
DE69833914T220060824
ß (19)
Bundesrepublik Deutschland
Deutsches Patent- und Markenamt
(10) DE 698 33 914 T2 2006.08.24

(12) Übersetzung der europäischen Patentschrift

(97) EP 0 917 057 B1
(21) Deutsches Aktenzeichen: 698 33 914.2
(96) Europäisches Aktenzeichen: 98 309 011.9
(96) Europäischer Anmeldetag: 04.11.1998
(97) Erstveröffentlichung durch das EPA: 19.05.1999
(97) Veröffentlichungstag

der Patenterteilung beim EPA: 22.03.2006
(47) Veröffentlichungstag im Patentblatt: 24.08.2006

(51) Int Cl.8: G06F 9/46 (2006.01)

(54) Bezeichnung: Architektur eines Multiprozessorrechners mit mehreren Betriebssysteminstanzen und software-
gesteuerter Betriebsmittelzuteilung

(30) Unionspriorität:
64250 04.11.1997 US
95543 10.06.1998 US

(73) Patentinhaber:
Compaq Computer Corp., Houston, Tex., US

(74) Vertreter:
Grünecker, Kinkeldey, Stockmair &
Schwanhäusser, 80538 München

(84) Benannte Vertragsstaaten:
DE, FR, GB

(72) Erfinder:
Zalewski, Stephen H., Nashua, New Hampshire
03062, US; Mason, Andrew H., Hollis, New
Hampshire 03049, US; Jordan, Gregory H., Hollis,
New Hampshire 03049, US; Noel, Karen L.,
Pembroke, New Hampshire 03275, US; Kaufman,
James R., Nashua, New Hampshire 03062, US;
Harter, Paul K., Groton, Massachusetts 01540, US;
Kleinsorge, Frederick G., Amherst, New
Hampshire 03031, US; Shirron, Stephen F., Acton,
Massachusetts 01720, US

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europä-
ischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.
1/40

DE 698 33 914 T2 2006.08.24
Beschreibung

GEBIET DER ERFINDUNG

[0001] Diese Erfindung betrifft Mehrprozessor-Computer-Architekturen, in denen Prozessoren und andere
Computer-Hardware-Ressourcen in Partitionen gruppiert sind, von denen jede eine Betriebssystem-Instanz
aufweist, und insbesondere Verfahren und Einrichtungen zum Reservieren von Computer-Hardware-Ressour-
cen für Partitionen.

[0002] Der effiziente Betrieb vieler Anwendungen in gegenwärtigen Rechnerumgebungen hängt von schnel-
len, leistungsstarken und flexiblen Rechnersystemen ab. Die Konfiguration und Auslegung solcher Systeme
ist sehr kompliziert geworden, wenn solche Systeme in einer gewerblichen "Unternehmens"-Umgebung ein-
gesetzt werden sollen, in der es viele getrennte Abteilungen, viele verschiedene Problemtypen und ständig
wechselnde EDV-Bedürfnisse geben kann. Benutzer in solchen Umgebungen möchten im Allgemeinen in der
Lage sein, die Kapazität des Systems, seine Geschwindigkeit und seine Konfiguration rasch und leicht zu än-
dern. Sie möchten auch die System-Arbeitskapazität erhöhen und Konfigurationen ändern können, um eine
bessere Nutzung der Ressourcen zu erzielen, ohne die Ausführung von Anwendungsprogrammen auf dem
System zu stoppen. Außerdem möchten sie vielleicht in der Lage sein, das System zu konfigurieren, um die
Ressourcenverfügbarkeit so zu maximieren, dass jede Anwendung eine optimale Rechenkonfiguration auf-
weist.

[0003] Herkömmlicherweise wurde die Rechengeschwindigkeit unter Verwendung einer
"Shared-Nothing"-Rechenarchitektur angesteuert, in der Daten, Geschäftslogik und grafische Benutzerschnitt-
stellen unterschiedliche Tiers sind und spezifische Rechenressourcen, die jedem Tier zugeordnet sind, aufwei-
sen. Anfänglich wurde ein einzelner Zentralprozessor verwendet, und die Leistungsstärke und Geschwindig-
keit eines solchen Rechensystems wurde erhöht, indem die Taktfrequenz des einzelnen Zentralprozessors er-
höht wurde. In letzter Zeit wurden Rechensysteme entwickelt, die mehrere Prozessoren verwenden, die als ein
Team arbeiten, statt eines massiven Prozessors, der alleine arbeitet. Auf diese Weise kann eine komplexe An-
wendung auf viele Prozessoren aufgeteilt werden, statt darauf zu warten, dass sie von einem einzelnen Pro-
zessor ausgeführt wird. Solche Systeme bestehen typischerweise aus mehreren Zentralprozessoren (CPUs),
die durch ein einzelnes Betriebssystem gesteuert werden. In einer Variante eines Mehrprozessor-Systems,
das als "symmetrischer Mehrprozessorbetrieb" oder SMP bezeichnet wird, werden die Anwendungen gleich-
mäßig auf alle Prozessoren verteilt. Die Prozessoren verwenden auch gemeinsam einen Speicher. In einer an-
deren Variante, die als "asymmetrischer Mehrprozessorbetrieb" oder AMP bezeichnet wird, arbeitet ein Pro-
zessor als ein "Master", und alle anderen Prozessoren arbeiten als "Slaves". Daher müssen alle Operationen,
einschließlich des Betriebssystems, über den Master laufen, bevor sie an die Slave-Prozessoren weitergege-
ben werden. Die Mehrprozessorbetriebs-Architekturen weisen den Vorteil auf, dass die Leistung durch Hinzu-
fügen weiterer Prozessoren gesteigert werden kann, leiden jedoch unter dem Nachteil, dass die auf solchen
Systemen laufende Software sorgfältig geschrieben werden muss, um die mehreren Prozessoren nutzen zu
können, und es schwierig ist, die Software zu skalieren, wenn sich die Anzahl der Prozessoren erhöht. Gegen-
wärtige gewerbliche Auslastungen lassen sich über 8–24 CPUs hinaus nicht gut als einzelnes SMP-System
skalieren, wobei die genaue Anzahl von Plattform, Betriebssystem und Anwendungs-Mix abhängt.

[0004] Zur Steigerung der Leistung bestand eine andere typische Lösungsmöglichkeit darin, die Computer-
ressourcen (Maschinen) einer Anwendung zuzuordnen, um die Maschinenressourcen optimal auf die Anwen-
dung abzustimmen. Dieser Ansatz wurde jedoch von der Mehrhit der Benutzer nicht übernommen, da die meis-
ten Einsatzorte viele Anwendungen und getrennte Datenbanken aufweisen, die von unterschiedlichen Anbie-
tern entwickelt wurden. Es ist daher schwierig und kostspielig, Ressourcen zu allen der Anwendungen zuzu-
ordnen, insbesondere in Umgebungen, in denen sich der Anwendungs-Mix ständig verändert.

[0005] Alternativ kann ein Rechensystem mit Hardware partitioniert werden, um eine Untergruppe der Res-
sourcen auf einem Computer zu bilden, die für eine spezifische Anwendung verfügbar sind. Dieser Ansatz ver-
meidet die permanente Zuordnung der Ressourcen, da die Partitionen geändert werden können, weist aber
immer noch Probleme hinsichtlich der Leistungsverbesserung mittels eines Lastausgleichs zwischen den Par-
titionen und der Ressourcenverfügbarkeit auf.

[0006] Die Probleme der Verfügbarkeit und Verwaltbarkeit wurden durch ein "Shared-Everything"-Modell an-
gegangen, in dem ein großer zentralisierter robuster Server, der den größten Teil der Ressourcen enthält, im
Netzwerk mit vielen kleinen, unkomplizierten Client-Netzwerk-Computern verbunden ist und sie bedient. Alter-
nativ werden "Cluster" verwendet, in denen jedes System bzw. jeder "Knoten" seinen eigenen Speicher hat
2/40

DE 698 33 914 T2 2006.08.24
und von seinem eigenen Betriebssystem gesteuert wird. Die Systeme wirken durch die gemeinsame Benut-
zung von Disketten und die Übergabe von Nachrichten untereinander über eine Art Kommunikationsnetzwerk
zusammen. Ein Cluster-System weist den Vorteil auf, dass zusätzliche Systeme leicht zu einem Cluster hinzu-
gefügt werden können. Allerdings leiden Netzwerke und Cluster unter einem Mangel an gemeinsamem Spei-
cher und einer begrenzten Verbindungsbandbreite, die der Leistung Einschränkungen auferlegen.

[0007] In vielen Unternehmens-Rechenumgebungen ist klar, dass die zwei getrennten Rechenmodelle
gleichzeitig integriert werden müssen und jedes Modell optimiert werden muss. Mehrere Ansätze des Stands
der Technik sind verwendet wurden, um diese Integrierung zu versuchen. Zum Beispiel verwendet eine Aus-
legung, die als eine "virtuelle Maschine" oder VM bezeichnet und von International Business Machines Corpo-
ration, Armonk, New York, entwickelt und vermarktet wird, eine einzelne physikalische Maschine mit einem
oder mehreren physikalischen Prozessoren in Kombination mit Software, die mehrere virtuelle Maschinen si-
muliert. Jede dieser virtuellen Maschinen besitzt im Prinzip Zugriff auf alle physikalischen Ressourcen des zu-
grundeliegenden echten Computers. Die Zuweisung von Ressourcen zu jeder virtuellen Maschine wird durch
ein Programm gesteuert, das als ein "Hypervisor" bezeichnet wird. Es gibt nur einen Hypervisor in dem Sys-
tem, und er ist für alle physikalischen Ressourcen zuständig. Demzufolge nimmt der Hypervisor, nicht die an-
deren Betriebssysteme, die Reservierung von physikalischer Hardware vor. Der Hypervisor fängt Ressour-
cen-Anforderungen von den anderen Betriebssystemen ab und bearbeitet die Anforderungen in einer im All-
gemeinen korrekten Art.

[0008] Die VM-Architektur unterstützt das Konzept einer "logischen Partition" bzw. LPAR. Jede LPAR enthält
einige der verfügbaren physikalischen CPUs und Ressourcen, die der Partition logisch zugewiesen sind. Die
gleichen Ressourcen können zu mehr als einer Partition zugewiesen werden. LPARs werden von einem Ad-
ministrator statisch eingerichtet, können aber auf Lastenänderungen dynamisch und ohne Neustart auf meh-
rere Arten reagieren.

[0009] Wenn zum Beispiel zwei logische Partitionen, von denen jede zehn CPUs enthält, auf einem physika-
lischen System gemeinsam genutzt werden, das zehn physikalische CPUs enthält, und wenn die logischen
zehn CPU-Partitionen komplementäre Spitzenlasten aufweisen, kann jede Partition das gesamte physikali-
sche Zehn-CPU-System ohne einen Neustart oder einen Eingriff der Bedienperson übernehmen, wenn sich
die Arbeitslast ändert.

[0010] Des Weiteren können die CPUs, die jeder Partition logisch zugewiesen sind, über normale Betriebs-
system-Operatorbefehle ohne Neustart dynamisch "Ein"- und "Aus"-geschaltet werden. Die einzige Einschrän-
kung ist, dass die Anzahl der CPUs, die bei Systeminitialisierung aktiv sind, die maximale Anzahl von CPUs
ist, die in jeder Partition "Ein"-geschaltet werden können.

[0011] Schließlich können in Fällen, in den der gesamte Arbeitslastbedarf aller Partitionen höher ist als von
dem physikalischen System bereitgestellt werden kann, LPAR-Wichtungen verwendet werden, um zu definie-
ren, wie viel von den gesamten CPU-Ressourcen an jede Partition vergeben wird. Diese Wichtungen können
von den Bedienpersonen fliegend, ohne Unterbrechung, geändert werden.

[0012] Ein weiteres System des bisherigen Stands der Technik wird als "Paralleles Sysplex" bezeichnet und
wird ebenfalls von der International Business Machines Corporation vermarktet und entwickelt. Diese Architek-
tur besteht aus einer Gruppe von Computern, die über eine als "Kopplungseinrichtung" bezeichnete Hard-
ware-Einheit, die an jeder CPU angebracht ist, zu Clustern zusammengefasst werden. Die Kopplungseinrich-
tungen an jedem Knoten sind über eine faseroptische Verbindung angeschlossen, und jeder Knoten arbeitet
wie eine herkömmliche SMP-Maschine mit einer Höchstanzahl von 10 CPUs. Gewisse CPU-Befehle rufen die
Kopplungseinrichtung direkt auf. Zum Beispiel registriert ein Knoten eine Datenstruktur in der Kopplungsein-
richtung, anschließend sorgt die Kopplungseinrichtung dafür, dass die Datenstrukturen in dem lokalen Spei-
cher jedes Knotens kohärent gehalten werden.

[0013] Der Enterprise 10000 Unix-Server, der von Sun Microsystems, Mountain View, Kalifornien, entwickelt
und vermarktet wird, verwendet eine Partitionierung, die als "Dynamische Systemdomänen" bezeichnet wird,
um die Ressourcen eines einzelnen physikalischen Servers in mehrfache Partitionen, oder Domänen, von de-
nen jede als ein Stand-Alone-Server arbeitet, logisch zu unterteilen. Jede der Partitionen besitzt CPUs, Spei-
cher und I/O-Hardware. Die dynamische Neukonfiguration gestattet es einem Systemadministrator, Domänen
fliegend und ohne Neustart zu erstellen, ihre Größe anzupassen oder zu löschen. Jede Domäne bleibt von je-
der anderen Domäne in dem System logisch isoliert, wodurch sie vollständig von jedem Software-Fehler oder
CPU-, Speicher- oder I/O-Fehler isoliert wird, der von einer anderen Domäne generiert wird. Unter den Domä-
3/40

DE 698 33 914 T2 2006.08.24
nen werden keine Ressourcen gemeinsam genutzt.

[0014] Das an der Stanford University durchgeführte Hive-Projekt verwendet eine Architektur, die als eine
Gruppe von Zellen strukturiert ist. Wenn das System gestartet wird, wird jeder Zelle ein Bereich von Knoten
zugewiesen, zu dem sie durchgehend während der Ausführung zugehörig ist. Jede Zelle verwaltet die Prozes-
soren, Speicher- und I/O-Einrichtungen auf diesen Knoten so, als ob es sich um ein unabhängiges Betriebs-
system handeln würde. Die Zellen arbeiten zusammen, um für Prozesse auf Benutzerebene die Illusion eines
einzelnen Systems zu bieten.

[0015] Hive-Zellen sind nicht dafür zuständig, zu entscheiden, wie ihre Ressourcen zwischen lokalen und de-
zentralen Anforderungen aufgeteilt werden. Jede Zelle ist nur dafür zuständig, ihre internen Ressourcen zu
verwalten und die Leistung innerhalb der Ressourcen zu optimieren, die für sie reserviert worden sind. Die glo-
bale Ressourcen-Reservierung wird durch einen Benutzerebenen-Prozess mit der Bezeichnung "Wax" ausge-
führt. Das Hive-System versucht, eine Datenfälschung zu verhindern, indem gewisse Fehlereindämmungs-
grenzen zwischen den Zellen verwendet werden. Um die enge gemeinsame Benutzung zu implementieren, die
von einem Mehrprozessorsystem trotz der Fehlereindämmungsgrenzen zwischen den Zellen erwartet wird,
wird die gemeinsame Ressourcennutzung durch das Zusammenwirken der verschiedenen Zellenkerne imple-
mentiert, doch wird die Richtlinie außerhalb der Kerne in dem Wax-Prozess implementiert. Sowohl Speicher
als auch Prozessoren können gemeinsam genutzt werden.

[0016] Ein System mit der Bezeichnung "Cellular IRIX", das von Silicon Graphics Inc., Mountain View, Kali-
fornien, entwickelt und vermarktet wird, unterstützt modulares Rechnen durch Erweitern herkömmlicher sym-
metrischer Mehrprozess-Systeme. Die Celluar IRIX-Architektur teilt globalen Kern-Text und -Daten in optimier-
te Blöcke von SMP-Größe oder "Zellen" auf.

[0017] Die Zellen stellen eine Steuerdomäne dar, die aus einem oder mehreren Maschinenmodulen besteht,
wobei jedes Modul aus Prozessoren, Speicher und I/O besteht. Anwendungen, die auf diesen Zellen laufen,
stützen sich umfassend auf ein vollständiges Set von lokalen Betriebssystemdiensten, einschließlich lokalen
Kopien des Betriebssystemtexts und der Kerndatenstrukturen. Nur eine Instanz des Betriebssystems ist auf
dem gesamten System vorhanden. Die Koordinierung zwischen den Zellen ermöglicht es den Anwendungsbil-
dern, die Verarbeitungs-, Speicher- und I/O-Ressourcen von anderen Zellen direkt und transparent zu nutzen,
ohne den Overhead von Datenkopien oder zusätzliche Aufgabenumschaltungen zu übernehmen.

[0018] Eine weitere bestehende Architektur mit der Bezeichnung NUMA-Q, die von Sequent Computer Sys-
tems, Inc., Beaverton, Oregon, entwickelt und vermarktet wird, verwendet "Quads" bzw. Gruppen von vier Pro-
zessoren pro Speicherabschnitt als den grundlegenden Funktionsbaustein für NUMA_Q SMP-Knoten. Die Er-
weiterung jedes Quads um I/O verbessert die Leistung zusätzlich. Daher unterteilt die NUMA-Q-Architektur
nicht nur physikalischen Speicher, sondern stellt eine vorgegebene Anzahl von Prozessoren und PCI-Slots ne-
ben jeden Teil. Der Speicher in jedem Quad ist kein lokaler Speicher im üblichen Sinne. Er ist eher ein Drittel
des physikalischen Speicheradressraums und weist einen spezifischen Adressbereich auf. Die Adressabbil-
dung ist gleichmäßig über den Speicher verteilt, wobei jeder Quad einen zusammenhängenden Teil von
Adressraum enthält. Es läuft nur eine Kopie des Betriebssystems, und wie in jedem SMP-System ist sie im
Speicher resident und führt Prozesse ohne Unterscheidung und gleichzeitig in einem oder mehreren Prozes-
soren aus.

