wo 2016/153714 A1 [N 0000 000000

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/153714 A1l

29 September 2016 (29.09.2016) WIPO I PCT
(51) International Patent Classification: 92121 (US). CHAUHAN, Ramesh, Chandra; 5775 More-
GO6F 9/38 (2006.01) house Drive, San Diego, California 92121 (US).
(21) International Application Number: (74) Agent: TERRANOVA, Steven, N.; Withrow & Tetrran-
PCT/US2016/019518 ova, PLLC, 106 Pinedale Springs Way, Cary, North Caro-
. . lina 27511 (US).
(22) International Filing Date:
25 February 2016 (25.02.2016) (81) Designated States (unless otherwise indicated, for every
. . kind of national protection available). AE, AG, AL, AM,
(25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(30) Priority Data: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
62/135,738 20 March 2015 (20.03.2015) us KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
14/743,198 18 June 2015 (18.06.2015) Us MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
(71) Applicant: QUALCOMM INCORPORATED [US/US]; PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
ATTN: International IP Administration, 5775 Morehouse SD, SE, SG, SK, SL, SM, ST, SV, Y, TH, TJ, TM, TN,
Drive, San Diego, California 92121-1714 (US). IR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(72) Inventors: CHATHA, Karamvir, Singh; 5775 More- (84) Designated States (uniess otherwise indicated, for every

house Drive, San Diego, California 92121 (US). YEN,
Kevin, Weikong; 5775 Morehouse Drive, San Diego, Cali-
fornia 92121 (US). OH, Rick, Seokyong; 5775 Morehouse
Drive, San Diego, California 92121 (US). DANIELS,
John, Paul; 5775 Morchouse Drive, San Diego, California
92121 (US). HOWARD, Michael, Alexander; 5775
Morehouse Drive, San Diego, California 92121 (US).
PEREZ, Francisco, Miranda; 5775 Morehouse Drive,
San Diego, California 92121 (US). ARVELO, Eladio,
Clemente; 5775 Morehouse Drive, San Diego, California

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: RESERVATION STATION CIRCUIT FOR EXECUTION OF LOOP INSTRUCTIONS BY OUT-OF-ORDER PRO-
CESSOR, AND RELATED METHOD, AND COMPUTER-READABLE MEDIA

INSTRUCTION |

B UNTHZ) |

INPUT

GOP (106)

COMMUNICATIONS |

BUS (130)

1

138
6 10 N

Py RO

i
i 163

‘i 164

g oo
7

v by
STREAMRSE| | COMPU
(154

CHANNEL
w8
{108)

RES
O
gl Y
I H

H H
RS§ i
2400 |

1]
(9

ERSB

RS
(126

o)

i RSS
|28

188,

170

162 LOAD RSB

{118)

RSS 1120 |

DATAFLOW %oy |
a
H

HONITOR {142)
b

RS8
(128(z}}

472

RESERVATION STATION CIRCUIT (102}

144,
FUNCTIONAL

1i4
UNI(S) (142)
146

158

COMMUN;

o
BT

CATIONS |

BUS {156)

FiG. 1

(57) Abstract: Providing lower-overhead management of dataflow execution of loop instructions by out-of-order processors
(OOPs), and related circuits, methods, and computer-readable media are disclosed. In one aspect, a reservation station circuit includ -
ing multiple reservation station segments, each storing a loop instruction of a computer program loop is provided. Each reservation
station segment also stores an instruction execution credit indicator indicative of whether the corresponding loop instruction may be
provided for dataflow execution. The reservation station circuit further includes a datatflow monitor providing an entry for each loop
instruction, each entry comprising a consumer count indicator and a reservation station (RS) tag count indicator. The dataflow mon -
itor is configured to determine whether all consumer instructions of a loop instruction have executed based on the consumer count
indicator and the RS tag count indicator for the loop instruction. If so, the dataflow monitor issues an instruction execution credit to
the loop instruction.

WO 2016/153714 A1 WK 00N 0 0 0 A

Declarations under Rule 4.17: Published:

— as to applicant’s entitlement to apply for and be granted — with international search report (Art. 21(3))
a patent (Rule 4.17(ii))

— as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

WO 2016/153714 PCT/US2016/019518

RESERVATION STATION CIRCUIT FOR EXECUTION OF LOOP INSTRUCTIONS BY OUT-OF-
ORDER PROCESSOR, AND RELATED METHOD, AND COMPUTER-READABLE MEDIA

PRIORITY APPLICATIONS
[0001] The present application claims priority to U.S. Provisional Patent
Application Serial No. 62/135,738 filed on March 20, 2015 and entitled “PROVIDING
LOWER-OVERHEAD MANAGEMENT OF DATAFLOW EXECUTION OF LOOP
INSTRUCTIONS BY OUT-OF-ORDER PROCESSORS (OOPS), AND RELATED
CIRCUITS, METHODS, AND COMPUTER-READABLE MEDIA,” the contents of

which is incorporated herein by reference in its entirety.

[0002] The present application also claims priority to U.S. Patent Application Serial
No. 14/743,198 filed on June 18, 2015 and entitled “PROVIDING LOWER-
OVERHEAD MANAGEMENT OF DATAFLOW EXECUTION OF LOOP
INSTRUCTIONS BY OUT-OF-ORDER PROCESSORS (OOPs), AND RELATED
CIRCUITS, METHODS, AND COMPUTER-READABLE MEDIA,” the contents of

which is incorporated herein by reference in its entirety.

BACKGROUND
I. Field of the Disclosure

[0003] The technology of the disclosure relates generally to dataflow execution of

loop instructions by out-of-order processors (OOPs).

II. Background
[0004] Many modern processors are out-of-order processors (OOPs) that are
capable of dataflow execution of program instructions. Using a dataflow execution
approach, the execution order of program instructions by an OOP may be determined by
the availability of input data for each program instruction (“dataflow order”), rather than
the program order of the program instructions. Thus, the OOP may execute a program
instruction as soon as all input data for the program instruction has been generated,
which may result in performance gains. For example, instead of having to “stall” (i.e.,

intentionally introduce a processing delay) while input data is retrieved for an older

WO 2016/153714 PCT/US2016/019518

program instruction, the OOP may proceed with executing a more recently fetched
instruction that is able to execute immediately. In this manner, processor clock cycles
that would otherwise be wasted may be productively utilized by the OOP.

[0005] A conventional OOP may employ an instruction window, which designates a
set of program instructions that may be executed out of order. When execution of a
program instruction within the instruction window is complete, the results of the
execution may be “committed,” or made non-speculative, and the program instruction
may be retired from the instruction window to make room for a new program instruction
for execution. However, in some circumstances, the eviction of program instructions
from the instruction window may result in inefficient operation of the OOP. For
example, if the program instructions are part of a loop, the same program instructions
may be executed repeatedly over multiple loop iterations. Consequently, the program
instructions may be fetched, executed, and retired repeatedly from the instruction
window as the loop executes.

[0006] Performance of an OOP in the circumstances described above may be
improved through the use of reservation station segments. A reservation station
segment is an OOP microarchitecture feature that may store a program instruction along
with related information required for execution, such as operands. The OOP may load
each program instruction associated with a loop into a corresponding reservation station
segment. FEach reservation station segment may be configured to hold a program
instruction for a specified number of loop iterations, rather than retiring the program
instruction before the loop has completed. When a reservation station segment
determines that all input data for its program instruction is available, the reservation
station segment provides the program instruction and its input data to a processor for
execution. Only after the loop has completed all iterations are the program instructions
associated with the loop retired from the corresponding reservation station segments.
[0007] One issue that arises with the use of reservation station segments is
managing the production of input data for program instructions with respect to
consumption of the input data. If a rate at which a producer instruction generates data is
greater than a rate at which a consumer instruction can utilize the data as input, the data

may be lost. Alternatively, the use of additional storage or buffer mechanisms may be

WO 2016/153714 PCT/US2016/019518

required, which may be expensive in terms of processor cycles and/or power

consumption.

