outer case substantially free from inclusions, the carbon content of said case being approximately two-thirds of the average carbon content of the billet as a whole, and the carbon content adjacent the center line of the billet being about 1.5 times said average.

7. As an article of manufacture, a rolled billet of steel adapted to be further hot-rolled, containing from .35 to 1.10% carbon and having an outer case substantially free from inclusions, the carbon content of said case being approximately two-thirds of the average carbon content of the billet as a whole and the carbon content of the billet adjacent its longitudinal axis being greater than said average.

References Cited in the file of this patent

UNITED STATES PATENTS

30 1,777,975 Klepsch ----- Oct. 7, 1930

OTHER REFERENCES

35 American Society for Metals, vol. 37, 1946, pp. 54-69, incl.