[0019] Dementsprechend, obwohl viele Versuche unternommen worden sind, ein flexibles Computersystem
bereitzustellen, das eine maximale Ressourcenverfügbarkeit und Skalierbarkeit besitzt, weisen die vorhande-
nen Systeme jeweils beträchtliche Defizite auf. Es wäre daher wünschenswert, eine neue Computersys-
tem-Auslegung zu haben, die eine verbesserte Flexibilität, Ressourcenverfügbarkeit und Skalierbarkeit bereit-
stellt.

[0020] US-A-5574914 offenbart ein Computersystem, in dem verschiedene Systemressourcen durch einen
Verbindungsmechanismus elektrisch verbunden sind.

[0021] WO 97/04388 offenbart ein Computersystem mit einer Vielzahl von Systemressourcen, die Prozesso-
ren, einen Speicher und eine I/O-Schaltung enthalten, wobei das Computersystem umfasst:
einen Verbindungsmechanismus;
einen Software-Mechanismus, der die Systemressourcen in eine Vielzahl von Partitionen unterteilt; und
wenigstens eine Betriebssystem-Instanz, die in einer Vielzahl der Partitionen läuft.
4/40

DE 698 33 914 T2 2006.08.24
[0022] Gemäß der vorliegenden Erfindung ist ein solches System gekennzeichnet
dadurch, dass der Verbindungsmechanismus die Prozessoren, den Speicher und die I/O-Schaltung elektrisch
so verbindet, dass jeder Prozessor elektrischen Zugriff auf den gesamten Speicher und wenigstens einen Teil
der I/O-Schaltung hat; und
durch eine Konfigurations-Datenbank, die in dem Speicher gespeichert ist, welche die Partitionen anzeigt, die
Teil des Computersystems sind, und welche Informationen enthält, die anzeigen, ob jede Betriebssystem-In-
stanz aktiv ist.

[0023] Die vorliegende Erfindung stellt des Weiteren ein Verfahren zum Aufbauen eines Computersystems
mit einer Vielzahl von Systemressourcen bereit, die Prozessoren, einen Speicher und eine I/O-Schaltung ent-
halten, wobei das Verfahren die folgenden Schritte umfasst:

(a) elektrisches Verbinden der Prozessoren, des Speichers und der I/O-Schaltung so, dass jeder Prozessor
elektrischen Zugang zu dem gesamten Speicher und wenigstens einem Teil der I/O-Schaltung hat;
(b) Unterteilen der Systemressourcen in eine Vielzahl von Partitionen;
(c) Ausführen wenigstens einer Betriebssystem-Instanz in einer Vielzahl der Partitionen; und
d) Erstellen einer Konfigurations-Datenbank, die Informationen dahingehend, welche der Partitionen Teil
des Computersystems sind, und Informationen enthält, die anzeigen, ob jede Betriebssystem-Instanz aktiv
ist.

[0024] Insbesondere partitioniert die Software logisch und adaptiv CPUs, Speicher und I/O-Ports, indem sie
einander zugewiesen werden. Eine Instanz eines Betriebssystems kann dann auf eine Partition geladen wer-
den. Zu unterschiedlichen Zeitpunkten können verschiedene Betriebssystem-Instanzen auf eine bestimmte
Partition geladen werden. Diese Partitionierung, die ein System-Manager anweist, ist eine Software-Funktion;
es sind keine Hardware-Grenzen erforderlich. Zu jeder einzelner Instanz sind die Ressourcen zugehörig, die
sie für eine unabhängige Ausführung benötigt. Ressourcen, wie beispielsweise CPUs und Speicher, können
verschiedenen Partitionen dynamisch zugewiesen und von Instanzen des Betriebssystems verwendet werden,
die in der Maschine laufen, indem die Konfiguration modifiziert wird. Die Partitionen selbst können ebenfalls
ohne Neustart des Systems geändert werden, indem der Konfigurationsbaum modifiziert wird. Das sich daraus
ergebende adaptiv partitionierte Mehrprozessor-(APMP) System weist sowohl Skalierbarkeit als auch hohe
Leistung auf.

[0025] Die oben genannten und weitere Vorteile der Erfindung lassen sich besser verstehen unter Bezugnah-
me auf die folgende Beschreibung in Verbindung mit den folgenden begleitenden Zeichnungen:

[0026] Fig. 1 ist ein schematisches Blockschaltbild einer Hardware-Plattform, die mehrere System-Funktions-
bausteine darstellt.

[0027] Fig. 2 ist eine schematische Darstellung eines APMP-Computersystems, das in Übereinstimmung mit
den Prinzipien der vorliegenden Erfindung aufgebaut ist und mehrere Partitionen zeigt.

[0028] Fig. 3 ist eine schematische Darstellung eines Konfigurationsbaums, der Hardware-Ressourcenkonfi-
gurationen und Software-Konfigurationen und ihre Komponententeile mit Child- und Geschwister-Adressen-
verweisen (sibling pointers) darstellt.

[0029] Fig. 4 ist eine schematische Darstellung des Konfigurationsbaums, der in Fig. 3 gezeigt und neu an-
geordnet wurde, um die Zuweisung von Hardware zu Software-Instanzen durch Zugehörigkeits-Adressenver-
weise (ownership pointer) zu veranschaulichen.

[0030] Fig. 5 ist ein Ablaufdiagramm, das Schritte in einer veranschaulichenden Routine zum Erstellen eines
APMP-Computersystems in Übereinstimung mit den Prinzipen der vorliegenden Erfindung skizziert.

[0031] Fig. 6 ist ein Ablaufdiagramm, das die Schritte in einer veranschaulichenden Routine zum Erstellen
von Einträgen in einer APMP-Systemverwaltungs-Datenbank darstellt, die Informationen verwaltet, die das
APMP-System und seine Konfiguration betreffen.

[0032] Fig. 7A und Fig. 7B bilden, wenn sie zusammengelegt werden, ein Ablaufdiagramm, das im Detail die
Schritte in einer veranschaulichenden Routine zum Erstellen eines APMP-Computersystems in Übereinstim-
mung mit den Prinzipien der vorliegenden Erfindung darstellt.

[0033] Fig. 8A und Fig. 8B bilden, wenn sie zusammengelegt werden, ein Ablaufdiagramm, das die Schritte
5/40

DE 698 33 914 T2 2006.08.24
in einer veranschaulichenden Routine darstellt, denen eine Betriebssystem-Instanz folgt, um an einem
APMP-Computersystem, das bereits erstellt ist, teilzunehmen.

[0034] Eine Computerplattform, die in Übereinstimmung mit den Prinzipien der vorliegenden Erfindung auf-
gebaut ist, ist ein Mehrprozessorsystem, das partitioniert werden kann, um die gleichzeitige Ausführung meh-
rerer Instanzen von Betriebssystem-Software zu gestatten. Für das System ist keine Hardware-Unterstützung
für die Partitionierung seines Speichers, der CPUs und der I/O-Untersysteme erforderlich, aber einige Hard-
ware lässt sich verwenden, um eine zusätzliche Hardware-Hilfe zum Isolieren von Fehlern und zum Minimieren
der Kosten des Software-Engineering bereitzustellen. Die folgende Spezifikation beschreibt die Schnittstellen
und Datenstrukturen, die zum Unterstützen der erfinderischen Software-Architektur erforderlich sind. Die be-
schriebenen Schnittstellen und Datenstrukturen sollen nicht implizieren, dass ein bestimmtes Betriebssystem
verwendet werden muss, oder dass nur ein einziger Typ von Betriebssystem eine gleichzeitige Ausführung vor-
nimmt. Jedes Betriebssystem, das die im Folgenden erläuterten Software-Anforderungen implementiert, kann
an dem erfinderischen Systembetrieb teilnehmen.

System-Funktionsbausteine

[0035] Die erfinderische Software-Architektur arbeitet auf einer Hardware-Plattform, die mehrere CPUs, ei-
nen Speicher und I/O-Hardware integriert. Vorzugsweise wird eine modulare Architektur wie diejenige, die in
Fig. 1 gezeigt ist, verwendet, obwohl der Fachmann verstehen wird, dass auch andere Architekturen verwen-
det werden können, wobei diese Architekturen nicht modular sein müssen. Fig. 1 stellt ein Rechnersystem dar,
das aus vier grundlegenden System-Funktionsbausteinen (SBBs) 100–106 aufgebaut ist. In der veranschauli-
chenden Ausführungsform ist jeder Funktionsbaustein, wie beispielsweise Baustein 100, identisch und um-
fasst mehrere CPUs 108–114, mehrere Speicher-Slots, (die insgesamt als der Speicher 120 dargestellt wer-
den), einen I/O-Prozessor 118 und einen Port 116, der einen (nicht gezeigten) Schalter enthält, der das System
mit einem anderen solchen System verbinden kann. In anderen Ausführungsformen müssen die Funktions-
bausteine jedoch nicht identisch sein. Große Mehrprozessor-Systeme können aufgebaut werden, indem die
gewünschte Anzahl von System-Funktionsbausteinen mittels ihrer Ports verbunden werden. Es wird eine
Schalter-Technologie statt einer Bus-Technologie zum Verbinden von Funktionsbaustein-Komponenten ver-
wendet, um sowohl die verbesserte Bandbreite zu erhalten als auch nicht-einheitliche Speicher-Architekturen
(NUMA) zu gestatten.

[0036] In Übereinstimmung mit den Prinzipien der Erfindung sind die Hardware-Schalter so angeordnet, dass
jede CPU alle verfügbaren Speicher und I/O-Ports ansteuern kann, ungeachtet der Anzahl von konfigurierten
Funktionsbausteinen, wie dies schematisch durch Leitung 122 dargestellt ist. Des Weiteren können alle CPUs
mit irgendeiner oder allen anderen CPUs in allen SBBs mit herkömmlichen Mitteln kommunizieren, wie bei-
spielsweise Interprozessor-Interrupts. Dementsprechend können die CPUs und andere Hardware-Ressourcen
nur mit Software verknüpft werden. Eine solche Plattform-Architektur ist inhärent so skalierbar, dass große
Mengen von Verarbeitungsleistung, Speicher und I/O in einem einzelnen Computer verfügbar sind.

[0037] Ein APMP-Computersystem 200, das in Übereinstimmung mit den Prinzipien der vorliegenden Erfin-
dung vom Software-Standpunkt her aufgebaut ist, ist in Fig. 2 dargestellt. In diesem System wurden die Hard-
ware-Komponenten zugewiesen, um die gleichzeitige Ausführung von mehreren Betriebssystem-Instanzen
208, 210, 212 zu gestatten.

[0038] In einer bevorzugten Ausführungsform wird diese Reservierung durch ein Software-Programm vorge-
nommen, das als ein "Konsolenprogramm" bezeichnet wird, weiches, wie hierin im Folgenden im Detail be-
schrieben wird, beim Hochfahren in den Speicher geladen wird. Konsolenprogramme werden in Fig. 2 sche-
matisch als Programme 213, 215 und 217 gezeigt. Das Konsolenprogramm kann eine Modifizierung eines be-
stehenden administrativen Programms oder ein separates Programm sein, das mit einem Betriebssystem zu-
sammenwirkt, um den Betrieb der bevorzugten Ausführungsform zu steuern. Das Konsolenprogramm virtuali-
siert die Systemressourcen nicht, das heißt, es erstellt keine Software-Schichten zwischen den laufenden Be-
triebssystemen 208, 210 und 212 und der physikalischen Hardware, wie beispielsweise dem Speicher und den
I/O-Einheiten (in Fig. 2 nicht gezeigt). Auch der Zustand der laufenden Betriebssysteme 208, 210 und 212 wird
nicht gewechselt, um Zugriff auf die gleiche Hardware bereitzustellen. Stattdessen unterteilt das erfinderische
System die Hardware logisch in Partitionen. Es liegt in der Zuständigkeit der Betriebssystem-Instanz 208, 210
und 212, die Ressourcen entsprechend einzusetzen und eine Koordinierung der Reservierung und gemeinsa-
men Nutzung der Ressourcen bereitzustellen. Die Hardware-Plattform kann optional eine Hardware-Unterstüt-
zung für die Unterteilung der Ressourcen bereitstellen oder kann Fehlersperren bereitstellen, um die Möglich-
keit zu minimieren, dass ein Betriebssystem den Speicher beschädigt oder sich auf Einrichtungen auswirkt, die
6/40

DE 698 33 914 T2 2006.08.24
durch eine andere Betriebssystem-Kopie gesteuert werden.

[0039] Die Ausführungsumgebung für eine einzelne Kopie eines Betriebssystems, wie beispielsweise die Ko-
pie 208, wird als eine "Partition" 202 bezeichnet, und das ausführende Betriebssystem 208 in der Partition 202
wird als "Instanz" 208 bezeichnet. Jede Betriebssystem-Instanz ist in der Lage, unabhängig von allen anderen
Betriebssystem-Instanzen in dem Computersystem zu booten und unabhängig von ihnen zu laufen und kann
zusammenwirkend an der gemeinsamen Nutzung von Ressourcen zwischen Betriebssystem-Instanzen teil-
nehmen, wie im Folgenden beschrieben.

[0040] Zum Ausführen einer Betriebssystem-Instanz muss eine Partition einen Hardware-Neustart-Parame-
terblock (HWRPB), eine Kopie eines Konsolenprogramms, eine gewisse Speichermenge, eine oder mehrere
CPUs und wenigstens einen I/O-Bus umfassen, der einen bestimmten physikalischen Port für die Konsole auf-
weisen muss. Der HWRPB ist ein Konfigurationsblock, der zwischen dem Konsolenprogramm und dem Be-
triebssystem übergeben wird.

[0041] Jedes der Konsolenprogramme 213, 215 und 217 ist an einen Konsolen-Port angeschlossen, der als
die entsprechenden Ports 214, 216 und 218 gezeigt wird. Konsolen-Ports, wie beispielsweise die Ports 214,
216 und 218 liegen im Allgemeinen in Form eines seriellen Leitungs-Ports oder von angeschlossenen Grafik-,
Tastatur- und Maus-Optionen vor. Zum Zweck des erfinderischen Computersystems ist die Fähigkeit, ein spe-
zifisches Betriebssystem oder dazugehörige Eingabeeinrichtungen zu unterstützen, nicht erforderlich, obwohl
ein spezifisches Betriebssystem dies erfordern kann. Die grundlegende Voraussetzung ist, dass ein serieller
Port für jede Partition ausreichend ist. Während ein separates Endgerät oder eine unabhängige Grafikkonsole
verwendet werden könnten, um die von jeder Konsole generierten Informationen anzuzeigen, können vorzugs-
weise die seriellen Leitungen 220, 222 und 224 alle mit einem einzelnen Multiplexer 226 verbunden werden,
der an eine Workstation, einen PC oder LAT 228 zum Anzeigen von Konsolen-Informationen angeschlossen
ist.

[0042] Es ist wichtig zu beachten, dass Partitionen nicht gleichbedeutend mit System-Funktionsbausteinen
sind. Zum Beispiel kann die Partition 202 die Hardware in den Funktionsbausteinen 100 und 106 in Fig. 1 um-
fassen, während die Partitionen 204 und 206 die Hardware in den entsprechenden Funktionsbausteinen 102
und 104 umfassen könnten. Partitionen können auch einen Teil der Hardware in einem Funktionsbaustein ent-
halten.

[0043] Partitionen können "initialisiert" oder "nichtinitialisiert" sein. Eine initialisierte Partition weist ausrei-
chende Ressourcen auf, um eine Betriebssystem-Instanz auszuführen, besitzt ein geladenes Konsolenpro-
gramm-Bild und eine primäre CPU, die verfügbar und ausführend ist. Eine initialisierte Partition kann unter der
Steuerung eines Konsolenprogramms stehen oder kann eine Betriebssystem-Instanz ausführen. In einem in-
itialisierten Zustand weist eine Partition die volle Zugehörigkeit und die Steuerung der Hardware-Komponenten
auf, die ihr zugewiesen sind, und nur die Partition selbst kann ihre Komponenten freigeben.

[0044] In Übereinstimmung mit den Prinzipien der Erfindung können Ressourcen von einer initialisierten Par-
tition einer anderen neu zugewiesen werden. Die Neuzuweisung der Ressourcen kann nur durch die initiali-
sierte Partition vorgenommen werden, welcher die Ressource gegenwärtig zugewiesen ist. Wenn sich eine
Partition in einem nichtinitialisierten Zustand befindet, können andere Partitionen ihre Hardware-Komponenten
neu zuweisen und sie löschen.

[0045] Eine nichtinitialisierte Partition ist eine Partition, die keine primäre CPU besitzt, die entweder unter der
Steuerung eines Konsolenprogramms oder eines Betriebssystems ausgeführt wird. Zum Beispiel kann eine
Partition beim Hochfahren auf Grund eines Mangels an ausreichenden Ressourcen zum Ausführen einer pri-
mären CPU nichtinitialisiert sein, oder wenn ein Systemadministrator das Computersystem neu konfiguriert. Im
nichtinitialisierten Zustand kann eine Partition ihre Hardware-Komponenten neu zuweisen und kann von einer
anderen Partition gelöscht werden. Nicht zugewiesene Ressourcen können von jeder Partition zugewiesen
werden.

[0046] Partitionen können in "Communities" organisiert werden, welche die Basis zum Gruppieren getrennter
Ausführungskontexte bereitstellt, um eine zusammenwirkende gemeinsame Ressourcen-Nutzung zu gestat-
ten. Partitionen in der gleichen Community können Ressourcen gemeinsam nutzen. Partitionen, die sich nicht
in der gleichen Community befinden, können Ressourcen nicht gemeinsam nutzen. Ressourcen können zwi-
schen den Partitionen, die sich nicht in der gleichen Community befinden, nur manuell durch den Systemad-
ministrator verschoben werden, in dem die Ressourcenzuweisung aufgehoben (und die Nutzung gestoppt)
7/40

DE 698 33 914 T2 2006.08.24
wird, und die Ressource manuell neu konfiguriert wird. Communities können verwendet werden, um unabhän-
gige Betriebssystem-Domänen zu erstellen oder Benutzerrichtlinien für den Hardware-Einsatz zu implemen-
tieren. In Fig. 2 sind die Partitionen 202 und 204 in der Community 230 organisiert worden. Die Partition 206
kann in ihrer eigenen Community 205 liegen. Communities können unter Verwendung des im Folgenden be-
schriebenen Konfigurationsbaums aufgebaut und durch Hardware durchgesetzt werden.

