Abstract: A power control system comprises at least one POL regulator, at least one auxiliary device, a serial data bus operatively connecting the POL regulator and the auxiliary device, and a system controller adapted to exchange digital data with the POL regulator and auxiliary device via the serial data bus. The auxiliary device may include a power regulation device, a switching device, a motor control device, a temperature control device, and/or a peripheral device. At least one auxiliary device controller may be operatively coupled between the auxiliary device and the serial data bus. The auxiliary device controller may be integrated with the system controller, or may be external to the system controller. The auxiliary device controller may further comprise at least one register adapted to store the programming data, with the programming data including at least one of turn-on delay, turn-off delay, polarity of input/output signals, fault configuration, and group membership. The auxiliary device controller may be further adapted to receive monitoring data from the auxiliary device, with the auxiliary device controller communicating the monitoring data to the system controller via the serial data bus.
METHOD AND SYSTEM FOR CONTROLLING AN ARRAY OF POINT-OF-LOAD REGULATORS AND AUXILIARY DEVICES

RELATED APPLICATION DATA

This application claims priority as a continuation-in-part pursuant to 35 U.S.C. § 120 to patent application Serial No. 10/326,222, filed December 21, 2002.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to power control systems, or more particularly, to a method and system to control, program and monitor an array of point-of-load regulators and other auxiliary devices.

2. Description of Related Art

With the increasing complexity of electronic systems, it is common for an electronic system to require power provided at several different discrete voltage and current levels. For example, electronic systems may include discrete circuits that require voltages such as 3v, 5v, 9v, etc. Further, many of these circuits require a relatively low voltage (e.g., 1v), but with relatively high current (e.g., 100A). It is undesirable to deliver relatively high current at low voltages over a relatively long distance through an electronic device for a number of reasons. First, the relatively long physical run of low voltage, high current lines consumes significant circuit board area and congests the routing of signal lines on the circuit board. Second, the impedance of the lines carrying the high current tends to dissipate a lot of power and complicate load regulation. Third, it is difficult to tailor the voltage/current characteristics to accommodate changes in load requirements.

In order to satisfy these power requirements, it is known to distribute an intermediate bus voltage throughout the electronic system, and include an individual
point-of-load ("POL") regulator, i.e., DC/DC converter, at the point of power consumption within the electronic system. Particularly, a POL regulator would be included with each respective electronic circuit to convert the intermediate bus voltage to the level required by the electronic circuit. An electronic system may include multiple POL regulators to convert the intermediate bus voltage into each of the multiple voltage levels. Ideally, the POL regulator would be physically located adjacent to the corresponding electronic circuit so as to minimize the length of the low voltage, high current lines through the electronic system. The intermediate bus voltage can be delivered to the multiple POL regulators using low current lines that minimize loss.

With this distributed approach, there is a need to coordinate the control and monitoring of the POL regulators of the power system. The POL regulators generally operate in conjunction with a power supply controller that activates, programs, and monitors the individual POL regulators. It is known in the art for the controller to use a multi-connection parallel bus to activate and program each POL regulator. For example, the parallel bus may communicate an enable/disable bit for turning each POL regulator on and off, and voltage identification (VID) code bits for programming the output voltage set-point of the POL regulators. The controller may further use additional connections to monitor the voltage/current that is delivered by each POL regulator so as to detect fault conditions of the POL regulators. A drawback with such a control system is that it adds complexity and size to the overall electronic system.

It is also known in the art to include various other devices in an electronic system for system supporting functions (also referred to as auxiliary devices). These devices may provide low power regulation, such as a linear regulator, low-drop out (LDO) linear regulator or other power supplies; device switching, such as machine-operated switches, magnetically operated control switches, thermal and magnetic relays, time delay relays, and actuators; motor control; temperature control, such as blowers and fans; visual indicator devices, such as lights, light emitting diodes (LEDs), video display monitors, gauges; peripheral devices; and the like. In some cases, it is desirable to coordinate the control over these auxiliary devices in concert with the POL regulators of
the power system, such as to control the operation of a fan in synchronism with activation of a POL regulator; however, conventional distributed power system do not provide flexibility to control other auxiliary devices in addition to POL regulators.

Thus, it would be advantageous to have a system and method for controlling and monitoring POL regulators and other auxiliary devices within a distributed power system.

SUMMARY OF THE INVENTION

The present invention provides a system and method for controlling, programming and monitoring POL regulators and auxiliary devices within a distributed power system.