SUMMARY OF THE DISCLOSURE

[0008] Aspects disclosed in the detailed description include providing lower-
overhead management of dataflow execution of loop instructions by out-of-order
processors (OOPs). Related circuits, methods, and computer-readable media are also
disclosed. In this regard, in one aspect, a reservation station circuit for managing
dataflow execution of loop instructions in an OOP is provided. The reservation station
circuit comprises a plurality of reservation station segments. Each reservation station
segment includes a loop instruction register configured to store a loop instruction. Each
reservation station segment further includes an instruction execution credit indicator
configured to store an instruction execution credit indicative of whether the loop
instruction may be provided for dataflow execution. The reservation station circuit
further comprises a dataflow monitor comprising a plurality of entries corresponding to
the loop instructions of the plurality of reservation station segments. Each entry of the
plurality of entries comprises a consumer count indicator indicative of a number of
consumer instructions of a corresponding loop instruction, and a reservation station
(RS) tag count indicator indicative of a number of executions of the consumer
instructions. The dataflow monitor is configured to determine whether all of the
consumer instructions of a first loop instruction have executed based on the consumer
count indicator and the RS tag count indicator for the first loop instruction. The
dataflow monitor is further configured to, responsive to determining that all of the
consumer instructions of the first loop instruction have executed, issue an instruction
execution credit to a reservation station segment of the first loop instruction. By
tracking the execution of consumer instructions and issuing an instruction execution
credit to a loop instruction when all consumer instructions of the loop instruction have
executed, the dataflow monitor may enable management of dataflow execution of loop
instructions without incurring additional overhead, such as additional buffer space.

[0009] In another aspect, a method for managing dataflow execution of loop
instructions in an OOP is provided. The method comprises determining, by a dataflow

monitor, whether all consumer instructions of a first loop instruction have executed.

WO 2016/153714 PCT/US2016/019518

This determination is based on a consumer count indicator of the first loop instruction
indicative of a number of the consumer instructions of the first loop instruction, and an
RS tag count indicator of the first loop instruction indicative of a number of executions
of the consumer instructions The method further comprises, responsive to determining
that all of the consumer instructions of the first loop instruction have executed, issuing
an instruction execution credit to a reservation station segment corresponding to the first
loop instruction.

[0010] In another aspect, a non-transitory computer-readable medium is provided,
having stored thereon computer-executable instructions. When executed by a processor,
the computer-executable instructions cause the processor to determine whether all
consumer instructions of a first loop instruction have executed. This determination is
based on a consumer count indicator of the first loop instruction indicative of a number
of the consumer instructions of the first loop instruction, and an RS tag count indicator
of the first loop instruction indicative of a number of executions of the consumer
instructions. The computer-executable instructions further cause the processor to issue
an instruction execution credit to a reservation station segment corresponding to the first
loop instruction, responsive to determining that all of the consumer instructions of the

first loop instruction have executed.

BRIEF DESCRIPTION OF THE FIGURES

[0011] Figure 1 is a block diagram illustrating an exemplary out-of-order processor

(OOP) that includes a reservation station circuit managing dataflow execution of loop
instructions;

[0012] Figure 2 is a diagram illustrating an exemplary reservation station segment;
[0013] Figure 3 is a block diagram illustrating multiple reservation station segments
and the data dependencies between each reservation station segment;

[0014] Figure 4 is a block diagram illustrating entries provided by an exemplary
dataflow monitor for the reservation station segments of Figure 3 for tracking execution
of consumer instructions;

[0015] Figure 5 is a chart illustrating instruction execution credits and consumer
instruction counts for each reservation station segment of Figure 3 during an exemplary

loop execution;

WO 2016/153714 PCT/US2016/019518

[0016] Figures 6A-6B are flowcharts illustrating exemplary operations for
providing lower-overhead management of loop instructions in the exemplary OOP of
Figure 1; and

[0017] Figure 7 is a block diagram of an exemplary processor-based system that can

include the reservation station circuit of Figure 1.

DETAILED DESCRIPTION

[0018] With reference now to the drawing figures, several exemplary aspects of the
present disclosure are described. The word “exemplary” is used herein to mean
“serving as an example, instance, or illustration.” Any aspect described herein as
“exemplary” is not necessarily to be construed as preferred or advantageous over other
aspects.

[0019] Aspects disclosed in the detailed description include providing lower-
overhead management of dataflow execution of loop instructions by out-of-order
processors (OOPs). Related circuits, methods, and computer-readable media are also
disclosed. In this regard, in one aspect, a reservation station circuit for managing
dataflow execution of loop instructions in an OOP is provided. The reservation station
circuit comprises a plurality of reservation station segments. Each reservation station
segment includes a loop instruction register configured to store a loop instruction. Each
reservation station segment further includes an instruction execution credit indicator
configured to store an instruction execution credit indicative of whether the loop
instruction may be provided for dataflow execution. The reservation station circuit
further comprises a dataflow monitor comprising a plurality of entries corresponding to
the loop instructions of the plurality of reservation station segments. Each entry of the
plurality of entries comprises a consumer count indicator indicative of a number of
consumer instructions of a corresponding loop instruction, and a reservation station
(RS) tag count indicator indicative of a number of executions of the consumer
instructions. The dataflow monitor is configured to determine whether all of the
consumer instructions of a first loop instruction have executed based on the consumer
count indicator and the RS tag count indicator for the first loop instruction. The
dataflow monitor is further configured to, responsive to determining that all of the

consumer instructions of the first loop instruction have executed, issue an instruction

WO 2016/153714 PCT/US2016/019518

execution credit to a reservation station segment of the first loop instruction. By
tracking the execution of consumer instructions and issuing an instruction execution
credit to a loop instruction when all consumer instructions of the loop instruction have
executed, the dataflow monitor may enable management of dataflow execution of loop
instructions without incurring additional overhead, such as additional buffer space.
[0020] In this regard, Figure 1 is a block diagram of an OOP 100 configured to
provide lower-overhead management of out-of-order dataflow execution of program
instructions. In particular, the OOP 100 includes a reservation station circuit 102 for
managing dataflow execution of loop instructions. The OOP 100 may encompass any
one of known digital logic elements, semiconductor circuits, processing cores, and/or
memory structures, among other elements, or combinations thereof. Aspects described
herein are not restricted to any particular arrangement of elements, and the disclosed
techniques may be easily extended to various structures and layouts on semiconductor
dies or packages. While Figure 1 illustrates a single OOP 100, it is to be understood
that some aspects may provide multiple, communicatively coupled OOPs 100.

[0021] In some environments, an application program may be conceptualized as a
“pipeline” of kernels (i.e., specific areas of functionality), wherein each kernel operates
on a stream of data tokens passing through the pipeline. The OOP 100 of Figure 1 may
embody a programmable core for implementing the functionality of one or more
kernels, and for applying that functionality repeatedly to different sets of data streamed
to the OOP 100. To provide kernel functionality in an energy efficient manner, the
OOP 100 may provide a process feature referred to herein as “instruction re-
vitalization.” Instruction re-vitalization enables a set of program instructions to be
loaded together a single time into the OOP 100, and to be subsequently executed
multiple times without being retired or evicted from the OOP 100. In this manner, the
OOP 100 may execute the set of instructions iteratively on successive data items
streamed into the OOP 100. Instruction re-vitalization may thus reduce energy
consumption and improve processor performance of the OOP 100 by eliminating the
need for a multi-stage execution pipeline. Due to the iterative nature of programming
constructs such as loops, instruction re-vitalization may make the OOP 100 especially

suited for processing kernels comprising loop instructions.

WO 2016/153714 PCT/US2016/019518

[0022] The OOP 100 is organized into one or more reservation station blocks (also
referred to herein as “RSBs”), each of which may correspond to a general type of
program instruction. For example, a stream RSB 104 may handle instructions for
receiving data streams via a channel unit 106, as indicated by arrow 108. A compute
RSB 110 may handle instructions that access one or more functional units 112 (e.g., an
arithmetic logic unit (ALU) and/or a floating point unit) for carrying out computational
operations, as indicated by arrow 114. Results produced by instructions in the compute
RSB 110 may be consumed as input by other instructions in the compute RSB 110. A
load RSB 116 handles instructions for loading data from and outputting data to a data
store, such as a memory 118, as indicated by arrows 120 and 122. It is to be understood
that the OOP 100 may be organized into more than one of each of the stream RSB 104,
the compute RSB 110, and/or the load RSB 116. The stream RSB 104, the compute
RSB 110, and the load RSB 116 include one or more reservation station segments (also
referred to herein as “RSSs™) 124(0-X), 126(0-Y), and 128(0-Z), respectively. Each of
the reservation station segments 124(0-X), 126(0-Y), and 128(0-Z) stores a single
instruction, along with associated data required for dataflow execution of the resident
instruction.