Das Konsolenprogramm

[0047] Wenn ein Computersystem, das in Übereinstimmung mit den Prinzipien der vorliegenden Erfindung
aufgebaut ist, auf einer Plattform aktiviert wird, müssen mehrere HWRPBs erstellt, mehrere Konsolenpro-
gramm-Kopien geladen und Systemressourcen auf eine Weise zugewiesen werden, dass jeder HWRPB zu
spezifischen Komponenten des Systems zugeordnet wird. Dazu erstellt das erste auszuführende Konsolen-
programm eine Konfigurationsbaum-Struktur im Speicher, welche die gesamte Hardware im System darstellt.
Der Baum enthält auch Software-Partitionierungsinformationen, und die Zuweisungen von Hardware zu Parti-
tionen wird im Folgenden ausführlich erläutert.

[0048] Wenn das APMP-System hochgefahren wird, wird insbesondere eine CPU als eine primäre CPU in
einer herkömmlichen Weise von Hardware ausgewählt, die für die Plattform spezifisch ist, auf der das System
läuft. Die primäre CPU lädt dann eine Kopie eines Konsolenprogramms in den Speicher. Diese Konsole wird
als ein "Master-Konsolen"-Programm bezeichnet. Die primäre CPU arbeitet anfänglich unter der Steuerung
des Master-Konsolenprogramms, um den Test- und Prüfvorgang unter der Voraussetzung durchzuführen,
dass ein einzelnes System vorhanden ist, zu der die gesamte Maschine zugehörig ist. Anschließend wird ein
Set von Umgebungsvariablen geladen, welche die Systempartitionen definieren. Schließlich erstellt die Mas-
terkonsole die Partitionen basierend auf den Umgebungsvariablen. in diesem letzteren Prozess arbeitet die
Masterkonsole, um den Konfigurationsbaum zu erstellen, zusätzliche HWRPB-Datenblöcke zu erstellen, zu-
sätzliche Konsolenprogramm-Kopien zu laden und die CPUs auf den alternativen HWRPBs zu starten. Auf je-
der Partition läuft dann eine Betriebssystem-Instanz, wobei die Instanz mit einer Konsolenprogramm-Kopie zu-
sammenwirkt, die ebenfalls in der Partition läuft. In einem nichtkonfigurierten APMP-System erstellt das Mas-
ter-Konsolenprogramm zuerst eine einzelne Partition, welche die primäre CPU, eine Mindest-Speichermenge
und eine physikalische Konsole des Systemadministrators enthält, die auf eine plattformspezifische Weise
ausgewählt wird. Konsolenprogramm-Befehle gestatten es dem Systemadministrator dann, zusätzliche Parti-
tionen zu erstellen und I/O-Busse, Speicher und CPUs für jede Partition zu konfigurieren.

[0049] Nachdem die Zuordnungen von Ressourcen zu Partitionen durch das Konsolenprogramm vorgenom-
men worden sind, werden die Zuordnungen in einem nicht-flüchtigen RAM gespeichert, um eine automatische
Konfiguration des Systems während anschließender Boot-Vorgänge zu gestatten. Während der anschließen-
den Boot-Vorgänge muss das Master-Konsolenprogramm die gegenwärtige Konfiguration mit der gespeicher-
ten Konfiguration validieren, um das Entfernen und Hinzufügen von neuen Komponenten zu bearbeiten. Neu
hinzugefügte Komponenten werden in einen nicht-zugewiesenen Zustand gesetzt, bis sie durch den System-
administrator zugewiesen werden. Wenn das Entfernen von Hardware-Komponenten zu einer Partition mit un-
zureichenden Ressourcen zum Ausführen eines Betriebssystems führt, werden weiterhin Ressourcen zu der
Partition hinzugefügt, doch eine Betriebssystem-Instanz kann erst auf ihr laufen, wenn ihr zusätzliche neue
Ressourcen zugewiesen werden.

[0050] Wie vorher erwähnt, kommuniziert das Konsolenprogramm mit einer Betriebssystem-Instanz mittels
eines HWRPB, der während des Hochfahrens des Betriebssystems an das Betriebssystem übergeben wird.
Die grundlegenden Anforderungen für ein Konsolenprogramm sind, dass es in der Lage sein muss, mehrere
Kopien von HWRPBs und sich selbst zu erstellen. Jede durch das Konsolenprogramm erstellte HWRPB-Kopie
ist in der Lage, eine unabhängige Betriebsystem-Instanz in einen privaten Speicherabschnitt zu booten, und
jede auf diese Weise gestartete Betriebssystem-Instanz kann durch einen eindeutigen Wert identifiziert wer-
den, der in den HWRPB gestellt wird. Der Wert gibt die Partition an und wird auch als die Betriebssystem-In-
stanz-ID verwendet.

[0051] Des Weiteren wird das Konsolenprogramm konfiguriert, um einen Mechanismus zum Entfernen einer
CPU aus den verfügbaren CPUs in einer Partition in Reaktion auf eine Anforderung durch ein Betriebssystem
bereitzustellen, das in dieser Partition läuft. Jede Betriebssystem-Instanz muss in der Lage sein, auf eine Wei-
se abzuschalten, anzuhalten oder anderweitig abzustürzen, dass die Steuerung an das Konsolenprogramm
übergeben wird. Umgekehrt muss jede Betriebssystem-Instanz in der Lange sein, sich unabhängig von jeder
anderen Betriebssystem-Instanz erneut in einen betriebsfähigen Modus zu booten.
8/40

DE 698 33 914 T2 2006.08.24
[0052] Jeder HWRPB, der durch ein Konsolenprogramm erstellt wird, enthält eine slotspezifische CPU-Da-
tenbank für jede CPU, die sich in dem System befindet oder die zu dem System hinzugefügt werden kann,
ohne das gesamte System abzuschalten. Jede CPU, die physikalisch vorhanden ist, wird als "present" mar-
kiert, doch nur CPUs, die zuerst in einer spezifischen Partition ablaufen, werden in dem HWRPB für die Parti-
tion als "available" markiert. Die Betriebssystem-Instanz, die auf einer Partition läuft, ist in der Lage, über ein
Bit present (vorhanden) (PP) in Feldern eines Zustands-Flag pro CPU (per-CPU state flag fields) des HWRPB
zu erkennen, dass eine CPU zu einem künftigen Zeitpunkt verfügbar sein wird und kann Datenstrukturen auf-
bauen, um dies wiederzugeben. Wenn es gesetzt ist, zeigt das Bit available (verfügbar) (PA) in den Feldern
eines Zustands-Flag pro CPU an, dass die zugehörige CPU gegenwärtig mit der Partition verknüpft ist, und
kann eingeladen werden, an dem SMP-Betrieb teilzunehmen.

Der Konfigurationsbaum

[0053] Wie vorher erwähnt, erstellt das Master-Konsolenprogramm einen Konfigurationsbaum, der die Hard-
ware-Konfiguration und die Zuweisung jeder Komponente in dem System zu jeder Partition darstellt. Jedes
Konsolenprogramm identifiziert dann den Konfigurationsbaum für seine zugehörige Betriebssystem-Instanz,
indem ein Adressenverweis auf den Baum in den HWRPB gestellt wird.

[0054] Unter Bezugnahme auf Fig. 3 stellt der Konfigurationsbaum 300 die Hardware-Komponenten in dem
System, die Plattformbedingungen und Mindestvorgaben und die Saftware-Konfiguration dar. Das Mas-
ter-Konsolenprogramm baut den Baum unter Verwendung von Informationen auf, die durch Prüfen der Hard-
ware erfasst wurden, und von Informationen, die in dem nicht-flüchtigen RAM gespeichert sind, der die Konfi-
gurationsinformationen enthält, die während vorheriger Initialisierungen generiert worden sind.

[0055] Die Master-Konsole kann eine einzelne Kopie des Baums generieren, dessen Kopie von allen Be-
triebssystem-Instanzen gemeinsam genutzt wird, oder sie kann den Baum für jede Instanz replizieren. Eine
einzelne Kopie des Baums weist den Nachteil auf, dass er eine einzelne Fehlerstelle in Systemen mit unab-
hängigen Speichern erzeugen kann. Plattformen, die mehrere Baum-Kopien generieren, fordern von den Kon-
solenprogrammen jedoch, dass sie in der Lage sein müssen, Änderungen an dem Baum synchronisiert zu hal-
ten.

[0056] Der Konfigurationsbaum umfasst mehrere Knoten, einschließlich Stammknoten, Child-Knoten und
Geschwister-Knoten. Jeder Knoten wird aus einem festen Header und einer Erweiterung mit variabler Länge
für überlagerte Datenstrukturen gebildet. Der Baum beginnt mit einem Baum-Stammknoten 302, der die ge-
samte System-Box darstellt, gefolgt von Zweigen, welche die Hardware-Konfiguration (Hardware-Stammkno-
ten 304), die Software-Konfiguration (Software-Stammknoten 306) und die Mindestanforderungen an die Par-
tition (Masken-Stammknoten 308) beschreiben. In Fig. 3 stellen die Pfeile Child- und Geschwister-Beziehun-
gen dar. Die Children eines Knotens stellen Komponententeile der Hardware- oder Software-Konfiguration dar.
Geschwister sind Gleichgestellte einer Komponente, die nicht in Beziehung stehen können, außer dadurch,
dass sie den gleichen Stamm haben. Knoten in dem Baum 300 können Informationen über die Software-Com-
munities und Betriebssystem-Instanzen, die Hardware-Konfiguration, Konfigurationsbedingungen, Leistungs-
einschränkungen und Hot-Swap-Fähigkeiten enthalten. Die Knoten stellen auch die Beziehung von Hardware-
zu Software-Zugehörigkeit oder der gemeinsamen Nutzung einer Hardware-Komponente bereit.

[0057] Die Knoten werden zusammenhängend im Speicher gespeichert, und der Adressen-Offset von dem
Baum-Stammknoten 320 des Baums 300 zu einem spezifischen Knoten bildet eine "Kennung" (handle), die
von jeder Betriebssystem-Instanz verwendet werden kann, um die gleiche Komponente auf jeder Betriebssys-
tem-Instanz eindeutig zu identifizieren. Des Weiteren weist jede Komponente in dem erfinderischen Compu-
tersystem eine separate ID auf. Dies kann beispielsweise ein 64-Bit-Wert ohne Vorzeichen sein. Die ID muss
eine eindeutige Komponente angeben, wenn sie mit den Typ- und untergeordneten Typ-Werten der Kompo-
nente kombiniert wird. Das heißt, die ID muss eine für einen vorgegebenen Komponententyp spezifische Kom-
ponente identifizieren. Die ID kann eine einfache Zahl sein, zum Beispiel die CPU-ID, sie kann irgendeine an-
dere eindeutige Verschlüsselung oder eine physikalische Adresse sein. Die Komponenten-ID und die Kennung
gestatten es jedem Element des Computersystems, einen bestimmten Teil von Hardware oder Software zu
identifizieren. Das heißt, jede Parition muss unter Verwendung eines der Spezifikationsverfahren in der Lage
sein, die gleiche Spezifikation zu verwenden und das gleiche Ergebnis zu erzielen.

[0058] Wie oben beschrieben, setzt sich das erfinderische Computersystem aus einer oder mehreren Com-
munities zusammen, die wiederum aus einer oder mehreren Partitionen bestehen. Durch Unterteilen der Par-
titionen übergreifend über die unabhängigen Communities kann das erfinderische Computersystem in eine
9/40

DE 698 33 914 T2 2006.08.24
Konfiguration gesetzt werden, in der die gemeinsame Nutzung der Einrichtungen und des Speichers begrenzt
werden kann. Die Communities und Partitionen haben IDs, die eng gepackt sind. Die Hardware-Plattform be-
stimmt die maximale Anzahl von Partitionen basierend auf der Hardware, die in dem System vorhanden ist,
sowie auf der Plattform-Obergrenze. Partitions- und Community-IDs überschreiten diesen Wert während der
Laufzeit nie. Die IDs werden für gelöschte Partitionen und Communities wiederverwendet. Die maximale An-
zahl von Communities ist die gleiche wie die maximale Anzahl von Partitionen. Des Weiteren wird jede Be-
triebssystem-Instanz durch eine eindeutige Instanz-Kennung identifiziert, beispielsweise eine Kombination der
Partitions-ID plus einer Inkarnationsnummer (incarnation number).

[0059] Die Communities und Partitionen werden durch einen Software-Stammknoten 306 dargestellt, der
Community-Knoten-Children, (von denen nur der Community-Knoten 310 gezeigt ist), und Partitionskno-
ten-Grandchildren, (von denen zwei Knoten, 312 und 314, gezeigt sind), aufweist.

[0060] Die Hardware-Komponenten werden durch einen Hardware-Stammknoten 304 dargestellt, der Child-
ren enthält, die eine hierarchische Darstellung der gesamten Hardware zeigen, die gegenwärtig in dem Com-
putersystem vorhanden ist. Die "Zugehörigkeit" einer Handware-Komponente wird durch eine Kennung in dem
zugehörigen Hardware-Knoten dargestellt, der auf den entsprechenden Software-Knoten (310, 312 oder 314)
verweist. Diese Kennungen sind in Fig. 4 dargestellt und werden im Folgenden ausführlicher erläutert. Kom-
ponenten, die zu einer spezifischen Partition zugehörig sind, weisen Kennungen auf, die auf den Knoten ver-
weisen, der die Partition darstellt. Hardware, die von mehreren Partitionen gemeinsam genutzt wird, (zum Bei-
spiel der Speicher), weist Kennungen auf, die auf die Community verweisen, auf welche die gemeinsame Nut-
zung beschränkt ist. Keiner Zugehörigkeit zugeordnete Hardware weist eine Kennung von Null auf, (die den
Baum-Stammknoten 302 darstellt).

[0061] Hardware-Komponenten stellen Konfigurationsbedingungen dahingehend auf, wie eine Zugehörigkeit
aufgeteilt werden kann. Eine "config"-Kennung in dem Konfigurationsbaum-Knoten, die mit jeder Komponente
verbunden ist, bestimmt, ob die Komponente frei ist, um irgendwo in dem Computersystem durch Verweisen
auf den Hardware-Stammknoten 304 zugeordnet zu werden. Einige Hardware-Komponenten können jedoch
an einen Ancestor-Knoten gebunden sein und müssen als Teil dieses Knotens konfiguriert werden. Beispiele
dafür sind CPUs, die keinerlei Einschränkungen dazu aufweisen können, wo sie ausgeführt werden, die aber
einen Komponententeil eines System-Funktionsbausteins (SBB) bilden, wie beispielsweise die SBBs 322 oder
324. In diesem Fall, auch wenn die CPU ein Child des SBB ist, verweist ihre config-Kennung auf den Hard-
ware-Stammknoten 304. Ein I/O-Bus kann jedoch nicht zu einer anderen Partition als derjenigen Partition zu-
gehörig sein, zu deren Zugehörigkeit sein I/O-Prozessor gehört. In diesem Fall würde der Konfigurations-
baum-Knoten, der den I/O-Bus darstellt, eine config-Kennung aufweisen, die auf den I/O-Prozessor verweist.
Da die Regeln, nach denen sich die Hardware-Konfiguration richtet, plattformspezifisch sind, werden diese In-
formationen durch die config-Kennung für die Betriebssystem-Instanzen bereitgestellt.

[0062] Jede Hardware-Komponente weist auch eine "Affinitäts"- (affinity) Kennung auf. Die Affinitätskennung
ist identisch mit der config-Kennung, außer, dass sie eine Konfiguration darstellt, mit der die beste Leistung der
Komponente zu erzielen ist. Zum Beispiel können eine CPU oder ein Speicher eine config-Kennung aufweisen,
die es ermöglicht, sie überall in dem Computersystem zu konfigurieren, (sie verweist auf den Hardware-Knoten
304), doch sollte die CPU bzw. der Speicher so konfiguriert sein, dass sie den System-Funktionsbaustein ver-
wenden, von dem sie ein Teil sind. Das Ergebnis ist, dass der config-Adressenverweis auf den Hard-
ware-Stammknoten 304 verweist, der Affinitäts-Adressenverweis jedoch auf einen SBB-Knoten verweist, wie
beispielsweise Knoten 322 oder Knoten 324. Die Affinität jeder Komponente ist plattformspezifisch und wird
durch die Firmware bestimmt. Die Firmware kann diese Informationen verwenden, wenn die Ausbildung "opti-
maler" automatischer Konfigurationen gewünscht wird.

[0063] Jeder Knoten enthält auch mehrere Flags, die den Typ und Zustand des Knotens anzeigen. Zu diesen
Flags gehört ein Flag node_hotswap, das anzeigt, dass die dargestellte Komponente eine "hotswap-fähige"
Komponente ist und unabhängig von ihrem Parent- oder ihren Geschwister-Knoten abgeschaltet werden kann.
Allerdings müssen alle Children dieses Knotens abgeschaltet werden, wenn sich diese Komponente abschal-
tet. Wenn sich die Children unabhängig von dieser Komponente abschalten können, muss dieses Bit auch für
sie in ihren entsprechenden Knoten gesetzt sein. Ein weiteres Flag ist das Flag node_unavailable, das, wenn
es gesetzt ist, anzeigt, dass die durch den Knoten dargestellte Komponente gegenwärtig nicht zur Verwendung
zur Verfügung steht. Wenn eine Komponente abgeschaltet wird, (oder niemals eingeschaltet wird), wird sie als
nicht verfügbar gekennzeichnet.