In an embodiment of the invention, the power control system comprises at least one POL regulator, at least one auxiliary device, a serial data bus operatively connecting the POL regulator and the auxiliary device, and a system controller adapted to exchange digital data with the POL regulator and auxiliary device via the serial data bus. The auxiliary device may include a power regulation device, a switching device, a motor control device, a temperature control device, and/or a peripheral device. At least one auxiliary device controller may be operatively coupled between the auxiliary device and the serial data bus. The auxiliary device controller may be integrated with the system controller, or may be external to the system controller. The auxiliary device controller may further comprise at least one register adapted to store the programming data, with the programming data including at least one of turn-on delay, turn-off delay, polarity of input/output signals, fault configuration, and group membership. The auxiliary device controller may be further adapted to receive monitoring data from the auxiliary device, with the auxiliary device controller communicating the monitoring data to the system controller via the serial data bus.

In an alternative embodiment of the invention, a method of operating a power control system comprises: (a) generating programming parameters for at least one point of load (POL) regulator and at least one auxiliary device; (b) transmitting programming data based on the programming parameters serially over a common data bus
operatively connected to the at least one POL regulator and the at least one auxiliary device; and (c) operating the at least one POL regulator and the at least one auxiliary device in accordance with the programming data. The programming parameters may be received from a user, such as using a graphical user interface. The programming data would be stored in a memory contained in the at least one POL regulator and the at least one auxiliary device, or in a memory contained in a system controller operatively coupled to the at least one POL regulator and the at least one auxiliary device. The method may further include generating monitoring data regarding operating status of the at least one POL regulator and the at least one auxiliary device, and transmitting the monitoring data serially over the common data bus.

A more complete understanding of the method and system for controlling and monitoring a plurality of POL regulators and auxiliary devices will be afforded to those skilled in the art, as well as a realization of additional advantages and objects thereof, by a consideration of the following detailed description of the preferred embodiment. Reference will be made to the appended sheets of drawings, which will first be described briefly.

**BRIEF DESCRIPTION OF THE DRAWINGS**

Fig. 1 depicts a prior art distributed power delivery system;
Fig. 2 depicts a prior art POL control system using a parallel control bus;
Fig. 3 depicts an exemplary POL control system constructed in accordance with an embodiment of the present invention;
Fig. 4 depicts an exemplary POL regulator of the POL control system;
Fig. 5 depicts an exemplary system controller of the POL control system;
Fig. 6 depicts an alternative embodiment of a POL control system that provides control over auxiliary devices; and
Fig. 7 depicts an exemplary graphical user interface (GUI) for controlling operation of auxiliary devices in accordance with the embodiment of Fig. 6.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention provides a system and method for controlling and monitoring POL regulators and auxiliary devices within a distributed power system. In the detailed description that follows, like element numerals are used to describe like elements illustrated in one or more figures.

Referring first to Fig. 1, a prior art distributed power delivery system is shown. The prior art distributed power deliver system includes an AC/DC converter 12 that converts the available AC power into a primary DC power source, e.g., 48 volts. The primary DC power source is connected to a primary power bus that distributes DC power to plural electronic systems, such as printed circuit board 14. The bus may be further coupled to a battery 18 providing a back-up power source for the electronic systems connected to the primary power bus. When the AC/DC converter 12 is delivering DC power into the primary power bus, the battery 18 is maintained in a fully charged state. In the event of loss of AC power or fault with the AC/DC converter 12, the battery 18 will continue to deliver DC power to the primary power bus for a limited period of time defined by the capacity of the battery 18.

The printed circuit board 14 may further include a DC/DC converter that reduces the primary bus voltage to an intermediate voltage level, such as 5 or 12 volts. The intermediate voltage is then distributed over an intermediate power bus provided to plural circuits on the printed circuit board 14. Each circuit has an associated point-of-load ("POL") regulator located closely thereby, such as POLs 22, 24, and 26. Each POL regulator converts the intermediate bus voltage to a low voltage, high current level demanded by the electronic circuit, such as 1.8 volts, 2.5 volts, and 3.3 volts provided by POLs 22, 24, and 26, respectively. It should be appreciated that the voltage levels described herein are entirely exemplary, and that other voltage levels could be selected to suit the particular needs of electronic circuits on the printed circuit board 14. By locating the POLs 22, 24, 26 close to their corresponding electronic circuits, the length of the low voltage, high current lines on the printed circuit board 14 are minimized. Moreover, the intermediate power bus can be adapted to carry relatively low current,
thereby minimizing power loss due to the line impedance. But, this distributed power delivery system does not provide a way to monitor and control the performance of the POLs 22, 24, 26.

