(19) (10 DE 698 33 914 T2 2006.08.24

Bundesrepublik Deutschland
Deutsches Patent- und Markenamt

(12) Ubersetzung der europiischen Patentschrift
(97) EP 0 917 057 B1 s1yintct:: GO6F 9/46 (2006.01)

(21) Deutsches Aktenzeichen: 698 33 914.2
(96) Europaisches Aktenzeichen: 98 309 011.9
(96) Europaischer Anmeldetag: 04.11.1998
(97) Erstverdffentlichung durch das EPA: 19.05.1999
(97) Veroffentlichungstag
der Patenterteilung beim EPA: 22.03.2006
(47) Veroffentlichungstag im Patentblatt: 24.08.2006

(30) Unionsprioritat: (72) Erfinder:
64250 04.11.1997 us Zalewski, Stephen H., Nashua, New Hampshire
95543 10.06.1998 us 03062, US; Mason, Andrew H., Hollis, New
Hampshire 03049, US; Jordan, Gregory H., Hollis,
(73) Patentinhaber: New Hampshire 03049, US; Noel, Karen L.,
Compaq Computer Corp., Houston, Tex., US Pembroke, New Hampshire 03275, US; Kaufman,
James R., Nashua, New Hampshire 03062, US;
(74) Vertreter: Harter, Paul K., Groton, Massachusetts 01540, US;
Griinecker, Kinkeldey, Stockmair & Kleinsorge, Frederick G., Amherst, New
Schwanhausser, 80538 Miinchen Hampshire 03031, US; Shirron, Stephen F., Acton,
Massachusetts 01720, US
(84) Benannte Vertragsstaaten:
DE, FR, GB

(54) Bezeichnung: Architektur eines Multiprozessorrechners mit mehreren Betriebssysteminstanzen und software-
gesteuerter Betriebsmittelzuteilung

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europa-
ischen Patents kann jedermann beim Europaischen Patentamt gegen das erteilte europédische Patent Einspruch
einlegen. Der Einspruch ist schriftlich einzureichen und zu begriinden. Er gilt erst als eingelegt, wenn die Ein-
spruchsgebihr entrichtet worden ist (Art. 99 (1) Europaisches Patentliibereinkommen).

Die Ubersetzung ist gemaR Artikel Il § 3 Abs. 1 IntPatUG 1991 vom Patentinhaber eingereicht worden. Sie wurde
vom Deutschen Patent- und Markenamt inhaltlich nicht gepruft.

DE 698 33914 T2 2006.08.24

Beschreibung
GEBIET DER ERFINDUNG

[0001] Diese Erfindung betrifft Mehrprozessor-Computer-Architekturen, in denen Prozessoren und andere
Computer-Hardware-Ressourcen in Partitionen gruppiert sind, von denen jede eine Betriebssystem-Instanz
aufweist, und insbesondere Verfahren und Einrichtungen zum Reservieren von Computer-Hardware-Ressour-
cen fur Partitionen.

[0002] Der effiziente Betrieb vieler Anwendungen in gegenwartigen Rechnerumgebungen hangt von schnel-
len, leistungsstarken und flexiblen Rechnersystemen ab. Die Konfiguration und Auslegung solcher Systeme
ist sehr kompliziert geworden, wenn solche Systeme in einer gewerblichen "Unternehmens"-Umgebung ein-
gesetzt werden sollen, in der es viele getrennte Abteilungen, viele verschiedene Problemtypen und sténdig
wechselnde EDV-Bedurfnisse geben kann. Benutzer in solchen Umgebungen méchten im Allgemeinen in der
Lage sein, die Kapazitat des Systems, seine Geschwindigkeit und seine Konfiguration rasch und leicht zu an-
dern. Sie mdchten auch die System-Arbeitskapazitat erhéhen und Konfigurationen andern kénnen, um eine
bessere Nutzung der Ressourcen zu erzielen, ohne die Ausfihrung von Anwendungsprogrammen auf dem
System zu stoppen. AuRerdem mdochten sie vielleicht in der Lage sein, das System zu konfigurieren, um die
Ressourcenverfiugbarkeit so zu maximieren, dass jede Anwendung eine optimale Rechenkonfiguration auf-
weist.

[0003] Herkdmmlicherweise @ wurde die = Rechengeschwindigkeit unter Verwendung einer
"Shared-Nothing"-Rechenarchitektur angesteuert, in der Daten, Geschaftslogik und grafische Benutzerschnitt-
stellen unterschiedliche Tiers sind und spezifische Rechenressourcen, die jedem Tier zugeordnet sind, aufwei-
sen. Anfanglich wurde ein einzelner Zentralprozessor verwendet, und die Leistungsstarke und Geschwindig-
keit eines solchen Rechensystems wurde erhéht, indem die Taktfrequenz des einzelnen Zentralprozessors er-
héht wurde. In letzter Zeit wurden Rechensysteme entwickelt, die mehrere Prozessoren verwenden, die als ein
Team arbeiten, statt eines massiven Prozessors, der alleine arbeitet. Auf diese Weise kann eine komplexe An-
wendung auf viele Prozessoren aufgeteilt werden, statt darauf zu warten, dass sie von einem einzelnen Pro-
zessor ausgeflihrt wird. Solche Systeme bestehen typischerweise aus mehreren Zentralprozessoren (CPUs),
die durch ein einzelnes Betriebssystem gesteuert werden. In einer Variante eines Mehrprozessor-Systems,
das als "symmetrischer Mehrprozessorbetrieb" oder SMP bezeichnet wird, werden die Anwendungen gleich-
maRig auf alle Prozessoren verteilt. Die Prozessoren verwenden auch gemeinsam einen Speicher. In einer an-
deren Variante, die als "asymmetrischer Mehrprozessorbetrieb" oder AMP bezeichnet wird, arbeitet ein Pro-
zessor als ein "Master", und alle anderen Prozessoren arbeiten als "Slaves". Daher mussen alle Operationen,
einschlieBlich des Betriebssystems, tiber den Master laufen, bevor sie an die Slave-Prozessoren weitergege-
ben werden. Die Mehrprozessorbetriebs-Architekturen weisen den Vorteil auf, dass die Leistung durch Hinzu-
fugen weiterer Prozessoren gesteigert werden kann, leiden jedoch unter dem Nachteil, dass die auf solchen
Systemen laufende Software sorgfaltig geschrieben werden muss, um die mehreren Prozessoren nutzen zu
kdnnen, und es schwierig ist, die Software zu skalieren, wenn sich die Anzahl der Prozessoren erhéht. Gegen-
wartige gewerbliche Auslastungen lassen sich Uber 8-24 CPUs hinaus nicht gut als einzelnes SMP-System
skalieren, wobei die genaue Anzahl von Plattform, Betriebssystem und Anwendungs-Mix abhangt.

[0004] Zur Steigerung der Leistung bestand eine andere typische Lésungsmadglichkeit darin, die Computer-
ressourcen (Maschinen) einer Anwendung zuzuordnen, um die Maschinenressourcen optimal auf die Anwen-
dung abzustimmen. Dieser Ansatz wurde jedoch von der Mehrhit der Benutzer nicht Gibernommen, da die meis-
ten Einsatzorte viele Anwendungen und getrennte Datenbanken aufweisen, die von unterschiedlichen Anbie-
tern entwickelt wurden. Es ist daher schwierig und kostspielig, Ressourcen zu allen der Anwendungen zuzu-
ordnen, insbesondere in Umgebungen, in denen sich der Anwendungs-Mix standig verandert.

[0005] Alternativ kann ein Rechensystem mit Hardware partitioniert werden, um eine Untergruppe der Res-
sourcen auf einem Computer zu bilden, die fiir eine spezifische Anwendung verfiigbar sind. Dieser Ansatz ver-
meidet die permanente Zuordnung der Ressourcen, da die Partitionen geandert werden kénnen, weist aber
immer noch Probleme hinsichtlich der Leistungsverbesserung mittels eines Lastausgleichs zwischen den Par-
titionen und der Ressourcenverfligbarkeit auf.

[0006] Die Probleme der Verfligbarkeit und Verwaltbarkeit wurden durch ein "Shared-Everything"-Modell an-
gegangen, in dem ein grofRer zentralisierter robuster Server, der den gréten Teil der Ressourcen enthalt, im
Netzwerk mit vielen kleinen, unkomplizierten Client-Netzwerk-Computern verbunden ist und sie bedient. Alter-
nativ werden "Cluster" verwendet, in denen jedes System bzw. jeder "Knoten" seinen eigenen Speicher hat

2/40

DE 698 33914 T2 2006.08.24

und von seinem eigenen Betriebssystem gesteuert wird. Die Systeme wirken durch die gemeinsame Benut-
zung von Disketten und die Ubergabe von Nachrichten untereinander tber eine Art Kommunikationsnetzwerk
zusammen. Ein Cluster-System weist den Vorteil auf, dass zuséatzliche Systeme leicht zu einem Cluster hinzu-
gefugt werden kénnen. Allerdings leiden Netzwerke und Cluster unter einem Mangel an gemeinsamem Spei-
cher und einer begrenzten Verbindungsbandbreite, die der Leistung Einschrankungen auferlegen.

[0007] In vielen Unternehmens-Rechenumgebungen ist klar, dass die zwei getrennten Rechenmodelle
gleichzeitig integriert werden missen und jedes Modell optimiert werden muss. Mehrere Ansatze des Stands
der Technik sind verwendet wurden, um diese Integrierung zu versuchen. Zum Beispiel verwendet eine Aus-
legung, die als eine "virtuelle Maschine" oder VM bezeichnet und von International Business Machines Corpo-
ration, Armonk, New York, entwickelt und vermarktet wird, eine einzelne physikalische Maschine mit einem
oder mehreren physikalischen Prozessoren in Kombination mit Software, die mehrere virtuelle Maschinen si-
muliert. Jede dieser virtuellen Maschinen besitzt im Prinzip Zugriff auf alle physikalischen Ressourcen des zu-
grundeliegenden echten Computers. Die Zuweisung von Ressourcen zu jeder virtuellen Maschine wird durch
ein Programm gesteuert, das als ein "Hypervisor" bezeichnet wird. Es gibt nur einen Hypervisor in dem Sys-
tem, und er ist fur alle physikalischen Ressourcen zustandig. Demzufolge nimmt der Hypervisor, nicht die an-
deren Betriebssysteme, die Reservierung von physikalischer Hardware vor. Der Hypervisor fangt Ressour-
cen-Anforderungen von den anderen Betriebssystemen ab und bearbeitet die Anforderungen in einer im All-
gemeinen korrekten Art.

[0008] Die VM-Architektur unterstiitzt das Konzept einer "logischen Partition" bzw. LPAR. Jede LPAR enthalt
einige der verfligbaren physikalischen CPUs und Ressourcen, die der Partition logisch zugewiesen sind. Die
gleichen Ressourcen kdnnen zu mehr als einer Partition zugewiesen werden. LPARs werden von einem Ad-
ministrator statisch eingerichtet, kdnnen aber auf Lastenanderungen dynamisch und ohne Neustart auf meh-
rere Arten reagieren.

[0009] Wenn zum Beispiel zwei logische Partitionen, von denen jede zehn CPUs enthalt, auf einem physika-
lischen System gemeinsam genutzt werden, das zehn physikalische CPUs enthalt, und wenn die logischen
zehn CPU-Partitionen komplementére Spitzenlasten aufweisen, kann jede Partition das gesamte physikali-
sche Zehn-CPU-System ohne einen Neustart oder einen Eingriff der Bedienperson tibernehmen, wenn sich
die Arbeitslast andert.

[0010] Des Weiteren kénnen die CPUs, die jeder Partition logisch zugewiesen sind, tGiber normale Betriebs-
system-Operatorbefehle ohne Neustart dynamisch "Ein"- und "Aus"-geschaltet werden. Die einzige Einschran-
kung ist, dass die Anzahl der CPUs, die bei Systeminitialisierung aktiv sind, die maximale Anzahl von CPUs
ist, die in jeder Partition "Ein"-geschaltet werden kénnen.

[0011] SchlieBlich kénnen in Fallen, in den der gesamte Arbeitslastbedarf aller Partitionen héher ist als von
dem physikalischen System bereitgestellt werden kann, LPAR-Wichtungen verwendet werden, um zu definie-
ren, wie viel von den gesamten CPU-Ressourcen an jede Partition vergeben wird. Diese Wichtungen kénnen
von den Bedienpersonen fliegend, ohne Unterbrechung, geandert werden.

[0012] Ein weiteres System des bisherigen Stands der Technik wird als "Paralleles Sysplex" bezeichnet und
wird ebenfalls von der International Business Machines Corporation vermarktet und entwickelt. Diese Architek-
tur besteht aus einer Gruppe von Computern, die Uber eine als "Kopplungseinrichtung" bezeichnete Hard-
ware-Einheit, die an jeder CPU angebracht ist, zu Clustern zusammengefasst werden. Die Kopplungseinrich-
tungen an jedem Knoten sind Uber eine faseroptische Verbindung angeschlossen, und jeder Knoten arbeitet
wie eine herkdmmliche SMP-Maschine mit einer Héchstanzahl von 10 CPUs. Gewisse CPU-Befehle rufen die
Kopplungseinrichtung direkt auf. Zum Beispiel registriert ein Knoten eine Datenstruktur in der Kopplungsein-
richtung, anschlieRend sorgt die Kopplungseinrichtung dafiir, dass die Datenstrukturen in dem lokalen Spei-
cher jedes Knotens koharent gehalten werden.

[0013] Der Enterprise 10000 Unix-Server, der von Sun Microsystems, Mountain View, Kalifornien, entwickelt
und vermarktet wird, verwendet eine Partitionierung, die als "Dynamische Systemdomanen" bezeichnet wird,
um die Ressourcen eines einzelnen physikalischen Servers in mehrfache Partitionen, oder Doméanen, von de-
nen jede als ein Stand-Alone-Server arbeitet, logisch zu unterteilen. Jede der Partitionen besitzt CPUs, Spei-
cher und I/O-Hardware. Die dynamische Neukonfiguration gestattet es einem Systemadministrator, Domanen
fliegend und ohne Neustart zu erstellen, ihre GrolRe anzupassen oder zu I6schen. Jede Domane bleibt von je-
der anderen Domane in dem System logisch isoliert, wodurch sie vollstandig von jedem Software-Fehler oder
CPU-, Speicher- oder 1/0-Fehler isoliert wird, der von einer anderen Domane generiert wird. Unter den Doma-

3/40

DE 698 33914 T2 2006.08.24

nen werden keine Ressourcen gemeinsam genutzt.

[0014] Das an der Stanford University durchgeflihrte Hive-Projekt verwendet eine Architektur, die als eine
Gruppe von Zellen strukturiert ist. Wenn das System gestartet wird, wird jeder Zelle ein Bereich von Knoten
zugewiesen, zu dem sie durchgehend wahrend der Ausflihrung zugehorig ist. Jede Zelle verwaltet die Prozes-
soren, Speicher- und I/O-Einrichtungen auf diesen Knoten so, als ob es sich um ein unabhangiges Betriebs-
system handeln wiirde. Die Zellen arbeiten zusammen, um fiir Prozesse auf Benutzerebene die lllusion eines
einzelnen Systems zu bieten.

[0015] Hive-Zellen sind nicht daflir zustandig, zu entscheiden, wie ihre Ressourcen zwischen lokalen und de-
zentralen Anforderungen aufgeteilt werden. Jede Zelle ist nur dafur zusténdig, ihre internen Ressourcen zu
verwalten und die Leistung innerhalb der Ressourcen zu optimieren, die fiir sie reserviert worden sind. Die glo-
bale Ressourcen-Reservierung wird durch einen Benutzerebenen-Prozess mit der Bezeichnung "Wax" ausge-
fuhrt. Das Hive-System versucht, eine Datenfalschung zu verhindern, indem gewisse Fehlereinddmmungs-
grenzen zwischen den Zellen verwendet werden. Um die enge gemeinsame Benutzung zu implementieren, die
von einem Mehrprozessorsystem trotz der Fehlereinddmmungsgrenzen zwischen den Zellen erwartet wird,
wird die gemeinsame Ressourcennutzung durch das Zusammenwirken der verschiedenen Zellenkerne imple-
mentiert, doch wird die Richtlinie auRerhalb der Kerne in dem Wax-Prozess implementiert. Sowohl Speicher
als auch Prozessoren kénnen gemeinsam genutzt werden.

[0016] Ein System mit der Bezeichnung "Cellular IRIX", das von Silicon Graphics Inc., Mountain View, Kali-
fornien, entwickelt und vermarktet wird, unterstitzt modulares Rechnen durch Erweitern herkdmmlicher sym-
metrischer Mehrprozess-Systeme. Die Celluar IRIX-Architektur teilt globalen Kern-Text und -Daten in optimier-
te Blécke von SMP-GroRRe oder "Zellen" auf.

[0017] Die Zellen stellen eine Steuerdomane dar, die aus einem oder mehreren Maschinenmodulen besteht,
wobei jedes Modul aus Prozessoren, Speicher und I/O besteht. Anwendungen, die auf diesen Zellen laufen,
stutzen sich umfassend auf ein vollstandiges Set von lokalen Betriebssystemdiensten, einschlief3lich lokalen
Kopien des Betriebssystemtexts und der Kerndatenstrukturen. Nur eine Instanz des Betriebssystems ist auf
dem gesamten System vorhanden. Die Koordinierung zwischen den Zellen erméglicht es den Anwendungsbil-
dern, die Verarbeitungs-, Speicher- und I/0-Ressourcen von anderen Zellen direkt und transparent zu nutzen,
ohne den Overhead von Datenkopien oder zusatzliche Aufgabenumschaltungen zu Gbernehmen.

[0018] Eine weitere bestehende Architektur mit der Bezeichnung NUMA-Q, die von Sequent Computer Sys-
tems, Inc., Beaverton, Oregon, entwickelt und vermarktet wird, verwendet "Quads" bzw. Gruppen von vier Pro-
zessoren pro Speicherabschnitt als den grundlegenden Funktionsbaustein fiur NUMA_Q SMP-Knoten. Die Er-
weiterung jedes Quads um I/O verbessert die Leistung zusatzlich. Daher unterteilt die NUMA-Q-Architektur
nicht nur physikalischen Speicher, sondern stellt eine vorgegebene Anzahl von Prozessoren und PCI-Slots ne-
ben jeden Teil. Der Speicher in jedem Quad ist kein lokaler Speicher im tblichen Sinne. Er ist eher ein Drittel
des physikalischen Speicheradressraums und weist einen spezifischen Adressbereich auf. Die Adressabbil-
dung ist gleichmafig tber den Speicher verteilt, wobei jeder Quad einen zusammenhangenden Teil von
Adressraum enthalt. Es lauft nur eine Kopie des Betriebssystems, und wie in jedem SMP-System ist sie im
Speicher resident und fihrt Prozesse ohne Unterscheidung und gleichzeitig in einem oder mehreren Prozes-
soren aus.