[0064] Zwei Flags, node_hardware und node_template, zeigen den Knotentyp an. Weitere Flags, wie bei-
10/40

DE 698 33 914 T2 2006.08.24
spielsweise node_initialized und node_cpu_primary, können ebenfalls bereitgestellt werden, um anzuzeigen,
ob der Knoten eine Partition darstellt, die initialisiert worden ist, oder eine CPU, die gegenwärtig eine primäre
CPU ist.

[0065] Der Konfigurationsbaum 300 kann sich auf die Ebene von Einrichtungs-Controllern erstrecken, die es
dem Betriebssystem gestatten, Bus- und Einrichtungs-Konfigurationstabellen zu erstellen, ohne die Busse zu
prüfen. Der Baum kann jedoch auf jeder Ebene enden, wenn alle darunter liegenden Komponenten nicht un-
abhängig konfiguriert werden können. System-Software ist noch erforderlich, um Bus- und Einrichtungs-Infor-
mationen zu prüfen, die von dem Baum nicht bereitgestellt werden.

[0066] Das Konsolenprogramm implementiert Konfigurationsbedingungen und setzt sie, sofern vorhanden,
auf jeder Komponente des Systems durch. Im Allgemeinen können die Komponenten entweder ohne Bedin-
gungen zugewiesen werden, (zum Beispiel weisen CPUs keine Bedingungen auf), oder sie sind nur als Teil
einer anderen Komponente konfigurierbar, (ein Einrichtungsadapter ist zum Beispiel nur als ein Teil seines
Busses konfigurierbar). Eine Partition, die, wie oben erläutert, eine Gruppierung von CPUs, Speicher und
I/O-Einrichtungen zu einer eindeutigen Software-Einheit ist, weist ebenfalls Mindestanforderungen auf. Zum
Beispiel sind die Hardware-Mindestanforderungen für eine Partition wenigstens eine CPU, einiger privater
Speicher, (plattformabhängiger Mindestwert, einschließlich Konsolenspeicher), und ein I/O-Bus, einschließlich
eines physikalischen, nicht gemeinsam genutzten Konsolen-Ports.

[0067] Die Komponenten-Mindestanforderungen für eine Partition werden durch die Informationen bereitge-
stellt, die in dem Masken-Stammknoten 308 enthalten sind. Der Masken-Stammknoten 308 enthält die Knoten
316, 318 und 320, welche die Hardware-Komponenten darstellen, die bereitgestellt werden müssen, um eine
Partition zu erstellen, die zur Ausführung eines Konsolenprogramms und einer Betriebssystem-Instanz fähig
ist. Konfigurations-Editoren können diese Informationen als die Basis für die Bestimmung verwenden, welche
Typen und wie viele Ressourcen verfügbar sein müssen, um eine neue Partition auszubilden.

[0068] Während des Aufbaus einer neuen Partition wird der Masken-Unterbaum "durchgegangen", und für
jeden Knoten in dem Masken-Unterbaum muss ein Knoten des gleichen Typs und Untertyps zu der neuen Par-
tition zugehörig sein, so dass sie fähig ist, ein Konsolenprogramm zu laden und eine Betriebssystem-Instanz
zu booten. Wenn mehr als ein Knoten des gleichen Typs und Untertyps in dem Masken-Baum vorhanden ist,
müssen auch mehrere Knoten in der neuen Partition vorhanden sein. Das Konsolenprogramm verwendet die
Masken zum Validieren dessen, dass eine neue Partition die Mindestanforderungen aufweist, bevor versucht
wird, ein Konsolenprogramm zu laden und den Betrieb zu initialisieren.

[0069] Folgendes ist ein ausführliches Beispiel einer bestimmten Implementierung von Konfigurations-
baum-Knoten. Es soll nur zu beschreibenden Zwecken dienen und soll nicht einschränkend sein. Jeder HWR-
PB muss auf einen Konfigurationsbaum verweisen, der die gegenwärtige Konfiguration und die Zuweisungen
von Komponenten zu Partitionen bereitstellt. Ein Konfigurations-Adressenverweis (im Feld CONFIG) im HWR-
PB wird verwendet, um auf den Konfigurationsbaum zu verweisen. Das Feld CONFIG verweist auf einen
64-Byte-Header, der die Größe des Speicher-Pools für den Baum und die ursprüngliche Prüfsumme des Spei-
chers enthält. Unmittelbar nach dem Header befindet sich der Stammknoten des Baums. Der Header und der
Stammknoten des Baums sind seitensynchronisiert (page aligned).

[0070] Die Gesamtgröße des für den Konfigurationsbaum reservierten Speichers in Byte befindet sich in dem
ersten Quad-Wort des Headers. Es wird sichergestellt, dass die Größe in Vielfachen der Hardware-Seitengrö-
ße vorliegt. Das zweite Quad-Wort des Headers ist für eine Prüfsumme reserviert. Um den Konfigurationsbaum
prüfen zu können, bildet eine Betriebssystem-Instanz den Baum in ihren lokalen Adressraum ab. Da eine Be-
triebssystem-Instanz diesen Speicher mit Lesezugriff, der für alle Anwendungen gestattet ist, abbilden kann,
müssen einige Vorkehrungen getroffen werden, um eine nicht-privilegierte Anwendung daran zu hindern, Zu-
griff auf Konsolendaten zu erlangen, auf die sie keinen Zugriff haben soll. Der Zugriff kann eingeschränkt wer-
den, indem der Speicher entsprechend reserviert wird. Zum Beispiel kann der Speicher seitensynchronisiert
und in ganzen Seiten reserviert werden. Normalerweise bildet eine Betriebssystem-Instanz die erste Seite des
Konfigurationsbaums ab, erhält die Baumgröße und bildet den Speicher, der für die Konfigurationsbaum-Nut-
zung reserviert ist, nochmals ab. Die Gesamtgröße kann zusätzlichen Speicher umfassen, der von der Konsole
für dynamische Änderungen an dem Baum verwendet wird.

[0071] Vorzugsweise werden Konfigurationsbaum-Knoten mit festen Anfangsblöcken gebildet und können
optional typspezifische Informationen enthalten, die auf den festen Teil folgen. Das Feld Größe enthält die volle
Länge des Knotens, Knoten werden veranschaulichend in Vielfachen von 64 Bytes reserviert und nach Bedarf
11/40

DE 698 33 914 T2 2006.08.24
aufgefüllt. Die folgende Beschreibung definiert veranschaulichende Felder in dem festen Header für einen
Knoten:

[0072] In der oben genannten Definition sind die Typ-Definitionen "uint" ganze Zahlen ohne Vorzeichen mit
den entsprechenden Bitlängen. Wie vorher erwähnt, werden die Knoten durch eine Kennung aufgefunden und
identifiziert, (in der Definition oben identifiziert durch die typedef DCT_HANDLE). Eine veranschaulichende
Kennung ist ein 32-Bit-Offset mit Vorzeichen von der Basis des Konfigurationsbaums zu dem Knoten. Der Wert
ist über alle Partitionen übergreifend in dem Computersystem eindeutig. Das heißt, eine Kennung, die auf einer
Partition erhalten wird, muss zum Suchen eines Knotens oder als eine Eingabe in eine Konsolen-Rückfrage
(console callback) auf allen Partitionen gültig sein. Das Feld magic enthält ein vorgegebenes Bit-Muster, das
anzeigt, dass der Knoten tatsächlich ein gültiger Knoten ist.

[0073] Der Baum-Stammknoten stellt das gesamte System dar. Seine Kennung ist immer Null. Das heißt, er
befindet sich immer an dem ersten physikalischen Speicherplatz in dem Speicher, der für den Konfigurations-
baum nach dem config-Header reserviert ist. Er weist die folgende Definition auf:
12/40

DE 698 33 914 T2 2006.08.24
[0074] Die Felder in dem Stammknoten werden wie folgt definiert:

lock

[0075] Dieses Feld wird als eine einfache Sperre durch Software verwendet, die Änderungen an der Struktur
des Baums und der Software-Konfiguration verhindern möchte. Wenn dieser Wert –1 ist, (alle Bits eingeschal-
tet), ist der Baum nicht gesperrt; wenn der Wert ≥ 0 ist, ist der Baum gesperrt. Dieses Feld wird unter Verwen-
dung von unterbrechungsfreien Operationen modifiziert. Die Aufrufeinrichtung (caller) der Sperr-Routine über-
gibt eine Partitions-ID, die in das Feld Sperre geschrieben wird. Dies kann zur Unterstützung bei der Fehler-
verfolgung und Wiederherstellung bei Abstürzen verwendet werden.

transient_level

[0076] Dieses Feld wird beim Start einer Baum-Aktualisierung inkrementiert.

current_level

[0077] Dieses Feld wird bei Beendigung einer Baum-Aktualisierung inkrementiert.

console_req

[0078] Dieses Feld gibt den Speicher in Bytes an, der für die Konsole im Grund-Speichersegment einer Par-
tition erforderlich ist.
13/40

DE 698 33 914 T2 2006.08.24
min_alloc

[0079] Dieses Feld enthält die Mindestgröße eines Speicherfragments und die Reservierungseinheit (die
Fragmentgröße muss ein Vielfaches der Reservierung betragen). Es muss eine Potenz von 2 sein.

min_align

[0080] Dieses Feld enthält die Synchronisierungsanforderungen für ein Speicherfragment. Es muss eine Po-
tenz von 2 sein.

base_alloc

[0081] Dieses Feld gibt den Mindestspeicher in Bytes an (einschließlich console_req), der für das
Grund-Speichersegment für eine Partition benötigt wird. Dort werden die Konsole, Konsolenstrukturen und das
Betriebssystem für eine Partition geladen. Er muss größer oder gleich minAlloc und ein Vielfaches von minAl-
loc sein.

base_align

[0082] Dieses Feld enthält die Synchronisierungsanforderungen für das Grund-Speichersegment einer Parti-
tion. Es muss eine Potenz von 2 sein und eine Synchronisierung von mindestens min-align sein.

max_phys_address

[0083] Dieses Feld enthält die berechnete größte physikalische Adresse, die auf dem System vorhanden sein
kann, einschließlich Speicher-Subsystemen, die gegenwärtig nicht eingeschaltet und verfügbar sind.

mem_size

[0084] Dieses Feld enthält den gegenwärtigen Gesamtspeicher im System.

platform_type

[0085] Dieses Feld speichert den Plattformtyp, der aus einem Feld im HWRPB entnommen wurde.

platform_name

[0086] Dieses Feld enthält einen ganzzahligen Offset von der Basis des Baum-Stammknotens zu einer Zei-
chenfolge, die den Namen der Plattform darstellt.

primary_instance

[0087] Dieses Feld speichert die Partitions-ID der ersten Betriebssystem-Instanz.

first_free

[0088] Dieses Feld enthält den Offset von dem Baum-Stammknoten zu dem ersten freien Byte des Spei-
cher-Pools, das für neue Knoten verwendet wird.

high_limit

[0089] Dieses Feld enthält die höchste Adresse, auf der ein gültiger Knoten in dem Konfigurationsbaum an-
geordnet werden kann. Es wird für Rückfragen verwendet, um zu validieren, dass eine Kennung gültig ist.

lookaside

[0090] Dieses Feld ist die Kennung einer verknüpften Liste von Knoten, die gelöscht worden sind und die zu-
rückgefordert werden können. Wenn eine Community oder Partition gelöscht werden, wird der Knoten in diese
Liste verknüpft, und bei der Erstellung einer neuen Partition oder Community wird diese Liste durchsucht, be-
vor aus freiem Speicher-Pool reserviert wird.
14/40

DE 698 33 914 T2 2006.08.24
available

[0091] Dieses Feld enthält die Anzahl von in dem freien Speicher-Pool übrigen Bytes, auf die durch das Feld
first_free verwiesen wird.

max_partitions

[0092] Dieses Feld enthält die maximale Anzahl von Partitionen, die durch die Plattform basierend auf der
Menge gegenwärtig verfügbarer Hardware-Ressourcen berechnet worden sind.

partitions

[0093] Dieses Feld enthält einen Offset von der Basis des Stammknotens zu einem Array von Kennungen.
Jede Partitions-ID wird als ein Indexverweis in dieses Array verwendet, und die Partitionsknotenkennung wird
an der indexierten Speicherstelle gespeichert. Wenn eine neue Partition erstellt wird, wird dieses Array geprüft,
um die erste Partitions-ID zu finden, die keine entsprechende Partitionsknotenkennung besitzt, und diese Par-
titions-ID wird als die ID für die neue Partition verwendet.

communities

[0094] Dieses Feld enthält ebenfalls einen Offset von der Basis des Stammknotens zu einem Array von Ken-
nungen. Jede Community-ID wird als ein Indexverweis in dieses Array verwendet, und eine Community-Kno-
tenkennung wird in dem Array gespeichert. Wenn eine neue Community erstellt wird, wird dieses Array geprüft,
um die erste Community-ID zu finden, die keine entsprechende Community-Knotenkennung besitzt, und diese
Community-ID wird als die ID für die neue Community verwendet. Es kann nicht mehr Communities als Parti-
tionen geben, so dass die Array-Größe basierend auf der maximalen Anzahl von Partitionen bemessen wird.

max_platform_partition

[0095] Dieses Feld enthält die maximale Anzahl von Partitionen, die gleichzeitig auf der Plattform vorhanden
sein können, selbst wenn zusätzliche Hardware hinzugefügt wird (potenziell inswapped).

max_fragments

[0096] Dieses Feld enthält eine plattformdefinierte maximale Anzahl von Fragmenten, in die ein Speicher-De-
skriptor unterteilt werden kann. Es wird verwendet zur Bemessung der Größe des Arrays von Fragmenten in
dem Speicher-Deskriptor-Knoten verwendet.

max_desc

[0097] Dieses Feld enthält die maximale Anzahl von Speicher-Deskriptoren für die Plattform.

APMP_id

[0098] Dieses Feld enthält eine System-ID, die durch die System-Software eingerichtet und in einem nicht-
flüchtigen RAM gespeichert wird.

APMP_id_pad

[0099] Dieses Feld enthält Auffüll-Bytes für die APMP-ID.

bindings

[0100] Dieses Feld enthält einen Offset zu einem Array von "Bindungen". Jeder Bindungseintrag beschreibt
einen Typ von Hardware-Knoten, den Knotentyp, welcher der Parent-Knoten sein muss, die Konfigurationsbin-
dung und die Affinitätsbindung für einen Knotentyp. Bindungen werden von der Software verwendet, um zu
bestimmen, welche Knotentypen in Beziehung stehen, und Konfigurations- und Affinitätsregeln.

[0101] Eine Community stellt die Basis für die gemeinsame Nutzung von Ressourcen unter Partitionen bereit.
15/40

DE 698 33 914 T2 2006.08.24
[0102] Während eine Hardware-Komponente jeder Partition in einer Community zugewiesen werden kann,
erfolgt die tatsächliche gemeinsame Nutzung einer Einrichtung, wie beispielsweise des Speichers, nur inner-
halb einer Community. Der Community-Knoten 310 enthält einen Adressenverweis zu einem Steuerabschnitt,
der als eine APMP-Datenbank bezeichnet wird, der es den Betriebssystem-Instanzen gestattet, den Zugriff und
die Mitgliedschaft in der Community zum Zweck der gemeinsamen Nutzung des Speichers und von Kommu-
nikationen zwischen den Instanzen zu steuern. Die APMP-Datenbank und die Erstellung von Communities
werden im Folgenden ausführlich erläutert. Die Konfigurations-ID für die Community ist ein ganzzahliger
16-Bit-Wert mit Vorzeichen, der durch das Konsolenprogramm zugewiesen wird. Der ID-Wert ist niemals grö-
ßer als die maximale Anzahl von Partitionen, die auf der Plattform erstellt werden können.

[0103] Ein Partitionsknoten, wie beispielsweise der Knoten 312 oder 314, stellt eine Sammlung von Hardware
dar, die in der Lage ist, eine unabhängige Kopie des Konsolenprogramms und eine unabhängige Kopie eines
Betriebssystems auszuführen. Die Konfigurations-ID für diesen Knoten ist ein ganzzahliger 16-Bit-Wert mit
Vorzeichen, der auf der Plattform erstellt werden kann. Der Knoten weist die folgende Definition auf:

[0104] Die definierten Felder haben die folgenden Definitionen:

hwrpb

[0105] Dieses Feld enthält die physikalische Adresse des Hardware-Neustart-Parameterblocks für diese Par-
tition. Zum Minimieren von Änderungen an dem HWRPB enthält der HWRPB keinen Adressenverweis auf die
Partition oder die Partitions-ID. Stattdessen enthalten die Partitionsknoten einen Adressenverweis auf den
HWRPB. Die System-Software kann dann die Partitions-ID der Partition bestimmen, in der sie läuft, indem die
Partitionsknoten nach der Partition durchsucht werden, welche die physikalische Adresse ihres HWRPB ent-
hält.

incarnation

[0106] Dieses Feld enthält einen Wert, der jedes Mal inkrementiert wird, wenn die primäre CPU der Partition
einen Boot- oder Neustart-Vorgang auf der Partition ausführt.

priority

[0107] Dieses Feld enthält eine Partitions-Priorität.

os_type

[0108] Dieses Feld enthält einen Wert, der den Typ des Betriebssystems angibt, das in die Partition geladen
wird.

partition_reserved_1

[0109] Dieses Feld ist für künftige Verwendung reserviert.

instance_name_format

[0110] Dieses Feld enthält einen Wert, der das Format der Instanznamen-Zeichenfolge beschreibt.
16/40

DE 698 33 914 T2 2006.08.24
instance_name

[0111] Dieses Feld enthält eine formatierte Zeichenfolge, die unter Verwendung des Felds
instance_name_format interpretiert wird. Der Wert in diesem Feld stellt einen Pfadnamen auf höchster Ebene
für die Betriebssystem-Instanz bereit, welche in der Partition ausgeführt wird. Dieses Feld wird durch die Sys-
tem-Software geladen und wird nicht leistungszyklusübergreifend gespeichert. Dieses Feld wird beim Ein-
schalten und Erstellen und Löschen von Partitionen gelöscht.