Fig. 2 illustrates a prior art DC/DC converter control system having a power supply controller 32 and a plurality of DC/DC converters 34, 36, 38, and 42. The DC/DC converters 34, 36, 38, and 42 are each connected to a power bus (as described above with respect to Fig. 1), which provides an input voltage. The DC/DC converters 34, 36, 38, and 42 each provide a low voltage, high current output that passes through respective sensing resistors 46, 52, 56, and 62 and respective switches 48, 54, 58, and 64. The controller 32 provides control signals to the DC/DC converters 34, 36, 38, and 42 via a plurality of six-bit parallel buses that each carry an enable/disable bit and five VID code bits. The VID code bits program the DC/DC converters for a desired output voltage/current level. The controller 32 also monitors the performance of the DC/DC converters 34, 36, 38, and 42 using the sensing resistors 46, 52, 56, and 62. Particularly, the controller 32 monitors the output voltage of each DC/DC converter by detecting the voltage at the output side of the sensing resistor, and monitors the output current through the sensing resistor by detecting the voltage across the sensing resistor. The voltage and current sensing for each DC/DC converter requires two separate lines, so eight separate lines are needed to sense the voltage and current condition of the exemplary four-converter system. Moreover, the controller 32 has a switch enable line connected to the gate terminals of switches 48, 54, 58, and 64, by which the controller 32 can shut off the output from any of the DC/DC controllers 34, 36, 38, and 42 or control the turn-on/off slew rate.

In an exemplary operation, the controller 32 provides control parameters (e.g., output voltage set-point) to the DC/DC converter 34 via the VID code portion of the six-bit parallel bus. The controller 32 then activates the DC/DC converter 34 via the enable/disable portion of the six-bit parallel bus. Once activated, the DC/DC converter 34 converts the power bus voltage (e.g., 48 volts) into a selected output voltage. The controller 32 then verifies that the output voltage is the desired voltage by measuring
the voltage via the voltage monitoring line. If the output voltage is within an acceptable
range, it is provided to the load (not shown) by activating the switch 48 via the switch
enable line. The controller 32 can then continuously monitor the output voltage and the
output current produced by the DC/DC converter 34 by measuring the output voltage via
the voltage monitoring line and measuring the voltage drop across the sensing resistor
(i.e., the voltage differential between the current monitoring line and the voltage
monitoring line). If the controller 32 detects a fault condition of the DC/DC converter 34
(e.g., output voltage drops below a specific threshold), the controller 32 can disable and
reset the DC/DC converter. The controller 32 communicates with the other DC/DC
converters 36, 38, and 42 in the same manner.

A disadvantage with the control system of Fig. 2 is that it adds complexity and
size to the overall electronic system by using a six-bit parallel bus to control each
DC/DC converter and a separate three-line output connection to monitor the
performance of each DC/DC converter. In other words, the controller 32 utilizes thirty-
six separate connections in order to communicate with four DC/DC converters 34, 36,
38, and 42. As the complexity and power requirements of electronic systems increase,
the number of connections to the controller will also increase in a linear manner.

Referring now to Fig. 3, a POL control system 100 is shown in accordance with
an embodiment of the present invention. Specifically, the POL control system 100
includes a system controller 102, a front-end regulator 104, and a plurality of POL
regulators 106, 108, 110, 112, and 114 arranged in an array. The POL regulators
depicted herein include, but are not limited to, point-of-load regulators, power-oπ-load
regulators, DC/DC converters, voltage regulators, and all other programmable voltage
or current regulating devices generally known to those skilled in the art. An intra-device
interface is provided between individual ones of the POL regulators to control specific
interactions, such as current share or paralleling, e.g., current share interface (CS1)
provided between POLO 106 and POL1 108, and CS2 provided between POL4 112 and
POLn 114. In the exemplary configuration shown in Fig. 3, POLO 106 and POL1 108
operate in parallel mode to produce output voltage \( V_{OI} \) with increased current capability,
POL2 110 produces output voltage V02, and POL4 112 and POLn 114 operate in parallel mode to produce output voltage V03, though it should be appreciated that other combinations and other numbers of POL regulators could be advantageously utilized.

The front-end regulator 104 provides an intermediate voltage to the plurality of POL regulators over an intermediate voltage bus, and may simply comprise another POL regulator. The system controller 102 and front-end regulator 104 may be integrated together in a single unit, or may be provided as separate devices. Alternatively, the front-end regulator 104 may provide a plurality of intermediate voltages to the POL regulators over a plurality of intermediate voltage buses. The system controller 102 may draw its power from the intermediate voltage bus.