[0023] In typical operation, an input communications bus 130 communicates
instructions for the kernel to be executed by the OOP 100 to an instruction unit 132 of
the OOP 100, as indicated by arrow 134. The instruction unit 132 then loads the
instructions into the one or more reservation station segments 124(0-X) of the stream
RSB 104 (as indicated by arrow 136), the one or more reservation station segments
126(0-Y) of the compute RSB 110 (as indicated by arrow 138), and/or the one or more
reservation station segments 128(0-Z) of the load RSB 116 (as indicated by arrow 140),
based on the instruction type. A dataflow monitor 142 may also receive initialization
data, such as a number of loop iterations to execute, as indicated by arrow 143.

[0024] The OOP 100 may then execute the resident instructions of the reservation
station segments 124(0-X), 126(0-Y), and/or 128(0-Z) in any appropriate order. As a
non-limiting example, the OOP 100 may execute the resident instructions of the
reservation station segments 124(0-X), 126(0-Y), and/or 128(0-Z) in a dataflow
execution order. The result (if any) produced by execution of each resident instruction

and an identifier for the resident instruction are broadcast by the reservation station

WO 2016/153714 PCT/US2016/019518

segments 124(0-X), 126(0-Y), and/or 128(0-Z), as indicated by arrows 144, 146, and
148, respectively. The reservation station segments 124(0-X), 126(0-Y), and/or 128(0-
7) then receive the broadcast data as input streams (as indicated by arrows 150, 152, and
154, respectively). The reservation station segments 124(0-X), 126(0-Y), and/or 128(0-
Z) may monitor the respective input streams indicated by arrows 150, 152, and 154 to
identify results from previously executed instructions that are required as input operands
(not shown). Once detected, the input operands may be stored, and after all required
operands are received, the resident instruction associated with the reservation station
segment 124(0-X), 126(0-Y), and/or 128(0-Z) may be provided for dataflow execution.
Loop instructions for a loop may thus be iteratively executed in a dataflow manner until
the dataflow monitor 142 detects that all iterations of the loop have completed. Data
may be streamed out of the OOP 100 to an output communications bus 156, as indicated
by arrow 158.

[0025] One issue that may arise with the OOP 100 of Figure 1 is management of the
production of input data for instructions with respect to consumption of the input data.
If producer instructions generate data at a rate exceeding that at which consumer
instructions can utilize the data as input, the data may be lost. This issue may be
mitigated through the use of intermediate storage or other buffering mechanisms for
input data, but at a cost of additional processor cycles and/or energy consumption.
[0026] In this regard, the reservation station circuit 102 of Figure 1 is provided. The
dataflow monitor 142 and the reservation station segments 124(0-X), 126(0-Y), and/or
128(0-Z) of the reservation station circuit 102 coordinate to provide a credit-based
system that determines when each instruction is allowed to execute at any given time
during a loop iteration. In particular, the dataflow monitor 142 of Figure 1 operates to
ensure that, during loop iterations, a loop instruction is permitted to execute (by, e.g.,
being issued an instruction execution credit) only if all of its consumer instructions have
completed execution. As used herein, a “consumer instruction” refers to a loop
instruction that depends on the output of a previous loop instruction (a “producer
instruction”) as input. A given loop instruction may thus be both a consumer instruction
and a producer instruction.

[0027] Each of the reservation station segments 124(0-X), 126(0-Y), and 128(0-Z)

is associated with an instruction execution credit indicator, discussed in greater detail

WO 2016/153714 PCT/US2016/019518

below with respect to Figure 2. In some aspects, each instruction execution credit
indicator may comprise a counter, and/or may be a flag and/or other state indicator. As
part of initialization of the kernel to be executed by the OOP 100, the dataflow monitor
142 may distribute an initial instruction execution credit 160 to each of the reservation
station segments 124(0-X), 126(0-Y), and 128(0-Z), as indicated by arrows 163, 164,
and 166, respectively. Each of the reservation station segments 124(0-X), 126(0-Y),
and 128(0-Z) makes execution of its associated resident loop instruction contingent on
the associated instruction execution credit indicator. Stated differently, the associated
resident loop instructions may be provided for execution by the reservation station
segments 124(0-X), 126(0-Y), and 128(0-Z) only if indicated by the corresponding
instruction execution credit indicator. In some aspects in which the instruction
execution credit indicator is a counter, the associated resident loop instruction may be
provided for execution only if a value of the instruction execution credit indicator is
greater than zero (0). In this manner, a producer instruction may be prevented from
executing until a consumer instruction is able to “catch up” by consuming the produced
input data.

[0028] The dataflow monitor 142 is configured to issue an additional instruction
execution credit 162 to each of the reservation station segments 124(0-X), 126(0-Y),
and 128(0-Z) when all consumer instructions for the associated resident loop instruction
have executed. To determine when the additional instruction execution credit 162 may
be distributed to the reservation station segments 124(0-X), 126(0-Y), and 128(0-Z), the
dataflow monitor 142 maintains entries (not shown) corresponding to each loop
instruction associated with the reservation station segments 124(0-X), 126(0-Y), and
128(0-7Z). Each entry includes a consumer count indicator (not shown), which is
indicative of a number of consumer instructions dependent on the output of the loop
instruction. Each entry further includes an RS tag count indicator (not shown), which
indicates a number of times that a consumer instruction of the loop instruction
corresponding to the entry has executed. As loop instructions of the reservation station
segments 124(0-X), 126(0-Y), and 128(0-Z) are executed, the dataflow monitor 142
receives one or more operand source RS tags (not shown) from the reservation station
segments 124(0-X), 126(0-Y), and 128(0-Z), as indicated by arrows 168, 170, and 172.

Each operand source RS tag identifies a reservation station segment 124(0-X), 126(0-

WO 2016/153714 PCT/US2016/019518

Y), and 128(0-Z) associated with a “producer” loop instruction that generates an
operand used by the loop instruction. The dataflow monitor 142 increments the RS tag
count indicator for the “producer” loop instruction corresponding to each operand
source RS tag to indicate that a consumer instruction of the “producer” loop instruction
has executed.

[0029] The dataflow monitor 142 may then evaluate the entries to determine
whether all consumer instructions for each loop instruction have executed by comparing
the consumer count indicator for each loop instruction to the corresponding RS tag
count indicator. If the consumer count indicator and the RS tag count indicator are
equal, the dataflow monitor 142 may conclude that all consumer instructions for the
loop instruction have executed. The dataflow monitor 142 may then reset the RS tag
count indicator for the loop instruction to zero (0), and issue an execution credit to the
reservation station segment 124(0-X), 126(0-Y), and 128(0-Z) of the loop instruction.
In this manner, the loop instruction may not be permitted to execute again until all of its
consumer instructions have executed. This may enable lower-overhead management of
dataflow execution of the loop instructions by, e.g., not requiring additional buffer
storage space to track different operand values for different loop iterations. Elements of
the entries stored by the dataflow monitor 142 are discussed in greater detail below with
respect to Figure 4, and exemplary operation of the dataflow monitor 142 for adjusting
the RS tag count indicator and issuing additional execution credits is discussed in
greater detail below with respect to Figure 5.

[0030] Aspects of the dataflow monitor 142, the stream RSB 104, the compute RSB
110, and/or the load RSB 116 may employ different techniques for detecting the
completion of a loop iteration. In some aspects, an RSB (i.e., one of the stream RSB
104, the compute RSB 110, and the load RSB 116) may maintain a count of instructions
that have executed during a loop iteration /. When the count of instructions executed
for the loop iteration / becomes equal to a number of instructions in the RSB, the RSB
communicates an end loop iteration [status (not shown) to the dataflow monitor 142.
Once the dataflow monitor 142 has received an end loop iteration / status from all
RSBs, the dataflow monitor 142 knows that all instructions for the loop iteration I have
finished execution. The dataflow monitor 142 may then issue an additional instruction

execution credit 162.

10

WO 2016/153714 PCT/US2016/019518

[0031] Some aspects may provide that each reservation station segment 124(0-X),
126(0-Y), and 128(0-Z) includes an end bit (not shown) that signifies whether each
resident instruction is a “leaf” instruction in a dataflow ordering of the instructions (i.e.,
an instruction on which there are no data dependencies). When all end flag instructions
have executed, a loop iteration has completed. Accordingly, each resident instruction
broadcasts its end flag upon execution. The dataflow monitor 142 maintains a count of
the number of end flag instruction executions for a particular loop iteration /, and the
total number of end flag instructions within the loop iteration /. Once the number of
end flag instruction executions for the loop iteration / becomes equal to the total number
of end flag instructions, the dataflow monitor 142 may conclude that all instructions for
the loop iteration I have completed execution. The dataflow monitor 142 may then
issue an additional instruction execution credit 162.