[0112] Ein System-Funktionsbaustein-Knoten, wie beispielsweise der Knoten 322 oder 324, stellt ein frei
wählbares Hardware-Teil oder eine konzeptionelle Gruppierung dar, die von System-Plattformen mit modula-
ren Auslegungen verwendet werden, wie derjenigen, die in Fig. 2 dargestellt ist. Ein QBB (Quad-Funktions-
baustein) ist ein spezifisches Beispiel eines SBB und entspricht Einheiten, wie beispielsweise den Einheiten
100, 102, 104 und 106 in Fig. 1. Children der SBB-Knoten 322 und 324 umfassen die Eingabe/Ausgabe-Pro-
zessorknoten 326 und 340.

[0113] Von CPU-Knoten, wie beispielsweise den Knoten 328–332 und 342–346, wird angenommen, dass sie
als eine primäre CPU für den SMP-Betrieb arbeiten können. In dem seltenen Fall, in dem eine CPU nicht pri-
märfähig ist, besitzt sie einen SUBTYPE-Code, der angibt, dass sie nicht als eine primäre CPU im SMP-Betrieb
verwendet werden kann. Diese Information ist entscheidend, wenn Ressourcen zum Erstellen einer neuen
Partition konfiguriert werden. Der CPU-Knoten enthält auch Informationen darüber, wo die CPU gegenwärtig
ausgeführt wird. Für die Primär-CPU für eine Partition ist das Flag NODE_CPU_PRIMARY in dem Feld
NODE_FLAGS gesetzt. Der CPU-Knoten weist die folgende Definition auf:

[0114] Ein Speicher-Subsystemknoten, wie beispielsweise der Knoten 334 oder 348, ist ein "Pseudo"-Kno-
ten, der Knoten zusammengruppiert, welche die physikalischen Speicher-Controller und die Zuweisungen des
Speichers darstellen, die von den Controllern bereitgestellt werden. Die Children dieses Knotens bestehen aus
einem oder mehreren Speicher-Controller-Knoten, (wie beispielsweise den Knoten 336 und 350), welche die
Konsole so konfiguriert hat, das sie (verschachtelt) zusammenarbeiten, und einem oder mehreren Spei-
cher-Deskriptor-Knoten, (wie beispielsweise den Knoten 338 und 352), die physikalisch zusammenhängende
Speicherbereiche beschreiben.

[0115] Ein Speicher-Controller-Knoten, (wie beispielsweise die Knoten 336 oder 350), wird verwendet, um
eine physikalische Hardware-Komponente auszudrücken, und sie sind typischerweise zu der Partition zuge-
hörig, die Fehler und die Initialisierung bearbeitet. Speicher-Controller können nicht zu Communities zugewie-
sen werden, da sie eine spezifische Betriebssystem-Instanz für Initialisierung, Prüfung und Fehler benötigen.
Eine Speicherbeschreibung, die durch einen Speicher-Deskriptor-Knoten definiert wird, kann jedoch in "Frag-
mente" aufgeteilt werden, um es verschiedenen Partitionen oder Communities zu ermöglichen, dass spezifi-
sche Speicherbereiche in dem Speicher-Deskriptor zu ihnen zugehörig sind. Der Speicher unterscheidet sich
dadurch von anderen Hardware-Ressourcen, dass er gleichzeitig gemeinsam genutzt oder in "private" Berei-
che aufgeteilt werden kann. Jeder Speicher-Deskriptor-Knoten enthält eine Liste von Untergruppen-Bereichen,
die es gestatten, den Speicher unter den Partitionen aufzuteilen sowie gemeinsam von Partitionen, (die zu ei-
ner Community zugehörig sind), nutzen zu lassen. Ein Speicher-Deskriptor-Knoten, (wie beispielsweise die
Knoten 338 oder 352), werden definiert als:

[0116] Die Struktur mem_info besitzt die folgende Definition:
17/40

DE 698 33 914 T2 2006.08.24
[0117] Das Feld mem_frag enthält einen Offset von der Basis des Speicher-Deskriptor-Knotens zu einem Ar-
ray der GCT_MEM_DESC-Strukturen, welche die folgende Definition haben:

[0118] Die Anzahl von Fragmenten in einem Speicher-Deskriptor-Knoten, (Knoten 338 oder 352), wird durch
die Plattform-Firmware begrenzt. Dies erzeugt eine Obergrenze hinsichtlich der Speicherunterteilung und
schränkt die unbegrenzte Erweiterung des Konfigurationsbaums ein. Die Software kann die maximale Anzahl
von Fragmenten aus dem Feld max_fragments in dem Baum-Stammknoten 302 bestimmen (oben erläutert),
oder durch Aufrufen einer entsprechenden Konsolen-Rückfragefunktion zum Zurückgeben des Werts. Jedes
Fragment kann jeder Partition zugewiesen werden, vorausgesetzt, die config-Bindung und die Zugehörigkeit
des Speicher-Deskriptors und des Speicher-Subsystems lassen dies zu. Jedes Fragment enthält ein Feld für
grundlegende physikalische Adresse, Größe und Zugehörigkeit sowie Flags, die den Typ der Verwendung an-
geben.

[0119] Um den Zugriff zur gemeinsamen Speichernutzung zu gestatten, müssen der Speicher-Subsys-
tem-Parent-Knoten und der Speicher-Deskriptor-Knoten zu einer Community zugehörig sein. Die Fragmente
in dem Speicher-Deskriptor können zu der Community (gemeinsame Nutzung) oder zu jeder Partition in der
Community zugehörig sein.

[0120] Fragmente können Mindest-Reservierungsgrößen und in dem Baum-Stammknoten 302 bereitgestell-
te Synchronisierungen (alignments) besitzen. Der grundlegende Speicher für eine Partition, (die Fragmente, in
denen die Konsole und das Betriebssystem geladen werden), können eine größere Reservierung und Syn-
chronisierung als andere Fragmente aufweisen, (siehe Definition des Baum-Stammknotens oben). Wenn das
Feld Zugehörigkeit des Speicher-Deskriptor-Knotens eine Partition ist, dann können die Fragmente nur zu die-
ser Partition zugehörig sein.

[0121] Fig. 4 veranschaulicht den Konfigurationsbaum, der in Fig. 3 gezeigt ist, wenn er von der Zugehörig-
keits-Perspektive aus betrachtet wird. Das Konsolenprogramm für eine Partition überlässt Zugehörigkeit und
18/40

DE 698 33 914 T2 2006.08.24
Steuerung der Partitions-Ressourcen der Betriebssystem-Instanz, die in dieser Partition läuft, wenn die primä-
re CPU für diese Partition mit der Ausführung beginnt. Das "Zugehörigkeits"-Konzept bestimmt, wie die Hard-
ware-Ressourcen und CPUs zu Software-Partitionen und Communities zugewiesen werden. Der Konfigurati-
onsbaum weist Zugehörigkeits-Adressenverweise auf, die in Fig. 3 dargestellt sind, welche die Abbildung von
Hardware-Einrichtungen auf die Software bestimmen, wie beispielsweise Partitionen (ausschließlich Zugriff)
und Communities (gemeinsamer Zugriff). Eine Betriebssystem-Instanz verwendet die Informationen in dem
Konfigurationsbaum, um zu bestimmen, über welche Hardware-Ressourcen sie Zugriffs- und Neukonfigurati-
ons-Kontrolle besitzt.

[0122] Passive Hardware-Ressourcen, die keine Zugehörigkeit aufweisen, stehen für den Einsatz erst zur
Verfügung, wenn die Zugehörigkeit eingerichtet worden ist. Sobald die Zugehörigkeit durch Verändern des
Konfigurationsbaums eingerichtet worden ist, können die Betriebssystem-Instanzen beginnen, die Ressourcen
zu verwenden. Wenn eine Instanz eine Anfangsanforderung stellt, kann die Zugehörigkeit geändert werden,
indem das Betriebssystem mit der Zugehörigkeit veranlasst wird, die Verwendung einer Ressource zu stoppen,
oder indem ein Konsolenprogramm Maßnahmen ergreift, um die Verwendung einer Ressource in einer Parti-
tion zu stoppen, in der keine Betriebssystem-Instanz ausgeführt wird. Der Konfigurationsbaum wird dann ge-
ändert, um die Zugehörigkeit der Ressource auf eine andere Betriebssystem-Instanz zu übertragen. Der erfor-
derliche Vorgang, um ein Betriebssystem zu veranlassen, die Verwendung einer Hardware-Ressource zu stop-
pen, ist betriebssystemspezifisch und kann einen Neustart der Betriebssystem-Instanzen erfordern, die von
der Änderung betroffen sind.

[0123] Zum Verwalten des Übergangs einer Ressource von einem zugehörigen und aktiven Zustand in einen
nicht zugehörigen und inaktiven Zustand sind in jedem Knoten des Baums zwei Felder vorgesehen. Das Feld
owner stellt die Zugehörigkeit einer Ressource dar und wird mit der Kennung Software-Partition oder Commu-
nity mit der Zugehörigkeit geladen. Beim Hochfahren eines APMP-Systems werden die Felder owner der Hard-
ware-Knoten aus den Inhalten des nicht-flüchtigen RAM geladen, um eine Anfangskonfiguration einzurichten.

[0124] Zum Ändern der Zugehörigkeit einer Ressource wird der Kennungswert in dem Feld owner der Hard-
ware-Komponente und in den Feldern owner von irgendwelchen Abkömmlingen der Hardware-Komponente
modifiziert, die durch ihre config-Kennungen an die Komponente gebunden sind. Das Feld current_owner stellt
den gegenwärtigen Benutzer der Ressource dar. Wenn die Felder owner und current_owner den gleichen
Nicht-Null-Wert enthalten, ist die Ressource zugehörig und ist aktiv. Nur über die Zugehörigkeit einer Ressour-
ce kann die Zuweisung der Ressource aufgehoben werden, (das Feld owner auf Null setzen). Eine Ressource,
deren Felder owner und current_owner Null sind, befindet ist nicht zugehörig und ist inaktiv. Nur Ressourcen,
deren Felder owner und current_owner Null sind, können einer neuen Partition oder Community zugewiesen
werden.

[0125] Wenn die Zuweisung einer Ressource aufgehoben wird, kann über die Zugehörigkeit entschieden wer-
den, die Zuweisung des Felds owner oder beider Felder, owner und current_owner, aufzuheben. Die Entschei-
dung basiert auf der Fähigkeit der besitzenden Betriebssystem-Instanz, die in der Partition läuft, die Verwen-
dung der Ressource vor der Aufhebung der Zugehörigkeits-Zuweisung zu unterbrechen. In dem Fall, indem
ein Neustart erforderlich ist, um die Zugehörigkeit aufzugeben, wird das Feld owner gelöscht, doch das Feld
current_owner bleibt unverändert. Wenn die besitzende Betriebssystem-Instanz neu startet, kann das Konso-
lenprogramm alle Felder current_owner für Ressourcen löschen, die während der Initialisierung keine Zuge-
hörigkeit aufgewiesen haben.

[0126] Während der Initialisierung modifiziert das Konsolenprogramm das Feld current_owner, um das Feld
owner für jeden Knoten abzugleichen, der zu ihm zugehörig ist und für den das Feld current_owner Null ist.
Die System-Software sollte nur Hardware verwenden, die gegenwärtig zu ihr zugehörig ist. Im Fall einer Zu-
weisungsaufhebung einer Ressource, die zu einer Community zugehörig ist, liegt es in der Zuständigkeit der
System-Software, den Übergang zwischen den Zuständen zu verwalten. In einigen Ausführungsformen kann
eine Ressource an eine andere Partition ausgeliehen werden. In diesem Fall sind die Felder owner und
current_owner beide gültig, aber nicht gleich. Die folgende Tabelle fasst die möglichen Ressourcen-Zustände
und die Werte der Felder owner und current_owner zusammen:
19/40

DE 698 33 914 T2 2006.08.24
[0127] Da CPUs aktive Einrichtungen sind und die gemeinsame Nutzung von CPUs bedeutet, dass eine CPU
im Kontext einer Partition ausgeführt werden könnte, zu der sie eventuell nicht "zugehörig" ist, unterscheidet
sich die Zugehörigkeit einer CPU von der Zugehörigkeit einer passiven Ressource. Der CPU-Knoten in dem
Konfigurationsbaum stellt zwei Felder bereit, die angeben, zu welcher Partition eine CPU nominell zugehörig
ist, und in welcher Partition die CPU gegenwärtig ausgeführt wird. Das Feld owner enthält einen Wert, der die
nominelle Zugehörigkeit der CPU bzw. insbesondere der Partition angibt, in der die CPU beim Hochfahren des
Systems ausgeführt wird.

[0128] Bis ein anfängliche Zugehörigkeit eingerichtet ist, (das heißt, wenn das Feld owner nicht zugewiesen
ist), werden die CPUs in einen HWRPB-Kontext gestellt, der von der Master-Konsole entschieden wurde, doch
wird das HWRPB-Bit available für die CPU noch in keinem HWRPB gesetzt. Diese Kombination verhindert,
dass die CPU an irgendeiner Betriebssystem-Instanz im SMP-Betrieb teilnimmt. Wenn die Zugehörigkeit einer
CPU eingerichtet ist, (das Feld owner ist mit einer gültigen Partitionskennung gefüllt), migriert die CPU, falls
erforderlich, zu der zugehörigen Partition, setzt das Bit available in dem HWRPB, der mit dieser Partition ver-
bunden ist, und fordert die Teilnahme an dem SMP-Betrieb der Instanz an, die in dieser Partition läuft, oder
nimmt an dem Konsolenprogramm im SMP-Modus teil. Die Kombination der Bits present und available in dem
HWRPB melden der Betriebssystem-Instanz, dass die CPU für den Einsatz im SMP-Betrieb zur Verfügung
steht, und dass die Betriebssystem-Instanz diese Bits zum Aufbauen entsprechender Datenstrukturen pro
CPU und zum Senden einer Nachricht an die CPU verwenden kann, um sie aufzufordern, an dem SMP-Betrieb
teilzunehmen.

[0129] Wenn eine CPU das Bit available in einem HWRPB setzt, trägt sie auch einen Wert in das Feld
current_owner ihres entsprechenden CPU-Knotens in dem Konfigurationsbaum ein. Das Feld current_owner
ist die Kennung der Partition, in der die CPU das HWRPB-Bit active gesetzt hat und an dem SMP-Betrieb teil-
nehmen kann. Das Feld current_owner für eine CPU wird nur durch das Konsolenprogramm gesetzt. Wenn
eine CPU von einer Partition zu einer anderen Partition migriert oder in einem nicht-zugewiesenen Zustand
angehalten wird, wird das Feld current_owner gelöscht, (oder in den Kennungswert der neuen Partition geän-
dert), zum gleichen Zeitpunkt, zu dem das Bit available in dem HWRPB gelöscht wird. In das Feld
current_owner sollten keine direkten Einträge durch die System-Software vorgenommen werden, und es gibt
nur wieder, welcher HWRPB das Bit available für die CPU gesetzt hat.

[0130] Während der Laufzeit kann eine Betriebssystem-Instanz eine CPU temporär an eine andere Partition
"ausleihen", ohne die nominelle Zugehörigkeit der CPU zu ändern. Das herkömmliche Zugehörigkeitskonzept
unter Verwendung der HWRPB-Bits present und available wird verwendet, um den gegenwärtigen Ausfüh-
rungskontext der CPU durch Modifizieren des HWRPB und des Konfigurationsbaums in unterbrechungsfreien
Operationen wiederzugeben. Das Feld current_owner kann des Weiteren durch die System-Software in einer
der Partitionen verwendet werden, um zu bestimmen, in welcher Partition die CPU gegenwärtig ausgeführt
wird, (andere Instanzen können die Speicherstelle einer bestimmten CPU bestimmen, indem der Konfigurati-
onsbaum geprüft wird).

[0131] Es ist auch möglich, die Zuweisung einer CPU aufzuheben und in einen Zustand zurückzusetzen, in
dem das Bit available in keinem HWRPB gesetzt ist, und das Feld current_owner in dem Konfigurations-
baum-Knoten für die CPU wird gelöscht. Dies wird erreicht, indem die Ausführung der CPU angehalten und
das Konsolenprogramm veranlasst wird, das Feld owner in dem Konfigurationsbaum-Knoten sowie das Feld
current_owner und das HWRPB-Bit available zu löschen. Die CPU wird dann im Konsololenmodus ausgeführt
und fragt das Feld owner ab, das darauf wartet, dass eine gültige Partitionskennung eingetragen wird. Die Sys-

 TABELLE 1
20/40

DE 698 33 914 T2 2006.08.24
tem-Software kann dann eine neue Zugehörigkeit einrichten und die CPU die Ausführung in der neuen Partition
beginnen.

[0132] Veranschaulichende Zugehörigkeits-Adressenverweise werden in Fig. 4 durch Pfeile dargestellt. Je-
dem der Knoten in Fig. 4, der einem ähnlichen Knoten in Fig. 3 entspricht, wird eine entsprechende Nummer
zugeteilt. Zum Beispiel wird der Software-Stammknoten, der in Fig. 3 als Knoten 306 bezeichnet wird, in Fig. 4
als Knoten 406 bezeichnet. Wie in Fig. 4 gezeigt, ist die Community 410 zur "Zugehörigkeit" des Softwa-
re-Stammknotens 406 zugehörig. In ähnlicher Weise sind die System-Funktionsbausteine 1 und 2 (422 und
425) zur Zugehörigkeit der Community 410 zugehörig. In ähnlicher Weise sind die Partitionen 412 und 414
ebenfalls zur Zugehörigkeit der Community 410 zugehörig.

[0133] Zur Partition 412 sind die CPUs 428–432 und der I/O-Prozessor 426 zugehörig. Der Speicher-Control-
ler 436 ist ebenfalls ein Teil der Partition 1 (412). In ähnlicher Weise sind zur Partition 2 (414) die CPUs
442–446, der I/O-Prozessor 440 und der Speicher-Controller 450 zugehörig.