The system controller 102 communicates with the plurality of POL regulators by writing and/or reading digital data (either synchronously or asynchronously) via a uni-directional or bi-directional serial bus, illustrated in Fig. 3 as the synch/data bus. The synch/data bus may comprise a two-wire serial bus (e.g., I2C) that allows data to be transmitted asynchronously or a single-wire serial bus that allows data to be transmitted synchronously (i.e., synchronized to a clock signal). In order to address any specific POL in the array, each POL is identified with a unique address, which may be hardwired into the POL or set by other methods. The system controller 102 also communicates with the plurality of POL regulators for fault management over a second uni-directional or bi-directional serial bus, illustrated in Fig. 3 as the OK/fault bus. By grouping plural POL regulators together by connecting them to a common OK/fault bus allows the POL regulators have the same behavior in the case of a fault condition. Also, the system controller 102 communicates with a user system via a user interface bus for programming, setting, and monitoring of the POL control system 10. Lastly, the system controller 102 communicates with the front-end regulator 104 over a separate line to disable operation of the front-end regulator.

An exemplary POL regulator 106 of the POL control system 10 is illustrated in greater detail in Fig. 4. The other POL regulators of Fig. 3 have substantially identical configuration. The POL regulator 106 includes a power conversion circuit 142, a serial
interface 144, a POL controller 146, default configuration memory 148, and hardwired settings interface 150. The power conversion circuit 142 transforms an input voltage \( V_i \) to the desired output voltage \( V_o \) according to settings received through the serial interface 144, the hardwired settings interface 150 or default settings. The power conversion circuit 142 may also include monitoring sensors for output voltage, current, temperature and other parameters that are used for local control and also communicated back to the system controller through the serial interface 144. The power conversion circuit 142 may also generate a Power Good (PG) output signal for stand-alone applications in order to provide a simplified monitoring function. The serial interface 144 receives and sends commands and messages to the system controller 102 via the synch/data and OK/fault serial buses. The default configuration memory 148 stores the default configuration for the POL regulator 106 in cases where no programming signals are received through the serial interface 144 or hardwired settings interface 150. The default configuration is selected such that the POL regulator 106 will operate in a "safe" condition in the absence of programming signals.

The hardwired settings interface 150 communicates with external connections to program the POL regulator without using the serial interface 144. The hardwired settings interface 150 may include as inputs the address setting (Addr) of the POL to alter or set some of the settings as a function of the address (i.e., the identifier of the POL), e.g., phase displacement, enable/disable bit (En), trim, and VID code bits. Further, the address identifies the POL regulator during communication operations through the serial interface 144. The trim input allows the connection of one or more external resistors to define an output voltage level for the POL regulator. Similarly, the VID code bits can be used to program the POL regulator for a desired output voltage/current level. The enable/disable bit allows the POL regulator to be turned on/off by toggling a digital high/low signal.

The POL controller 146 receives and prioritizes the settings of the POL regulator. If no settings information is received via either the hardwired settings interface 150 or the serial interface 144, the POL controller 146 accesses the parameters stored in the...
default configuration memory 148. Alternatively, if settings information is received via the hardwired settings interface 15G, then the POL controller 146 will apply those parameters. Thus, the default settings apply to all of the parameters that cannot be or are not set through hard wiring. The settings received by the hardwired settings interface 150 can be overwitten by information received via the serial interface 144. The POL regulator can therefore operate in a stand-alone mode, a fully programmable mode, or a combination thereof. This programming flexibility enables a plurality of different power applications to be satisfied with a single generic POL regulator, thereby reducing the cost and simplifying the manufacture of POL regulators.

An exemplary system controller 102 of the POL control system 100 is illustrated in Fig. 5. The system controller 102 includes a user interface 122, a POL interface 124, a controller 126, and a memory 128. The user interface 122 sends and receives messages to/from the user (or host) via the user interface bus. The user interface bus may be provided by a serial or parallel bi-directional interface using standard interface protocols, e.g., an I²C interface. User information such as monitoring values or new system settings would be transmitted through the user interface 122. The communication with the user (or host) may be direct or via a local area network (LAN) or wide area network (WAN). A user may access the POL control systems for purposes of monitoring, controlling and/or programming the POL control systems by coupling directly to the user interface bus. The user system would likely include a user interface, such as a graphical user interface (GUI), that enables the display of status information regarding the POL control systems.