[0019] Dementsprechend, obwohl viele Versuche unternommen worden sind, ein flexibles Computersystem
bereitzustellen, das eine maximale Ressourcenverfligbarkeit und Skalierbarkeit besitzt, weisen die vorhande-
nen Systeme jeweils betrachtliche Defizite auf. Es ware daher winschenswert, eine neue Computersys-
tem-Auslegung zu haben, die eine verbesserte Flexibilitdt, Ressourcenverfugbarkeit und Skalierbarkeit bereit-
stellt.

[0020] US-A-5574914 offenbart ein Computersystem, in dem verschiedene Systemressourcen durch einen
Verbindungsmechanismus elektrisch verbunden sind.

[0021] WO 97/04388 offenbart ein Computersystem mit einer Vielzahl von Systemressourcen, die Prozesso-
ren, einen Speicher und eine 1/0-Schaltung enthalten, wobei das Computersystem umfasst:

einen Verbindungsmechanismus;

einen Software-Mechanismus, der die Systemressourcen in eine Vielzahl von Partitionen unterteilt; und
wenigstens eine Betriebssystem-Instanz, die in einer Vielzahl der Partitionen lauft.

4/40

DE 698 33914 T2 2006.08.24

[0022] Gemal der vorliegenden Erfindung ist ein solches System gekennzeichnet

dadurch, dass der Verbindungsmechanismus die Prozessoren, den Speicher und die 1/0O-Schaltung elektrisch
so verbindet, dass jeder Prozessor elektrischen Zugriff auf den gesamten Speicher und wenigstens einen Teil
der I/O-Schaltung hat; und

durch eine Konfigurations-Datenbank, die in dem Speicher gespeichert ist, welche die Partitionen anzeigt, die
Teil des Computersystems sind, und welche Informationen enthalt, die anzeigen, ob jede Betriebssystem-In-
stanz aktiv ist.

[0023] Die vorliegende Erfindung stellt des Weiteren ein Verfahren zum Aufbauen eines Computersystems
mit einer Vielzahl von Systemressourcen bereit, die Prozessoren, einen Speicher und eine I/O-Schaltung ent-
halten, wobei das Verfahren die folgenden Schritte umfasst:
(a) elektrisches Verbinden der Prozessoren, des Speichers und der I/O-Schaltung so, dass jeder Prozessor
elektrischen Zugang zu dem gesamten Speicher und wenigstens einem Teil der I/O-Schaltung hat;
(b) Unterteilen der Systemressourcen in eine Vielzahl von Partitionen;
(c) Ausfiihren wenigstens einer Betriebssystem-Instanz in einer Vielzahl der Partitionen; und
d) Erstellen einer Konfigurations-Datenbank, die Informationen dahingehend, welche der Partitionen Teil
des Computersystems sind, und Informationen enthalt, die anzeigen, ob jede Betriebssystem-Instanz aktiv
ist.

[0024] Insbesondere partitioniert die Software logisch und adaptiv CPUs, Speicher und 1/0-Ports, indem sie
einander zugewiesen werden. Eine Instanz eines Betriebssystems kann dann auf eine Partition geladen wer-
den. Zu unterschiedlichen Zeitpunkten kénnen verschiedene Betriebssystem-Instanzen auf eine bestimmte
Partition geladen werden. Diese Partitionierung, die ein System-Manager anweist, ist eine Software-Funktion;
es sind keine Hardware-Grenzen erforderlich. Zu jeder einzelner Instanz sind die Ressourcen zugehdrig, die
sie flr eine unabhangige Ausfiihrung bendtigt. Ressourcen, wie beispielsweise CPUs und Speicher, kénnen
verschiedenen Partitionen dynamisch zugewiesen und von Instanzen des Betriebssystems verwendet werden,
die in der Maschine laufen, indem die Konfiguration modifiziert wird. Die Partitionen selbst kdnnen ebenfalls
ohne Neustart des Systems geandert werden, indem der Konfigurationsbaum modifiziert wird. Das sich daraus
ergebende adaptiv partitionierte Mehrprozessor-(APMP) System weist sowohl Skalierbarkeit als auch hohe
Leistung auf.

[0025] Die oben genannten und weitere Vorteile der Erfindung lassen sich besser verstehen unter Bezugnah-
me auf die folgende Beschreibung in Verbindung mit den folgenden begleitenden Zeichnungen:

[0026] Fig. 1 ist ein schematisches Blockschaltbild einer Hardware-Plattform, die mehrere System-Funktions-
bausteine darstellt.

[0027] Fig. 2 ist eine schematische Darstellung eines APMP-Computersystems, das in Ubereinstimmung mit
den Prinzipien der vorliegenden Erfindung aufgebaut ist und mehrere Partitionen zeigt.

[0028] Fig. 3 ist eine schematische Darstellung eines Konfigurationsbaums, der Hardware-Ressourcenkonfi-
gurationen und Software-Konfigurationen und ihre Komponententeile mit Child- und Geschwister-Adressen-
verweisen (sibling pointers) darstellt.

[0029] Fig. 4 ist eine schematische Darstellung des Konfigurationsbaums, der in Fig. 3 gezeigt und neu an-
geordnet wurde, um die Zuweisung von Hardware zu Software-Instanzen durch Zugehdrigkeits-Adressenver-
weise (ownership pointer) zu veranschaulichen.

[0030] Fig. 5 ist ein Ablaufdiagramm, das Schritte in einer veranschaulichenden Routine zum Erstellen eines
APMP-Computersystems in Ubereinstimung mit den Prinzipen der vorliegenden Erfindung skizziert.

[0031] Fig. 6 ist ein Ablaufdiagramm, das die Schritte in einer veranschaulichenden Routine zum Erstellen
von Eintragen in einer APMP-Systemverwaltungs-Datenbank darstellt, die Informationen verwaltet, die das
APMP-System und seine Konfiguration betreffen.

[0032] Fig. 7A und Fig. 7B bilden, wenn sie zusammengelegt werden, ein Ablaufdiagramm, das im Detail die
Schritte in einer veranschaulichenden Routine zum Erstellen eines APMP-Computersystems in Ubereinstim-
mung mit den Prinzipien der vorliegenden Erfindung darstellit.

[0033] Fig. 8A und Fig. 8B bilden, wenn sie zusammengelegt werden, ein Ablaufdiagramm, das die Schritte

5/40

DE 698 33914 T2 2006.08.24

in einer veranschaulichenden Routine darstellt, denen eine Betriebssystem-Instanz folgt, um an einem
APMP-Computersystem, das bereits erstellt ist, teilzunehmen.

[0034] Eine Computerplattform, die in Ubereinstimmung mit den Prinzipien der vorliegenden Erfindung auf-
gebaut ist, ist ein Mehrprozessorsystem, das partitioniert werden kann, um die gleichzeitige Ausfiihrung meh-
rerer Instanzen von Betriebssystem-Software zu gestatten. Fur das System ist keine Hardware-Unterstitzung
fur die Partitionierung seines Speichers, der CPUs und der 1/0O-Untersysteme erforderlich, aber einige Hard-
ware lasst sich verwenden, um eine zusatzliche Hardware-Hilfe zum Isolieren von Fehlern und zum Minimieren
der Kosten des Software-Engineering bereitzustellen. Die folgende Spezifikation beschreibt die Schnittstellen
und Datenstrukturen, die zum Unterstiitzen der erfinderischen Software-Architektur erforderlich sind. Die be-
schriebenen Schnittstellen und Datenstrukturen sollen nicht implizieren, dass ein bestimmtes Betriebssystem
verwendet werden muss, oder dass nur ein einziger Typ von Betriebssystem eine gleichzeitige Ausflihrung vor-
nimmt. Jedes Betriebssystem, das die im Folgenden erlduterten Software-Anforderungen implementiert, kann
an dem erfinderischen Systembetrieb teilnehmen.

System-Funktionsbausteine

[0035] Die erfinderische Software-Architektur arbeitet auf einer Hardware-Plattform, die mehrere CPUs, ei-
nen Speicher und I/O-Hardware integriert. Vorzugsweise wird eine modulare Architektur wie diejenige, die in
Fig. 1 gezeigt ist, verwendet, obwohl der Fachmann verstehen wird, dass auch andere Architekturen verwen-
det werden kdnnen, wobei diese Architekturen nicht modular sein mussen. Fig. 1 stellt ein Rechnersystem dar,
das aus vier grundlegenden System-Funktionsbausteinen (SBBs) 100-106 aufgebaut ist. In der veranschauli-
chenden Ausflihrungsform ist jeder Funktionsbaustein, wie beispielsweise Baustein 100, identisch und um-
fasst mehrere CPUs 108-114, mehrere Speicher-Slots, (die insgesamt als der Speicher 120 dargestellt wer-
den), einen 1/0O-Prozessor 118 und einen Port 116, der einen (nicht gezeigten) Schalter enthalt, der das System
mit einem anderen solchen System verbinden kann. In anderen Ausfihrungsformen mussen die Funktions-
bausteine jedoch nicht identisch sein. Grof3e Mehrprozessor-Systeme kénnen aufgebaut werden, indem die
gewinschte Anzahl von System-Funktionsbausteinen mittels ihrer Ports verbunden werden. Es wird eine
Schalter-Technologie statt einer Bus-Technologie zum Verbinden von Funktionsbaustein-Komponenten ver-
wendet, um sowohl die verbesserte Bandbreite zu erhalten als auch nicht-einheitliche Speicher-Architekturen
(NUMA) zu gestatten.

[0036] In Ubereinstimmung mit den Prinzipien der Erfindung sind die Hardware-Schalter so angeordnet, dass
jede CPU alle verfuigbaren Speicher und I/O-Ports ansteuern kann, ungeachtet der Anzahl von konfigurierten
Funktionsbausteinen, wie dies schematisch durch Leitung 122 dargestellt ist. Des Weiteren kénnen alle CPUs
mit irgendeiner oder allen anderen CPUs in allen SBBs mit herkdmmlichen Mitteln kommunizieren, wie bei-
spielsweise Interprozessor-Interrupts. Dementsprechend kénnen die CPUs und andere Hardware-Ressourcen
nur mit Software verknlpft werden. Eine solche Plattform-Architektur ist inharent so skalierbar, dass grolRe
Mengen von Verarbeitungsleistung, Speicher und 1/O in einem einzelnen Computer verfugbar sind.

[0037] Ein APMP-Computersystem 200, das in Ubereinstimmung mit den Prinzipien der vorliegenden Erfin-
dung vom Software-Standpunkt her aufgebaut ist, ist in Fig. 2 dargestellt. In diesem System wurden die Hard-
ware-Komponenten zugewiesen, um die gleichzeitige Ausflihrung von mehreren Betriebssystem-Instanzen
208, 210, 212 zu gestatten.

[0038] In einer bevorzugten Ausfihrungsform wird diese Reservierung durch ein Software-Programm vorge-
nommen, das als ein "Konsolenprogramm" bezeichnet wird, weiches, wie hierin im Folgenden im Detail be-
schrieben wird, beim Hochfahren in den Speicher geladen wird. Konsolenprogramme werden in Fig. 2 sche-
matisch als Programme 213, 215 und 217 gezeigt. Das Konsolenprogramm kann eine Modifizierung eines be-
stehenden administrativen Programms oder ein separates Programm sein, das mit einem Betriebssystem zu-
sammenwirkt, um den Betrieb der bevorzugten Ausfiihrungsform zu steuern. Das Konsolenprogramm virtuali-
siert die Systemressourcen nicht, das heil}t, es erstellt keine Software-Schichten zwischen den laufenden Be-
triebssystemen 208, 210 und 212 und der physikalischen Hardware, wie beispielsweise dem Speicher und den
I/O-Einheiten (in Fig. 2 nicht gezeigt). Auch der Zustand der laufenden Betriebssysteme 208, 210 und 212 wird
nicht gewechselt, um Zugriff auf die gleiche Hardware bereitzustellen. Stattdessen unterteilt das erfinderische
System die Hardware logisch in Partitionen. Es liegt in der Zustandigkeit der Betriebssystem-Instanz 208, 210
und 212, die Ressourcen entsprechend einzusetzen und eine Koordinierung der Reservierung und gemeinsa-
men Nutzung der Ressourcen bereitzustellen. Die Hardware-Plattform kann optional eine Hardware-Unterstut-
zung fir die Unterteilung der Ressourcen bereitstellen oder kann Fehlersperren bereitstellen, um die Méglich-
keit zu minimieren, dass ein Betriebssystem den Speicher beschadigt oder sich auf Einrichtungen auswirkt, die

6/40

DE 698 33914 T2 2006.08.24

durch eine andere Betriebssystem-Kopie gesteuert werden.

[0039] Die Ausfiihrungsumgebung fir eine einzelne Kopie eines Betriebssystems, wie beispielsweise die Ko-
pie 208, wird als eine "Partition" 202 bezeichnet, und das ausfiuhrende Betriebssystem 208 in der Partition 202
wird als "Instanz" 208 bezeichnet. Jede Betriebssystem-Instanz ist in der Lage, unabhangig von allen anderen
Betriebssystem-Instanzen in dem Computersystem zu booten und unabhangig von ihnen zu laufen und kann
zusammenwirkend an der gemeinsamen Nutzung von Ressourcen zwischen Betriebssystem-Instanzen teil-
nehmen, wie im Folgenden beschrieben.

[0040] Zum Ausfihren einer Betriebssystem-Instanz muss eine Partition einen Hardware-Neustart-Parame-
terblock (HWRPB), eine Kopie eines Konsolenprogramms, eine gewisse Speichermenge, eine oder mehrere
CPUs und wenigstens einen I/O-Bus umfassen, der einen bestimmten physikalischen Port fiir die Konsole auf-
weisen muss. Der HWRPB ist ein Konfigurationsblock, der zwischen dem Konsolenprogramm und dem Be-
triebssystem Uibergeben wird.

[0041] Jedes der Konsolenprogramme 213, 215 und 217 ist an einen Konsolen-Port angeschlossen, der als
die entsprechenden Ports 214, 216 und 218 gezeigt wird. Konsolen-Ports, wie beispielsweise die Ports 214,
216 und 218 liegen im Allgemeinen in Form eines seriellen Leitungs-Ports oder von angeschlossenen Grafik-,
Tastatur- und Maus-Optionen vor. Zum Zweck des erfinderischen Computersystems ist die Fahigkeit, ein spe-
zifisches Betriebssystem oder dazugehérige Eingabeeinrichtungen zu unterstitzen, nicht erforderlich, obwohl
ein spezifisches Betriebssystem dies erfordern kann. Die grundlegende Voraussetzung ist, dass ein serieller
Port flr jede Partition ausreichend ist. Wahrend ein separates Endgerat oder eine unabhangige Grafikkonsole
verwendet werden kdnnten, um die von jeder Konsole generierten Informationen anzuzeigen, kdnnen vorzugs-
weise die seriellen Leitungen 220, 222 und 224 alle mit einem einzelnen Multiplexer 226 verbunden werden,
der an eine Workstation, einen PC oder LAT 228 zum Anzeigen von Konsolen-Informationen angeschlossen
ist.

[0042] Es ist wichtig zu beachten, dass Partitionen nicht gleichbedeutend mit System-Funktionsbausteinen
sind. Zum Beispiel kann die Partition 202 die Hardware in den Funktionsbausteinen 100 und 106 in Fig. 1 um-
fassen, wahrend die Partitionen 204 und 206 die Hardware in den entsprechenden Funktionsbausteinen 102
und 104 umfassen kénnten. Partitionen kénnen auch einen Teil der Hardware in einem Funktionsbaustein ent-
halten.

[0043] Partitionen kdnnen "initialisiert" oder "nichtinitialisiert" sein. Eine initialisierte Partition weist ausrei-
chende Ressourcen auf, um eine Betriebssystem-Instanz auszufiihren, besitzt ein geladenes Konsolenpro-
gramm-Bild und eine primare CPU, die verfiigbar und ausfihrend ist. Eine initialisierte Partition kann unter der
Steuerung eines Konsolenprogramms stehen oder kann eine Betriebssystem-Instanz ausfiihren. In einem in-
itialisierten Zustand weist eine Partition die volle Zugehorigkeit und die Steuerung der Hardware-Komponenten
auf, die ihr zugewiesen sind, und nur die Partition selbst kann ihre Komponenten freigeben.

[0044] In Ubereinstimmung mit den Prinzipien der Erfindung kénnen Ressourcen von einer initialisierten Par-
tition einer anderen neu zugewiesen werden. Die Neuzuweisung der Ressourcen kann nur durch die initiali-
sierte Partition vorgenommen werden, welcher die Ressource gegenwartig zugewiesen ist. Wenn sich eine
Partition in einem nichtinitialisierten Zustand befindet, kdnnen andere Partitionen ihre Hardware-Komponenten
neu zuweisen und sie I6schen.

[0045] Eine nichtinitialisierte Partition ist eine Partition, die keine primare CPU besitzt, die entweder unter der
Steuerung eines Konsolenprogramms oder eines Betriebssystems ausgefiihrt wird. Zum Beispiel kann eine
Partition beim Hochfahren auf Grund eines Mangels an ausreichenden Ressourcen zum Ausfuhren einer pri-
maren CPU nichtinitialisiert sein, oder wenn ein Systemadministrator das Computersystem neu konfiguriert. Im
nichtinitialisierten Zustand kann eine Partition ihre Hardware-Komponenten neu zuweisen und kann von einer
anderen Partition geldscht werden. Nicht zugewiesene Ressourcen kdnnen von jeder Partition zugewiesen
werden.

[0046] Partitionen kdnnen in "Communities" organisiert werden, welche die Basis zum Gruppieren getrennter
Ausfiuhrungskontexte bereitstellt, um eine zusammenwirkende gemeinsame Ressourcen-Nutzung zu gestat-
ten. Partitionen in der gleichen Community kdnnen Ressourcen gemeinsam nutzen. Partitionen, die sich nicht
in der gleichen Community befinden, kénnen Ressourcen nicht gemeinsam nutzen. Ressourcen kénnen zwi-
schen den Partitionen, die sich nicht in der gleichen Community befinden, nur manuell durch den Systemad-
ministrator verschoben werden, in dem die Ressourcenzuweisung aufgehoben (und die Nutzung gestoppt)

7/40

DE 698 33914 T2 2006.08.24

wird, und die Ressource manuell neu konfiguriert wird. Communities kénnen verwendet werden, um unabhan-
gige Betriebssystem-Domanen zu erstellen oder Benutzerrichtlinien fir den Hardware-Einsatz zu implemen-
tieren. In Fig. 2 sind die Partitionen 202 und 204 in der Community 230 organisiert worden. Die Partition 206
kann in ihrer eigenen Community 205 liegen. Communities kénnen unter Verwendung des im Folgenden be-
schriebenen Konfigurationsbaums aufgebaut und durch Hardware durchgesetzt werden.