[0134] Der gemeinsame oder gemeinsam genutzte Speicher in dem System besteht aus den Speicher-Sub-
systemen 434 und 448 und den Speicher-Deskriptoren 438 und 452. Diese sind zu der Community 410 zuge-
hörig. Daher beschreibt Fig. 4 den Aufbau des Systems, wie er sich den Betriebssystem-Instanzen darstellen
würde.

Betriebssystem-Charaktenstiken

[0135] Wie vorher erwähnt, kann das veranschaulichende Computersystem mit mehreren verschiedenen Be-
triebssystemen in verschiedenen Partitionen arbeiten. Herkömmliche Betriebssysteme müssen jedoch unter
Umständen in einigen Gesichtspunkten modifiziert werden, um sie mit dem erfinderischen System kompatibel
zu machen, je nachdem, wie das System konfiguriert ist. Einige Beispiel-Modifizierungen für die veranschau-
lichende Ausführungsform sind im Folgenden aufgelistet:

1. Instanzen müssen unter Umständen modifiziert werden, um einen Mechanismus zum Auswählen einer
"primären" CPU in der Partition zu enthalten, um die Konsole zu betreiben und ein Ziel für die Kommunika-
tion von anderen Instanzen zu sein. Die Auswahl einer primären CPU kann in einer herkömmlichen Weise
unter Verwendung von Entscheidungsmechanismen oder anderen herkömmlichen Einrichtungen erfolgen.
2. Für jede Instanz können Modifizierungen erforderlich sein, die es ihr gestatten, mit dem Konsolenpro-
gramm zu kommunizieren und zusammenzuwirken, das für die Erstellung eines Konfigurations-Daten-
blocks zuständig ist, der die Ressourcen beschreibt, die der Partition zur Verfügung stehen, in welcher die
Partition läuft. Zum Beispiel sollte die Instanz nicht die darunter liegende Hardware prüfen, um zu bestim-
men, welche Ressourcen zur Verwendung durch die Instanz verfügbar sind. Stattdessen muss sie, wenn
ihr ein Konfigurations-Datenblock übergeben wird, der beschreibt, auf welche Ressourcen diese Instanz zu-
greifen darf, mit dem angegebenen Ressourcen arbeiten.
3. Eine Instanz muss in der Lage sein können, an einer frei wählbaren physikalischen Adresse zu beginnen
und kann unter Umständen nicht in der Lage sein, irgendeine spezifische physikalische Adresse zu reser-
vieren, um eine Konfliktbildung mit anderen Betriebssystemen zu vermeiden, die auf dieser bestimmten
Adresse laufen.
4. Eine Instanz muss in der Lage sein können, mehrere frei wählbare physikalische Löcher in ihrem Adress-
raum zu unterstützen, wenn sie Teil einer System-Konfiguration ist, in dem Speicher zwischen Partitionen
gemeinsam genutzt wird. Des Weiteren muss eine Instanz physikalische Löcher in ihrem Adressraum be-
arbeiten können, um "hot inswap" von Speicher zu unterstützen.
5. Eine Instanz muss Nachrichten übergeben und Benachrichtigungen empfangen können, dass neue Res-
sourcen für Partitionen und Instanzen zur Verfügung stehen. Insbesondere wird ein Protokoll benötigt, um
eine Instanz zu informieren, nach einer neuen Ressource zu suchen. Andernfalls erkennt die Instanz mög-
licherweise nie, dass die Ressource vorhanden und einsatzfähig ist.
6. Eine Instanz muss in der Lage sein können, völlig in ihrem "privaten Speicher" zu laufen, wenn sie in
einem System verwendet wird, in dem Instanzen den Speicher nicht gemeinsam nutzen. Alternativ muss
eine Instanz in der Lage sein können, physikalischen "gemeinsam genutzten Speicher" für die Kommuni-
kation oder gemeinsame Nutzung von Daten mit anderen Instanzen zu verwenden, die in dem Computer
laufen, wenn die Instanz Teil eines Systems ist, in dem Speicher gemeinsam genutzt wird. In einem solchen
System mit gemeinsam genutzten Speicher muss eine Instanz in der Lage sein können, physikalischen "ge-
meinsam genutzten Speicher" wie im Konfigurationsbaum identifiziert in einen virtuellen Adressraum und
die virtuellen Adressräume der "Prozesse" abzubilden, die in dieser Betriebssystem-Instanz laufen.
7. Jede Instanz benötigt unter Umständen einen Mechanismus zum Kontaktieren einer anderen CPU in
dem Computersystem, um mit ihr zu kommunizieren.
21/40

DE 698 33 914 T2 2006.08.24
8. Eine Instanz muss ebenfalls in der Lage sein können, andere CPUs zu erkennen, die mit ihren Operati-
onen kompatibel sind, selbst wenn die CPUs ihrer Partition gegenwärtig nicht zugewiesen sind. Zum Bei-
spiel muss die Instanz in der Lage sein können, CPU-Parameter zu ermitteln, wie beispielsweise die Kon-
solenversionsnummer und Taktgeschwindigkeit, um zu bestimmen, ob sie mit dieser CPU laufen könnte,
wenn die CPU der Partition, in dem die Instanz läuft, neu zugewiesen würde.

Den Konfigurationsbaum ändern

[0136] Jedes Konsolenprogramm stellt eine Anzahl von Rückfragefunktionen bereit, um es der dazugehöri-
gen Betriebssystem-Instanz zu gestatten, die Konfiguration des APMP-Systems zu ändern, zum Beispiel durch
Erstellen einer neuen Community oder Partition oder durch Ändern der Zugehörigkeit von Speicherfragmen-
ten. Des Weiteren stellen andere Rückfragefunktionen die Möglichkeit bereit, eine Community oder Partition
zu löschen oder den Betrieb einer neu erstellten Partition zu starten.

[0137] Allerdings veranlassen Rückfragefunktionen nicht, dass auf den laufenden Betriebssystem-Instanzen
Änderungen stattfinden. Auf alle an dem Konfigurationsbaum vorgenommenen Änderungen muss von jeder
von der Änderung betroffenen Instanz eingewirkt werden. Die Vorgangsart, die in einer Instanz stattfinden
muss, wenn der Konfigurationsbaum geändert wird, ist eine Funktion der Art von Änderung und der Fähigkei-
ten der Betriebssystem-Instanz. Zum Beispiel kann das Verschieben eines Eingabe/Ausgabe-Prozessors von
einer Partition in eine andere erfordern, dass beide Partitionen neu gestartet werden. Die Änderung der Spei-
cherreservierung von Fragmenten könnte andererseits durch eine Betriebssystern-Instanz bearbeitet werden,
ohne dass ein Neustart erforderlich ist.

[0138] Die Konfiguration eines APMP-Systems bedingt die Erstellung von Communities und Partitionen sowie
die Zuweisung von nicht-zugewiesenen Komponenten. Wenn eine Komponente von einer Partition in eine an-
dere verschoben wird, entfernt sich die gegenwärtige Zugehörigkeit selbst als zu der Ressource zugehörig und
gibt dann die neue Zughörigkeit der Ressource an. Die neue Zugehörigkeit kann die Ressource dann verwen-
den. Wenn eine in einer Partition laufende Instanz eine Komponente freigibt, darf die Instanz nicht mehr auf
die Komponente zugreifen. Diese einfache Prozedur lässt die komplexe Synchronisierung entfallen, die erfor-
derlich ist, um ein blindes Entwenden (blind stealing) einer Komponente von einer Instanz und mögliche Wett-
laufsituationen beim Booten einer Instanz während einer Neukonfiguration zu gestatten.

[0139] Sobald sie initialisiert sind, werden Konfigurationsbaum-Knoten nie gelöscht oder verschoben, das
heißt, ihre Kennungen sind immer gültig. Daher können Hardware-Knotenadressen durch die Software im Ca-
che gespeichert werden. Rückfragefunktionen, die vorgeben, eine Partition oder eine Community zu löschen,
löschen den dazugehörigen Knoten nicht wirklich oder entfernen ihn aus dem Baum, sondern kennzeichnen
den Knoten als UNAVAILABLE und löschen die Zugehörigkeits-Felder jeder Hardware-Ressource, die zu der
Zugehörigkeit der Software-Komponente zugehörig gewesen sind.

[0140] Um Änderungen an dem Konfigurationsbaum zu synchronisieren, führt der Stammknoten des Baums
zwei Zähler (transient_level und current_level). Der Zähler transient_level wird zu Beginn einer Aktualisierung
des Baums inkrementiert, und der Zähler current_level wird inkrementiert, wenn die Aktualisierug abgeschlos-
sen ist. Die Software kann diese Zähler verwenden, um zu bestimmen, wann eine Änderung an dem Baum
eingetreten ist oder gerade eintritt. Wenn eine Aktualisierung durch eine Konsole abgeschlossen wird, kann
ein Interrupt für alle CPUs in dem APMP-System generiert werden. Dieser Interrupt kann dazu verwendet wer-
den, die System-Software zu veranlassen, ihren Zustand basierend auf den Änderungen an dem Baum zu ak-
tualisieren.

Erstellung eines APMP-Computersystems

[0141] Fig. 5 ist ein Ablaufdiagramm, das eine Übersicht des Aufbaus des veranschaulichenden adaptiv par-
titionierten Mehrprozessor- (AMPM) Computersystems darstellt. Die Routine beginnt in Schritt 500 und fährt
mit Schritt 502 fort, in dem ein Master-Konsolenprogramm gestartet wird. Wenn das APMP-Computersystem
beim Hochfahren erstellt wird, wird die CPU, auf der die Master-Konsole läuft, durch einen vorgegebenen Me-
chanismus, wie beispielsweise Entscheidung, oder einen anderen Hardware-Mechanismus ausgewählt. Wenn
das APMP-Computersystem auf Hardware erstellt wird, die bereits läuft, führt eine CPU in der ersten Partition,
die versucht, an den (nicht-vorhandenen) Systemen teilzunehmen, das Master-Konsolenprogramm aus, wie
im Folgenden erläutert wird.

[0142] Als Nächstes prüft das Master-Konsolenprogramm in Schritt 504 die Hardware und erstellt den Konfi-
22/40

DE 698 33 914 T2 2006.08.24
gurationsbaum in Schritt 506, wie oben erläutert wurde. Wenn mehr als eine Partition in dem APMP-System
beim Hochfahren vorhanden ist, wird jede Partition initialisiert und ihr Konsolenprogramm gestartet (Schritt
508).

[0143] Schließlich wird eine Betriebssystem-Instanz in wenigstens einer der Partitionen gebootet, wie in
Schritt 510 angegeben. Die erste zu bootende Betriebssystem-Instanz erstellt eine APMP-Datenbank und füllt
die Einträge wie im Folgenden beschrieben aus. APMP-Datenbanken speichern Informationen, die sich auf
den Zustand von aktiven Betriebssystem-Instanzen in dem System beziehen. Es ist zu anzumerken, dass die
Teilnahme einer Instanz in einem APMP-System nicht erforderlich ist. Die Instanz kann zu einem Zeitpunkt, der
lange nach dem Booten liegt, wählen, ob sie nicht teilnimmt oder teilnimmt. Diejenigen Instanzen, die teilneh-
men, bilden ein "Mitbenutzungs-Set". Die erste Instanz, die entscheidet, an einem Mitbenutzungs-Set teilzu-
nehmen, muss es erstellen. Es können mehrere Mitbenutzungs-Sets vorhanden sein, die auf einem einzelnen
APMP-System arbeiten, und jedes Mitbenutzungs-Set besitzt seine eigene APMP-Datenbank.

Entscheidung zum Erstellen eines neuen APMP-Systems oder zur Teilnahme an einem vorhandenen
APMP-System

[0144] Eine Betriebssystem-Instanz, die auf einer Plattform läuft, auf der auch das APMP-Computersystem
läuft, muss nicht notwendigerweise ein Mitglied des APMP-Computersystems sein. Die Instanz kann zu jeder
Zeit nach dem Booten versuchen, ein Mitglied des APMP-Systems zu werden. Dies kann entweder automa-
tisch nach einem Booten erfolgen oder nachdem ein Benutzerbefehl die Teilnahme explizit initiiert. Nachdem
das Betriebssystem zum Boot-Zeitpunkt geladen worden ist, wird die Betriebssystem-Initialisierungsroutine
aufgerufen und prüft einen gespeicherten Parameter, um festzustellen, ob er eine unmittelbare Teilnahme an-
gibt, und falls dies der Fall ist, führt das System eine Teilnahmeroutine aus, die Teil des APMP-Computersys-
tems ist. Ein Benutzerbefehl würde zu einer Ausführung der gleichen Routine führen.

APMP-Datenbank

[0145] Eine wichtige Datenstruktur, welche die erfinderische Software-Reservierung von Ressourcen unter-
stützt, ist die APMP-Datenbank, die Betriebssystem-Instanzen verfolgt, die Mitglieder eines Mitbenut-
zungs-Sets sind. Die erste Betriebssystem-Instanz, die versucht, das APMP-Computersystem einzurichten, in-
itialisiert eine APMP-Datenbank, wodurch die erfinderischen Software-Ressourcenreservierungen für das an-
fängliche Mitbenutzungs-Set erstellt oder instantiiert werden. Spätere Instanzen, die Teil des Mitbenut-
zungs-Sets werden wollen, nehmen durch Registrierung in der APMP-Datenbank teil, die mit diesem Mitbenut-
zungs-Set verknüpft ist. Die APMP-Datenbank ist eine gemeinsam genutzte Datenstruktur, welche die zentra-
lisierten Informationen enthält, die für die Verwaltung von gemeinsam genutzten Ressourcen des Mitbenut-
zungs-Sets erforderlich sind. Eine APMP-Datenbank wird ebenfalls initialisiert, wenn das APMP-Computersys-
tem in Reaktion auf einen nicht behebbaren Fehler neu aufgebaut wird.

[0146] Insbesondere ist jede APMP-Datenbank eine dreiteilige Struktur. Der erste Teil ist ein Header-Teil mit
einer festen Größe, der grundlegende Synchronisierungsstrukturen für die Erstellung des APMP-Computer-
systems, Adressenabbildungs-Informationen für die Datenbank und Offsets zu den dienstspezifischen Seg-
menten enthält, die den zweiten Teil ausmachen. Der zweite Teil ist ein Array von Datenblöcken, wobei jeder
potenziellen Instanz ein Block zugewiesen wird. Die Datenblöcke werden als "Knotenblöcke" bezeichnet. Der
dritte Teil ist in Segmente unterteilt, die von jedem der untergeordneten Betriebsmittel des Computersystems
verwendet werden. Jedes untergeordnete Betriebsmittel ist für den Inhalt seines eigenen Segments und die
Synchronisierung des Zugriffs darauf zuständig.

[0147] Der Header-Teil einer APMP-Datenbank ist der erste Teil der APMP-Datenbank, der von einer teilneh-
menden Betriebssystem-Instanz abgebildet wird. Auf Teile des Headers wird zugegriffen, bevor eine Instanz
an dem Mitbenutzungs-Set teilnimmt und eigentlich bevor die Instanz weiß, dass das APMP-Computersystem
vorhanden ist.

[0148] Der Header-Abschnitt enthält:
1. ein Mitgliedschafts- und Erstellungssynchronierungs-Quad-Wort
2. eine Computersystem-Software-Version
3. Zustandsinformationen, Erstellungszeit, Inkamationszählung usw.
4. einen Adressenverweis (Offset) zu einer Mitgliedschafts-Maske
5. Absturz-Instanz, Absturz-Bestätigungs-Bits usw.
6. Validierungsmasken, einschließlich eines Bits für jeden Dienst
23/40

DE 698 33 914 T2 2006.08.24
7. Speicherabbildungs-Informationen (Seiten-Frame-Nummer-Informationen) für die gesamte APMP-Da-
tenbank
8. Offset/Länge-Paare, die jedes der Dienst-Segmente beschreiben (Längen in Bytes gerundet auf volle
Seiten von Seiten und Offsets), einschließlich:
gemeinsam genutzte Speicherdienste
CPU-Kommunikationsdienste
mitgliedschaftsdienste (falls erforderlich)
Sperrdienste

[0149] Das Array von Knotenblöcken wird durch eine System-Partitions-ID, (pro Instanz ist auf der gegenwär-
tigen Plattform eine möglich), indexiert, und jeder Block enthält:
Instanz-Software-Version
Interruptgrund-Maske
Instanz-Zustand
Instanz-Inkarnation
Instanz-Heartbeat
Instanz-Mitgliedschafts-Zeitstempel
Little-Brother-Instanz-ID und Inaktiv-Zeit; Big-Brother-Instanz-ID
Bit Instanz-Validieruang ausgeführt.

[0150] Eine APMP-Datenbank wird im gemeinsam genutzten Speicher gespeichert. Der feste Anfangsteil von
N physikalisch zusammenhängenden Seiten belegt die ersten N Seiten von einem oder zwei Speicherberei-
chen, die von der ersten teilnehmenden Instanz während des anfänglichen Partitionierens der Hardware re-
serviert werden. Die Instanz weist die Konsole an, die physikalischen Start-Adressen dieser Bereiche in dem
Konfigurationsbaum zu speichern. Der Zweck der Reservierung von zwei Bereichen besteht darin, eine Aus-
fallsicherung im Fall eines Hardware-Speicherausfalls zu ermöglichen. Die Speicherverwaltung ist für die Ab-
bildung des physikalischen Speichers in virtuellen Adressraum für die APMP-Datenbank zuständig.