The POL interface 124 transforms data to/from the POL regulators via the synch/data and OK/fault serial buses. The POL interface 124 communicates over the synch/data serial bus to transmit setting data and receive monitoring data, and communicates over the OK/fault serial bus to receive interrupt signals indicating a fault condition in at least one of the connected POL regulators. The memory 128 comprises a non-volatile memory storage device used to store the system set-up parameters (e.g., output voltage, current limitation set-point, timing data, etc.) for the POL regulators.
connected to the system controller 102. Optionally, a secondary, external memory 132 may also be connected to the user interface 122 to provide increased memory capacity for monitoring data or setting data.

The controller 126 is operably connected to the user interface 122, the POL interface 124, and the memory 128. The controller 126 has an external port for communication a disable signal (FE DIS) to the front-end regulator 104. At start-up of the POL control system 100, the controller 126 reads from the internal memory 128 (and/or the external memory 132) the system settings and programs the POL regulators accordingly via the POL interface 124. Each of the POL regulators is then set up and started in a prescribed manner based on the system programming. During normal operation, the controller 126 decodes and executes any command or message coming from the user or the POL regulators. The controller 126 monitors the performance of the POL regulators and reports this information back to the user through the user interface 122. The POL regulators may also be programmed by the user through the controller 126 to execute specific, autonomous reactions to faults, such as over current or over voltage conditions. Alternatively, the POL regulators may be programmed to only report fault conditions to the system controller 102, which will then determine the appropriate corrective action in accordance with predefined settings, e.g., shut down the front-end regulator via the FE DIS control line.

A monitoring block 130 may optionally be provided to monitor the state of one or more voltage or current levels of other power systems not operably connected to the controller 102 via the synch/data or OK/fault buses. The monitoring block 130 may provide this information to the controller 126 for reporting to the user through the user interface in the same manner as other information concerning the POL control system 100. This way, the POL control system 100 can provide some backward compatibility with power systems that are already present in an electronic system.

Returning to Fig. 3, the system controller 102 is adapted to provide initial-configuration data to each POL regulator (*i.e.*, 106, 108, 110, 112, 114). It should be appreciated that the initial-configuration data may include, but is not limited to, one or
more of the following types of data: output-voltage-set-point-data (i.e., a desired output voltage); output-current-set-point data (i.e., the highest desired output current); low-voltage-limit data (i.e., the lowest desired output voltage); high-voltage-limit data (i.e., the highest desired output voltage); output-voltage-slew-rate data (i.e., the desired output slew rate); enable/disable data (i.e., turning on/off the POL regulator output); timing data (e.g., turn-on delay, turn-off delay, fault recovery time, etc.) and/or all other types of POL programming data generally known to those skilled in the art. Once the initial-configuration data is received, the POL controller 146 (see Fig. 4) is adapted to store at least a portion of the initial-configuration data in memory. At least a portion of the stored initial-configuration data is then used to produce a desired output. For example, an output may be produced to include a particular voltage level, a particular slew rate, etc., depending on the type of initial-configuration data received/stored.

After the output has been produced, the POL controller 146 is adapted to receive fault-monitoring data (e.g., from an external device, a sense circuit, etc.). The fault-monitoring data, which contains information on the POL regulator or its output, is then stored in the memory. The POL controller 146, in response to a condition (e.g., receiving a request, exceeding a known parameter, having a register's contents change, etc.), is then adapted to provide at least a portion of the fault-monitoring data to the system controller 102. It should be appreciated that the fault-monitoring data may include, but is not limited to, one or more of the following types of data: output-voltage data, which may include actual-output-voltage data (i.e., the measured output voltage) or voltage-comparison data (e.g., whether the measured output voltage is above or below the highest desired output voltage, whether the measured output voltage is above or below the lowest desired output voltage, etc.); output-current data, which may include actual-output-current data (i.e., the measured output current) or current-comparison data (e.g., whether the measured output current is above or below the highest desired output current); temperature-status data, which may include actual-temperature data (i.e., the measured temperature of a POL regulator, or more particularly its heat generating components) or temperature-comparison data (e.g., whether the
temperature of the POL regulator (or its components) is above or below a known value, etc.), and/or all other types of POL fault monitoring data generally known to those skilled in the art. It should also be appreciated that fault-monitoring data is not limited to data representing the existence of a faulty condition. For example, fault-monitoring data that indicates that the POL regulator is operating within acceptable parameters (e.g., within an acceptable temperature range) is considered to be within the spirit and scope of the present invention.