[0032] Figure 2 is a diagram illustrating elements of an exemplary reservation
station segment 200, such as one of the reservation station segments 124(0-X), 126(0-
Y), or 128(0-Z) of Figure 1. It is to be understood that the elements shown in Figure 2
are for illustrative purposes only, and that some aspects of the reservation station
segments 124(0-X), 126(0-Y), and/or 128(0-Z) of Figure 1 may include more or fewer
elements than shown in Figure 2.

[0033] The reservation station segment 200 of Figure 2 includes an RS tag 202,
which serves as a unique identifier for the reservation station segment 200. The
reservation station segment 200 also includes a loop instruction register 204, which
stores a loop instruction (“instr’”’) 206 associated with the reservation station segment
200. As a non-limiting example, the loop instruction 206 may be an instruction opcode.
In the example of Figure 2, the RS tag 202 includes a 7-bit identifier (ID) tag 208 and a
1-bit end flag 210. When set, the end flag 210 indicates that the loop instruction 206
associated with the reservation station segment 200 is a “leaf” instruction. By detecting
the set end flag 210 within the RS tag 202 of the loop instruction 206 that has executed,
the dataflow monitor 142 of Figure 1 may determine that a loop iteration has completed.
In some aspects, a loop iteration may include more than one leaf instruction.
Accordingly, the dataflow monitor 142 may be configured to track a count of leaf
instructions executed within a loop iteration. It is to be understood that other aspects of

the reservation station segment 200 may employ other techniques for determining that a

11

WO 2016/153714 PCT/US2016/019518

loop iteration has completed. As a non-limiting example, an RSB of which the
reservation station segment 200 is a part may maintain a count of instructions that have
executed during each loop iteration.

[0034] The reservation station segment 200 also provides storage for data that may
be required by the loop instruction 206 to execute. In the example of Figure 2, the loop
instruction 206 is associated with a first operand and a second operand. Accordingly, to
store data associated with the first operand, the reservation station segment 200 provides
an operand source RS tag 212 and an operand buffer 214(0). The operand source RS
tag 212 may identify a reservation station segment (not shown) that is associated with a
“producer” instruction (not shown) that generates the first operand. The operand buffer
214(0) includes one or more operand buffer entries 216(0)-216(N) and a corresponding
one or more operand ready flags 218(0)-218(N). Each of the operand buffer entries
216(0)-216(N) may store an operand value generated during a corresponding loop
iteration O0-N (not shown), while each operand ready flag 218(0)-218(N) may indicate
when the associated operand buffer entry 216(0)-216(N) is ready for consumption by
the loop instruction 206.

[0035] Similarly, to store data associated with the second operand, the reservation
station segment 200 provides an operand source RS tag 220 and an operand buffer
214(1). The operand buffer 214(1) includes one or more operand buffer entries 222(0)-
222(N), and a corresponding one or more operand ready flags 224(0)-224(N). The
operand source RS tag 220, the operand buffer entries 222(0)-222(N), and the operand
ready flags 224(0)-224(N) may function in a manner corresponding to the functionality
of the operand source RS tag 212, the operand buffer entries 216(0)-216(N), and the
operand ready flags 218(0)-218(N), respectively.

[0036] The reservation station segment 200 also includes an iteration counter 226.
The iteration counter 226 may be set to an initial value of zero (0), and may be
subsequently incremented with each execution of the loop instruction 206. A current
value of the iteration counter 226 may be provided by the reservation station segment
200 when the loop instruction 206 is provided for dataflow execution. In this manner,
the current value of the iteration counter 226 may be used by subsequently-executing
consumer instructions to determine the loop iteration in which the loop instruction 206

executed.

12

WO 2016/153714 PCT/US2016/019518

[0037] The reservation station segment 200 additionally includes an instruction
execution credit indicator 228, which stores an instruction execution (“instr ex”’) credit
230 distributed to the reservation station segment 200 by the dataflow monitor 142 of
Figure 1. The reservation station segment 200 may be configured to provide the loop
instruction 206 for execution only if the instruction execution credit indicator 228
indicates that the loop instruction 206 may be executed. For example, in some aspects,
the instruction execution credit indicator 228 may comprise a counter, the value of
which may be decremented after each execution of the loop instruction 206. The
reservation station segment 200 may thus be configured to provide the loop instruction
206 for execution only if the instruction execution credit indicator 228 is currently
storing a value greater than zero (0).

[0038] Figures 3-5 illustrate how exemplary reservation station segments executing
instructions based on instruction execution credits, as implemented by the reservation
station circuit 102 of Figure 1, may provide lower-overhead management of dataflow
execution of loop instructions. Figure 3 shows reservation station segments and the data
dependencies therebetween. Figure 4 illustrates an initial state for dataflow monitor
entries corresponding to the reservation station segments of Figure 3. Figure 5
illustrates how instruction execution credits may be distributed to the reservation station
segments of Figure 3 to govern dataflow execution of loop instructions during a loop
iteration.

[0039] In Figure 3, a total of six (6) reservation station segments (RSSs) are
illustrated. Each RSS 300, 302, and 304 is associated with a resident stream instruction
(not shown) that retrieves a data token (not shown) from a channel unit, such as the
channel unit 106 of Figure 1. For the sake of clarity, it is assumed that input for the
resident stream instructions of each RSS 300, 302, and 304 are always readily available
from the channel unit 106. An RSS 306 and an RSS 308 are each associated with a
multiply instruction (not shown) that computes a product of two operands (not shown).
The RSS 306 receives, as operands, the data provided by the RSS 300 and the RSS 302,
as indicated by arrows 310 and 312, respectively. Similarly, the RSS 308 receives, as
operands, the data provided by the RSS 302 and the RSS 304, as indicated by arrows
314 and 316, respectively. A data dependency thus exists between the RSS 306 and
each RSS 300 and 302, and between the RSS 308 and each RSS 302 and 304. An RSS

13

WO 2016/153714 PCT/US2016/019518

318 is associated with an add instruction (not shown) that computes a sum of two
operands. The RSS 318 receives, as operands, the results generated by the RSS 306 and
the RSS 308, as indicated by arrows 320 and 322, respectively.

[0040] In the example of Figure 3, there are no instructions dependent on the result
generated by the add instruction associated with the RSS 318. Accordingly, the RSS
318 includes an end flag 324 to indicate to the dataflow monitor 142 of Figure 1 that
execution of the add instruction of the RSS 318 represents the end of one loop iteration.
In some aspects, the end flag 324 may comprise a one-bit indicator stored as part of an
RS tag for the RSS 318, such as the end flag 210 of the RS tag 202 of Figure 2.

[0041] Figure 4 illustrates a block diagram 400 of exemplary dataflow monitor
entries 402, 404, 406, 408, 410, and 412, corresponding to the RSSs 300, 302, 304, 306,
308, and 318 of Figure 3, respectively, that may be provided by the dataflow monitor
142 of Figure 1. As seen in Figure 4, each of the entries 402-412 includes a consumer
count indicator 414 and an RS tag count indicator 416. The consumer count indicator
414 for each entry 402-412 indicates the number of consumer instructions for the loop
instruction (not shown) associated with the corresponding RSS 300-308, 318. Thus, the
loop instructions corresponding to the RSSs 300, 304, 306, 308, and 318 each have one
consumer instruction, while the loop instruction associated with the RSS 302 has two
consumer instructions. The RS tag count indicator 416 for each of the entries 402-412
is initialized to zero (0).

[0042] To illustrate how the reservation station circuit 102 of Figure 1 may utilize
the entries 402-412 of Figure 4 to distribute instruction execution credits to each RSS
300, 302, 304, 306, 308, and 318 of Figure 3 to manage dataflow execution of loop
instructions, Figure 5 is provided. Figure 5 illustrates a chart 500 of instruction
execution credits (such as the instruction execution credit 230 of Figure 2), and a chart
502 of RS tag count indicators (such as the RS tag count indicator 416 of Figure 4) as
they vary over loop iterations. Each RSS 300, 302, 304, 306, 308, and 318 of Figure 3
is represented by a column in each of the charts 500 and 502, while the rows of the
charts 500 and 502 represent time intervals 504 during loop iterations. In Figure 5, it is
assumed that the instruction execution credit indicator, such as the instruction execution

credit indicator 228 of Figure 2, associated with each RSS 300, 302, 304, 306, 308, and

14

WO 2016/153714 PCT/US2016/019518

318 is a counter. For the sake of clarity, elements of Figures 1-4 are referenced in
describing Figure 5.