Das Konsolenprogramm

[0047] Wenn ein Computersystem, das in Ubereinstimmung mit den Prinzipien der vorliegenden Erfindung
aufgebaut ist, auf einer Plattform aktiviert wird, missen mehrere HWRPBs erstellt, mehrere Konsolenpro-
gramm-Kopien geladen und Systemressourcen auf eine Weise zugewiesen werden, dass jeder HWRPB zu
spezifischen Komponenten des Systems zugeordnet wird. Dazu erstellt das erste auszufiihrende Konsolen-
programm eine Konfigurationsbaum-Struktur im Speicher, welche die gesamte Hardware im System darstellt.
Der Baum enthalt auch Software-Partitionierungsinformationen, und die Zuweisungen von Hardware zu Parti-
tionen wird im Folgenden ausfuhrlich erlautert.

[0048] Wenn das APMP-System hochgefahren wird, wird insbesondere eine CPU als eine primare CPU in
einer herkdmmlichen Weise von Hardware ausgewabhlt, die fir die Plattform spezifisch ist, auf der das System
lauft. Die primare CPU ladt dann eine Kopie eines Konsolenprogramms in den Speicher. Diese Konsole wird
als ein "Master-Konsolen"-Programm bezeichnet. Die primare CPU arbeitet anfanglich unter der Steuerung
des Master-Konsolenprogramms, um den Test- und Prifvorgang unter der Voraussetzung durchzufiihren,
dass ein einzelnes System vorhanden ist, zu der die gesamte Maschine zugehdrig ist. AnschlieBend wird ein
Set von Umgebungsvariablen geladen, welche die Systempartitionen definieren. Schliellich erstellt die Mas-
terkonsole die Partitionen basierend auf den Umgebungsvariablen. in diesem letzteren Prozess arbeitet die
Masterkonsole, um den Konfigurationsbaum zu erstellen, zusatzliche HWRPB-Datenblocke zu erstellen, zu-
satzliche Konsolenprogramm-Kopien zu laden und die CPUs auf den alternativen HWRPBs zu starten. Auf je-
der Partition 1auft dann eine Betriebssystem-Instanz, wobei die Instanz mit einer Konsolenprogramm-Kopie zu-
sammenwirkt, die ebenfalls in der Partition 1auft. In einem nichtkonfigurierten APMP-System erstellt das Mas-
ter-Konsolenprogramm zuerst eine einzelne Partition, welche die primare CPU, eine Mindest-Speichermenge
und eine physikalische Konsole des Systemadministrators enthalt, die auf eine plattformspezifische Weise
ausgewahlt wird. Konsolenprogramm-Befehle gestatten es dem Systemadministrator dann, zusatzliche Parti-
tionen zu erstellen und I/O-Busse, Speicher und CPUs fir jede Partition zu konfigurieren.

[0049] Nachdem die Zuordnungen von Ressourcen zu Partitionen durch das Konsolenprogramm vorgenom-
men worden sind, werden die Zuordnungen in einem nicht-flichtigen RAM gespeichert, um eine automatische
Konfiguration des Systems wahrend anschlieRender Boot-Vorgange zu gestatten. Wahrend der anschlielen-
den Boot-Vorgange muss das Master-Konsolenprogramm die gegenwartige Konfiguration mit der gespeicher-
ten Konfiguration validieren, um das Entfernen und Hinzufligen von neuen Komponenten zu bearbeiten. Neu
hinzugefligte Komponenten werden in einen nicht-zugewiesenen Zustand gesetzt, bis sie durch den System-
administrator zugewiesen werden. Wenn das Entfernen von Hardware-Komponenten zu einer Partition mit un-
zureichenden Ressourcen zum Ausfiihren eines Betriebssystems fihrt, werden weiterhin Ressourcen zu der
Partition hinzugefiigt, doch eine Betriebssystem-Instanz kann erst auf ihr laufen, wenn ihr zusatzliche neue
Ressourcen zugewiesen werden.

[0050] Wie vorher erwahnt, kommuniziert das Konsolenprogramm mit einer Betriebssystem-Instanz mittels
eines HWRPB, der wahrend des Hochfahrens des Betriebssystems an das Betriebssystem ibergeben wird.
Die grundlegenden Anforderungen flr ein Konsolenprogramm sind, dass es in der Lage sein muss, mehrere
Kopien von HWRPBs und sich selbst zu erstellen. Jede durch das Konsolenprogramm erstellte HWRPB-Kopie
ist in der Lage, eine unabhangige Betriebsystem-Instanz in einen privaten Speicherabschnitt zu booten, und
jede auf diese Weise gestartete Betriebssystem-Instanz kann durch einen eindeutigen Wert identifiziert wer-
den, der in den HWRPB gestellt wird. Der Wert gibt die Partition an und wird auch als die Betriebssystem-In-
stanz-ID verwendet.

[0051] Des Weiteren wird das Konsolenprogramm konfiguriert, um einen Mechanismus zum Entfernen einer
CPU aus den verfugbaren CPUs in einer Partition in Reaktion auf eine Anforderung durch ein Betriebssystem
bereitzustellen, das in dieser Partition l1auft. Jede Betriebssystem-Instanz muss in der Lage sein, auf eine Wei-
se abzuschalten, anzuhalten oder anderweitig abzustirzen, dass die Steuerung an das Konsolenprogramm
Ubergeben wird. Umgekehrt muss jede Betriebssystem-Instanz in der Lange sein, sich unabhangig von jeder
anderen Betriebssystem-Instanz erneut in einen betriebsfahigen Modus zu booten.

8/40

DE 698 33914 T2 2006.08.24

[0052] Jeder HWRPB, der durch ein Konsolenprogramm erstellt wird, enthalt eine slotspezifische CPU-Da-
tenbank fir jede CPU, die sich in dem System befindet oder die zu dem System hinzugefligt werden kann,
ohne das gesamte System abzuschalten. Jede CPU, die physikalisch vorhanden ist, wird als "present" mar-
kiert, doch nur CPUs, die zuerst in einer spezifischen Partition ablaufen, werden in dem HWRPB fir die Parti-
tion als "available" markiert. Die Betriebssystem-Instanz, die auf einer Partition I8uft, ist in der Lage, Uber ein
Bit present (vorhanden) (PP) in Feldern eines Zustands-Flag pro CPU (per-CPU state flag fields) des HWRPB
zu erkennen, dass eine CPU zu einem kiinftigen Zeitpunkt verfiigbar sein wird und kann Datenstrukturen auf-
bauen, um dies wiederzugeben. Wenn es gesetzt ist, zeigt das Bit available (verfugbar) (PA) in den Feldern
eines Zustands-Flag pro CPU an, dass die zugehdrige CPU gegenwartig mit der Partition verknpft ist, und
kann eingeladen werden, an dem SMP-Betrieb teilzunehmen.

Der Konfigurationsbaum

[0053] Wie vorher erwahnt, erstellt das Master-Konsolenprogramm einen Konfigurationsbaum, der die Hard-
ware-Konfiguration und die Zuweisung jeder Komponente in dem System zu jeder Partition darstellt. Jedes
Konsolenprogramm identifiziert dann den Konfigurationsbaum fir seine zugehdérige Betriebssystem-Instanz,
indem ein Adressenverweis auf den Baum in den HWRPB gestellt wird.

[0054] Unter Bezugnahme auf Fig. 3 stellt der Konfigurationsbaum 300 die Hardware-Komponenten in dem
System, die Plattformbedingungen und Mindestvorgaben und die Saftware-Konfiguration dar. Das Mas-
ter-Konsolenprogramm baut den Baum unter Verwendung von Informationen auf, die durch Priifen der Hard-
ware erfasst wurden, und von Informationen, die in dem nicht-flichtigen RAM gespeichert sind, der die Konfi-
gurationsinformationen enthalt, die wahrend vorheriger Initialisierungen generiert worden sind.

[0055] Die Master-Konsole kann eine einzelne Kopie des Baums generieren, dessen Kopie von allen Be-
triebssystem-Instanzen gemeinsam genutzt wird, oder sie kann den Baum fir jede Instanz replizieren. Eine
einzelne Kopie des Baums weist den Nachteil auf, dass er eine einzelne Fehlerstelle in Systemen mit unab-
hangigen Speichern erzeugen kann. Plattformen, die mehrere Baum-Kopien generieren, fordern von den Kon-
solenprogrammen jedoch, dass sie in der Lage sein miissen, Anderungen an dem Baum synchronisiert zu hal-
ten.

[0056] Der Konfigurationsbaum umfasst mehrere Knoten, einschliellich Stammknoten, Child-Knoten und
Geschwister-Knoten. Jeder Knoten wird aus einem festen Header und einer Erweiterung mit variabler Lange
fur Uberlagerte Datenstrukturen gebildet. Der Baum beginnt mit einem Baum-Stammknoten 302, der die ge-
samte System-Box darstellt, gefolgt von Zweigen, welche die Hardware-Konfiguration (Hardware-Stammkno-
ten 304), die Software-Konfiguration (Software-Stammknoten 306) und die Mindestanforderungen an die Par-
tition (Masken-Stammknoten 308) beschreiben. In Fig. 3 stellen die Pfeile Child- und Geschwister-Beziehun-
gen dar. Die Children eines Knotens stellen Komponententeile der Hardware- oder Software-Konfiguration dar.
Geschwister sind Gleichgestellte einer Komponente, die nicht in Beziehung stehen kénnen, aufder dadurch,
dass sie den gleichen Stamm haben. Knoten in dem Baum 300 kénnen Informationen Gber die Software-Com-
munities und Betriebssystem-Instanzen, die Hardware-Konfiguration, Konfigurationsbedingungen, Leistungs-
einschrankungen und Hot-Swap-Fahigkeiten enthalten. Die Knoten stellen auch die Beziehung von Hardware-
zu Software-Zugehdrigkeit oder der gemeinsamen Nutzung einer Hardware-Komponente bereit.

[0057] Die Knoten werden zusammenhangend im Speicher gespeichert, und der Adressen-Offset von dem
Baum-Stammknoten 320 des Baums 300 zu einem spezifischen Knoten bildet eine "Kennung" (handle), die
von jeder Betriebssystem-Instanz verwendet werden kann, um die gleiche Komponente auf jeder Betriebssys-
tem-Instanz eindeutig zu identifizieren. Des Weiteren weist jede Komponente in dem erfinderischen Compu-
tersystem eine separate ID auf. Dies kann beispielsweise ein 64-Bit-Wert ohne Vorzeichen sein. Die ID muss
eine eindeutige Komponente angeben, wenn sie mit den Typ- und untergeordneten Typ-Werten der Kompo-
nente kombiniert wird. Das heif3t, die ID muss eine fur einen vorgegebenen Komponententyp spezifische Kom-
ponente identifizieren. Die ID kann eine einfache Zahl sein, zum Beispiel die CPU-ID, sie kann irgendeine an-
dere eindeutige Verschlisselung oder eine physikalische Adresse sein. Die Komponenten-ID und die Kennung
gestatten es jedem Element des Computersystems, einen bestimmten Teil von Hardware oder Software zu
identifizieren. Das heildt, jede Parition muss unter Verwendung eines der Spezifikationsverfahren in der Lage
sein, die gleiche Spezifikation zu verwenden und das gleiche Ergebnis zu erzielen.

[0058] Wie oben beschrieben, setzt sich das erfinderische Computersystem aus einer oder mehreren Com-

munities zusammen, die wiederum aus einer oder mehreren Partitionen bestehen. Durch Unterteilen der Par-
titionen Ubergreifend Uber die unabhangigen Communities kann das erfinderische Computersystem in eine

9/40

DE 698 33914 T2 2006.08.24

Konfiguration gesetzt werden, in der die gemeinsame Nutzung der Einrichtungen und des Speichers begrenzt
werden kann. Die Communities und Partitionen haben IDs, die eng gepackt sind. Die Hardware-Plattform be-
stimmt die maximale Anzahl von Partitionen basierend auf der Hardware, die in dem System vorhanden ist,
sowie auf der Plattform-Obergrenze. Partitions- und Community-IDs Uberschreiten diesen Wert wahrend der
Laufzeit nie. Die IDs werden fur geldschte Partitionen und Communities wiederverwendet. Die maximale An-
zahl von Communities ist die gleiche wie die maximale Anzahl von Partitionen. Des Weiteren wird jede Be-
triebssystem-Instanz durch eine eindeutige Instanz-Kennung identifiziert, beispielsweise eine Kombination der
Partitions-ID plus einer Inkarnationsnummer (incarnation number).

[0059] Die Communities und Partitionen werden durch einen Software-Stammknoten 306 dargestellt, der
Community-Knoten-Children, (von denen nur der Community-Knoten 310 gezeigt ist), und Partitionskno-
ten-Grandchildren, (von denen zwei Knoten, 312 und 314, gezeigt sind), aufweist.

[0060] Die Hardware-Komponenten werden durch einen Hardware-Stammknoten 304 dargestellt, der Child-
ren enthalt, die eine hierarchische Darstellung der gesamten Hardware zeigen, die gegenwartig in dem Com-
putersystem vorhanden ist. Die "Zugehdorigkeit" einer Handware-Komponente wird durch eine Kennung in dem
zugehdorigen Hardware-Knoten dargestellt, der auf den entsprechenden Software-Knoten (310, 312 oder 314)
verweist. Diese Kennungen sind in Fig. 4 dargestellt und werden im Folgenden ausflhrlicher erldutert. Kom-
ponenten, die zu einer spezifischen Partition zugehdrig sind, weisen Kennungen auf, die auf den Knoten ver-
weisen, der die Partition darstellt. Hardware, die von mehreren Partitionen gemeinsam genutzt wird, (zum Bei-
spiel der Speicher), weist Kennungen auf, die auf die Community verweisen, auf welche die gemeinsame Nut-
zung beschrankt ist. Keiner Zugehdrigkeit zugeordnete Hardware weist eine Kennung von Null auf, (die den
Baum-Stammknoten 302 darstellt).

[0061] Hardware-Komponenten stellen Konfigurationsbedingungen dahingehend auf, wie eine Zugehdrigkeit
aufgeteilt werden kann. Eine "config"-Kennung in dem Konfigurationsbaum-Knoten, die mit jeder Komponente
verbunden ist, bestimmt, ob die Komponente frei ist, um irgendwo in dem Computersystem durch Verweisen
auf den Hardware-Stammknoten 304 zugeordnet zu werden. Einige Hardware-Komponenten kénnen jedoch
an einen Ancestor-Knoten gebunden sein und mussen als Teil dieses Knotens konfiguriert werden. Beispiele
daflr sind CPUs, die keinerlei Einschrankungen dazu aufweisen kénnen, wo sie ausgeflihrt werden, die aber
einen Komponententeil eines System-Funktionsbausteins (SBB) bilden, wie beispielsweise die SBBs 322 oder
324. In diesem Fall, auch wenn die CPU ein Child des SBB ist, verweist ihre config-Kennung auf den Hard-
ware-Stammknoten 304. Ein 1/0-Bus kann jedoch nicht zu einer anderen Partition als derjenigen Partition zu-
gehorig sein, zu deren Zugehorigkeit sein 1/0O-Prozessor gehdrt. In diesem Fall wirde der Konfigurations-
baum-Knoten, der den 1/0-Bus darstellt, eine config-Kennung aufweisen, die auf den 1/O-Prozessor verweist.
Da die Regeln, nach denen sich die Hardware-Konfiguration richtet, plattformspezifisch sind, werden diese In-
formationen durch die config-Kennung fiir die Betriebssystem-Instanzen bereitgestellt.

[0062] Jede Hardware-Komponente weist auch eine "Affinitats"- (affinity) Kennung auf. Die Affinitdtskennung
ist identisch mit der config-Kennung, aulRer, dass sie eine Konfiguration darstellt, mit der die beste Leistung der
Komponente zu erzielen ist. Zum Beispiel kénnen eine CPU oder ein Speicher eine config-Kennung aufweisen,
die es ermdglicht, sie tberall in dem Computersystem zu konfigurieren, (sie verweist auf den Hardware-Knoten
304), doch sollte die CPU bzw. der Speicher so konfiguriert sein, dass sie den System-Funktionsbaustein ver-
wenden, von dem sie ein Teil sind. Das Ergebnis ist, dass der config-Adressenverweis auf den Hard-
ware-Stammknoten 304 verweist, der Affinitats-Adressenverweis jedoch auf einen SBB-Knoten verweist, wie
beispielsweise Knoten 322 oder Knoten 324. Die Affinitat jeder Komponente ist plattformspezifisch und wird
durch die Firmware bestimmt. Die Firmware kann diese Informationen verwenden, wenn die Ausbildung "opti-
maler" automatischer Konfigurationen gewiinscht wird.

[0063] Jeder Knoten enthalt auch mehrere Flags, die den Typ und Zustand des Knotens anzeigen. Zu diesen
Flags gehort ein Flag node_hotswap, das anzeigt, dass die dargestellte Komponente eine "hotswap-fahige"
Komponente ist und unabhangig von ihrem Parent- oder ihren Geschwister-Knoten abgeschaltet werden kann.
Allerdings mussen alle Children dieses Knotens abgeschaltet werden, wenn sich diese Komponente abschal-
tet. Wenn sich die Children unabhangig von dieser Komponente abschalten kénnen, muss dieses Bit auch fur
sie in ihren entsprechenden Knoten gesetzt sein. Ein weiteres Flag ist das Flag node_unavailable, das, wenn
es gesetzt ist, anzeigt, dass die durch den Knoten dargestellte Komponente gegenwartig nicht zur Verwendung
zur Verfligung steht. Wenn eine Komponente abgeschaltet wird, (oder niemals eingeschaltet wird), wird sie als
nicht verfigbar gekennzeichnet.

[0064] Zwei Flags, node_hardware und node_template, zeigen den Knotentyp an. Weitere Flags, wie bei-

10/40

DE 698 33914 T2 2006.08.24

spielsweise node_initialized und node_cpu_primary, kdnnen ebenfalls bereitgestellt werden, um anzuzeigen,
ob der Knoten eine Partition darstellt, die initialisiert worden ist, oder eine CPU, die gegenwartig eine primare
CPU ist.

[0065] Der Konfigurationsbaum 300 kann sich auf die Ebene von Einrichtungs-Controllern erstrecken, die es
dem Betriebssystem gestatten, Bus- und Einrichtungs-Konfigurationstabellen zu erstellen, ohne die Busse zu
prufen. Der Baum kann jedoch auf jeder Ebene enden, wenn alle darunter liegenden Komponenten nicht un-
abhangig konfiguriert werden kénnen. System-Software ist noch erforderlich, um Bus- und Einrichtungs-Infor-
mationen zu prifen, die von dem Baum nicht bereitgestellt werden.