The fault-monitoring data can be used by either the system controller 102 or the POL controller 146 to monitor and/or control the POL regulator. In other words, the POL controller 146 can use the fault-monitoring data to either provide POL status information (i.e., data corresponding to a particular POL regulator or its output) to the system controller 102 or disable the POL regulator if a particular condition is met (e.g., the status register changes, the temperature limit has been exceeded, etc.). Alternatively, the system controller 102 can use the fault-monitoring data to either provide POL status information to an administrator, disable a particular POL regulator, or store the fault-monitoring data for future use. For example, in one embodiment of the present invention, each POL regulator includes unique IO data (e.g., serial number, date of manufacture, etc.) stored in an ID register. This enables the system controller 102 to provide POL status information and unique ID data to an administrator.

In another embodiment of the present invention, each POL regulator further includes at least one sensor circuit. The sensor circuit is used to produce either the fault-monitoring data, or data that can be used (e.g., together with information stored in the memory) to produce the fault-monitoring data. It should be appreciated that the sensor circuit, as described herein, will vary (e.g., as to circuitry, location, inputs, etc.) depending upon the type of information that is being detected. For example, a sensor circuit that detects current may include different circuitry, have different inputs, and be placed in a different location than a sensor circuit that detects temperature.

The POL control system 10 enables four different modes of operation. In the first operational mode, the POL regulators function independently in the absence of a
system controller and without interaction with other POL regulators. The POL regulators each include local feedback and control systems to regulate their own performance as well as control interfaces to enable local programming. The POL regulators further include default settings in which they can revert to in the absence of local programming or data from the system controller. In other words, each of the POL regulators can operate as a standalone device without the need for a system controller or interactions with another POL regulator.

In the second operational mode, the POL regulators interoperate for the purpose of current sharing or interleaving in the absence of a system controller. The POL regulators communicate with each other over the current share interface. The synch/data line may be used to communicate synchronization information to permit phase interleaving of the POL regulators, in which the phase is programmed locally by entering an address through hardwired connections. In either the first or second modes of operation, there would generally be information communicated between the POL regulators except for synchronization; there would be no need to communicate programming information.

In the third operational mode, the POL regulators operate as an array in which the behavior of each POL regulator and the array as a whole are coordinated by a system controller. The system controller programs the operation of each of the POL regulators over the synch/data serial bus, and thereby overrides the predetermined settings of the POL regulators. The synch/data serial bus is further used to communicate synchronization information to permit synchronization and interleaving of the POL regulators. This operational mode would not include interdevice communications over the current share interface.

Lastly, the fourth operational mode includes both central control using the system controller and local control over certain functionality. This way, the POL regulators operate as an array coordinated by a system controller and also interoperate with each other to perform functions such as current sharing.
An alternative embodiment of the invention is illustrated in Fig. 6. In this embodiment, the POL control system may additionally include a plurality of auxiliary devices, such as exemplary LDOs 240, 250. The auxiliary devices would typically have less network capability and/or intelligence than the POL regulators, and may in some cases only be responsive to basic level (e.g., enable/disable) commands. The alternative POL control system includes a system controller 202, and a plurality of POL regulators 106, 108. The system controller 202 would monitor and control operation of the auxiliary devices in conjunction with the POL regulators to thereby provide a systems-level solution. The system controller 202 would be generally similar in construction to the system controller 102 discussed above with respect to Fig. 3. It should be appreciated that Fig. 6 illustrates differences from the embodiment of Fig. 3, while omitting other details for the sake of simplicity.

The alternative POL control system further includes an auxiliary device control system 230, which further includes plural auxiliary device controllers 232, 234. It should be appreciated that a separate auxiliary device controller may be associated with each individual auxiliary device under control. The auxiliary device control system 230 may be part of the system controller 202 (e.g., integrated into the same circuitry or semiconductor devices), or may be provided as a separate physical component of the POL control system.

The auxiliary device controllers 232, 234 further include a respective interface 232a, set-up registers 232b, and on-off and monitoring logic 232c. The interface 232a is adapted to communicate with the other elements of the POL control system via the synch/data bus. The system controller 202 includes an interface 224 that transforms data to/from the POL regulators via the synch/data and OK/fault serial buses. The interface 224 communicates over the synch/data serial bus to transmit setting data and receive monitoring data, and communicates over the OK/fault serial bus to receive interrupt signals indicating a fault condition in at least one of the connected POL regulators. The interface 232a is coupled to the synch/data bus to exchange the same types of data with the auxiliary devices. As discussed above, the synch/data bus may
be a single wire or two-wire communication bus (e.g., \( I^2C \)) suitable to send and receive information between plural devices.