[0043] At time interval 0, the dataflow monitor 142 of the reservation station circuit
102 distributes an initial instruction execution credit, such as the initial instruction
execution credit 160 of Figure 1, to each RSS 300, 302, 304, 306, 308, and 318. In this
example, the initial instruction execution credit 160 has a value of one (1). The
dataflow monitor 142 further initializes the RS tag count indicators for each RSS 300,
302, 304, 306, 308, and 318 to zero (0) to indicate that no consumer instructions of any
of the associated resident loop instructions have executed. Execution of the loop
instructions then commences.

[0044] Because input data for the resident stream instructions of the RSS 300, the
RSS 302, and the RSS 304 is readily available, the resident stream instructions
effectively have no data dependencies. Therefore, the resident stream instructions
associated with the RSS 300, the RSS 302, and the RSS 304 are eligible for dataflow
execution. In the example of Figure 5, at time interval 1, the RSS 300 provides its
resident stream instruction for execution. The RSS 300 then decrements its instruction
execution credit to zero (0). The result of the execution of the stream instruction
associated with the RSS 300 will be broadcast to the other RSSs 302, 304, 306, 308, and
318, and will be detected and stored by the RSS 306 in an operand buffer entry such as
the operand buffer entry 216 of Figure 2. In a similar manner, the RSS 302 provides its
resident stream instruction for execution, and decrements its instruction execution credit
to zero (0) at time interval 2. The result of the execution of the stream instruction
associated with the RSS 302 will be detected and stored as an operand by both the RSS
306 and the RSS 308. Because the instructions associated with the RSS 306 and the
RSS 308 do take operands, they do not supply any operand source RS tags to the
dataflow monitor 142, and accordingly the RS tag count indicators shown in chart 502
do not change through time interval 2.

[0045] At time interval 3, both operands for the resident multiply instruction of the
RSS 306 have been received, and thus the resident multiply instruction is eligible for
dataflow execution. The resident stream instruction for the RSS 304 is also eligible for
dataflow execution, having an instruction execution credit greater than zero (0) and no

effective data dependencies. In this example, the RSS 306 provides its resident multiply

15

WO 2016/153714 PCT/US2016/019518

instruction to a functional unit, such as the functional unit 112 of Figure 1, for
execution. The RSS 306 then decrements its instruction execution credit to zero (0).
The result of the execution of the multiply instruction of the RSS 306 will be received
by the RSS 318 as an operand. The operand source RS tags for the RSS 306 (i.e., the
RS tags for the RSS 300 and the RSS 302) will also be received by the dataflow monitor
142, which increments the RS tag count indicators for the RSS 300 and the RSS 302 to
one (1). Note that at time interval 3, the data dependencies of the resident multiply
instruction associated with the RSS 308 and the resident add instruction associated with
the RSS 318 have not been satisfied, and thus those instructions are not eligible for
dataflow execution.

[0046] At time interval 4, the dataflow monitor 142 determines that the consumer
count indicator for the RSS 300 (which has a value of 1, as seen in Figure 4) equals the
RS tag count indicator for the RSS 300, as seen in the chart 502. Accordingly, the
dataflow monitor 142 concludes that all consumer instructions of the loop instruction
associated with the RSS 300 have executed. The dataflow monitor 142 thus issues an
additional execution credit to the RSS 300, bringing its instruction execution credit to
one (1), and resets the RS tag count indicator for the RSS 300 to zero (0).

[0047] At time interval 5, either of the resident stream instructions associated with
the RSS 300 and the RSS 304 are eligible for dataflow execution. In the example of
Figure 5, the RSS 304 provides its resident stream instruction for execution, and
decrements its instruction execution credit to zero (0). Consequently, at time interval 6,
both operands (from the RSS 302 and the RSS 304) for the resident multiply instruction
of the RSS 308 have been received, and thus, the resident multiply instruction is eligible
for dataflow execution. Accordingly, in this example, the RSS 308 provides its resident
multiply instruction to a functional unit, such as the functional unit 112 of Figure 1, for
execution. The RSS 308 then decrements its instruction execution credit to zero (0).
The result of the execution of the multiply instruction of the RSS 308 will be received
by the RSS 318 as an operand. The operand RS tags for the RSS 308 (i.e., the RS tags
for the RSS 302 and the RSS 304) will also be received by the dataflow monitor 142,
which increments the RS tag count indicator for the RSS 302 to two (2) and the RS tag
count indicator for the RSS 304 to one (1).

16

WO 2016/153714 PCT/US2016/019518

[0048] At time interval 7, the dataflow monitor 142 determines that the consumer
count indicator for the RSS 302 (which has a value of 2, as seen in Figure 4) equals the
RS tag count indicator for the RSS 302, as seen in the chart 502. Accordingly, the
dataflow monitor 142 concludes that all consumer instructions of the loop instruction
associated with the RSS 302 have executed. The dataflow monitor 142 thus issues an
additional execution credit to the RSS 302, bringing its instruction execution credit to
one (1), and resets the RS tag count indicator for the RSS 302 to zero (0). Similarly, the
dataflow monitor 142 determines that the consumer count indicator for the RSS 304
(i.e., 1, as seen in Figure 4) equals the RS tag count indicator for the RSS 304, as shown
in the chart 502. The dataflow monitor 142 concludes that all consumer instructions of
the loop instruction associated with the RSS 304 have executed, and issues an additional
execution credit to the RSS 304, bringing its instruction execution credit to one (1). The
dataflow monitor 142 also resets the RS tag count indicator for the RSS 302 to zero (0).
[0049] At time interval 8, the resident stream instructions associated with the RSS
300, the RSS 302, and the RSS 304 and the resident add instruction associated with the
RSS 318 are each eligible for execution. In the example of Figure 5, the resident stream
instructions associated with the RSS 300, the RSS 302, and the RSS 304 are selected for
execution during time intervals 8, 9, and 10, respectively. The instruction execution
credit for each of the RSS 300, the RSS 302, and the RSS 304 is decremented to zero
().

[0050] Finally, at time interval 11, the resident add instruction associated with the
RSS 318 is the only instruction with an instruction execution credit greater than zero
(0). As a result, while input data may be available to the resident instructions of the
RSS 300, the RSS 302, the RSS 306, the RSS 308, and/or the RSS 318, none of the
resident instructions may be executed again until additional credits are distributed by the
dataflow monitor 142. This allows the resident instruction of the RSS 318 to “catch up”
by providing time to consume the data produced by its producer instructions. Thus, at
time interval 11, the RSS 318 provides its resident add instruction to the functional unit
112 for execution, and decrements its instruction execution credit to zero (0). The
operand RS tags for the RSS 318 (i.e., the RS tags for the RSS 306 and the RSS 308)
will also be received by the dataflow monitor 142, which increments the RS tag count

indicators for the RSS 306 and the RSS 308 to one (1).

17

WO 2016/153714 PCT/US2016/019518

[0051] In some aspects, upon execution of the resident add instruction of the RSS
318, the dataflow monitor 142 may detect the end flag 324 of the RSS 318, and may
determine that one iteration of the loop has completed. Accordingly, at time interval 11,
the dataflow monitor 142 may distribute an additional instruction execution credit to
each of the RSS 300, the RSS 302, the RSS 304, the RSS 306, the RSS 308, and the
RSS 318 (not shown). In this case, distribution of the additional instruction execution
credit would have the effect of incrementing the instruction execution credit associated
with each RSS 300, 302, 304, 306, 308, and 318 to one (1). Dataflow execution of the
resident instructions of the RSS 300, the RSS 302, the RSS 304, the RSS 306, the RSS
308, and the RSS 318 would then continue on in this manner.