[0066] Das Konsolenprogramm implementiert Konfigurationsbedingungen und setzt sie, sofern vorhanden,
auf jeder Komponente des Systems durch. Im Aligemeinen kénnen die Komponenten entweder ohne Bedin-
gungen zugewiesen werden, (zum Beispiel weisen CPUs keine Bedingungen auf), oder sie sind nur als Teil
einer anderen Komponente konfigurierbar, (ein Einrichtungsadapter ist zum Beispiel nur als ein Teil seines
Busses konfigurierbar). Eine Partition, die, wie oben erlautert, eine Gruppierung von CPUs, Speicher und
I/O-Einrichtungen zu einer eindeutigen Software-Einheit ist, weist ebenfalls Mindestanforderungen auf. Zum
Beispiel sind die Hardware-Mindestanforderungen fiir eine Partition wenigstens eine CPU, einiger privater
Speicher, (plattformabhangiger Mindestwert, einschlieRlich Konsolenspeicher), und ein 1/0-Bus, einschliellich
eines physikalischen, nicht gemeinsam genutzten Konsolen-Ports.

[0067] Die Komponenten-Mindestanforderungen flir eine Partition werden durch die Informationen bereitge-
stellt, die in dem Masken-Stammknoten 308 enthalten sind. Der Masken-Stammknoten 308 enthalt die Knoten
316, 318 und 320, welche die Hardware-Komponenten darstellen, die bereitgestellt werden missen, um eine
Partition zu erstellen, die zur Ausfiihrung eines Konsolenprogramms und einer Betriebssystem-Instanz fahig
ist. Konfigurations-Editoren kénnen diese Informationen als die Basis fur die Bestimmung verwenden, welche
Typen und wie viele Ressourcen verfligbar sein miissen, um eine neue Partition auszubilden.

[0068] Wahrend des Aufbaus einer neuen Partition wird der Masken-Unterbaum "durchgegangen", und fir
jeden Knoten in dem Masken-Unterbaum muss ein Knoten des gleichen Typs und Untertyps zu der neuen Par-
tition zugehdrig sein, so dass sie fahig ist, ein Konsolenprogramm zu laden und eine Betriebssystem-Instanz
zu booten. Wenn mehr als ein Knoten des gleichen Typs und Untertyps in dem Masken-Baum vorhanden ist,
mussen auch mehrere Knoten in der neuen Partition vorhanden sein. Das Konsolenprogramm verwendet die
Masken zum Validieren dessen, dass eine neue Partition die Mindestanforderungen aufweist, bevor versucht
wird, ein Konsolenprogramm zu laden und den Betrieb zu initialisieren.

[0069] Folgendes ist ein ausfiihrliches Beispiel einer bestimmten Implementierung von Konfigurations-
baum-Knoten. Es soll nur zu beschreibenden Zwecken dienen und soll nicht einschrankend sein. Jeder HWR-
PB muss auf einen Konfigurationsbaum verweisen, der die gegenwartige Konfiguration und die Zuweisungen
von Komponenten zu Partitionen bereitstellt. Ein Konfigurations-Adressenverweis (im Feld CONFIG) im HWR-
PB wird verwendet, um auf den Konfigurationsbaum zu verweisen. Das Feld CONFIG verweist auf einen
64-Byte-Header, der die Grole des Speicher-Pools flir den Baum und die urspriingliche Prifsumme des Spei-
chers enthalt. Unmittelbar nach dem Header befindet sich der Stammknoten des Baums. Der Header und der
Stammknoten des Baums sind seitensynchronisiert (page aligned).

[0070] Die Gesamtgrofle des fir den Konfigurationsbaum reservierten Speichers in Byte befindet sich in dem
ersten Quad-Wort des Headers. Es wird sichergestellt, dass die GréRe in Vielfachen der Hardware-Seitengro-
Re vorliegt. Das zweite Quad-Wort des Headers ist fir eine Prifsumme reserviert. Um den Konfigurationsbaum
prufen zu kdnnen, bildet eine Betriebssystem-Instanz den Baum in ihren lokalen Adressraum ab. Da eine Be-
triebssystem-Instanz diesen Speicher mit Lesezugriff, der fiir alle Anwendungen gestattet ist, abbilden kann,
mussen einige Vorkehrungen getroffen werden, um eine nicht-privilegierte Anwendung daran zu hindern, Zu-
griff auf Konsolendaten zu erlangen, auf die sie keinen Zugriff haben soll. Der Zugriff kann eingeschrankt wer-
den, indem der Speicher entsprechend reserviert wird. Zum Beispiel kann der Speicher seitensynchronisiert
und in ganzen Seiten reserviert werden. Normalerweise bildet eine Betriebssystem-Instanz die erste Seite des
Konfigurationsbaums ab, erhalt die BaumgréRe und bildet den Speicher, der fiir die Konfigurationsbaum-Nut-
zung reserviert ist, nochmals ab. Die Gesamtgré3e kann zusatzlichen Speicher umfassen, der von der Konsole
fir dynamische Anderungen an dem Baum verwendet wird.

[0071] Vorzugsweise werden Konfigurationsbaum-Knoten mit festen Anfangsblécken gebildet und kénnen

optional typspezifische Informationen enthalten, die auf den festen Teil folgen. Das Feld GroRe enthalt die volle
Lange des Knotens, Knoten werden veranschaulichend in Vielfachen von 64 Bytes reserviert und nach Bedarf

11/40

DE 698 33914 T2 2006.08.24

aufgefillt. Die folgende Beschreibung definiert veranschaulichende Felder in dem festen Header fiur einen
Knoten:

typedef struct_gct_node {

unsigned char type;
unsigned char subtype;
uint16 size;
GCT_HANDLE OoWner,
GCT_HANDLE current_owner,
GCT_ID id;
union {
uinté4 node_flags:
struct {
unsigned node_hardware 1
unsigned node_hotswap o1
unsigned node_unavailable o
unsigned node_hw_template 1,
unsigned node_initialized o1,
unsigned node_cpu_primary 1
#define NODE_HARDWARE 0x001
#define NODE_HOTSWAP 0x002
#define NODE_UNAVAILABLE 0x004
#define NODE_HW_TEMPLATE 0x008
#define NODE_INITIALIZED 0x010
#define NODE_PRIMARY 0x020
} flag_bits;
} flag_union;
GCT_HANDLE config;
GCT_HANDLE affinity;
GCT_HANDLE parent;
GCT_HANDLE next_sib;
GCT_HANDLE prev_sib;
GCT_HANDLE child;
GCT_HANDLE reserved;
uint32 magic
} GCT_NODE;

[0072] In der oben genannten Definition sind die Typ-Definitionen "uint" ganze Zahlen ohne Vorzeichen mit
den entsprechenden Bitlangen. Wie vorher erwahnt, werden die Knoten durch eine Kennung aufgefunden und
identifiziert, (in der Definition oben identifiziert durch die typedef DCT_HANDLE). Eine veranschaulichende
Kennung ist ein 32-Bit-Offset mit Vorzeichen von der Basis des Konfigurationsbaums zu dem Knoten. Der Wert
ist Uber alle Partitionen tibergreifend in dem Computersystem eindeutig. Das heif3t, eine Kennung, die auf einer
Partition erhalten wird, muss zum Suchen eines Knotens oder als eine Eingabe in eine Konsolen-Riickfrage
(console callback) auf allen Partitionen gliltig sein. Das Feld magic enthalt ein vorgegebenes Bit-Muster, das
anzeigt, dass der Knoten tatsachlich ein gultiger Knoten ist.

[0073] Der Baum-Stammknoten stellt das gesamte System dar. Seine Kennung ist immer Null. Das heil3t, er

befindet sich immer an dem ersten physikalischen Speicherplatz in dem Speicher, der fiir den Konfigurations-
baum nach dem config-Header reserviert ist. Er weist die folgende Definition auf:

12/40

DE 698 33914 T2 2006.08.24

typedef struct_gct_root_node {

GCT_NODE hd:

uint64 lock;

uint6é4 transient_level,

uinté4 current_level;

uint64 console_req;

uint64 min_alioc;

uint64 min_align;

uint64 base_alloc;

uint64 base_align;

uint64 max_phys_address;

uint64 mem_size,

uinté4 platform_type;

int32 platform_name;

GCT_HANDLE primary_instance;

GCT_HANDLE first_free;

GCT_HANDLE high_fimit;

GCT_HANDLE lookaside;

GCT_HANDLE available;

uint32 max_partition,

int32 partitions;

int32 communities;

uint32 max_platform_partition;

uint32 max_fragments;

uint32 max_desc;

char APMP_id[16];

char APMP_id_pad[4};

int32 bindings;

} GCT_ROOT_NODE;

[0074] Die Felder in dem Stammknoten werden wie folgt definiert:

[0075] Dieses Feld wird als eine einfache Sperre durch Software verwendet, die Anderungen an der Struktur
des Baums und der Software-Konfiguration verhindern mdchte. Wenn dieser Wert —1 ist, (alle Bits eingeschal-
tet), ist der Baum nicht gesperrt; wenn der Wert = 0 ist, ist der Baum gesperrt. Dieses Feld wird unter Verwen-
dung von unterbrechungsfreien Operationen modifiziert. Die Aufrufeinrichtung (caller) der Sperr-Routine tber-
gibt eine Partitions-ID, die in das Feld Sperre geschrieben wird. Dies kann zur Unterstitzung bei der Fehler-

lock

verfolgung und Wiederherstellung bei Abstirzen verwendet werden.

transient_level

[0076] Dieses Feld wird beim Start einer Baum-Aktualisierung inkrementiert.

[0077] Dieses Feld wird bei Beendigung einer Baum-Aktualisierung inkrementiert.

[0078] Dieses Feld gibt den Speicher in Bytes an, der fiir die Konsole im Grund-Speichersegment einer Par-

tition erforderlich ist.

current_level

console_req

13/40

DE 698 33914 T2 2006.08.24

min_alloc

[0079] Dieses Feld enthalt die Mindestgroe eines Speicherfragments und die Reservierungseinheit (die
FragmentgréRe muss ein Vielfaches der Reservierung betragen). Es muss eine Potenz von 2 sein.

min_align

[0080] Dieses Feld enthalt die Synchronisierungsanforderungen fiir ein Speicherfragment. Es muss eine Po-
tenz von 2 sein.

base_alloc
[0081] Dieses Feld gibt den Mindestspeicher in Bytes an (einschliellich console req), der fir das
Grund-Speichersegment flr eine Partition benétigt wird. Dort werden die Konsole, Konsolenstrukturen und das
Betriebssystem flir eine Partition geladen. Er muss gréRer oder gleich minAlloc und ein Vielfaches von minAl-
loc sein.

base_align

[0082] Dieses Feld enthalt die Synchronisierungsanforderungen fir das Grund-Speichersegment einer Parti-
tion. Es muss eine Potenz von 2 sein und eine Synchronisierung von mindestens min-align sein.

max_phys_address

[0083] Dieses Feld enthalt die berechnete grofite physikalische Adresse, die auf dem System vorhanden sein
kann, einschliellich Speicher-Subsystemen, die gegenwartig nicht eingeschaltet und verfigbar sind.

mem_size
[0084] Dieses Feld enthalt den gegenwartigen Gesamtspeicher im System.
platform_type
[0085] Dieses Feld speichert den Plattformtyp, der aus einem Feld im HWRPB entnommen wurde.
platform_name

[0086] Dieses Feld enthalt einen ganzzahligen Offset von der Basis des Baum-Stammknotens zu einer Zei-
chenfolge, die den Namen der Plattform darstellt.

primary_instance
[0087] Dieses Feld speichert die Partitions-ID der ersten Betriebssystem-Instanz.
first_free

[0088] Dieses Feld enthalt den Offset von dem Baum-Stammknoten zu dem ersten freien Byte des Spei-
cher-Pools, das fur neue Knoten verwendet wird.

high_limit

[0089] Dieses Feld enthalt die hchste Adresse, auf der ein glltiger Knoten in dem Konfigurationsbaum an-
geordnet werden kann. Es wird fur Riickfragen verwendet, um zu validieren, dass eine Kennung gliltig ist.

lookaside
[0090] Dieses Feld ist die Kennung einer verknupften Liste von Knoten, die geléscht worden sind und die zu-
riickgefordert werden kdnnen. Wenn eine Community oder Partition geléscht werden, wird der Knoten in diese

Liste verknUpft, und bei der Erstellung einer neuen Partition oder Community wird diese Liste durchsucht, be-
vor aus freiem Speicher-Pool reserviert wird.

14/40

DE 698 33914 T2 2006.08.24

available

[0091] Dieses Feld enthalt die Anzahl von in dem freien Speicher-Pool librigen Bytes, auf die durch das Feld
first_free verwiesen wird.

max_partitions

[0092] Dieses Feld enthalt die maximale Anzahl von Partitionen, die durch die Plattform basierend auf der
Menge gegenwartig verfigbarer Hardware-Ressourcen berechnet worden sind.

partitions
[0093] Dieses Feld enthalt einen Offset von der Basis des Stammknotens zu einem Array von Kennungen.
Jede Partitions-ID wird als ein Indexverweis in dieses Array verwendet, und die Partitionsknotenkennung wird
an der indexierten Speicherstelle gespeichert. Wenn eine neue Partition erstellt wird, wird dieses Array geprift,
um die erste Partitions-ID zu finden, die keine entsprechende Partitionsknotenkennung besitzt, und diese Par-
titions-1D wird als die ID fiir die neue Partition verwendet.
communities
[0094] Dieses Feld enthalt ebenfalls einen Offset von der Basis des Stammknotens zu einem Array von Ken-
nungen. Jede Community-ID wird als ein Indexverweis in dieses Array verwendet, und eine Community-Kno-
tenkennung wird in dem Array gespeichert. Wenn eine neue Community erstellt wird, wird dieses Array gepruft,
um die erste Community-ID zu finden, die keine entsprechende Community-Knotenkennung besitzt, und diese
Community-ID wird als die ID fir die neue Community verwendet. Es kann nicht mehr Communities als Parti-
tionen geben, so dass die Array-GroRRe basierend auf der maximalen Anzahl von Partitionen bemessen wird.
max_platform_partition

[0095] Dieses Feld enthalt die maximale Anzahl von Partitionen, die gleichzeitig auf der Plattform vorhanden
sein kénnen, selbst wenn zusatzliche Hardware hinzugefigt wird (potenziell inswapped).

max_fragments
[0096] Dieses Feld enthalt eine plattformdefinierte maximale Anzahl von Fragmenten, in die ein Speicher-De-
skriptor unterteilt werden kann. Es wird verwendet zur Bemessung der GréRRe des Arrays von Fragmenten in
dem Speicher-Deskriptor-Knoten verwendet.
max_desc
[0097] Dieses Feld enthalt die maximale Anzahl von Speicher-Deskriptoren fur die Plattform.

APMP_id

[0098] Dieses Feld enthalt eine System-ID, die durch die System-Software eingerichtet und in einem nicht-
flichtigen RAM gespeichert wird.

APMP_id_pad
[0099] Dieses Feld enthalt Auffiill-Bytes fur die APMP-ID.
bindings
[0100] Dieses Feld enthalt einen Offset zu einem Array von "Bindungen". Jeder Bindungseintrag beschreibt
einen Typ von Hardware-Knoten, den Knotentyp, welcher der Parent-Knoten sein muss, die Konfigurationsbin-
dung und die Affinitdtsbindung fir einen Knotentyp. Bindungen werden von der Software verwendet, um zu

bestimmen, welche Knotentypen in Beziehung stehen, und Konfigurations- und Affinitatsregeln.

[0101] Eine Community stellt die Basis fiir die gemeinsame Nutzung von Ressourcen unter Partitionen bereit.

15/40

DE 698 33914 T2 2006.08.24

[0102] Wahrend eine Hardware-Komponente jeder Partition in einer Community zugewiesen werden kann,
erfolgt die tatsachliche gemeinsame Nutzung einer Einrichtung, wie beispielsweise des Speichers, nur inner-
halb einer Community. Der Community-Knoten 310 enthalt einen Adressenverweis zu einem Steuerabschnitt,
der als eine APMP-Datenbank bezeichnet wird, der es den Betriebssystem-Instanzen gestattet, den Zugriff und
die Mitgliedschaft in der Community zum Zweck der gemeinsamen Nutzung des Speichers und von Kommu-
nikationen zwischen den Instanzen zu steuern. Die APMP-Datenbank und die Erstellung von Communities
werden im Folgenden ausfihrlich erlautert. Die Konfigurations-ID fir die Community ist ein ganzzahliger
16-Bit-Wert mit Vorzeichen, der durch das Konsolenprogramm zugewiesen wird. Der ID-Wert ist niemals gro-
Rer als die maximale Anzahl von Partitionen, die auf der Plattform erstellt werden kénnen.

[0103] Ein Partitionsknoten, wie beispielsweise der Knoten 312 oder 314, stellt eine Sammlung von Hardware
dar, die in der Lage ist, eine unabhangige Kopie des Konsolenprogramms und eine unabhangige Kopie eines
Betriebssystems auszufiihren. Die Konfigurations-ID fir diesen Knoten ist ein ganzzahliger 16-Bit-Wert mit
Vorzeichen, der auf der Plattform erstellt werden kann. Der Knoten weist die folgende Definition auf:

typedef struct_gct_partition_node {

GCT_NODE hd;

uint64 hwrpb;

uint64 incarnation;

uint64 priority;

int32 os_type;

uint32 partition_reserved_1,
uint64 instance_name_format;
char instance_name([128];

} GCT_PARTITION_NODE;

[0104] Die definierten Felder haben die folgenden Definitionen:
hwrpb

[0105] Dieses Feld enthalt die physikalische Adresse des Hardware-Neustart-Parameterblocks fur diese Par-
tition. Zum Minimieren von Anderungen an dem HWRPB enthalt der HWRPB keinen Adressenverweis auf die
Partition oder die Partitions-ID. Stattdessen enthalten die Partitionsknoten einen Adressenverweis auf den
HWRPB. Die System-Software kann dann die Partitions-ID der Partition bestimmen, in der sie lauft, indem die
Partitionsknoten nach der Partition durchsucht werden, welche die physikalische Adresse ihres HWRPB ent-
halt.

incarnation

[0106] Dieses Feld enthalt einen Wert, der jedes Mal inkrementiert wird, wenn die primare CPU der Partition
einen Boot- oder Neustart-Vorgang auf der Partition ausfiihrt.

priority
[0107] Dieses Feld enthalt eine Partitions-Prioritat.
os_type

[0108] Dieses Feld enthalt einen Wert, der den Typ des Betriebssystems angibt, das in die Partition geladen
wird.

partition_reserved_1
[0109] Dieses Feld ist fir kiinftige Verwendung reserviert.
instance_name_format

[0110] Dieses Feld enthalt einen Wert, der das Format der Instanznamen-Zeichenfolge beschreibt.