[0151] Die einzelnen Maßnahmen, die von einer Betriebssystem-Instanz ergriffen werden, sind in Fig. 6 dar-
gestellt. Insbesondere wenn eine Betriebssystem-Instanz ein Mitglied eines Mitbenutzungs-Sets werden
möchte, muss sie vorbereitet sein, das APMP-Computersystem zu erstellen, wenn sie die erste Instanz ist, die
versucht, an einem nicht-vorhandenen System "teilzunehmen". Damit die Instanz bestimmen kann, ob ein
APMP-System bereits vorhanden ist, muss die Instanz in der Lage sein, den Zustand des gemeinsam genutz-
ten Speichers wie oben beschrieben zu prüfen. Ferner muss sie in der Lage sein, sich mit anderen Instanzen
zu synchronisieren, die unter Umständen versuchen, an dem APMP-System und dem Mitbenutzungs-Set zum
gleichen Zeitpunkt teilzunehmen, um konfliktbildende Versuche zu verhindern. Die Master-Konsole erstellt den
Konfigurationsbaum wie oben erläutert. Anschließend wird ein Speicherbereich von der ersten oder primären
zu bootenden Betriebssystem-Instanz initialisiert, und dieser Speicherbereich kann für eine APMP-Datenbank
verwendet werden.

Abbildung des APMP-Datenbank-Headers

[0152] Das Ziel der ersten Maßnahmen, die von allen Betriebssystem-Instanzen ergriffen werden, besteht
dann, den Header-Teil der APMP-Datenbank abzubilden und eine primitive Inter-Instanz-Interrupt-Bearbeitung
zu initialisieren, um die Grundlage für eine Erstellungs- oder Teilnahme-Entscheidung zu schaffen. Die verwen-
dete Routine ist in Fig. 6 dargestellt und beginnt in Schritt 600. Die erste Maßnahme, die von jeder Instanz
ergriffen wird, (Schritt 602), besteht darin, die Speicherverwaltung zu beauftragen, das Anfangssegment der
APMP-Datenbank abzubilden, wie oben beschrieben. Zu diesem Zeitpunkt wird das Array von Knotenblöcken
in dem zweiten Datenbank-Abschnitt ebenfalls abgebildet. Die Speicherverwaltung bildet die ersten und zwei-
ten Segmente der APMP-Datenbank in den primären Betriebssystem-Adressraum ab und gibt die Startadres-
se und Länge zurück. Die Instanz informiert dann die Konsole, die Speicherstelle und Größe der Segmente in
dem Konfigurationsbaum zu speichern.

[0153] Als Nächstes wird in Schritt 604 die erste virtuelle Adresse der APMP-Datenbank verwendet, um es
der Initialisierungs-Routine zu gestatten, Interruptursachen-Masken in dem Knotenblock, welcher der gegen-
wärtigen Instanz zugewiesen ist, auf Null zu setzen.

[0154] Ein Null-Anfangswert wird dann in dem Heartbeat-Feld für die Instanz in dem Knotenblock und ande-
ren Knotenblockfeldern gespeichert. In einigen Fällen war die Instanz, die versucht hat, ein neues APMP-Com-
putersystem zu erstellen, vorher ein Mitglied eines APMP-Systems und hat sich aus dem APMP-System nicht
24/40

DE 698 33 914 T2 2006.08.24
zurückgezogen. Wenn diese Instanz neu gebootet wird, bevor die anderen Instanzen sie entfernt haben, blei-
ben ihre Bits immer noch in der System-Mitgliedschaftsmaske "eingeschaltet". Andere ungewöhnliche oder
Fehler-Fälle können auch dazu führen, dass "Müll" in der System-Mitgliedschaftsmaske gespeichert wird.

[0155] Als Nächstes wird in Schritt 608 die virtuelle Adresse (VA) der APMP-Datenbank in einer privaten Zelle
gespeichert, die durch einen Inter-Prozessor-Interrupt-Handler geprüft wird. Der Handler prüft diese Zelle, um
zu ermitteln, ob die Interruptursachen-Maske pro Instanz in dem APMP-Datenbank-Header auf auszuführende
Arbeit getestet werden soll. Wenn diese Zelle Null ist, ist die APMP-Datenbank nicht abgebildet, und es wird
nichts weiter von dem Handler getan. Wie vorher erläutert, wird die gesamte APMP-Datenbank, einschließlich
dieser Maske, so initialisiert, dass der Handler nichts tut, bevor die Adresse gespeichert ist. Des Weiteren kann
ein Takt-Interrupt-Handler die gleiche private Zelle prüfen, um zu bestimmen, ob das instanzspezifische Heart-
beat-Feld für diese Instanz in dem entsprechenden Knotenblock inkrementiert werden soll. Wenn die private
Zelle Null ist, inkrementiert der Inerrupt-Handler das Heartbeat-Feld nicht.

[0156] An diesem Punkt ist die Routine beendet, (Schritt 610), und auf den APMP-Datenbank-Header kann
zugegriffen werden, und die teilnehmende Instanz ist in der Lage, den Header zu prüfen und zu entscheiden,
ob das APMP-Computersystem nicht vorhanden ist und die Instanz es daher erstellen muss, oder ob die In-
stanz an einem bereits vorhandenen APMP-System teilnimmt.

[0157] Sobald der APMP-Header abgebildet ist, wird der Header geprüft, um zu bestimmen, ob das
APMP-Computersystem eingerichtet ist und funktioniert, und falls dies nicht der Fall ist, ob die gegenwärtige
Instanz die APMP-Datenbank initialisieren und das APMP-Computersystem erstellen sollte. Das Problem einer
Teilnahme an einem vorhandenen APMP-System wird zum Beispiel schwieriger, wenn das APMP-Computer-
system zu einem bestimmten Zeitpunkt erstellt worden ist, aber keine Mitglieder hat, oder wenn das
APMP-System nach einem Fehler neu aufgebaut wird. In diesem Fall ist der Zustand des APMP-Datenbank-
speichers nicht im Voraus bekannt, und ein einfacher Speichertest ist nicht ausreichend. Eine Instanz, die ver-
sucht, an einem möglicherweise vorhandenen APMP-System teilzunehmen, muss in der Lage sein, bestim-
men zu können, ob ein APMP-System vorhanden ist oder nicht, und falls dies nicht der Fall ist, muss die In-
stanz in der Lage sein, ein neues APMP-System ohne Beeinträchtigung durch andere Instanzen zu erstellen.
Diese Beeinträchtigung könnte von Threads stammen, die entweder auf der gleichen Instanz oder einer ande-
ren Instanz laufen.

[0158] Um eine solche Beeinträchtigung zu verhindern, wird die Erstellungs-/Teilnahme-Entscheidung getrof-
fen, indem die APMP-Datenbank zuerst gesperrt und dann der APMP-Header geprüft wird, um zu bestimmen,
ob ein funktionierendes APMP-Computersystem vorhanden ist. Wenn ein einwandfrei funktionierendes
APMP-System vorhanden ist, nimmt die Instanz an dem System teil und hebt die Sperre auf der APMP-Daten-
bank auf. Wenn andererseits keine APMP-System vorhanden ist, oder wenn ein APMP-System vorhanden ist,
das aber nicht funktioniert, dann erstellt die Instanz ein neues APMP-System mit sich selbst als Mitglied und
hebt die Sperre auf der APMP-Datenbank auf.

[0159] Wenn es den Anschein hat, als befinde sich ein APMP-System im Übergang, dann wartet die Instanz,
bis das APMP-System wieder betriebsfähig oder tot ist und geht dann wie oben beschrieben vor. Wenn ein
System nicht erstellt werden kann, schlägt die Teilnahme fehl.

Ein neues APMP-Computersystem erstellen

[0160] Angenommen, ein neues APMP-System muss erstellt werden, dann ist die Ersteller-Instanz für die Re-
servierung des Rests der APMP-Datenbank, die Initialisierung des Headers und den Aufruf von Systemdiens-
ten zuständig. Angenommen, die APMP-Datenbank ist gesperrt, wie oben beschreiben, dann werden die fol-
genden Schritte von der Ersteller-Instanz unternommen, um das APMP-System zu initialisieren (diese Schritte
sind in den Fig. 7A und Fig. 7B gezeigt):
Schritt 702 Die Ersteller-Instanz setzt den Zustand des APMP-Systems und seinen Knotenblock-Zustand auf
"Initialisieren".
Schritt 704 Die Ersteller-Instanz ruft eine Größenroutine für jeden Systemdienst mit der Adresse seines Län-
genfelds im Header auf.
Schritt 706 Die sich daraus ergebenden Längenfelder werden summiert, und die Ersteller-Instanz ruft die Spei-
cherverwaltung auf, um Raum für die gesamte APMP-Datenbank zuzuweisen, indem eine neue Abbildung er-
stellt und die alte Abbildung gelöscht wird.
Schritt 708 Die Ersteller-Instanz füllt die Offsets zu den Anfängen jedes Systemdienst-Segments auf.
Schritt 710 Die Initialisierungs-Routine für jeden Dienst wird mit den virtuellen Adressen der APMP-Datenbank,
25/40

DE 698 33 914 T2 2006.08.24
des Dienst-Segments und der Segmentlänge aufgerufen.
Schritt 712 Die Ersteller-Instanz initialisiert eine Mitgliedschafts-Maske, um sich selbst zum einzigen Mitglied
zu machen und inkrementiert eine Inkamationszählung. Dann richtet sie die Erstellungszeit, Software-Version
und andere Erstellungsparameter ein.
Schritt 714 Die Instanz setzt sich dann selbst als ihr eigener Big Brother und Little Brother (zu Heartbeat-Über-
wachungszwecken, wie im Folgenden beschrieben) ein.
Schritt 716 Dann trägt die Instanz ihren Instanz-Zustand als "Mitglied" und den Zustand des APMP-Systems
als "betriebsfähig" ein.
Schritt 718 Schließlich hebt die Instanz die APMP-Datenbanksperre auf.

[0161] Die Routine endet mit Schritt 720.

Teilnahme an einem bestehenden APMP-Computersystem

[0162] Angenommen, die APMP-Datenbank ist für die Instanz gesperrt, dann werden von der Instanz die fol-
genden (in den Fig. 8A und Fig. 8B gezeigten) Schritte unternommen, um ein Mitglied eines bestehenden
APMP-System zu werden:
Schritt 802 Die Instanz prüft, um sicherzustellen, dass ihr Instanz-Name eindeutig ist. Wenn ein anderes ge-
genwärtiges Mitglied den vorgeschlagenen Namen der Instanz besitzt, wird die Teilnahme abgebrochen.
Schritt 804 Die Instanz setzt den Zustand des APMP-Systems und seinen Knotenblock-Zustand auf "In-
stanz-Teilnahme".
Schritt 806 Die Instanz ruft eine Speicherverwaltungs-Routine auf, um den variablen Teil der APMP-Datenbank
in ihren lokalen Adressraum abzubilden.
Schritt 808 Die Instanz ruft Systemteilnahme-Routinen für jeden Systemdienst mit den virtuellen Adressen der
APMP-Datenbank und seinem Segment und seiner Segmentlänge auf.
Schritt 810 Wenn alle Systemdienst-Teilnahmeroutinen Erfolg melden, wird die Instanzteilnahme-Routine fort-
gesetzt. Wenn irgendeine Systemdienst-Teilnahmeroutine fehlschlägt, muss der Instanz-Teilnahmeprozess
nochmals von vorne beginnen und möglicherweise ein neues APMP-Computersystem erstellen.
Schritt 812 Angenommen, der Schritt 810 war erfolgreich, dann fügt sich die Instanz selbst zu der Systemmit-
gliedschafts-Maske hinzu.
Schritt 814 Die Instanz wählt einen Big Brother, um ihre Instanz-Unversehrtheit zu überwachen, wie im Folgen-
den dargelegt.
Schritt 816 Die Instanz trägt ihren Instanz-Zustand als "Mitglied" ein und setzt ein lokales Mitgliedschafts-Flag
Schritt 818 Die Instanz hebt die Konfigurationsdatenbanksperre auf.

[0163] Die Routine endet dann mit Schritt 820.

[0164] Der Verlust einer Instanz, entweder durch Inaktivitäts-Zeitüberschreitung oder einen Absturz, wird mit-
tels eines "Heartbeat"-Mechanismus erfasst, der in der APMP-Datenbank implementiert ist. Die Instanzen ver-
suchen, eine minimale Prüfung und Löschung vorzunehmen und benachrichtigen den Rest des APMP-Sys-
tems während eines Instanz-Absturzes. Wenn dies nicht möglich ist, erfassen die Systemdienste das Ver-
schwinden einer Instanz über einen Software-Heartbeat-Mechanismus. Insbesondere ist ein Feld "Heartbeat"
in der APMP-Datenbank für jede aktive Instanz reserviert. In dieses Feld werden durch die entsprechende In-
stanz in Zeitintervallen, die kleiner sind als ein vorgegebener Wert, beispielsweise alle zwei Millisekunden, Ein-
träge geschrieben.

[0165] Jede Instanz kann das Heartbeat-Feld einer anderen Instanz prüfen, um eine direkte Entscheidung zu
irgendeinem spezifischen Zweck zu treffen. Eine Instanz liest das Heartbeat-Feld der anderen Instanz, indem
sie ihr Hearbeat-Feld zweimal im Abstand einer Zeitdauer von zwei Millisekunden liest. Wenn der Heartbeat
zwischen den zwei Ablesungen nicht inkrementiert worden ist, wird die Instanz als inaktiv (verloren, an Kon-
troll-P (control-P) angehalten oder auf oder über Takt-Interrupt-Prioritätsebene aufgehängt) betrachtet. Wenn
die Instanz über die Dauer einer vorgegebenen Zeit inaktiv bleibt, wird die Instanz als tot oder desinteressiert
betrachtet.

[0166] Des Weiteren wird eine spezielle Anordnung verwendet, um alle Instanzen zu überwachen, weil es
nicht für jede Instanz machbar ist, jede andere Instanz zu überwachen, vor allem, wenn das APMP-System
groß wird. Diese Anordnung verwendet ein "Big Brother – Little Brother"-Konzept. Insbesondere wenn eine In-
stanz an dem APMP-System teilnimmt, bevor die Sperre auf der APMP-Datenbank aufgehoben worden ist,
wählt sie eines der gegenwärtigen Mitglieder als ihren Big Brother aus, der die teilnehmende Instanz bewachen
soll. Die teilnehmende Instanz übernimmt zunächst die Aufgaben des Big Brother für den gegenwärtigen Little
26/40

DE 698 33 914 T2 2006.08.24
Brother ihres gewählten Big Brother und weist sich dann selbst als der neue Little Brother der ausgewählten
Instanz zu. Wenn umgekehrt eine Instanz das APMP-Computersystem verlässt, während sie noch in Betrieb
ist, so dass sie die Beendigungs-Verarbeitung durchführen kann, und während sie die Sperre auf der
APMP-Datenbank enthält, weist sie ihre Big-Brother-Aufgaben ihrem gegenwärtigen Big Brother zu, bevor sie
aufhört, ihren Heartbeat zu inkrementieren.

[0167] Bei jedem Takt-Tick liest jede Instanz nach dem Inkrementieren ihres eigenen Heartbeat den Heart-
beat ihres Little Brother und vergleicht ihn mit dem Wert, der beim letzten Takt-Tick gelesen worden ist. Wenn
der neue Wert größer ist, oder sich die ID des Little Brother geändert hat, wird der Little Brother als aktiv be-
trachtet. Wenn die ID des Little Brother und sein Heartbeat-Wert jedoch die gleichen sind, wird der Little Brother
als inaktiv betrachtet, und die gegenwärtige Instanz beginnt, den Little Brother ihres Little Brother ebenfalls zu
beobachten. Diese Ansammlung von Zuständigkeit wird bis zu einem vorgegeben Höchstwert fortgesetzt und
stellt sicher, dass der Ausfall einer Instanz nicht zum Übersehen des Ausfalls ihres Little Brother führt. Wenn
der Little Brother beginnt, seinen Heartbeat wieder zu inkrementieren, werden alle zusätzlichen Zuständigkei-
ten eingestellt.

[0168] Wenn eine Mitglied-Instanz als tot oder desinteressiert betrachtet wird, und sie das APMP-Computer-
system nicht über ihre Absicht, sich abzuschalten oder ihren Absturz benachrichtigt hat, wird die Instanz aus
dem APMP-System entfernt. Dies kann zum Beispiel durch Setzen des "Bugcheck"-Bits in der primitiven Inter-
rupt-Maske der Instanz (instance primitive interrupt mask) und Senden eines IP-Interrupts an alle CPUs der
Instanz erfolgen. Im Regelfall kann auf einen gemeinsam genutzten Speicher nur unterhalb der Hardware-Pri-
orität des IP-Interrupt zugegriffen werden. Dies stellt sicher, dass, wenn die CPUs in der Instanz versuchen
sollten, auf einer Priorität unterhalb derjenigen des IP-Interrupt zu arbeiten, der IP-Interrupt zuerst eintritt und
die CPU daher das "Bugcheck"-Bit sieht, bevor irgendwelche Threads mit niedrigerer Priorität ausgeführt wer-
den. Dies stellt sicher, dass die Betriebssystem-Instanz abstürzt und keine gemeinsam genutzten Ressourcen
in Mitleidenschaft zieht, wie beispielsweise den Speicher, der zu anderen Zwecken neu reserviert worden sein
kann, als die Instanzen als tot beurteilt wurden. Als ein zusätzlicher oder alternativer Mechanismus kann eine
Konsolen-Rückfrage, (sofern vorhanden), aufgerufen werden, um die Instanz zu entfernen. Des Weiteren füh-
ren die restlichen Instanzen in Übereinstimmung mit einer bevorzugten Ausführungsform, immer wenn eine In-
stanz verschwindet oder ohne Warnung aus dem APMP-Computersystem fällt, einige Unversehrtheitsprüfun-
gen durch, um zu bestimmen, ob sie fortfahren können. Zu diesen Prüfungen gehört das Überprüfen, dass auf
alle Seiten in der APMP-Datenbank immer noch zugegriffen werden kann, d.h. dass kein Speicherfehler vor-
gelegen hat.