[0052] To illustrate exemplary operations for providing lower-overhead
management of loop instructions in the exemplary OOP 100 of Figure 1, Figures 6A
and 6B are provided. Figure 6A is a flowchart that illustrates operations for distributing
initial instruction execution credits and tracking execution of consumer instructions
using an RS tag count indicator such as the RS tag count indicator 416 of Figure 4.
Figure 6B shows operations for determining whether all consumer instructions of a loop
instruction have executed, and thus whether an instruction execution credit may be
issued. For the sake of clarity, elements of Figures 1-4 are referenced in describing
Figures 6A and 6B.

[0053] In Figure 6A, operations begin with the dataflow monitor 142 optionally
distributing an initial instruction execution credit 160 to a reservation station segment,
such as the reservation station segment 200, corresponding to a loop instruction 206
(block 600). As discussed above, each reservation station segment 300, 302, 304, 306,
308, 318 may store a loop instruction 206 of a loop. The reservation station segment
200 then determines whether an instruction execution credit 230 for the reservation
station segment 200 indicates that the loop instruction 206 may be provided for
dataflow execution (block 602). If the instruction execution credit 230 indicates that the
loop instruction 206 may not be provided for dataflow execution, processing may
continue at block 602 of Figure 6A. However, if the reservation station segment 200
determines at block 602 that the instruction execution credit 230 indicates that the loop
instruction 206 may be provided for dataflow execution, the reservation station segment

200 provides the loop instruction 206 of the reservation station segment 200 for

18

WO 2016/153714 PCT/US2016/019518

dataflow execution (block 604). In some aspects, the operations of block 604 may
include the reservation station segment 200 determining that one or more operand
buffers 214 of the reservation station segment 200 contain one or more operands
required by the loop instruction 206. The reservation station segment 200 may then
provide the loop instruction 206 and the one or more operands for dataflow execution.
[0054] After the loop instruction 206 is provided for dataflow execution, the
reservation station segment 200 may decrement the instruction execution credit 230 of
the loop instruction 206 (block 606). The dataflow monitor 142 may then receive one
or more operand source RS tags 212, 220 for the loop instruction 206 (block 608). The
dataflow monitor 142 next may increment an RS tag count indicator 416 for one or
more entries 402-412 indicated by the one or more operand source RS tags 212, 220
(block 610). Processing then resumes at block 612 of Figure 6B.

[0055] Referring now to Figure 6B, the dataflow monitor 142 determines whether
all consumer instructions of the loop instruction 206 have executed based on a
consumer count indicator 414 and the RS tag count indicator 416 of the loop instruction
206 (block 612). In some aspects, the consumer count indicator 414 is indicative of a
number of consumer instructions of the loop instruction 206, while the RS tag count
indicator 416 is indicative of a number of executions of the consumer instructions.
Some aspects may provide that the dataflow monitor 142 determines whether all
consumer instructions of the loop instruction 206 have executed by determining whether
the consumer count indicator 414 and the RS tag count indicator 416 of the loop
instruction 206 are equal. If the dataflow monitor 142 determines at block 612 that not
all consumer instructions of the loop instruction 206 have executed, processing may
resume at block 602 of Figure 6A. However, if the dataflow monitor 142 determines at
block 612 that all consumer instructions of the loop instruction 206 have executed, the
dataflow monitor 142 issues an additional instruction execution credit 162 to the
reservation station segment 200 corresponding to the loop instruction 206 (block 614).
The dataflow monitor 142 may then reset the RS tag count indicator 416 for the loop
instruction 206 to zero (0) (block 616). In this manner, the dataflow monitor 142 may
provide low-overhead management of dataflow execution of loop instructions by

tracking the execution of consumer instructions of a loop instruction, and issuing an

19

WO 2016/153714 PCT/US2016/019518

instruction execution credit to the loop instruction when all consumer instructions of the
loop instruction have executed.

[0056] Providing lower-overhead management of dataflow execution of loop
instructions by OOPs, and related circuits, methods, and computer-readable media,
according to aspects disclosed herein may be provided in or integrated into any
processor-based device. Examples, without limitation, include a set top box, an
entertainment unit, a navigation device, a communications device, a fixed location data
unit, a mobile location data unit, a mobile phone, a cellular phone, a computer, a
portable computer, a desktop computer, a personal digital assistant (PDA), a monitor, a
computer monitor, a television, a tuner, a radio, a satellite radio, a music player, a digital
music player, a portable music player, a digital video player, a video player, a digital
video disc (DVD) player, and a portable digital video player.

[0057] In this regard, Figure 7 illustrates an example of a processor-based system
700 that can employ the reservation station circuit 102 illustrated in Figure 1. In this
example, the processor-based system 700 includes one or more central processing units
(CPUs) 702, each including one or more processors 704 that may comprise the
reservation station circuit (RSC) 102 of Figure 1. The CPU(s) 702 may have cache
memory 706 coupled to the processor(s) 704 for rapid access to temporarily stored data.
The CPU(s) 702 is coupled to a system bus 708 and can intercouple master and slave
devices included in the processor-based system 700. As is well known, the CPU(s) 702
communicates with these other devices by exchanging address, control, and data
information over the system bus 708. For example, the CPU(s) 702 can communicate
bus transaction requests to a memory system 710, which provides memory units 712(0)-
T12(N).

[0058] Other master and slave devices can be connected to the system bus 708. As
illustrated in Figure 7, these devices can include a memory controller 714, one or more
input devices 716, one or more output devices 718, one or more network interface
devices 720, and one or more display controllers 722, as examples. The input device(s)
716 can include any type of input device, including but not limited to input keys,
switches, voice processors, etc. The output device(s) 718 can include any type of output
device, including but not limited to audio, video, other visual indicators, etc. The

network interface device(s) 720 can be any devices configured to allow exchange of

20

WO 2016/153714 PCT/US2016/019518

data to and from a network 724. The network 724 can be any type of network,
including but not limited to a wired or wireless network, a private or public network, a
local area network (LAN), a wide local area network (WLAN), and the Internet. The
network interface device(s) 720 can be configured to support any type of
communications protocol desired.

[0059] The CPU(s) 702 may also be configured to access the display controller(s)
722 over the system bus 708 to control information sent to one or more displays 726.
The display controller(s) 722 sends information to the display(s) 726 to be displayed via
one or more video processors 728, which process the information to be displayed into a
format suitable for the display(s) 726. The display(s) 726 can include any type of
display, including but not limited to a cathode ray tube (CRT), a liquid crystal display
(LCD), a plasma display, etc.

[0060] Those of skill in the art will further appreciate that the various illustrative
logical blocks, modules, circuits, and algorithms described in connection with the
aspects disclosed herein may be implemented as electronic hardware, instructions stored
in memory or in another computer-readable medium and executed by a processor or
other processing device, or combinations of both. The master and slave devices
described herein may be employed in any circuit, hardware component, integrated
circuit (IC), or IC chip, as examples. Memory disclosed herein may be any type and
size of memory and may be configured to store any type of information desired. To
clearly illustrate this interchangeability, various illustrative components, blocks,
modules, circuits, and steps have been described above generally in terms of their
functionality. How such functionality is implemented depends upon the particular
application, design choices, and/or design constraints imposed on the overall system.
Skilled artisans may implement the described functionality in varying ways for each
particular application, but such implementation decisions should not be interpreted as
causing a departure from the scope of the present disclosure.

[0061] The various illustrative logical blocks, modules, and circuits described in
connection with the aspects disclosed herein may be implemented or performed with a
processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit
(ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device,

discrete gate or transistor logic, discrete hardware components, or any combination

21

WO 2016/153714 PCT/US2016/019518

thereof designed to perform the functions described herein. A processor may be a
microprocessor, but in the alternative, the processor may be any conventional processor,
controller, microcontroller, or state machine. A processor may also be implemented as
a combination of computing devices, e.g., a combination of a DSP and a
microprocessor, a plurality of microprocessors, one or more microprocessors in
conjunction with a DSP core, or any other such configuration.

[0062] The aspects disclosed herein may be embodied in hardware and in
instructions that are stored in hardware, and may reside, for example, in Random Access
Memory (RAM), flash memory, Read Only Memory (ROM), FElectrically
Programmable ROM (EPROM), Electrically Erasable Programmable ROM
(EEPROM), registers, a hard disk, a removable disk, a CD-ROM, or any other form of
computer-readable medium known in the art. An exemplary storage medium is coupled
to the processor such that the processor can read information from, and write
information to, the storage medium. In the alternative, the storage medium may be
integral to the processor. The processor and the storage medium may reside in an ASIC.
The ASIC may reside in a remote station. In the alternative, the processor and the
storage medium may reside as discrete components in a remote station, base station, or
server.