16/40

DE 698 33914 T2 2006.08.24

instance_name

[0111] Dieses Feld enthalt eine formatierte Zeichenfolge, die unter Verwendung des Felds
instance_name_format interpretiert wird. Der Wert in diesem Feld stellt einen Pfadnamen auf hdchster Ebene
fur die Betriebssystem-Instanz bereit, welche in der Partition ausgefiihrt wird. Dieses Feld wird durch die Sys-
tem-Software geladen und wird nicht leistungszyklusiibergreifend gespeichert. Dieses Feld wird beim Ein-
schalten und Erstellen und Léschen von Partitionen geléscht.

[0112] Ein System-Funktionsbaustein-Knoten, wie beispielsweise der Knoten 322 oder 324, stellt ein frei
wahlbares Hardware-Teil oder eine konzeptionelle Gruppierung dar, die von System-Plattformen mit modula-
ren Auslegungen verwendet werden, wie derjenigen, die in Fig. 2 dargestellt ist. Ein QBB (Quad-Funktions-
baustein) ist ein spezifisches Beispiel eines SBB und entspricht Einheiten, wie beispielsweise den Einheiten
100, 102, 104 und 106 in Fig. 1. Children der SBB-Knoten 322 und 324 umfassen die Eingabe/Ausgabe-Pro-
zessorknoten 326 und 340.

[0113] Von CPU-Knoten, wie beispielsweise den Knoten 328-332 und 342-346, wird angenommen, dass sie
als eine primare CPU fur den SMP-Betrieb arbeiten kdnnen. In dem seltenen Fall, in dem eine CPU nicht pri-
marfahig ist, besitzt sie einen SUBTYPE-Code, der angibt, dass sie nicht als eine primare CPU im SMP-Betrieb
verwendet werden kann. Diese Information ist entscheidend, wenn Ressourcen zum Erstellen einer neuen
Partition konfiguriert werden. Der CPU-Knoten enthalt auch Informationen darlber, wo die CPU gegenwartig
ausgefuhrt wird. Fur die Primar-CPU fir eine Partition ist das Flag NODE_CPU_PRIMARY in dem Feld
NODE_FLAGS gesetzt. Der CPU-Knoten weist die folgende Definition auf:

typedef struct_gct_cpu_node {
GCT_NODE hd,
} GCT_CPU_NODE;

[0114] Ein Speicher-Subsystemknoten, wie beispielsweise der Knoten 334 oder 348, ist ein "Pseudo"-Kno-
ten, der Knoten zusammengruppiert, welche die physikalischen Speicher-Controller und die Zuweisungen des
Speichers darstellen, die von den Controllern bereitgestellt werden. Die Children dieses Knotens bestehen aus
einem oder mehreren Speicher-Controller-Knoten, (wie beispielsweise den Knoten 336 und 350), welche die
Konsole so konfiguriert hat, das sie (verschachtelt) zusammenarbeiten, und einem oder mehreren Spei-
cher-Deskriptor-Knoten, (wie beispielsweise den Knoten 338 und 352), die physikalisch zusammenhangende
Speicherbereiche beschreiben.

[0115] Ein Speicher-Controller-Knoten, (wie beispielsweise die Knoten 336 oder 350), wird verwendet, um
eine physikalische Hardware-Komponente auszudriicken, und sie sind typischerweise zu der Partition zuge-
horig, die Fehler und die Initialisierung bearbeitet. Speicher-Controller kdnnen nicht zu Communities zugewie-
sen werden, da sie eine spezifische Betriebssystem-Instanz fur Initialisierung, Prifung und Fehler bendtigen.
Eine Speicherbeschreibung, die durch einen Speicher-Deskriptor-Knoten definiert wird, kann jedoch in "Frag-
mente" aufgeteilt werden, um es verschiedenen Partitionen oder Communities zu ermdglichen, dass spezifi-
sche Speicherbereiche in dem Speicher-Deskriptor zu ihnen zugehdrig sind. Der Speicher unterscheidet sich
dadurch von anderen Hardware-Ressourcen, dass er gleichzeitig gemeinsam genutzt oder in "private" Berei-
che aufgeteilt werden kann. Jeder Speicher-Deskriptor-Knoten enthalt eine Liste von Untergruppen-Bereichen,
die es gestatten, den Speicher unter den Partitionen aufzuteilen sowie gemeinsam von Partitionen, (die zu ei-
ner Community zugehorig sind), nutzen zu lassen. Ein Speicher-Deskriptor-Knoten, (wie beispielsweise die
Knoten 338 oder 352), werden definiert als:

typedef struct_gct_mem_desc_node {

GCT_NODE hd;
GCT_MEM_INFO mem_info;
int32 mem_frag;

} GCT_MEM_DESC_NODE;

[0116] Die Struktur mem_info besitzt die folgende Definition:

17/40

DE 698 33914 T2 2006.08.24

typedef struct_gct_mem_info {

unint64 base_pa;
unint64 base_size;
unint32 desc_count;
unint32 info_fill;

} GCT_MEM_INFO;

[0117] Das Feld mem_frag enthalt einen Offset von der Basis des Speicher-Deskriptor-Knotens zu einem Ar-
ray der GCT_MEM_DESC-Strukturen, welche die folgende Definition haben:

typedef struct_gct_mem_desc {

unint64 pa;
uninté4 size;
GCT_HANDLE mem_owner;
GCT_HANDLE mem_current_owner,
union {
unint32 mem_flags;
struct {
unsigned mem_console 1,
unsigned mem_private 01
unsigned mem_shared 1;
unsigned base 1;
#define CGT_MEM_CONSOLE 0x1
#define CGT_MEM_PRIVATE 0x2
#define CGT_MEM_SHARED Ox4
#define CGT_MEM_CONSOLE 0x8
} flag_bits;
} flag_union;
uint32 mem_fill;

} GCT_MEM_DESC;

[0118] Die Anzahl von Fragmenten in einem Speicher-Deskriptor-Knoten, (Knoten 338 oder 352), wird durch
die Plattform-Firmware begrenzt. Dies erzeugt eine Obergrenze hinsichtlich der Speicherunterteilung und
schrankt die unbegrenzte Erweiterung des Konfigurationsbaums ein. Die Software kann die maximale Anzahl
von Fragmenten aus dem Feld max_fragments in dem Baum-Stammknoten 302 bestimmen (oben erlautert),
oder durch Aufrufen einer entsprechenden Konsolen-Ruckfragefunktion zum Zurlickgeben des Werts. Jedes
Fragment kann jeder Partition zugewiesen werden, vorausgesetzt, die config-Bindung und die Zugehdrigkeit
des Speicher-Deskriptors und des Speicher-Subsystems lassen dies zu. Jedes Fragment enthalt ein Feld fur
grundlegende physikalische Adresse, Gré3e und Zugehdrigkeit sowie Flags, die den Typ der Verwendung an-
geben.

[0119] Um den Zugriff zur gemeinsamen Speichernutzung zu gestatten, missen der Speicher-Subsys-
tem-Parent-Knoten und der Speicher-Deskriptor-Knoten zu einer Community zugehérig sein. Die Fragmente
in dem Speicher-Deskriptor kdnnen zu der Community (gemeinsame Nutzung) oder zu jeder Partition in der
Community zugehdrig sein.

[0120] Fragmente kdnnen Mindest-Reservierungsgroflen und in dem Baum-Stammknoten 302 bereitgestell-
te Synchronisierungen (alignments) besitzen. Der grundlegende Speicher fiir eine Partition, (die Fragmente, in
denen die Konsole und das Betriebssystem geladen werden), kdnnen eine gréere Reservierung und Syn-
chronisierung als andere Fragmente aufweisen, (siehe Definition des Baum-Stammknotens oben). Wenn das
Feld Zugehdrigkeit des Speicher-Deskriptor-Knotens eine Partition ist, dann kénnen die Fragmente nur zu die-
ser Partition zugehdrig sein.

[0121] Eig. 4 veranschaulicht den Konfigurationsbaum, der in Eig. 3 gezeigt ist, wenn er von der Zugehdrig-
keits-Perspektive aus betrachtet wird. Das Konsolenprogramm fir eine Partition Gberlasst Zugehdrigkeit und

18/40

DE 698 33914 T2 2006.08.24

Steuerung der Partitions-Ressourcen der Betriebssystem-Instanz, die in dieser Partition lauft, wenn die prima-
re CPU fur diese Partition mit der Ausfiihrung beginnt. Das "Zugehorigkeits"-Konzept bestimmt, wie die Hard-
ware-Ressourcen und CPUs zu Software-Partitionen und Communities zugewiesen werden. Der Konfigurati-
onsbaum weist Zugehorigkeits-Adressenverweise auf, die in Fig. 3 dargestellt sind, welche die Abbildung von
Hardware-Einrichtungen auf die Software bestimmen, wie beispielsweise Partitionen (ausschliefllich Zugriff)
und Communities (gemeinsamer Zugriff). Eine Betriebssystem-Instanz verwendet die Informationen in dem
Konfigurationsbaum, um zu bestimmen, tber welche Hardware-Ressourcen sie Zugriffs- und Neukonfigurati-
ons-Kontrolle besitzt.

[0122] Passive Hardware-Ressourcen, die keine Zugehorigkeit aufweisen, stehen fir den Einsatz erst zur
Verfligung, wenn die Zugehdrigkeit eingerichtet worden ist. Sobald die Zugehdrigkeit durch Verandern des
Konfigurationsbaums eingerichtet worden ist, kdnnen die Betriebssystem-Instanzen beginnen, die Ressourcen
zu verwenden. Wenn eine Instanz eine Anfangsanforderung stellt, kann die Zugehdrigkeit gedndert werden,
indem das Betriebssystem mit der Zugehdrigkeit veranlasst wird, die Verwendung einer Ressource zu stoppen,
oder indem ein Konsolenprogramm MafRnahmen ergreift, um die Verwendung einer Ressource in einer Parti-
tion zu stoppen, in der keine Betriebssystem-Instanz ausgefiihrt wird. Der Konfigurationsbaum wird dann ge-
andert, um die Zugehdrigkeit der Ressource auf eine andere Betriebssystem-Instanz zu Gibertragen. Der erfor-
derliche Vorgang, um ein Betriebssystem zu veranlassen, die Verwendung einer Hardware-Ressource zu stop-
pen, ist betriebssystemspezifisch und kann einen Neustart der Betriebssystem-Instanzen erfordern, die von
der Anderung betroffen sind.

[0123] Zum Verwalten des Ubergangs einer Ressource von einem zugehérigen und aktiven Zustand in einen
nicht zugehdrigen und inaktiven Zustand sind in jedem Knoten des Baums zwei Felder vorgesehen. Das Feld
owner stellt die Zugehdrigkeit einer Ressource dar und wird mit der Kennung Software-Partition oder Commu-
nity mit der Zugehdorigkeit geladen. Beim Hochfahren eines APMP-Systems werden die Felder owner der Hard-
ware-Knoten aus den Inhalten des nicht-flichtigen RAM geladen, um eine Anfangskonfiguration einzurichten.

[0124] Zum Andern der Zugehérigkeit einer Ressource wird der Kennungswert in dem Feld owner der Hard-
ware-Komponente und in den Feldern owner von irgendwelchen Abkémmlingen der Hardware-Komponente
modifiziert, die durch ihre config-Kennungen an die Komponente gebunden sind. Das Feld current_owner stellt
den gegenwartigen Benutzer der Ressource dar. Wenn die Felder owner und current_owner den gleichen
Nicht-Null-Wert enthalten, ist die Ressource zugehorig und ist aktiv. Nur Uber die Zugehdrigkeit einer Ressour-
ce kann die Zuweisung der Ressource aufgehoben werden, (das Feld owner auf Null setzen). Eine Ressource,
deren Felder owner und current_owner Null sind, befindet ist nicht zugehorig und ist inaktiv. Nur Ressourcen,
deren Felder owner und current_owner Null sind, kbnnen einer neuen Partition oder Community zugewiesen
werden.

[0125] Wenn die Zuweisung einer Ressource aufgehoben wird, kann Uiber die Zugehorigkeit entschieden wer-
den, die Zuweisung des Felds owner oder beider Felder, owner und current_owner, aufzuheben. Die Entschei-
dung basiert auf der Fahigkeit der besitzenden Betriebssystem-Instanz, die in der Partition lauft, die Verwen-
dung der Ressource vor der Aufhebung der Zugehérigkeits-Zuweisung zu unterbrechen. In dem Fall, indem
ein Neustart erforderlich ist, um die Zugehorigkeit aufzugeben, wird das Feld owner geléscht, doch das Feld
current_owner bleibt unverandert. Wenn die besitzende Betriebssystem-Instanz neu startet, kann das Konso-
lenprogramm alle Felder current_owner fiir Ressourcen I6schen, die wahrend der Initialisierung keine Zuge-
horigkeit aufgewiesen haben.

[0126] Wahrend der Initialisierung modifiziert das Konsolenprogramm das Feld current_owner, um das Feld
owner fir jeden Knoten abzugleichen, der zu ihm zugehorig ist und fir den das Feld current_owner Null ist.
Die System-Software sollte nur Hardware verwenden, die gegenwartig zu ihr zugehorig ist. Im Fall einer Zu-
weisungsaufhebung einer Ressource, die zu einer Community zugehorig ist, liegt es in der Zustandigkeit der
System-Software, den Ubergang zwischen den Zusténden zu verwalten. In einigen Ausfiihrungsformen kann
eine Ressource an eine andere Partition ausgeliehen werden. In diesem Fall sind die Felder owner und
current_owner beide glltig, aber nicht gleich. Die folgende Tabelle fasst die mdglichen Ressourcen-Zustande
und die Werte der Felder owner und current_owner zusammen:

19/40

DE 698 33914 T2 2006.08.24

TABELLE 1

Wert von Feld owner Wert von Feld current_owner Ressourcen-Status

keiner keiner nicht zugehérig und inaktiv
keiner guitig nicht zugehorig, aber noch aktiv
gultig keiner zugehorig, noch nicht aktiv
gultig gleich mit Zugehdrigkeit zugehorig und aktiv

gultig ist nicht gleich mit Zugehérigkeit ausgeliehen

[0127] Da CPUs aktive Einrichtungen sind und die gemeinsame Nutzung von CPUs bedeutet, dass eine CPU
im Kontext einer Partition ausgefiihrt werden koénnte, zu der sie eventuell nicht "zugehdrig" ist, unterscheidet
sich die Zugehorigkeit einer CPU von der Zugehdrigkeit einer passiven Ressource. Der CPU-Knoten in dem
Konfigurationsbaum stellt zwei Felder bereit, die angeben, zu welcher Partition eine CPU nominell zugehorig
ist, und in welcher Partition die CPU gegenwartig ausgefihrt wird. Das Feld owner enthalt einen Wert, der die
nominelle Zugehorigkeit der CPU bzw. insbesondere der Partition angibt, in der die CPU beim Hochfahren des
Systems ausgefihrt wird.

[0128] Bis ein anfangliche Zugehorigkeit eingerichtet ist, (das heil’t, wenn das Feld owner nicht zugewiesen
ist), werden die CPUs in einen HWRPB-Kontext gestellt, der von der Master-Konsole entschieden wurde, doch
wird das HWRPB-Bit available fur die CPU noch in keinem HWRPB gesetzt. Diese Kombination verhindert,
dass die CPU an irgendeiner Betriebssystem-Instanz im SMP-Betrieb teilnimmt. Wenn die Zugehdrigkeit einer
CPU eingerichtet ist, (das Feld owner ist mit einer giltigen Partitionskennung gefiillt), migriert die CPU, falls
erforderlich, zu der zugehorigen Partition, setzt das Bit available in dem HWRPB, der mit dieser Partition ver-
bunden ist, und fordert die Teilnahme an dem SMP-Betrieb der Instanz an, die in dieser Partition 1auft, oder
nimmt an dem Konsolenprogramm im SMP-Modus teil. Die Kombination der Bits present und available in dem
HWRPB melden der Betriebssystem-Instanz, dass die CPU fir den Einsatz im SMP-Betrieb zur Verfiigung
steht, und dass die Betriebssystem-Instanz diese Bits zum Aufbauen entsprechender Datenstrukturen pro
CPU und zum Senden einer Nachricht an die CPU verwenden kann, um sie aufzufordern, an dem SMP-Betrieb
teilzunehmen.

[0129] Wenn eine CPU das Bit available in einem HWRPB setzt, tragt sie auch einen Wert in das Feld
current_owner ihres entsprechenden CPU-Knotens in dem Konfigurationsbaum ein. Das Feld current_owner
ist die Kennung der Partition, in der die CPU das HWRPB-Bit active gesetzt hat und an dem SMP-Betrieb teil-
nehmen kann. Das Feld current_owner fiir eine CPU wird nur durch das Konsolenprogramm gesetzt. Wenn
eine CPU von einer Partition zu einer anderen Partition migriert oder in einem nicht-zugewiesenen Zustand
angehalten wird, wird das Feld current_owner geldscht, (oder in den Kennungswert der neuen Partition gean-
dert), zum gleichen Zeitpunkt, zu dem das Bit available in dem HWRPB geloscht wird. In das Feld
current_owner sollten keine direkten Eintrage durch die System-Software vorgenommen werden, und es gibt
nur wieder, welcher HWRPB das Bit available fiir die CPU gesetzt hat.

[0130] Wahrend der Laufzeit kann eine Betriebssystem-Instanz eine CPU temporar an eine andere Partition
"ausleihen", ohne die nominelle Zugehdrigkeit der CPU zu andern. Das herkémmliche Zugehdrigkeitskonzept
unter Verwendung der HWRPB-Bits present und available wird verwendet, um den gegenwartigen Ausflih-
rungskontext der CPU durch Modifizieren des HWRPB und des Konfigurationsbaums in unterbrechungsfreien
Operationen wiederzugeben. Das Feld current_owner kann des Weiteren durch die System-Software in einer
der Partitionen verwendet werden, um zu bestimmen, in welcher Partition die CPU gegenwartig ausgefihrt
wird, (andere Instanzen kdnnen die Speicherstelle einer bestimmten CPU bestimmen, indem der Konfigurati-
onsbaum gepriift wird).