The set-up registers 232b define the operating parameters of the auxiliary devices. These registers 232b comprise a memory used to store the system set-up parameters (e.g., turn-on delay, turn-off delay, polarity of input/output signals (i.e., active low or high configuration), fault configuration, group membership, etc.) for the auxiliary devices. The data values loaded into the set-up registers 232b may be provided by the system controller through the synch/data bus.

The on-off and monitoring logic 232c provides a direct interface with the auxiliary devices. In particular, the logic 232c provides enable and disable commands to the auxiliary device in response to the values of the set-up registers 232b as well as commands received via the synch/data bus. For example, the on-off logic 232c will provide an enable command to the auxiliary device in accordance with timing data (e.g., turn-on delay) defined in the set-up registers 232b. The auxiliary devices will provide a responsive monitoring signal, such as a power good signal, reflecting the operating status of the auxiliary device. The monitoring logic 232c will then communicate this status information back to the system controller 226, such as via the synch/data bus. It should be appreciated that other types of commands to the auxiliary device and other types of status monitoring information from the auxiliary device could be utilized, depending upon the particular system needs and application for the auxiliary devices. Thus, the system controller 226 can control and monitor non-POL devices in the same manner in which it controls and monitor POL devices.

The auxiliary device controller 232 may be identified with a unique address. The address may be hardwired into the auxiliary device controller or set by other methods. The system controller 202 may use the address within data messages communicated to the auxiliary devices via the synch/data bus. Alternatively, the auxiliary device controller 232 may be addressed directly by the system controller 226 to alter or set some of the settings as a function of the address (i.e., the identifier of the auxiliary device). The
auxiliary device controller 232 may also be addressed directly by a user or host, or hardwired, without having to go through the system controller 226.

Fig. 7 illustrates a screen shot of an exemplary graphical user interface (GUI) used to program the operation of auxiliary devices in accordance with the embodiment of Fig. 6. As discussed above, a user may access the POL control systems for purposes of monitoring, controlling and/or programming the POL control systems by coupling directly to the user interface bus via the system controller 226. The user system would likely include a GUI that enables the display of status information regarding the POL control systems. The GUI of Fig. 7 displays graphically the turn-on/off delay for the auxiliary devices as well as the POL regulators.

In particular, a timeline graph is included that shows an amount of time in milliseconds following a turn-on/off time (i.e., time 0). At the top of the graph, an on/off line shows a positive step function occurring at time 0 (i.e., turn-on time), and the time line resetting to time 0 with a negative step function (i.e., turn-off time). Activation waveforms for two exemplary auxiliary devices (i.e., Aux 1, Aux 2) show similar step functions that are offset from each time 0, reflecting a turn-on delay and a turn-off delay. Aux 1 shows a turn-on delay of approximately 25 milliseconds, and a turn-off delay of approximately 10 milliseconds. Similarly, Aux 2 shows a turn-on delay of approximately 100 milliseconds, and a turn-off delay of approximately 10 milliseconds. The graph also shows turn-on and turn-off delays for POL regulators. A slidable tool bar at the bottom left enables a user to adjust the magnitude of the turn-on and turn-off delays using a suitable pointing device. Buttons along the right side of the GUI enable the user to apply the programmed turn-on and turn-off delays to an individual auxiliary device, or to all auxiliary devices of a designated group, or to all auxiliary devices of the entire board.

It should be appreciated that the GUI of Fig. 7 could be adapted to program other parameters of the auxiliary devices. Once the user has completed the programming, appropriate data values are loaded into the appropriate set-up registers within the corresponding auxiliary device controller, as discussed above.
It should be appreciated that a similar GUI may also be used to monitor performance of the auxiliary devices. A user may access the GUI via the user interface to the system controller, and view a graphic showing the operational status of the auxiliary devices as well as the POL regulators. In the event of a fault condition, for example, the user may be able to use the GUI to alter the operation of the POL control system by selectively turning off auxiliary devices and/or POL-regulators, changing their sequencing or grouping, and taking other corrective measures.