[0063] It is also noted that the operational steps described in any of the exemplary
aspects herein are described to provide examples and discussion. The operations
described may be performed in numerous different sequences other than the illustrated
sequences. Furthermore, operations described in a single operational step may actually
be performed in a number of different steps. Additionally, one or more operational
steps discussed in the exemplary aspects may be combined. It is to be understood that
the operational steps illustrated in the flow chart diagrams may be subject to numerous
different modifications as will be readily apparent to one of skill in the art. Those of
skill in the art will also understand that information and signals may be represented
using any of a variety of different technologies and techniques. For example, data,
instructions, commands, information, signals, bits, symbols, and chips that may be
referenced throughout the above description may be represented by voltages, currents,
electromagnetic waves, magnetic fields or particles, optical fields or particles, or any

combination thereof.

22

WO 2016/153714 PCT/US2016/019518

[0064] The previous description of the disclosure is provided to enable any person
skilled in the art to make or use the disclosure. Various modifications to the disclosure
will be readily apparent to those skilled in the art, and the generic principles defined
herein may be applied to other variations without departing from the spirit or scope of
the disclosure. Thus, the disclosure is not intended to be limited to the examples and
designs described herein, but is to be accorded the widest scope consistent with the

principles and novel features disclosed herein.

23

WO 2016/153714 PCT/US2016/019518

What is claimed is:

1. A reservation station circuit for managing dataflow execution of loop
instructions in an out-of-order processor (OOP), comprising:
a plurality of reservation station segments, each comprising:
a loop instruction register configured to store a loop instruction; and
an instruction execution credit indicator configured to store an
instruction execution credit indicative of whether the loop
instruction may be provided for dataflow execution; and
a dataflow monitor comprising a plurality of entries corresponding to the loop
instructions of the plurality of reservation station segments, each entry
comprising:
a consumer count indicator indicative of a number of consumer
instructions of a corresponding loop instruction; and
a reservation station (RS) tag count indicator indicative of a
number of executions of the consumer instructions;
the dataflow monitor configured to:
determine whether all of the consumer instructions of a first loop
instruction have executed based on the consumer count indicator
and the RS tag count indicator for the first loop instruction; and
responsive to determining that all of the consumer instructions of the first
loop instruction have executed, issue an instruction execution

credit to a reservation station segment of the first loop instruction.

2. The reservation station circuit of claim 1, wherein the dataflow monitor is
configured to determine whether all of the consumer instructions of the first loop
instruction have executed by determining whether the consumer count indicator and the

RS tag count indicator for the first loop instruction are equal.

3. The reservation station circuit of claim 1, wherein the dataflow monitor is
further configured to, responsive to determining that all of the consumer instructions of
the first loop instruction have executed, reset the RS tag count indicator for the first loop

instruction to zero (0).

24

WO 2016/153714 PCT/US2016/019518

4. The reservation station circuit of claim 1, wherein the dataflow monitor is
further configured to, upon execution of a second loop instruction:
receive one or more operand source RS tags for the second loop instruction; and
increment the RS tag count indicator for each entry of the plurality of entries

indicated by the one or more operand source RS tags.

5. The reservation station circuit of claim 1, wherein the dataflow monitor is
further configured to distribute an initial instruction execution credit to the instruction
execution credit indicator of each reservation station segment of the plurality of

reservation station segments.

6. The reservation station circuit of claim 1, where each reservation station
segment of the plurality of reservation station segments is configured to repeatedly:
determine whether the instruction execution credit of the instruction execution
credit indicator for the reservation station segment indicates that the loop
instruction may be provided for dataflow execution; and
responsive to determining that the instruction execution credit indicates that the
loop instruction may be provided for dataflow execution:
provide the loop instruction of the reservation station segment for
dataflow execution; and

decrement the instruction execution credit for the reservation station

segment.
7. The reservation station circuit of claim 1 integrated into an integrated circuit
{IC0).
8. The reservation station circuit of claim 1 integrated into a device selected from

the group consisting of a set top box, an entertainment unit, a navigation device, a
communications device, a fixed location data unit, a mobile location data unit, a mobile
phone, a cellular phone, a computer, a portable computer, a desktop computer, a
personal digital assistant (PDA), a monitor, a computer monitor, a television, a tuner, a

radio, a satellite radio, a music player, a digital music player, a portable music player, a

25

WO 2016/153714 PCT/US2016/019518

digital video player, a video player, a digital video disc (DVD) player, and a portable
digital video player.

9. A method for managing dataflow execution of loop instructions in an out-of-
order processor (OOP), comprising:
determining, by a dataflow monitor, whether all consumer instructions of a first
loop instruction have executed based on a consumer count indicator of
the first loop instruction indicative of a number of the consumer
instructions of the first loop instruction, and a reservation station (RS)
tag count indicator of the first loop instruction indicative of a number of
executions of the consumer instructions; and
responsive to determining that all of the consumer instructions of the first loop
instruction have executed, issuing an instruction execution credit to a

reservation station segment corresponding to the first loop instruction.

10. The method of claim 9, wherein determining whether all of the consumer
instructions of the first loop instruction have executed comprises determining whether
the consumer count indicator and the RS tag count indicator for the first loop instruction

are equal.

11. The method of claim 9, further comprising, responsive to determining that all of
the consumer instructions of the first loop instruction have executed, resetting the RS

tag count indicator for the first loop instruction to zero (0).

12. The method of claim 9, further comprising, upon execution of a second loop
instruction:
receiving one or more operand source RS tags for the second loop instruction;
and
incrementing the RS tag count indicator for one or more loop instructions

indicated by the one or more operand source RS tags.

26

WO 2016/153714 PCT/US2016/019518

13. The method of claim 9, further comprising distributing an initial instruction
execution credit to the reservation station segment corresponding to the first loop

instruction.

14. The method of claim 9, further comprising, for each loop instruction of a
plurality of reservation station segments:
determining whether the instruction execution credit of the reservation station
segment for the loop instruction indicates that the loop instruction may
be provided for dataflow execution; and
responsive to determining that the instruction execution credit of the reservation
station segment for the loop instruction indicates that the loop instruction
may be provided for dataflow execution:
providing the loop instruction for dataflow execution; and
decrementing the instruction execution credit of the reservation station

segment for the loop instruction.

15. A non-transitory computer-readable medium having stored thereon computer-
executable instructions which, when executed by a processor, cause the processor to:
determine, by a dataflow monitor, whether all consumer instructions of a first
loop instruction have executed based on a consumer count indicator of
the first loop instruction indicative of a number of the consumer
instructions of the first loop instruction, and a reservation station (RS)
tag count indicator of the first loop instruction indicative of a number of
executions of the consumer instructions; and
responsive to determining that all of the consumer instructions of the first loop
instruction have executed, issue an instruction execution credit to a

reservation station segment corresponding to the first loop instruction.

16. The non-transitory computer-readable medium of claim 15 having stored thereon
computer-executable instructions which, when executed by the processor, further cause
the processor to determine whether all of the consumer instructions of the first loop
instruction have executed by determining whether the consumer count indicator and the

RS tag count indicator for the first loop instruction are equal.

27

WO 2016/153714 PCT/US2016/019518

17. The non-transitory computer-readable medium of claim 15 having stored thereon
computer-executable instructions which, when executed by the processor, further cause
the processor to, responsive to determining that all of the consumer instructions of the
first loop instruction have executed, reset the RS tag count indicator for the first loop

instruction to zero (0).

18. The non-transitory computer-readable medium of claim 15 having stored thereon
computer-executable instructions which, when executed by the processor, further cause
the processor to, upon execution of a second loop instruction:
receive one or more operand source RS tags for the second loop instruction; and
increment the RS tag count indicator for one or more loop instructions indicated

by the one or more operand source RS tags.

19. The non-transitory computer-readable medium of claim 15 having stored thereon
computer-executable instructions which, when executed by the processor, further cause
the processor to distribute an initial instruction execution credit to the reservation station

segment corresponding to the first loop instruction.

20. The non-transitory computer-readable medium of claim 15 having stored thereon
computer-executable instructions which, when executed by the processor, further cause
the processor to, for each loop instruction of a plurality of reservation station segments:
determine whether the instruction execution credit of the reservation station
segment for the loop instruction indicates that the loop instruction may
be provided for dataflow execution; and
responsive to determining that the instruction execution credit of the reservation
station segment for the loop instruction indicates that the loop instruction
may be provided for dataflow execution:
provide the loop instruction for dataflow execution; and
decrement the instruction execution credit of the reservation station

segment for the loop instruction.