[0131] Es ist auch maoglich, die Zuweisung einer CPU aufzuheben und in einen Zustand zurlickzusetzen, in
dem das Bit available in keinem HWRPB gesetzt ist, und das Feld current_owner in dem Konfigurations-
baum-Knoten fiir die CPU wird geldscht. Dies wird erreicht, indem die Ausfliihrung der CPU angehalten und
das Konsolenprogramm veranlasst wird, das Feld owner in dem Konfigurationsbaum-Knoten sowie das Feld
current_owner und das HWRPB-Bit available zu I6schen. Die CPU wird dann im Konsololenmodus ausgefiihrt
und fragt das Feld owner ab, das darauf wartet, dass eine giltige Partitionskennung eingetragen wird. Die Sys-

20/40

DE 698 33914 T2 2006.08.24

tem-Software kann dann eine neue Zugehorigkeit einrichten und die CPU die Ausflihrung in der neuen Partition
beginnen.

[0132] Veranschaulichende Zugehdrigkeits-Adressenverweise werden in Fig. 4 durch Pfeile dargestellt. Je-
dem der Knoten in Fig. 4, der einem ahnlichen Knoten in Fig. 3 entspricht, wird eine entsprechende Nummer
zugeteilt. Zum Beispiel wird der Software-Stammknoten, der in Fig. 3 als Knoten 306 bezeichnet wird, in Fig. 4
als Knoten 406 bezeichnet. Wie in Fig. 4 gezeigt, ist die Community 410 zur "Zugehdrigkeit" des Softwa-
re-Stammknotens 406 zugehdrig. In dhnlicher Weise sind die System-Funktionsbausteine 1 und 2 (422 und
425) zur Zugehorigkeit der Community 410 zugehorig. In dhnlicher Weise sind die Partitionen 412 und 414
ebenfalls zur Zugehorigkeit der Community 410 zugehorig.

[0133] Zur Partition 412 sind die CPUs 428-432 und der I/O-Prozessor 426 zugehdorig. Der Speicher-Control-
ler 436 ist ebenfalls ein Teil der Partition 1 (412). In &hnlicher Weise sind zur Partition 2 (414) die CPUs
442-446, der I/O-Prozessor 440 und der Speicher-Controller 450 zugehdrig.

[0134] Der gemeinsame oder gemeinsam genutzte Speicher in dem System besteht aus den Speicher-Sub-
systemen 434 und 448 und den Speicher-Deskriptoren 438 und 452. Diese sind zu der Community 410 zuge-
horig. Daher beschreibt Fig. 4 den Aufbau des Systems, wie er sich den Betriebssystem-Instanzen darstellen
wirde.

Betriebssystem-Charaktenstiken

[0135] Wie vorher erwahnt, kann das veranschaulichende Computersystem mit mehreren verschiedenen Be-
triebssystemen in verschiedenen Partitionen arbeiten. Herkdmmliche Betriebssysteme missen jedoch unter
Umstanden in einigen Gesichtspunkten modifiziert werden, um sie mit dem erfinderischen System kompatibel
zu machen, je nachdem, wie das System konfiguriert ist. Einige Beispiel-Modifizierungen fir die veranschau-
lichende Ausfihrungsform sind im Folgenden aufgelistet:
1. Instanzen mussen unter Umstanden modifiziert werden, um einen Mechanismus zum Auswahlen einer
"primaren" CPU in der Partition zu enthalten, um die Konsole zu betreiben und ein Ziel fir die Kommunika-
tion von anderen Instanzen zu sein. Die Auswahl einer primaren CPU kann in einer herkdmmlichen Weise
unter Verwendung von Entscheidungsmechanismen oder anderen herkdmmlichen Einrichtungen erfolgen.
2. Fur jede Instanz kénnen Modifizierungen erforderlich sein, die es ihr gestatten, mit dem Konsolenpro-
gramm zu kommunizieren und zusammenzuwirken, das fir die Erstellung eines Konfigurations-Daten-
blocks zustandig ist, der die Ressourcen beschreibt, die der Partition zur Verfiigung stehen, in welcher die
Partition lauft. Zum Beispiel sollte die Instanz nicht die darunter liegende Hardware priifen, um zu bestim-
men, welche Ressourcen zur Verwendung durch die Instanz verfligbar sind. Stattdessen muss sie, wenn
ihr ein Konfigurations-Datenblock tbergeben wird, der beschreibt, auf welche Ressourcen diese Instanz zu-
greifen darf, mit dem angegebenen Ressourcen arbeiten.
3. Eine Instanz muss in der Lage sein kénnen, an einer frei wahlbaren physikalischen Adresse zu beginnen
und kann unter Umstanden nicht in der Lage sein, irgendeine spezifische physikalische Adresse zu reser-
vieren, um eine Konfliktbildung mit anderen Betriebssystemen zu vermeiden, die auf dieser bestimmten
Adresse laufen.
4. Eine Instanz muss in der Lage sein kénnen, mehrere frei wahlbare physikalische Locher in ihrem Adress-
raum zu unterstiitzen, wenn sie Teil einer System-Konfiguration ist, in dem Speicher zwischen Partitionen
gemeinsam genutzt wird. Des Weiteren muss eine Instanz physikalische Lécher in ihrem Adressraum be-
arbeiten kénnen, um "hot inswap" von Speicher zu unterstitzen.
5. Eine Instanz muss Nachrichten Gbergeben und Benachrichtigungen empfangen kénnen, dass neue Res-
sourcen fir Partitionen und Instanzen zur Verfliigung stehen. Insbesondere wird ein Protokoll bendtigt, um
eine Instanz zu informieren, nach einer neuen Ressource zu suchen. Andernfalls erkennt die Instanz mog-
licherweise nie, dass die Ressource vorhanden und einsatzfahig ist.
6. Eine Instanz muss in der Lage sein kénnen, véllig in ihrem "privaten Speicher" zu laufen, wenn sie in
einem System verwendet wird, in dem Instanzen den Speicher nicht gemeinsam nutzen. Alternativ muss
eine Instanz in der Lage sein kdnnen, physikalischen "gemeinsam genutzten Speicher" fur die Kommuni-
kation oder gemeinsame Nutzung von Daten mit anderen Instanzen zu verwenden, die in dem Computer
laufen, wenn die Instanz Teil eines Systems ist, in dem Speicher gemeinsam genutzt wird. In einem solchen
System mit gemeinsam genutzten Speicher muss eine Instanz in der Lage sein kdnnen, physikalischen "ge-
meinsam genutzten Speicher" wie im Konfigurationsbaum identifiziert in einen virtuellen Adressraum und
die virtuellen Adressraume der "Prozesse" abzubilden, die in dieser Betriebssystem-Instanz laufen.
7. Jede Instanz bendtigt unter Umstanden einen Mechanismus zum Kontaktieren einer anderen CPU in
dem Computersystem, um mit ihr zu kommunizieren.

21/40

DE 698 33914 T2 2006.08.24

8. Eine Instanz muss ebenfalls in der Lage sein kénnen, andere CPUs zu erkennen, die mit ihren Operati-
onen kompatibel sind, selbst wenn die CPUs ihrer Partition gegenwartig nicht zugewiesen sind. Zum Bei-
spiel muss die Instanz in der Lage sein kdnnen, CPU-Parameter zu ermitteln, wie beispielsweise die Kon-
solenversionsnummer und Taktgeschwindigkeit, um zu bestimmen, ob sie mit dieser CPU laufen konnte,
wenn die CPU der Partition, in dem die Instanz lauft, neu zugewiesen wirde.

Den Konfigurationsbaum andern

[0136] Jedes Konsolenprogramm stellt eine Anzahl von Rickfragefunktionen bereit, um es der dazugehdri-
gen Betriebssystem-Instanz zu gestatten, die Konfiguration des APMP-Systems zu andern, zum Beispiel durch
Erstellen einer neuen Community oder Partition oder durch Andern der Zugehérigkeit von Speicherfragmen-
ten. Des Weiteren stellen andere Riickfragefunktionen die Mdglichkeit bereit, eine Community oder Partition
zu léschen oder den Betrieb einer neu erstellten Partition zu starten.

[0137] Allerdings veranlassen Riickfragefunktionen nicht, dass auf den laufenden Betriebssystem-Instanzen
Anderungen stattfinden. Auf alle an dem Konfigurationsbaum vorgenommenen Anderungen muss von jeder
von der Anderung betroffenen Instanz eingewirkt werden. Die Vorgangsart, die in einer Instanz stattfinden
muss, wenn der Konfigurationsbaum geéndert wird, ist eine Funktion der Art von Anderung und der Fahigkei-
ten der Betriebssystem-Instanz. Zum Beispiel kann das Verschieben eines Eingabe/Ausgabe-Prozessors von
einer Partition in eine andere erfordern, dass beide Partitionen neu gestartet werden. Die Anderung der Spei-
cherreservierung von Fragmenten kdnnte andererseits durch eine Betriebssystern-Instanz bearbeitet werden,
ohne dass ein Neustart erforderlich ist.

[0138] Die Konfiguration eines APMP-Systems bedingt die Erstellung von Communities und Partitionen sowie
die Zuweisung von nicht-zugewiesenen Komponenten. Wenn eine Komponente von einer Partition in eine an-
dere verschoben wird, entfernt sich die gegenwartige Zugehdrigkeit selbst als zu der Ressource zugehdrig und
gibt dann die neue Zughoérigkeit der Ressource an. Die neue Zugehdrigkeit kann die Ressource dann verwen-
den. Wenn eine in einer Partition laufende Instanz eine Komponente freigibt, darf die Instanz nicht mehr auf
die Komponente zugreifen. Diese einfache Prozedur lasst die komplexe Synchronisierung entfallen, die erfor-
derlich ist, um ein blindes Entwenden (blind stealing) einer Komponente von einer Instanz und mdgliche Wett-
laufsituationen beim Booten einer Instanz wahrend einer Neukonfiguration zu gestatten.

[0139] Sobald sie initialisiert sind, werden Konfigurationsbaum-Knoten nie geldscht oder verschoben, das
heifdt, ihre Kennungen sind immer gultig. Daher kdnnen Hardware-Knotenadressen durch die Software im Ca-
che gespeichert werden. Rickfragefunktionen, die vorgeben, eine Partition oder eine Community zu I6schen,
I6schen den dazugehdrigen Knoten nicht wirklich oder entfernen ihn aus dem Baum, sondern kennzeichnen
den Knoten als UNAVAILABLE und I6schen die Zugehorigkeits-Felder jeder Hardware-Ressource, die zu der
Zugehorigkeit der Software-Komponente zugehoérig gewesen sind.

[0140] Um Anderungen an dem Konfigurationsbaum zu synchronisieren, fiihrt der Stammknoten des Baums
zwei Zahler (transient_level und current_level). Der Zahler transient_level wird zu Beginn einer Aktualisierung
des Baums inkrementiert, und der Zahler current_level wird inkrementiert, wenn die Aktualisierug abgeschlos-
sen ist. Die Software kann diese Zahler verwenden, um zu bestimmen, wann eine Anderung an dem Baum
eingetreten ist oder gerade eintritt. Wenn eine Aktualisierung durch eine Konsole abgeschlossen wird, kann
ein Interrupt fur alle CPUs in dem APMP-System generiert werden. Dieser Interrupt kann dazu verwendet wer-
den, die System-Software zu veranlassen, ihren Zustand basierend auf den Anderungen an dem Baum zu ak-
tualisieren.

Erstellung eines APMP-Computersystems

[0141] Fig. 5 ist ein Ablaufdiagramm, das eine Ubersicht des Aufbaus des veranschaulichenden adaptiv par-
titionierten Mehrprozessor- (AMPM) Computersystems darstellt. Die Routine beginnt in Schritt 500 und fahrt
mit Schritt 502 fort, in dem ein Master-Konsolenprogramm gestartet wird. Wenn das APMP-Computersystem
beim Hochfahren erstellt wird, wird die CPU, auf der die Master-Konsole |auft, durch einen vorgegebenen Me-
chanismus, wie beispielsweise Entscheidung, oder einen anderen Hardware-Mechanismus ausgewahlt. Wenn
das APMP-Computersystem auf Hardware erstellt wird, die bereits lauft, fiihrt eine CPU in der ersten Partition,
die versucht, an den (nicht-vorhandenen) Systemen teilzunehmen, das Master-Konsolenprogramm aus, wie
im Folgenden erlautert wird.

[0142] Als Nachstes prift das Master-Konsolenprogramm in Schritt 504 die Hardware und erstellt den Konfi-

22/40

DE 698 33914 T2 2006.08.24

gurationsbaum in Schritt 506, wie oben erlautert wurde. Wenn mehr als eine Partition in dem APMP-System
beim Hochfahren vorhanden ist, wird jede Partition initialisiert und ihr Konsolenprogramm gestartet (Schritt
508).

[0143] Schliellich wird eine Betriebssystem-Instanz in wenigstens einer der Partitionen gebootet, wie in
Schritt 510 angegeben. Die erste zu bootende Betriebssystem-Instanz erstellt eine APMP-Datenbank und fllt
die Eintrage wie im Folgenden beschrieben aus. APMP-Datenbanken speichern Informationen, die sich auf
den Zustand von aktiven Betriebssystem-Instanzen in dem System beziehen. Es ist zu anzumerken, dass die
Teilnahme einer Instanz in einem APMP-System nicht erforderlich ist. Die Instanz kann zu einem Zeitpunkt, der
lange nach dem Booten liegt, wahlen, ob sie nicht teilnimmt oder teilnimmt. Diejenigen Instanzen, die teilneh-
men, bilden ein "Mitbenutzungs-Set". Die erste Instanz, die entscheidet, an einem Mitbenutzungs-Set teilzu-
nehmen, muss es erstellen. Es kdnnen mehrere Mitbenutzungs-Sets vorhanden sein, die auf einem einzelnen
APMP-System arbeiten, und jedes Mitbenutzungs-Set besitzt seine eigene APMP-Datenbank.

Entscheidung zum Erstellen eines neuen APMP-Systems oder zur Teilnahme an einem vorhandenen
APMP-System

[0144] Eine Betriebssystem-Instanz, die auf einer Plattform 1auft, auf der auch das APMP-Computersystem
lauft, muss nicht notwendigerweise ein Mitglied des APMP-Computersystems sein. Die Instanz kann zu jeder
Zeit nach dem Booten versuchen, ein Mitglied des APMP-Systems zu werden. Dies kann entweder automa-
tisch nach einem Booten erfolgen oder nachdem ein Benutzerbefehl die Teilnahme explizit initiiert. Nachdem
das Betriebssystem zum Boot-Zeitpunkt geladen worden ist, wird die Betriebssystem-Initialisierungsroutine
aufgerufen und prift einen gespeicherten Parameter, um festzustellen, ob er eine unmittelbare Teilnahme an-
gibt, und falls dies der Fall ist, fuhrt das System eine Teilnahmeroutine aus, die Teil des APMP-Computersys-
tems ist. Ein Benutzerbefehl wirde zu einer Ausfihrung der gleichen Routine fuhren.

APMP-Datenbank

[0145] Eine wichtige Datenstruktur, welche die erfinderische Software-Reservierung von Ressourcen unter-
stutzt, ist die APMP-Datenbank, die Betriebssystem-Instanzen verfolgt, die Mitglieder eines Mitbenut-
zungs-Sets sind. Die erste Betriebssystem-Instanz, die versucht, das APMP-Computersystem einzurichten, in-
itialisiert eine APMP-Datenbank, wodurch die erfinderischen Software-Ressourcenreservierungen fiir das an-
fangliche Mitbenutzungs-Set erstellt oder instantiiert werden. Spatere Instanzen, die Teil des Mitbenut-
zungs-Sets werden wollen, nehmen durch Registrierung in der APMP-Datenbank teil, die mit diesem Mitbenut-
zungs-Set verknupft ist. Die APMP-Datenbank ist eine gemeinsam genutzte Datenstruktur, welche die zentra-
lisierten Informationen enthalt, die fir die Verwaltung von gemeinsam genutzten Ressourcen des Mitbenut-
zungs-Sets erforderlich sind. Eine APMP-Datenbank wird ebenfalls initialisiert, wenn das APMP-Computersys-
tem in Reaktion auf einen nicht behebbaren Fehler neu aufgebaut wird.

[0146] Insbesondere ist jede APMP-Datenbank eine dreiteilige Struktur. Der erste Teil ist ein Header-Teil mit
einer festen Grof3e, der grundlegende Synchronisierungsstrukturen fur die Erstellung des APMP-Computer-
systems, Adressenabbildungs-Informationen fiir die Datenbank und Offsets zu den dienstspezifischen Seg-
menten enthalt, die den zweiten Teil ausmachen. Der zweite Teil ist ein Array von Datenblécken, wobei jeder
potenziellen Instanz ein Block zugewiesen wird. Die Datenblécke werden als "Knotenblocke" bezeichnet. Der
dritte Teil ist in Segmente unterteilt, die von jedem der untergeordneten Betriebsmittel des Computersystems
verwendet werden. Jedes untergeordnete Betriebsmittel ist fur den Inhalt seines eigenen Segments und die
Synchronisierung des Zugriffs darauf zustandig.

[0147] Der Header-Teil einer APMP-Datenbank ist der erste Teil der APMP-Datenbank, der von einer teilneh-
menden Betriebssystem-Instanz abgebildet wird. Auf Teile des Headers wird zugegriffen, bevor eine Instanz
an dem Mitbenutzungs-Set teilnimmt und eigentlich bevor die Instanz weil3, dass das APMP-Computersystem
vorhanden ist.

[0148] Der Header-Abschnitt enthalt:

. ein Mitgliedschafts- und Erstellungssynchronierungs-Quad-Wort

. eine Computersystem-Software-Version

. Zustandsinformationen, Erstellungszeit, Inkamationszahlung usw.
. einen Adressenverweis (Offset) zu einer Mitgliedschafts-Maske

. Absturz-Instanz, Absturz-Bestatigungs-Bits usw.

. Validierungsmasken, einschlie8lich eines Bits fur jeden Dienst

O WN -

23/40

DE 698 33914 T2 2006.08.24

7. Speicherabbildungs-Informationen (Seiten-Frame-Nummer-Informationen) fir die gesamte APMP-Da-
tenbank

8. Offset/Lange-Paare, die jedes der Dienst-Segmente beschreiben (Langen in Bytes gerundet auf volle
Seiten von Seiten und Offsets), einschlieflich:

gemeinsam genutzte Speicherdienste

CPU-Kommunikationsdienste

mitgliedschaftsdienste (falls erforderlich)

Sperrdienste

[0149] Das Array von Knotenblécken wird durch eine System-Partitions-ID, (pro Instanz ist auf der gegenwar-
tigen Plattform eine mdglich), indexiert, und jeder Block enthalt:

Instanz-Software-Version

Interruptgrund-Maske

Instanz-Zustand

Instanz-Inkarnation

Instanz-Heartbeat

Instanz-Mitgliedschafts-Zeitstempel

Little-Brother-Instanz-ID und Inaktiv-Zeit; Big-Brother-Instanz-1D

Bit Instanz-Validieruang ausgeflhrt.