Zuweisung von Ressourcen nach der Teilnahme

[0169] Eine CPU kann höchstens eine zugehörige Partition zu jedem Zeitpunkt während der Hochfahrzeit ei-
nes APMP-Systems aufweisen. Jedoch kann sich die Wiedergabe dieser Zugehörigkeit und der Einheit, die für
deren Steuerung zuständig ist, als Ergebnis von Konfigurations- und Zustands-Übergängen, denen die Res-
source selbst unterliegt, der Partition, in der sie resident ist, und der Instanz, die in dieser Partition läuft, ändern.

[0170] Die CPU-Zugehörigkeit wird auf eine Reihe von Arten in einer Reihe von Strukturen angegeben, die
von der Einheit vorgegeben werden, welche die Ressource zu dem Zeitpunkt verwaltet. Im grundlegendsten
Fall kann die CPU in einem nicht-zugewiesenen Zustand sein, verfügbar für alle Partitionen, die in dem glei-
chen Mitbenutzungs-Set resident sind wie die CPU. Schließlich wird diese CPU einer spezifischen Partition zu-
gewiesen, die eine Betriebssystem-Instanz ausführen kann oder nicht. In jedem Fall gibt die Partition ihre Zu-
gehörigkeit für alle anderen Partitionen über die Konfigurationsbaumstruktur und für alle Betriebssystem-In-
stanzen, die in dieser Partition ausgeführt werden können, über das Bit AVAILABLE in dem HWRPB-Feld Flags
pro CPU wieder.

[0171] Wenn die besitzende Partition keine Betriebssystem-Instanz aufweist, die auf ihr läuft, ist ihre Konsole
dafür zuständig, auf Übergangsereignisse in den darin enthaltenen Ressourcen zu reagieren und diese zu in-
itialisieren. Die Konsole entscheidet, ob sich die Ressource in einem Zustand befindet, die eine Migration zu
einer anderen Partition oder ihre Zurücksetzung in den nicht-zugewiesenen Zustand gestattet.

[0172] Wenn in der Partition jedoch gegenwärtig eine Partition läuft, gibt die Konsole die Zuständigkeit für die
Initialisierung von Ressourcen-Übergängen auf und ist zuständig für die Benachrichtigung der ausführenden
primären CPU der Instanz, wenn eine Konfigurationsänderung stattgefunden hat. Sie ist immer noch der Ver-
mittler (facilitator) des grundlegenden Hardware-Übergangs, doch die Steuerung von Ressourcen-Übergän-
gen geht auf eine Ebene höher an die Betriebssystem-Instanz über. Der Zuständigkeits-Transfer findet statt,
27/40

DE 698 33 914 T2 2006.08.24
wenn die primäre CPU ihren ersten Befehl außerhalb des Konsolenmodus in einem Systemstart ausführt.

[0173] Betriebssystem-Instanzen können Zugehörigkeitszustands-Informationen auf jede Reihe von Arten
verwalten, die intern den effizientesten Einsatz der Informationen fördern. Zum Beispiel kann eine Hierarchie
von Zustands-Bit-Vektoren verwendet werden, welche die instanzspezifischen Informationen sowohl intern als
auch global (für andere Mitglieder, die eine APMP-Datenbank gemeinsam nutzen) wiedergeben.

[0174] Die internen Darstellung sind strikt für die Verwendung der Instanz. Sie werden zum Startzeitpunkt aus
dem grundlegenden Konfigurationsbaum und HWRPB-Informationen aufgebaut, aber als strikte Softwa-
re-Konstrukte für die Laufzeit der Instanz verwaltet. Sie stellen die Software-Sicht der für die Instanz verfügba-
ren Partitions-Ressourcen dar und können – über Software-Regelsets – die Konfiguration weiter auf eine Un-
tergruppe von derjenigen einschränken, die durch die physikalischen Konstrukte angegeben wird. Gleichwohl
sind alle Ressourcen in der Partition zu der Instanz zugehörig und werden von dieser – unter Verwendung der
Konsolen-Mechanismen zum Anweisen von Zustands-Übergängen – verwaltet, bis dieser Betriebssystem-Auf-
ruf keine durchführbare Einheit mehr ist. Dieser Zustand wird angegeben, indem die primäre CPU, die wieder
in den Konsolenmodus zurückgekehrt ist, angehalten wird, ohne die Möglichkeit, ohne Neustart wieder zurück-
zukehren.

[0175] Die Zugehörigkeit von CPU-Ressourcen erstreckt sich nie über die Instanz hinaus. Die Zustands-In-
formationen jeder einzelnen Instanz werden in einer APMP-Datenbank für Nur-Lese-Entscheidungszwecke
dupliziert, doch kann keine andere Instanz ein Zustands-Übergangsereignis für eine Ressource einer anderen
CPU erzwingen. Jede Instanz ist dafür zuständig, ihre eigenes Ressourcen-Set zu verstehen und zu steuern;
sie kann externe Anforderungen für ihre Ressourcen empfangen, aber nur sie kann die Entscheidung treffen,
dass gestattet wird, die Ressourcen zu transferieren.

[0176] Wenn jede derartige CPU betriebsfähig wird, setzt sie ihr Bit AVAILABLE in den Flags pro CPU nicht.
Wenn das Bit AVAILABLE nicht gesetzt ist, wird keine Instanz versuchen, zu starten oder erwarten, dass die
CPU an dem SMP-Betrieb teilnimmt. Stattdessen fragt die CPU im Konsolenmodus das Feld Zugehörigkeit in
dem Konfigurationsbaum ab, das auf die Zuweisung einer gültigen Partition wartet. Sobald eine gültige Parti-
tion durch die primäre CPU als Zugehörigkeit zugewiesen worden ist, beginnt die CPU mit ihrem Betrieb in die-
ser Partition.

[0177] Während der Laufzeit gibt das Feld current_owner die Partition wieder, in der eine CPU sich in Aus-
führung befindet. Das Bit AVAILABLE in dem Feld Flags pro CPU in dem HWRPB bleibt der endgültige Indika-
tor, ob eine CPU tatsächlich verfügbar ist oder sich in Ausführung befindet, für den SMP-Betrieb mit einer Be-
triebssystem-Instanz und hat die gleiche Bedeutung wie in herkömmlichen SMP-Systemen.

[0178] Es ist anzumerken, dass eine Instanz kein Mitglied eines Mitbenutzungs-Sets sein muss, um an vielen
der Neukonfigurationsfunktionen eines APMP-Computersystems teilzunehmen. Eine Instanz kann ihre Res-
sourcen zu einer anderen Instanz in dem APMP-System transferieren, so dass eine Instanz, die nicht Teil eines
Mitbenutzungs-Sets ist, eine Ressource zu einer Instanz transferieren kann, die Teil des Mitbenutzungs-Sets
ist. Auf ähnliche Weise kann die Instanz, die nicht Teil des Mitbenutzungs-Sets ist, eine Ressource von einer
Instanz empfangen, die Teil des Mitbenutzungs-Sets ist.

[0179] Eine Software-Implementierung der oben beschriebenen Ausführungsform kann eine Reihe von Com-
puterbefehlen umfassen, die entweder auf einem konkreten Medium, wie beispielsweise einem computerles-
baren Medium, z.B. einer Diskette, einer CD-ROM, einem ROM-Speicher oder einer Festplatte fixiert sind, oder
zu einem Computersystem über ein Modem oder eine andere Schnittstelleneinrichtung über ein Medium über-
tragen werden können. Das Medium kann entweder ein konkretes Medium sein, einschließlich, aber nicht dar-
auf beschränkt, optischen oder analogen Kommunikationsleitungen, oder kann mit drahtlosen Techniken imp-
lementiert werden, einschließlich, aber nicht darauf beschränkt, Mikrowellen-, Infrarot- oder anderen Übertra-
gungstechniken. Es kann auch das Internet sein. Die Reihe von Computerbefehlen verkörpert die gesamte
oder einen Teil der Funktionalität, die hierin vorher unter Bezugnahme auf die Erfindung beschrieben worden
ist. Der Fachmann wird verstehen, dass solche Computerbefehle in einer Reihe von Programmiersprachen für
den Einsatz in vielen Computer-Architekturen oder Betriebssystemen geschrieben werden können. Ferner
können solche Befehle unter Verwendung jeder gegenwärtigen oder künftigen Speichertechnologie gespei-
chert werden, einschließlich, aber nicht darauf beschränkt, Halbleiter-, Magnet-, Optik- oder anderen Speiche-
reinrichtungen, oder unter Verwendung jeder gegenwärtigen oder künftigen Kommunikationstechnologie über-
tragen werden, einschließlich, aber nicht darauf beschränkt, optischen, Infrarot-, Mikrowellen- oder anderen
Übertragungstechnologien. Es wird in Erwägung gezogen, dass ein solches Computerprogramm-Produkt als
28/40

DE 698 33 914 T2 2006.08.24
ein entfernbares Medium mit begleitender gedruckter oder elektronischer Dokumentation vertrieben werden
kann, z.B. in Folie eingeschweißte Software, vorabgeladen mit einem Computersystem, z.B. auf einem Sys-
tem-ROM oder einer Festplatte, oder von einem Server oder elektronischen schwarzen Brett aus über ein
Netzwerk, z.B. das Internet oder World Wide Web, vertrieben.

[0180] Obwohl eine beispielhafte Ausführungsform der Erfindung offenbart worden ist, wird es für den Fach-
mann offensichtlich sein, dass verschiedene Änderungen und Modifizierungen vorgenommen werden können,
die einige der Vorteile der Erfindung erzielen können, ohne vom Umfang der Erfindung anzuweichen. Zum Bei-
spiel wird es für den durchschnittlichen Fachmann offenkundig sein, dass, obwohl die Beschreibung sich auf
ein bestimmtes Hardware-System und Betriebssystem bezogen hat, andere Hardware und Betriebssys-
tem-Software in der gleichen Weise wie beschrieben verwendet werden könnten. Andere Gesichtspunkte, wie
beispielsweise die spezifischen Befehle, die zum Erzielen einer bestimmten Funktion verwendet werden, so-
wie andere Modifizierungen an dem erfinderischen Konzept sollen durch die Ansprüche im Anhang abgedeckt
werden.

[0181] Beansprucht wird Folgendes:

Patentansprüche

1. Computer-System (200) mit einer Vielzahl von System-Ressourcen, die Prozessoren (108–114), einen
Speicher (120) und eine I/O-Schaltung (118) enthalten, wobei das Computer-System umfasst:
einen Verbindungsmechanismus;
einen Software-Mechanismus, der die System-Ressourcen in eine Vielzahl von Partitionen (202, 204, 206) un-
terteilt; und
wenigstens eine Betriebssystem-Instanz (208), die in einer Vielzahl der Partitionen läuft;
gekennzeichnet
dadurch, dass der Verbindungsmechanismus die Prozessoren, den Speicher und die I/O-Schaltung elektrisch
so verbindet, dass jeder Prozessor elektrischen Zugriff auf den gesamten Speicher und wenigstens einen Teil
der I/O-Schaltung hat; und
durch eine Konfigurations-Datenbank, die in dem Speicher (120) gespeichert ist und die Partitionen (202, 204,
206) anzeigt, die Teil des Computer-Systems (200) sind, und die Informationen enthält, die anzeigen, ob jede
Betriebssystem-Instanz (208, 210, 212) aktiv ist.

2. Computer-System nach Anspruch 1, des Weiteren gekennzeichnet durch wenigstens eine Instanz (208)
eines anderen Betriebssystems, die in wenigstens einer der Vielzahl von Partitionen (202) läuft.

3. Computer-System nach Anspruch 1, wobei wenigstens ein Teil des Speichers exklusiv jeder der Partiti-
onen (202, 204, 206) zugewiesen ist.

4. Computer-System nach Anspruch 1, wobei die Vielzahl von Prozessoren (108–114) physisch zwischen
Partitionen (202) aufgeteilt ist und jede Partition ein Konsolenprogramm (213, 215, 217) umfasst, das die Pro-
zessoren in der Partition steuert.

5. Computer-System nach Anspruch 1, des Weiteren gekennzeichnet durch eine Einrichtung, die Konfigu-
rations-Informationen führt, die anzeigen, welche der Vielzahl von System-Ressourcen jeder Partition (202) zu-
gewiesen ist.

6. Computer-System nach Anspruch 5, wobei einer der Prozessoren (108–114) ein Master-Konsolenpro-
gramm ausführt, das die Konfigurations-Informationen erzeugt; jede Partition (202) ein Konsolenprogramm
(213, 215, 217) umfasst, das die Prozessoren in der Partition steuert, und das Konsolenprogramm in jeder Par-
tition so ausgestattet ist, dass es mit dem Master-Konsolenprogramm kommuniziert, um Konfigurations-Infor-
mationen auszutauschen.

7. Computer-System nach Anspruch 1, wobei der Verbindungsmechanismus einen Schalter umfasst.

8. Computer-System nach Anspruch 1, des Weiteren gekennzeichnet durch eine Master-Konsole, die eine
Einrichtung umfasst, die die Konfigurationsdatenbank während einer Hochfahr-Sequenz des Computer-Sys-
tems erzeugt.

9. Computer-System nach Anspruch 1, wobei die Betriebssystem-Instanzen (208) Einrichtungen zum kon-
29/40

DE 698 33 914 T2 2006.08.24
tinuierlichen gegenseitigen Überwachen auf Aktivität umfassen, um eine Fehlfunktion in einer Betrieb-Instanz
zu erfassen, und jede Betriebssystem-Instanz eine Einrichtung zum Überwachen einer anderen Betriebssys-
tem-Instanz mittels eines Heartbeat-Mechanismus umfasst.

10. Verfahren zum Aufbauen eines Computer-Systems mit einer Vielzahl von Systemressourcen, die Pro-
zessoren (108–114), einen Speicher (120) und eine I/O-Schaltung (118) enthalten, wobei das Verfahren die
folgenden Schritte umfasst:
a) elektrisches Verbinden der Prozessoren, des Speichers und der I/O-Schaltung so, dass jeder Prozessor
elektrischen Zugang zu dem gesamten Speicher und wenigstens einem Teil der I/O-Schaltung hat;
b) Unterteilen der System-Ressourcen in eine Vielzahl von Partitionen (202, 204, 206);
c) Ausführen wenigstens einer Betriebssystem-Instanz (208) in einer Vielzahl der Partitionen; und
d) Erzeugen einer Konfigurations-Datenbank, die Informationen dahingehend, welche der Partitionen Teil des
Computer-Systems sind, und Informationen enthält, die anzeigen, ob jede Betriebssystem-Instanz aktiv ist.

11. Verfahren nach Anspruch 10, wobei Schritt c) den folgenden Schritt umfasst:
c1) Ausführen wenigstens zwei verschiedener Betriebssystem-Instanzen (208) in der Vielzahl von Partitionen
(202, 204, 206).

12. Verfahren nach Anspruch 10, wobei Schritt b) den folgenden Schritt umfasst:
b1) Zuweisen wenigstens eines Teils des Speichers (120) zu jeder der Partitionen (202, 204, 206).

13. Verfahren nach Anspruch 10, wobei Schritt b) die folgenden Schritte umfasst:
b2) physisches Aufteilen der Prozessoren (108–114) zwischen Partitionen (202, 204, 206); und
b3) Ausführen eines Konsolenprogramms (213, 215, 217) auf einem Prozessor in jeder Partition (202), wobei
das Konsolenprogramm die Prozessoren in der Partition steuert.

14. Verfahren nach Anspruch 13, wobei Schritt b) den folgenden Schritt umfasst:
b4) Bestimmen eines primären Prozessors in jeder Partition; und
wobei jeder Schritt c) die folgenden Schritte umfasst:
c1) Ausführen jeder Betriebssystem-Instanz (208) auf einem primären Prozessor in einer der Partitionen (202,
204, 206); und
c2) Steuern jeder Betriebssystem-Instanz (208) so, dass sie mit dem Konsolenprogramm für die Partition kom-
muniziert.

15. Verfahren nach Anspruch 10, das des Weiteren den folgenden Schritt umfasst:
e) Führen von Konfigurations-Informationen, die anzeigen, welche der Vielzahl von System-Ressourcen jeder
Partition (202) zugewiesen ist.

16. Verfahren nach Anspruch 15, wobei Schritt (e) die folgenden Schritte umfasst:
e1) Ausführen eines Master-Konsolenprogramms auf einem der Prozessoren (108–114), wobei das Mas-
ter-Konsolenprogramm die Konfigurations-Informationen erzeugt;
e2) Ausführen eines Konsolenprogramms (213, 215, 217) in jeder Partition, das die Prozessoren in der Parti-
tion (202) steuert; wobei Schritt e2) den folgenden Schritt umfasst:
e2a) Verwenden des Konsolenprogramms in jeder Partition zum Kommunizieren mit dem Master-Konsolen-
programm, um Konfigurations-Informationen auszutauschen; und
e3) Senden der Konfigurations-Informationen von dem Master-Konsolenprogramm zu jedem der anderen Kon-
solenprogramme.

17. Verfahren nach Anspruch 10, wobei Schritt a) den folgenden Schritt umfasst:
a1) Verwenden eines Schalters, um die Prozessoren (108–114), den Speicher (120) und die I/O-Schaltung
(118) miteinander zu verbinden.

18. Verfahren nach Anspruch 10, wobei Schritt c) den folgenden Schritt umfasst:
c3) Verwenden der Betriebssystem-Instanzen (208, 210, 212), um einander kontinuierlich zu überwachen und
eine Fehlfunktion in einer Betriebs-Instanz mittels eines Heartbeat-Mechanismus zu erfassen.

Es folgen 10 Blatt Zeichnungen
30/40

DE 698 33 914 T2 2006.08.24
Anhängende Zeichnungen
31/40

DE 698 33 914 T2 2006.08.24
32/40

DE 698 33 914 T2 2006.08.24
33/40

DE 698 33 914 T2 2006.08.24
34/40

DE 698 33 914 T2 2006.08.24
35/40

DE 698 33 914 T2 2006.08.24
36/40

DE 698 33 914 T2 2006.08.24
37/40

DE 698 33 914 T2 2006.08.24
38/40

DE 698 33 914 T2 2006.08.24
39/40

DE 698 33 914 T2 2006.08.24
40/40

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