28

PCT/US2016/019518

WO 2016/153714

1/8

L °5id

{951 sng
SNOLLYDINNWINOD
1ndino
4
851
op}
g (Z1 1) (S)LINN TYNOLLONNA .
) bt oyl
{Z01) LINOYID NOILYLS NOILYAYIS3Y
i ot -89}
((Z)az) {(Aozy) {OyzL)
S8y 38y 88y
] i @
] H (]
> {(zv1) O LINOW y
{(igzi) oYY {{oloz 1) oweyy @
@y 0% ss¥ Sy ssd (o)
AHOWIN {911} B — (G11) {p01) _wcwgm%ﬁwwo
g5y YO &8l ; Sy I1NAN0D HOH WY3HLS
s 99} 0ol b9} 9L
443 A . dsi gl
51 vl £yL— SRR
. 261188}
(z1) LINN W&,ffvmw
NOILOMYISNI |
{00L) 40O M

{0c1) sng
SNOLLYOINAWINGD
1NN

PCT/US2016/019518

WO 2016/153714

28

£ "Oid

(Nbwze) | (INleee) (N1 Th I I (N TF)
o4 AMING oVl AMINT
CAQVERY | ¥3ddng AQYEH | ¥EddNE
ONYY3dO | ONVYIO ONVH3dO | ONVY3dO
{0ez) {o0z) 012}
o Lgao HLSNI Y14
RERISIE d007 N3
(gz2)
HOLYIIAN! toweg | (0zz) (0z2) (g1 ((09i2) (z12) (v02) 80z}
e (922) v ar AMINT oY1 Y14 AYINT YL yIrsoay L 9vLidh
NOILNDAXZ | H3LNNOD | AGYIZY | M344N8 SHIDHNOS, AQYIY | MI44Ng SHIDHNOS! NOWONYISNG | (207)
NOILIMMLSNT | NOILYYILI T ONVHIHO | ONYHIdO | ONVYIO | ONYHIH0O | ONVHIHO | ONYHIdO d001 VL SH
{1z {ioiz)
H344N9 ONVHILO H344NE ONYHIHO
(00z) /
INTWNDIS NOILYLS —
NOLLYAYISIY

PCT/US2016/019518

WO 2016/153714

38

£ Oid

e
OV ON3|
{818)
{Qav) S5y
A
A4S w 0z¢
{g0¢) {908}
(AN (AN
S5 5SH
% & 17449 Zit %

IRy 018
{yoe) {zoe) {00¢g)
E RIS {(Nv3YLS) {(v3uLs)
S8 85y NSS!

PCT/US2016/019518

WO 2016/153714

¥ O

SERING HOLINOW MOV LYd

(LY} HOLYOIONI
0 0 0 0 0 0 INNOD YL SY
W w w w ; w {7ip} HOLYOIONI
INNOD ¥3NNSNOD
iy | o Bow L oy | Goy | (Zob
gLe 80¢ 90¢ y0¢ Z0¢ 00¢

PCT/US2016/019518

WO 2016/153714

S 54

(N L0 0o ot o 0o 0 0 0w
o 0 0 0 0 0 L0 0 f o0 o0 0 o
0 o 0 0 0 0 P o0 0 0
o 0 0o 0 0 |0 L0 0 2 B -
o 00 0. 0 0 A w w L

N R w 2 B A IR O I L9 .

=

m

o 0 0 | 0 L0 W L0 0 oo T >

m

2

o 0 0 | 0 I A F L0 0 I =

W

&

0 0 0 0 | | | | 0 | 0 0 £ =
o 0 0 0 0 0 P w P v o oz
o 0 0 0 0 o0 v w F w Lo w
o 0 0 0 0 0 P w w w m\ L0

B1C . £ 90 | W& | 206 | 00 BIC | %06 908 | O£ | 20e | 00¢
SITEN
SINIWOIS NOLLYLS NOLLVAYISTY 4 guowvoiant SINJWOIS NOLLYLS NOLLYANISTY % NOWNOIX3
S¥ 40 (208) LHVHO 40 (008) LuvHO

WO 2016/153714 PCT/US2016/019518
6/8

600

DISTRIBUTE AN INITIAL INSTRUCTION EXECUTION CREDIT {(160) TO A RESERVATION
STATION SEGMENT (200} CORRESPONDING TO A LOOP INSTRUCTION (206}

802

_ANINSTRUCTION EXECUTION CREDIT (230) OF THE RESERVATION STATION.

= SEGMENT (200) FOR THE LOOP INSTRUCTION (206) INDICATES THAT THELOOP e

" INSTRUCTION (206) MAY BE PROVIDED FOR DATAFLOW EXECUTION?-—

N B

PROVIDE THE LOOP INSTRUCTION {206) FOR DATAFLOW EXECUTION

mml;ww””mmm“mmm“www””mmmwwmm”mmm"ﬁﬂiiﬁﬁﬁmﬂ

DECREMENT THE INSTRUCTION EXECUTION CREDIT (230) OF THE RESERVATION STATION
SEGMENT (200) FOR THE LOOP INSTRUCTION {206}

i - 608

RECEIVE ONE OR MORE OPERAND SOURCE RS TAGS (212, 220) FOR THE LOOP
INSTRUCTION (206}

v "”W”WMWWM"WM””””mmwwmflfé@f

INCREMENT AN RS TAG COUNT INDICATOR {416) FOR ONE OR MORE LOOP INSTRUCTIONS

{206} INDICATED BY THE ONE OR MORE OPERAND SOURCE RS TAGS (212, 220)

AOBIN,

FiG. 6A

WO 2016/153714 PCT/US2016/019518

78

LB
TOAIN,
‘ FIC.64)

612

iNSTRUCTiON {206} INDICATIVE OF A NUMBER OF
CONSUMER INSTRUCTIONS OF THE LOOP
INSTRUCTION (206}, AND THE RS TAG COUNT
INDICATOR (416} OF THE LOOP INSTRUCTION (206)
INDICATIVE OF A NUMBER OF EXECUTEONS OF THET

\\\\\\\\\\ CONSUMER iNSTRUCTiONS7

\\\\\\\\

3 614

ISSUE AN ADDITIONAL INSTRUCTION EXECUTION CREDIT (162) TO THE RESER\!ATEON
STATION SEGMENT {200) CORRESPONDING TO THE LOCP INSTRUCTION (206)

RESET THE RS TAG COUNT INDICATOR {416) FOR THE LOOP INSTRUCTION (206) TO ZERO (0)

FiG. 6B

PCT/US2016/019518
8/8

WO 2016/153714

!

E 7 B
O OROMIEN -

S/

AM//,‘/\/&
//
(02)) {p12)
(812) (91.2) mmmowm.m . HATIOUINOD
S ENET {SiEninag ' AHOWIN
LAdLN0 [NaN JOYANILN :
iy SHOMLIN .
> m/
}
0LL
{Zzs)
{SIHITIOHINGD AVT4SIT
(zov o8y
{¥0.) {8602)
{SIM0SS300N JHWYD pro—
gz Gz
(SIavasia (Sh085300ud |
(204} (S)ndD O3aIA
A
e

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/019518

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/38
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

AL) 31 July 2001 (2001-07-31)
the whole document

27 April 1999 (1999-04-27)
the whole document

10 August 2004 (2004-08-10)
the whole document

6 July 2006 (2006-07-06)
the whole document

X US 6 269 440 B1 (FERNANDO JOHN S [US] ET

X US 5 898 865 A (MAHALINGAIAH RUPAKA [US])

X US 6 775 765 Bl (LEE LEA HWANG [US] ET AL)

X US 2006/150161 Al (ONDER SONER

1,9,15

1,9,15

1,9,15

[us]) 1,9,15

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

25 May 2016

Date of mailing of the international search report

02/06/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Klocke, Lynn

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2016/019518
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6269440 Bl 31-07-2001 NONE
US 5898865 A 27-04-1999 US 5898865 A 27-04-1999
us 6014741 A 11-01-2000
US 6775765 B1 10-08-2004 NONE
US 2006150161 Al 06-07-2006 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - wo-search-report
	Page 40 - wo-search-report