[0150] Eine APMP-Datenbank wird im gemeinsam genutzten Speicher gespeichert. Der feste Anfangsteil von
N physikalisch zusammenhangenden Seiten belegt die ersten N Seiten von einem oder zwei Speicherberei-
chen, die von der ersten teilnehmenden Instanz wahrend des anfanglichen Partitionierens der Hardware re-
serviert werden. Die Instanz weist die Konsole an, die physikalischen Start-Adressen dieser Bereiche in dem
Konfigurationsbaum zu speichern. Der Zweck der Reservierung von zwei Bereichen besteht darin, eine Aus-
fallsicherung im Fall eines Hardware-Speicherausfalls zu ermdglichen. Die Speicherverwaltung ist fur die Ab-
bildung des physikalischen Speichers in virtuellen Adressraum fiir die APMP-Datenbank zustandig.

[0151] Die einzelnen MaRnahmen, die von einer Betriebssystem-Instanz ergriffen werden, sind in Eiqg. 6 dar-
gestellt. Insbesondere wenn eine Betriebssystem-Instanz ein Mitglied eines Mitbenutzungs-Sets werden
modchte, muss sie vorbereitet sein, das APMP-Computersystem zu erstellen, wenn sie die erste Instanz ist, die
versucht, an einem nicht-vorhandenen System "teilzunehmen". Damit die Instanz bestimmen kann, ob ein
APMP-System bereits vorhanden ist, muss die Instanz in der Lage sein, den Zustand des gemeinsam genutz-
ten Speichers wie oben beschrieben zu prifen. Ferner muss sie in der Lage sein, sich mit anderen Instanzen
zu synchronisieren, die unter Umstanden versuchen, an dem APMP-System und dem Mitbenutzungs-Set zum
gleichen Zeitpunkt teilzunehmen, um konfliktbildende Versuche zu verhindern. Die Master-Konsole erstellt den
Konfigurationsbaum wie oben erlautert. AnschlieRend wird ein Speicherbereich von der ersten oder primaren
zu bootenden Betriebssystem-Instanz initialisiert, und dieser Speicherbereich kann fir eine APMP-Datenbank
verwendet werden.

Abbildung des APMP-Datenbank-Headers

[0152] Das Ziel der ersten MaRnahmen, die von allen Betriebssystem-Instanzen ergriffen werden, besteht
dann, den Header-Teil der APMP-Datenbank abzubilden und eine primitive Inter-Instanz-Interrupt-Bearbeitung
zu initialisieren, um die Grundlage fiir eine Erstellungs- oder Teilnahme-Entscheidung zu schaffen. Die verwen-
dete Routine ist in Fig. 6 dargestellt und beginnt in Schritt 600. Die erste Mallinahme, die von jeder Instanz
ergriffen wird, (Schritt 602), besteht darin, die Speicherverwaltung zu beauftragen, das Anfangssegment der
APMP-Datenbank abzubilden, wie oben beschrieben. Zu diesem Zeitpunkt wird das Array von Knotenbldcken
in dem zweiten Datenbank-Abschnitt ebenfalls abgebildet. Die Speicherverwaltung bildet die ersten und zwei-
ten Segmente der APMP-Datenbank in den primaren Betriebssystem-Adressraum ab und gibt die Startadres-
se und Lange zurlck. Die Instanz informiert dann die Konsole, die Speicherstelle und GréRRe der Segmente in
dem Konfigurationsbaum zu speichern.

[0153] Als Nachstes wird in Schritt 604 die erste virtuelle Adresse der APMP-Datenbank verwendet, um es
der Initialisierungs-Routine zu gestatten, Interruptursachen-Masken in dem Knotenblock, welcher der gegen-
wartigen Instanz zugewiesen ist, auf Null zu setzen.

[0154] Ein Null-Anfangswert wird dann in dem Heartbeat-Feld fir die Instanz in dem Knotenblock und ande-

ren Knotenblockfeldern gespeichert. In einigen Fallen war die Instanz, die versucht hat, ein neues APMP-Com-
putersystem zu erstellen, vorher ein Mitglied eines APMP-Systems und hat sich aus dem APMP-System nicht

24/40

DE 698 33914 T2 2006.08.24

zuriickgezogen. Wenn diese Instanz neu gebootet wird, bevor die anderen Instanzen sie entfernt haben, blei-
ben ihre Bits immer noch in der System-Mitgliedschaftsmaske "eingeschaltet". Andere ungewdhnliche oder
Fehler-Falle kénnen auch dazu flhren, dass "Mull" in der System-Mitgliedschaftsmaske gespeichert wird.

[0155] Als Nachstes wird in Schritt 608 die virtuelle Adresse (VA) der APMP-Datenbank in einer privaten Zelle
gespeichert, die durch einen Inter-Prozessor-Interrupt-Handler geprift wird. Der Handler prift diese Zelle, um
zu ermitteln, ob die Interruptursachen-Maske pro Instanz in dem APMP-Datenbank-Header auf auszufihrende
Arbeit getestet werden soll. Wenn diese Zelle Null ist, ist die APMP-Datenbank nicht abgebildet, und es wird
nichts weiter von dem Handler getan. Wie vorher erlautert, wird die gesamte APMP-Datenbank, einschlief3lich
dieser Maske, so initialisiert, dass der Handler nichts tut, bevor die Adresse gespeichert ist. Des Weiteren kann
ein Takt-Interrupt-Handler die gleiche private Zelle prifen, um zu bestimmen, ob das instanzspezifische Heart-
beat-Feld fir diese Instanz in dem entsprechenden Knotenblock inkrementiert werden soll. Wenn die private
Zelle Null ist, inkrementiert der Inerrupt-Handler das Heartbeat-Feld nicht.

[0156] An diesem Punkt ist die Routine beendet, (Schritt 610), und auf den APMP-Datenbank-Header kann
zugegriffen werden, und die teilnehmende Instanz ist in der Lage, den Header zu prifen und zu entscheiden,
ob das APMP-Computersystem nicht vorhanden ist und die Instanz es daher erstellen muss, oder ob die In-
stanz an einem bereits vorhandenen APMP-System teilnimmt.

[0157] Sobald der APMP-Header abgebildet ist, wird der Header geprift, um zu bestimmen, ob das
APMP-Computersystem eingerichtet ist und funktioniert, und falls dies nicht der Fall ist, ob die gegenwartige
Instanz die APMP-Datenbank initialisieren und das APMP-Computersystem erstellen sollte. Das Problem einer
Teilnahme an einem vorhandenen APMP-System wird zum Beispiel schwieriger, wenn das APMP-Computer-
system zu einem bestimmten Zeitpunkt erstellt worden ist, aber keine Mitglieder hat, oder wenn das
APMP-System nach einem Fehler neu aufgebaut wird. In diesem Fall ist der Zustand des APMP-Datenbank-
speichers nicht im Voraus bekannt, und ein einfacher Speichertest ist nicht ausreichend. Eine Instanz, die ver-
sucht, an einem mdglicherweise vorhandenen APMP-System teilzunehmen, muss in der Lage sein, bestim-
men zu kdnnen, ob ein APMP-System vorhanden ist oder nicht, und falls dies nicht der Fall ist, muss die In-
stanz in der Lage sein, ein neues APMP-System ohne Beeintrachtigung durch andere Instanzen zu erstellen.
Diese Beeintrachtigung kdnnte von Threads stammen, die entweder auf der gleichen Instanz oder einer ande-
ren Instanz laufen.

[0158] Um eine solche Beeintrachtigung zu verhindern, wird die Erstellungs-/Teilnahme-Entscheidung getrof-
fen, indem die APMP-Datenbank zuerst gesperrt und dann der APMP-Header gepruft wird, um zu bestimmen,
ob ein funktionierendes APMP-Computersystem vorhanden ist. Wenn ein einwandfrei funktionierendes
APMP-System vorhanden ist, nimmt die Instanz an dem System teil und hebt die Sperre auf der APMP-Daten-
bank auf. Wenn andererseits keine APMP-System vorhanden ist, oder wenn ein APMP-System vorhanden ist,
das aber nicht funktioniert, dann erstellt die Instanz ein neues APMP-System mit sich selbst als Mitglied und
hebt die Sperre auf der APMP-Datenbank auf.

[0159] Wenn es den Anschein hat, als befinde sich ein APMP-System im Ubergang, dann wartet die Instanz,
bis das APMP-System wieder betriebsfahig oder tot ist und geht dann wie oben beschrieben vor. Wenn ein
System nicht erstellt werden kann, schlagt die Teilnahme fehl.

Ein neues APMP-Computersystem erstellen

[0160] Angenommen, ein neues APMP-System muss erstellt werden, dann ist die Ersteller-Instanz fir die Re-
servierung des Rests der APMP-Datenbank, die Initialisierung des Headers und den Aufruf von Systemdiens-
ten zustandig. Angenommen, die APMP-Datenbank ist gesperrt, wie oben beschreiben, dann werden die fol-
genden Schritte von der Ersteller-Instanz unternommen, um das APMP-System zu initialisieren (diese Schritte
sind in den Fig. 7A und Fig. 7B gezeigt):

Schritt 702 Die Ersteller-Instanz setzt den Zustand des APMP-Systems und seinen Knotenblock-Zustand auf
"Initialisieren"”.

Schritt 704 Die Ersteller-Instanz ruft eine GroRenroutine fir jeden Systemdienst mit der Adresse seines Lan-
genfelds im Header auf.

Schritt 706 Die sich daraus ergebenden Langenfelder werden summiert, und die Ersteller-Instanz ruft die Spei-
cherverwaltung auf, um Raum fiir die gesamte APMP-Datenbank zuzuweisen, indem eine neue Abbildung er-
stellt und die alte Abbildung geléscht wird.

Schritt 708 Die Ersteller-Instanz fillt die Offsets zu den Anfangen jedes Systemdienst-Segments auf.

Schritt 710 Die Initialisierungs-Routine fir jeden Dienst wird mit den virtuellen Adressen der APMP-Datenbank,

25/40

DE 698 33914 T2 2006.08.24

des Dienst-Segments und der Segmentlange aufgerufen.

Schritt 712 Die Ersteller-Instanz initialisiert eine Mitgliedschafts-Maske, um sich selbst zum einzigen Mitglied
zu machen und inkrementiert eine Inkamationszahlung. Dann richtet sie die Erstellungszeit, Software-Version
und andere Erstellungsparameter ein.

Schritt 714 Die Instanz setzt sich dann selbst als ihr eigener Big Brother und Little Brother (zu Heartbeat-Uber-
wachungszwecken, wie im Folgenden beschrieben) ein.

Schritt 716 Dann tragt die Instanz ihren Instanz-Zustand als "Mitglied" und den Zustand des APMP-Systems
als "betriebsfahig" ein.

Schritt 718 Schlieflich hebt die Instanz die APMP-Datenbanksperre auf.

[0161] Die Routine endet mit Schritt 720.
Teilnahme an einem bestehenden APMP-Computersystem

[0162] Angenommen, die APMP-Datenbank ist fir die Instanz gesperrt, dann werden von der Instanz die fol-
genden (in den Fig. 8A und Fig. 8B gezeigten) Schritte unternommen, um ein Mitglied eines bestehenden
APMP-System zu werden:

Schritt 802 Die Instanz pruft, um sicherzustellen, dass ihr Instanz-Name eindeutig ist. Wenn ein anderes ge-
genwartiges Mitglied den vorgeschlagenen Namen der Instanz besitzt, wird die Teilnahme abgebrochen.
Schritt 804 Die Instanz setzt den Zustand des APMP-Systems und seinen Knotenblock-Zustand auf "In-
stanz-Teilnahme".

Schritt 806 Die Instanz ruft eine Speicherverwaltungs-Routine auf, um den variablen Teil der APMP-Datenbank
in ihren lokalen Adressraum abzubilden.

Schritt 808 Die Instanz ruft Systemteilnahme-Routinen fir jeden Systemdienst mit den virtuellen Adressen der
APMP-Datenbank und seinem Segment und seiner Segmentlange auf.

Schritt 810 Wenn alle Systemdienst-Teilnahmeroutinen Erfolg melden, wird die Instanzteilnahme-Routine fort-
gesetzt. Wenn irgendeine Systemdienst-Teilnahmeroutine fehlschlagt, muss der Instanz-Teilnahmeprozess
nochmals von vorne beginnen und moglicherweise ein neues APMP-Computersystem erstellen.

Schritt 812 Angenommen, der Schritt 810 war erfolgreich, dann fiigt sich die Instanz selbst zu der Systemmit-
gliedschafts-Maske hinzu.

Schritt 814 Die Instanz wahlt einen Big Brother, um ihre Instanz-Unversehrtheit zu tberwachen, wie im Folgen-
den dargelegt.

Schritt 816 Die Instanz tragt ihren Instanz-Zustand als "Mitglied" ein und setzt ein lokales Mitgliedschafts-Flag
Schritt 818 Die Instanz hebt die Konfigurationsdatenbanksperre auf.

[0163] Die Routine endet dann mit Schritt 820.

[0164] Der Verlust einer Instanz, entweder durch Inaktivitats-Zeitiberschreitung oder einen Absturz, wird mit-
tels eines "Heartbeat"-Mechanismus erfasst, der in der APMP-Datenbank implementiert ist. Die Instanzen ver-
suchen, eine minimale Priifung und Léschung vorzunehmen und benachrichtigen den Rest des APMP-Sys-
tems wahrend eines Instanz-Absturzes. Wenn dies nicht moglich ist, erfassen die Systemdienste das Ver-
schwinden einer Instanz Uber einen Software-Heartbeat-Mechanismus. Insbesondere ist ein Feld "Heartbeat"
in der APMP-Datenbank fur jede aktive Instanz reserviert. In dieses Feld werden durch die entsprechende In-
stanz in Zeitintervallen, die kleiner sind als ein vorgegebener Wert, beispielsweise alle zwei Millisekunden, Ein-
trage geschrieben.

[0165] Jede Instanz kann das Heartbeat-Feld einer anderen Instanz priifen, um eine direkte Entscheidung zu
irgendeinem spezifischen Zweck zu treffen. Eine Instanz liest das Heartbeat-Feld der anderen Instanz, indem
sie ihr Hearbeat-Feld zweimal im Abstand einer Zeitdauer von zwei Millisekunden liest. Wenn der Heartbeat
zwischen den zwei Ablesungen nicht inkrementiert worden ist, wird die Instanz als inaktiv (verloren, an Kon-
troll-P (control-P) angehalten oder auf oder Uber Takt-Interrupt-Prioritatsebene aufgehangt) betrachtet. Wenn
die Instanz uber die Dauer einer vorgegebenen Zeit inaktiv bleibt, wird die Instanz als tot oder desinteressiert
betrachtet.

[0166] Des Weiteren wird eine spezielle Anordnung verwendet, um alle Instanzen zu Uberwachen, weil es
nicht fir jede Instanz machbar ist, jede andere Instanz zu GUberwachen, vor allem, wenn das APMP-System
grof® wird. Diese Anordnung verwendet ein "Big Brother — Little Brother"-Konzept. Insbesondere wenn eine In-
stanz an dem APMP-System teilnimmt, bevor die Sperre auf der APMP-Datenbank aufgehoben worden ist,
wahlt sie eines der gegenwartigen Mitglieder als ihren Big Brother aus, der die teilnehmende Instanz bewachen
soll. Die teilnehmende Instanz Gbernimmt zunachst die Aufgaben des Big Brother fiir den gegenwartigen Little

26/40

DE 698 33914 T2 2006.08.24

Brother ihres gewahlten Big Brother und weist sich dann selbst als der neue Little Brother der ausgewahlten
Instanz zu. Wenn umgekehrt eine Instanz das APMP-Computersystem verlasst, wahrend sie noch in Betrieb
ist, so dass sie die Beendigungs-Verarbeitung durchfihren kann, und wahrend sie die Sperre auf der
APMP-Datenbank enthalt, weist sie ihre Big-Brother-Aufgaben ihrem gegenwartigen Big Brother zu, bevor sie
aufhért, ihren Heartbeat zu inkrementieren.

[0167] Bei jedem Takt-Tick liest jede Instanz nach dem Inkrementieren ihres eigenen Heartbeat den Heart-
beat ihres Little Brother und vergleicht ihn mit dem Wert, der beim letzten Takt-Tick gelesen worden ist. Wenn
der neue Wert gréRer ist, oder sich die ID des Little Brother geandert hat, wird der Little Brother als aktiv be-
trachtet. Wenn die ID des Little Brother und sein Heartbeat-Wert jedoch die gleichen sind, wird der Little Brother
als inaktiv betrachtet, und die gegenwartige Instanz beginnt, den Little Brother ihres Little Brother ebenfalls zu
beobachten. Diese Ansammlung von Zustandigkeit wird bis zu einem vorgegeben Hochstwert fortgesetzt und
stellt sicher, dass der Ausfall einer Instanz nicht zum Ubersehen des Ausfalls ihres Little Brother fiihrt. Wenn
der Little Brother beginnt, seinen Heartbeat wieder zu inkrementieren, werden alle zusatzlichen Zustandigkei-
ten eingestellt.

[0168] Wenn eine Mitglied-Instanz als tot oder desinteressiert betrachtet wird, und sie das APMP-Computer-
system nicht Gber ihre Absicht, sich abzuschalten oder ihren Absturz benachrichtigt hat, wird die Instanz aus
dem APMP-System entfernt. Dies kann zum Beispiel durch Setzen des "Bugcheck"-Bits in der primitiven Inter-
rupt-Maske der Instanz (instance primitive interrupt mask) und Senden eines IP-Interrupts an alle CPUs der
Instanz erfolgen. Im Regelfall kann auf einen gemeinsam genutzten Speicher nur unterhalb der Hardware-Pri-
oritdt des IP-Interrupt zugegriffen werden. Dies stellt sicher, dass, wenn die CPUs in der Instanz versuchen
sollten, auf einer Prioritat unterhalb derjenigen des IP-Interrupt zu arbeiten, der IP-Interrupt zuerst eintritt und
die CPU daher das "Bugcheck"-Bit sieht, bevor irgendwelche Threads mit niedrigerer Prioritat ausgefuhrt wer-
den. Dies stellt sicher, dass die Betriebssystem-Instanz abstiirzt und keine gemeinsam genutzten Ressourcen
in Mitleidenschaft zieht, wie beispielsweise den Speicher, der zu anderen Zwecken neu reserviert worden sein
kann, als die Instanzen als tot beurteilt wurden. Als ein zusatzlicher oder alternativer Mechanismus kann eine
Konsolen-Riickfrage, (sofern vorhanden), aufgerufen werden, um die Instanz zu entfernen. Des Weiteren fiih-
ren die restlichen Instanzen in Ubereinstimmung mit einer bevorzugten Ausfiihrungsform, immer wenn eine In-
stanz verschwindet oder ohne Warnung aus dem APMP-Computersystem fallt, einige Unversehrtheitsprifun-
gen durch, um zu bestimmen, ob sie fortfahren kénnen. Zu diesen Priifungen gehért das Uberpriifen, dass auf
alle Seiten in der APMP-Datenbank immer noch zugegriffen werden kann, d.h. dass kein Speicherfehler vor-
gelegen hat.