Having thus described a preferred embodiment of a method and system to control and monitor an array of DC/DC power converters and auxiliary devices, it should be apparent to those skilled in the art that certain advantages of the system have been achieved. It should also be appreciated that various modifications, adaptations, and alternative embodiments thereof may be made within the scope and spirit of the present invention. The invention is further defined by the following claims.
CLAIMS

What is Claimed is:

1. A power control system comprising:
   at least one point-of-load (POL) regulator adapted to provide an output voltage to a corresponding load;
   at least one auxiliary device providing a corresponding function; and
   a system controller operatively connected to said at least one POL regulator and to said at least one auxiliary device via a common serial data bus and adapted to send programming data for said at least one POL regulator and said at least one auxiliary device via the serial data bus.

2. The power control system of Claim 1, further comprising a second serial data bus carrying fault management information between said system controller and said at least one POL regulator and said at least one auxiliary device.

3. The power control system of Claim 1, further comprising a front-end regulator providing an intermediate voltage to said at least one POL regulator on an intermediate voltage bus.

4. The power control system of Claim 3, wherein said front-end regulator is combined with said system controller in a single device.

5. The power control system of Claim 1, wherein said system controller further comprises a user interface adapted to communicate said programming data from a user to the at least one POL regulator and at least one auxiliary device.
6. The power control system of Claim 5, further comprising a graphical user interface operatively coupled to the user interface, the graphical user interface adapted to enable user generation of said programming data.

7. The power control system of Claim 1, wherein said at least one POL regulator each further comprises a power conversion circuit adapted to transform said intermediate voltage to a desired output voltage.

8. The power control system of Claim 1, wherein said at least one auxiliary device each further comprises a unique address.

9. The power control system of Claim 8, wherein the system controller includes the unique address with the programming data sent via the serial data bus.

10. The power control system of Claim 1, wherein said at least one auxiliary device comprises at least one of a power regulation device, a switching device, a motor control device, a temperature control device, a visual indicator device, and a peripheral device.

11. The power control system of Claim 10, wherein said at least one auxiliary device further comprises a linear regulator.

12. The power control system of Claim 11, wherein said at least one auxiliary device further comprises a low drop-out (LDO) linear regulator.

13. The power control system of Claim 1, further comprising at least one auxiliary device controller operatively coupled between the at least one auxiliary device and said serial data bus.
14. The power control system of Claim 13, wherein the at least one auxiliary device controller is integrated with the system controller.

15. The power control system of Claim 13, wherein the at least one auxiliary device controller is external to the system controller.

16. The power control system of Claim 13, wherein the at least one auxiliary device controller further comprises at least one register adapted to store the programming data.

17. The power control system of Claim 1, wherein the programming data includes at least one of turn-on delay, turn-off delay, polarity of input/Output signals, fault configuration, and group membership.

18. The power control system of Claim 13, wherein the at least one auxiliary device controller is further adapted to receive monitoring data from the at least one auxiliary device, the at least one auxiliary device controller communicating the monitoring data to the system controller via the serial data bus.

19. The power control system of Claim 1, wherein the serial data bus further comprises an I²C bus.

20. The power control system of Claim 1, wherein the serial data bus further comprises a two-wire bus.

21. The power control system of Claim 1, wherein the serial data bus further comprises a single wire bus.
22. A method of operating a power control system, comprising:
   generating programming parameters for at least one point of load (POL) regulator and at least one auxiliary device;
   transmitting programming data based on said programming parameters serially over a common data bus operatively connected to said at least one POL regulator and said at least one auxiliary device; and
   operating said at least one POL regulator and said at least one auxiliary device in accordance with the programming data.

23. The method of Claim 22, wherein said generating step further comprises receiving the programming parameters from a user.

24. The method of Claim 23, further comprising generating the programming parameters using a graphical user interface.

25. The method of Claim 22, further comprising storing the programming data in a memory contained in said at least one POL regulator and said at least one auxiliary device.

26. The method of Claim 22, further comprising storing the programming data in a memory contained in a system controller operatively coupled to said at least one POL regulator and said at least one auxiliary device.

27. The method of Claim 22, wherein the programming data includes at least one of turn-on delay, turn-off delay, polarity of input/output signals, fault configuration, and group membership.

28. The method of Claim 22, further comprising assigning a unique address to the at least one auxiliary device.
29. The method of Claim 28, further comprising including the unique address with the programming data to identify the at least one auxiliary device.

30. The method of Claim 22, further comprising generating monitoring data regarding operating status of the at least one POL regulator and the at least one auxiliary device, and transmitting the monitoring data serially over the common data bus.

31. The method of Claim 30, further comprising monitoring the monitoring data using a graphical user interface.
FIG. 4

FIG. 5