Zuweisung von Ressourcen nach der Teilnahme

[0169] Eine CPU kann hdochstens eine zugehdrige Partition zu jedem Zeitpunkt wahrend der Hochfahrzeit ei-
nes APMP-Systems aufweisen. Jedoch kann sich die Wiedergabe dieser Zugehdérigkeit und der Einheit, die fur
deren Steuerung zusténdig ist, als Ergebnis von Konfigurations- und Zustands-Ubergéngen, denen die Res-
source selbst unterliegt, der Partition, in der sie resident ist, und der Instanz, die in dieser Partition lauft, andern.

[0170] Die CPU-Zugehdrigkeit wird auf eine Reihe von Arten in einer Reihe von Strukturen angegeben, die
von der Einheit vorgegeben werden, welche die Ressource zu dem Zeitpunkt verwaltet. Im grundlegendsten
Fall kann die CPU in einem nicht-zugewiesenen Zustand sein, verfugbar fur alle Partitionen, die in dem glei-
chen Mitbenutzungs-Set resident sind wie die CPU. Schlie3lich wird diese CPU einer spezifischen Partition zu-
gewiesen, die eine Betriebssystem-Instanz ausfihren kann oder nicht. In jedem Fall gibt die Partition ihre Zu-
gehdrigkeit fur alle anderen Partitionen tber die Konfigurationsbaumstruktur und fir alle Betriebssystem-In-
stanzen, die in dieser Partition ausgefuhrt werden kénnen, iber das Bit AVAILABLE in dem HWRPB-Feld Flags
pro CPU wieder.

[0171] Wenn die besitzende Partition keine Betriebssystem-Instanz aufweist, die auf ihr lauft, ist ihre Konsole
dafiir zustandig, auf Ubergangsereignisse in den darin enthaltenen Ressourcen zu reagieren und diese zu in-
itialisieren. Die Konsole entscheidet, ob sich die Ressource in einem Zustand befindet, die eine Migration zu
einer anderen Partition oder ihre Zuriicksetzung in den nicht-zugewiesenen Zustand gestattet.

[0172] Wenn in der Partition jedoch gegenwartig eine Partition |auft, gibt die Konsole die Zustandigkeit fur die
Initialisierung von Ressourcen-Ubergéngen auf und ist zusténdig fir die Benachrichtigung der ausfiihrenden
primaren CPU der Instanz, wenn eine Konfigurationsanderung stattgefunden hat. Sie ist immer noch der Ver-
mittler (facilitator) des grundlegenden Hardware-Ubergangs, doch die Steuerung von Ressourcen-Ubergén-
gen geht auf eine Ebene héher an die Betriebssystem-Instanz Uber. Der Zustandigkeits-Transfer findet statt,

27/40

DE 698 33914 T2 2006.08.24

wenn die primare CPU ihren ersten Befehl aul3erhalb des Konsolenmodus in einem Systemstart ausfihrt.

[0173] Betriebssystem-Instanzen kénnen Zugehorigkeitszustands-Informationen auf jede Reihe von Arten
verwalten, die intern den effizientesten Einsatz der Informationen férdern. Zum Beispiel kann eine Hierarchie
von Zustands-Bit-Vektoren verwendet werden, welche die instanzspezifischen Informationen sowohl intern als
auch global (fir andere Mitglieder, die eine APMP-Datenbank gemeinsam nutzen) wiedergeben.

[0174] Die internen Darstellung sind strikt fur die Verwendung der Instanz. Sie werden zum Startzeitpunkt aus
dem grundlegenden Konfigurationsbaum und HWRPB-Informationen aufgebaut, aber als strikte Softwa-
re-Konstrukte fir die Laufzeit der Instanz verwaltet. Sie stellen die Software-Sicht der fiir die Instanz verfiigba-
ren Partitions-Ressourcen dar und kdnnen — iber Software-Regelsets — die Konfiguration weiter auf eine Un-
tergruppe von derjenigen einschranken, die durch die physikalischen Konstrukte angegeben wird. Gleichwohl
sind alle Ressourcen in der Partition zu der Instanz zugehorig und werden von dieser — unter Verwendung der
Konsolen-Mechanismen zum Anweisen von Zustands-Ubergangen — verwaltet, bis dieser Betriebssystem-Auf-
ruf keine durchflihrbare Einheit mehr ist. Dieser Zustand wird angegeben, indem die primare CPU, die wieder
in den Konsolenmodus zuriickgekehrt ist, angehalten wird, ohne die Méglichkeit, ohne Neustart wieder zurtick-
zukehren.

[0175] Die Zugehorigkeit von CPU-Ressourcen erstreckt sich nie tGber die Instanz hinaus. Die Zustands-In-
formationen jeder einzelnen Instanz werden in einer APMP-Datenbank fir Nur-Lese-Entscheidungszwecke
dupliziert, doch kann keine andere Instanz ein Zustands-Ubergangsereignis fiir eine Ressource einer anderen
CPU erzwingen. Jede Instanz ist dafiir zustandig, ihre eigenes Ressourcen-Set zu verstehen und zu steuern;
sie kann externe Anforderungen fiir ihre Ressourcen empfangen, aber nur sie kann die Entscheidung treffen,
dass gestattet wird, die Ressourcen zu transferieren.

[0176] Wenn jede derartige CPU betriebsfahig wird, setzt sie ihr Bit AVAILABLE in den Flags pro CPU nicht.
Wenn das Bit AVAILABLE nicht gesetzt ist, wird keine Instanz versuchen, zu starten oder erwarten, dass die
CPU an dem SMP-Betrieb teilnimmt. Stattdessen fragt die CPU im Konsolenmodus das Feld Zugehorigkeit in
dem Konfigurationsbaum ab, das auf die Zuweisung einer giiltigen Partition wartet. Sobald eine gliltige Parti-
tion durch die primare CPU als Zugehorigkeit zugewiesen worden ist, beginnt die CPU mit ihrem Betrieb in die-
ser Partition.

[0177] Wahrend der Laufzeit gibt das Feld current_owner die Partition wieder, in der eine CPU sich in Aus-
fuhrung befindet. Das Bit AVAILABLE in dem Feld Flags pro CPU in dem HWRPB bleibt der endgtiltige Indika-
tor, ob eine CPU tatsachlich verfligbar ist oder sich in Ausfliihrung befindet, fir den SMP-Betrieb mit einer Be-
triebssystem-Instanz und hat die gleiche Bedeutung wie in herkémmlichen SMP-Systemen.

[0178] Esist anzumerken, dass eine Instanz kein Mitglied eines Mitbenutzungs-Sets sein muss, um an vielen
der Neukonfigurationsfunktionen eines APMP-Computersystems teilzunehmen. Eine Instanz kann ihre Res-
sourcen zu einer anderen Instanz in dem APMP-System transferieren, so dass eine Instanz, die nicht Teil eines
Mitbenutzungs-Sets ist, eine Ressource zu einer Instanz transferieren kann, die Teil des Mitbenutzungs-Sets
ist. Auf ahnliche Weise kann die Instanz, die nicht Teil des Mitbenutzungs-Sets ist, eine Ressource von einer
Instanz empfangen, die Teil des Mitbenutzungs-Sets ist.

[0179] Eine Software-Implementierung der oben beschriebenen Ausfiihrungsform kann eine Reihe von Com-
puterbefehlen umfassen, die entweder auf einem konkreten Medium, wie beispielsweise einem computerles-
baren Medium, z.B. einer Diskette, einer CD-ROM, einem ROM-Speicher oder einer Festplatte fixiert sind, oder
zu einem Computersystem Uber ein Modem oder eine andere Schnittstelleneinrichtung tber ein Medium Uber-
tragen werden kénnen. Das Medium kann entweder ein konkretes Medium sein, einschlielich, aber nicht dar-
auf beschrankt, optischen oder analogen Kommunikationsleitungen, oder kann mit drahtlosen Techniken imp-
lementiert werden, einschlieBlich, aber nicht darauf beschrankt, Mikrowellen-, Infrarot- oder anderen Ubertra-
gungstechniken. Es kann auch das Internet sein. Die Reihe von Computerbefehlen verkérpert die gesamte
oder einen Teil der Funktionalitat, die hierin vorher unter Bezugnahme auf die Erfindung beschrieben worden
ist. Der Fachmann wird verstehen, dass solche Computerbefehle in einer Reihe von Programmiersprachen fir
den Einsatz in vielen Computer-Architekturen oder Betriebssystemen geschrieben werden kénnen. Ferner
kdnnen solche Befehle unter Verwendung jeder gegenwartigen oder kiinftigen Speichertechnologie gespei-
chert werden, einschlieBlich, aber nicht darauf beschrankt, Halbleiter-, Magnet-, Optik- oder anderen Speiche-
reinrichtungen, oder unter Verwendung jeder gegenwartigen oder kiinftigen Kommunikationstechnologie tber-
tragen werden, einschlieBlich, aber nicht darauf beschrankt, optischen, Infrarot-, Mikrowellen- oder anderen
Ubertragungstechnologien. Es wird in Erwégung gezogen, dass ein solches Computerprogramm-Produkt als

28/40

DE 698 33914 T2 2006.08.24

ein entfernbares Medium mit begleitender gedruckter oder elektronischer Dokumentation vertrieben werden
kann, z.B. in Folie eingeschweildte Software, vorabgeladen mit einem Computersystem, z.B. auf einem Sys-
tem-ROM oder einer Festplatte, oder von einem Server oder elektronischen schwarzen Brett aus Uber ein
Netzwerk, z.B. das Internet oder World Wide Web, vertrieben.

[0180] Obwohl eine beispielhafte Ausfliihrungsform der Erfindung offenbart worden ist, wird es fiir den Fach-
mann offensichtlich sein, dass verschiedene Anderungen und Modifizierungen vorgenommen werden kénnen,
die einige der Vorteile der Erfindung erzielen kénnen, ohne vom Umfang der Erfindung anzuweichen. Zum Bei-
spiel wird es fir den durchschnittlichen Fachmann offenkundig sein, dass, obwohl die Beschreibung sich auf
ein bestimmtes Hardware-System und Betriebssystem bezogen hat, andere Hardware und Betriebssys-
tem-Software in der gleichen Weise wie beschrieben verwendet werden kdnnten. Andere Gesichtspunkte, wie
beispielsweise die spezifischen Befehle, die zum Erzielen einer bestimmten Funktion verwendet werden, so-
wie andere Modifizierungen an dem erfinderischen Konzept sollen durch die Anspriiche im Anhang abgedeckt
werden.

[0181] Beansprucht wird Folgendes:
Patentanspriiche

1. Computer-System (200) mit einer Vielzahl von System-Ressourcen, die Prozessoren (108-114), einen
Speicher (120) und eine I/O-Schaltung (118) enthalten, wobei das Computer-System umfasst:
einen Verbindungsmechanismus;
einen Software-Mechanismus, der die System-Ressourcen in eine Vielzahl von Partitionen (202, 204, 206) un-
terteilt; und
wenigstens eine Betriebssystem-Instanz (208), die in einer Vielzahl der Partitionen lauft;
gekennzeichnet
dadurch, dass der Verbindungsmechanismus die Prozessoren, den Speicher und die 1/0O-Schaltung elektrisch
so verbindet, dass jeder Prozessor elektrischen Zugriff auf den gesamten Speicher und wenigstens einen Teil
der I/O-Schaltung hat; und
durch eine Konfigurations-Datenbank, die in dem Speicher (120) gespeichert ist und die Partitionen (202, 204,
206) anzeigt, die Teil des Computer-Systems (200) sind, und die Informationen enthalt, die anzeigen, ob jede
Betriebssystem-Instanz (208, 210, 212) aktiv ist.

2. Computer-System nach Anspruch 1, des Weiteren gekennzeichnet durch wenigstens eine Instanz (208)
eines anderen Betriebssystems, die in wenigstens einer der Vielzahl von Partitionen (202) lauft.

3. Computer-System nach Anspruch 1, wobei wenigstens ein Teil des Speichers exklusiv jeder der Partiti-
onen (202, 204, 206) zugewiesen ist.

4. Computer-System nach Anspruch 1, wobei die Vielzahl von Prozessoren (108—-114) physisch zwischen
Partitionen (202) aufgeteilt ist und jede Partition ein Konsolenprogramm (213, 215, 217) umfasst, das die Pro-
zessoren in der Partition steuert.

5. Computer-System nach Anspruch 1, des Weiteren gekennzeichnet durch eine Einrichtung, die Konfigu-
rations-Informationen fuhrt, die anzeigen, welche der Vielzahl von System-Ressourcen jeder Partition (202) zu-
gewiesen ist.

6. Computer-System nach Anspruch 5, wobei einer der Prozessoren (108-114) ein Master-Konsolenpro-
gramm ausfuhrt, das die Konfigurations-Informationen erzeugt; jede Partition (202) ein Konsolenprogramm
(213, 215, 217) umfasst, das die Prozessoren in der Partition steuert, und das Konsolenprogramm in jeder Par-
tition so ausgestattet ist, dass es mit dem Master-Konsolenprogramm kommuniziert, um Konfigurations-Infor-
mationen auszutauschen.

7. Computer-System nach Anspruch 1, wobei der Verbindungsmechanismus einen Schalter umfasst.
8. Computer-System nach Anspruch 1, des Weiteren gekennzeichnet durch eine Master-Konsole, die eine
Einrichtung umfasst, die die Konfigurationsdatenbank wahrend einer Hochfahr-Sequenz des Computer-Sys-

tems erzeugt.

9. Computer-System nach Anspruch 1, wobei die Betriebssystem-Instanzen (208) Einrichtungen zum kon-

29/40

DE 698 33914 T2 2006.08.24

tinuierlichen gegenseitigen Uberwachen auf Aktivitdt umfassen, um eine Fehlfunktion in einer Betrieb-Instanz
zu erfassen, und jede Betriebssystem-Instanz eine Einrichtung zum Uberwachen einer anderen Betriebssys-
tem-Instanz mittels eines Heartbeat-Mechanismus umfasst.

10. Verfahren zum Aufbauen eines Computer-Systems mit einer Vielzahl von Systemressourcen, die Pro-
zessoren (108-114), einen Speicher (120) und eine 1/0-Schaltung (118) enthalten, wobei das Verfahren die
folgenden Schritte umfasst:

a) elektrisches Verbinden der Prozessoren, des Speichers und der 1/0-Schaltung so, dass jeder Prozessor
elektrischen Zugang zu dem gesamten Speicher und wenigstens einem Teil der |/O-Schaltung hat;

b) Unterteilen der System-Ressourcen in eine Vielzahl von Partitionen (202, 204, 206);

¢) Ausflihren wenigstens einer Betriebssystem-Instanz (208) in einer Vielzahl der Partitionen; und

d) Erzeugen einer Konfigurations-Datenbank, die Informationen dahingehend, welche der Partitionen Teil des
Computer-Systems sind, und Informationen enthalt, die anzeigen, ob jede Betriebssystem-Instanz aktiv ist.

11. Verfahren nach Anspruch 10, wobei Schritt ¢) den folgenden Schritt umfasst:
c1) Ausfiihren wenigstens zwei verschiedener Betriebssystem-Instanzen (208) in der Vielzahl von Partitionen
(202, 204, 206).

12. Verfahren nach Anspruch 10, wobei Schritt b) den folgenden Schritt umfasst:
b1) Zuweisen wenigstens eines Teils des Speichers (120) zu jeder der Partitionen (202, 204, 206).

13. Verfahren nach Anspruch 10, wobei Schritt b) die folgenden Schritte umfasst:
b2) physisches Aufteilen der Prozessoren (108-114) zwischen Partitionen (202, 204, 206); und
b3) Ausfiihren eines Konsolenprogramms (213, 215, 217) auf einem Prozessor in jeder Partition (202), wobei
das Konsolenprogramm die Prozessoren in der Partition steuert.

14. Verfahren nach Anspruch 13, wobei Schritt b) den folgenden Schritt umfasst:
b4) Bestimmen eines primaren Prozessors in jeder Partition; und
wobei jeder Schritt ¢) die folgenden Schritte umfasst:
c1) Ausfiihren jeder Betriebssystem-Instanz (208) auf einem primaren Prozessor in einer der Partitionen (202,
204, 206); und
c2) Steuern jeder Betriebssystem-Instanz (208) so, dass sie mit dem Konsolenprogramm fir die Partition kom-
muniziert.

15. Verfahren nach Anspruch 10, das des Weiteren den folgenden Schritt umfasst:
e) Fuhren von Konfigurations-Informationen, die anzeigen, welche der Vielzahl von System-Ressourcen jeder
Partition (202) zugewiesen ist.

16. Verfahren nach Anspruch 15, wobei Schritt (e) die folgenden Schritte umfasst:
e1) Ausfiihren eines Master-Konsolenprogramms auf einem der Prozessoren (108-114), wobei das Mas-
ter-Konsolenprogramm die Konfigurations-Informationen erzeugt;
e2) Ausfiihren eines Konsolenprogramms (213, 215, 217) in jeder Partition, das die Prozessoren in der Parti-
tion (202) steuert; wobei Schritt e2) den folgenden Schritt umfasst:
e2a) Verwenden des Konsolenprogramms in jeder Partition zum Kommunizieren mit dem Master-Konsolen-
programm, um Konfigurations-Informationen auszutauschen; und
e3) Senden der Konfigurations-Informationen von dem Master-Konsolenprogramm zu jedem der anderen Kon-
solenprogramme.

17. Verfahren nach Anspruch 10, wobei Schritt a) den folgenden Schritt umfasst:
al) Verwenden eines Schalters, um die Prozessoren (108-114), den Speicher (120) und die 1/0-Schaltung
(118) miteinander zu verbinden.

18. Verfahren nach Anspruch 10, wobei Schritt ¢) den folgenden Schritt umfasst:
¢3) Verwenden der Betriebssystem-Instanzen (208, 210, 212), um einander kontinuierlich zu tiberwachen und
eine Fehlfunktion in einer Betriebs-Instanz mittels eines Heartbeat-Mechanismus zu erfassen.

Es folgen 10 Blatt Zeichnungen

30/40

DE 698 33914 T2 2006.08.24

Anhangende Zeichnungen

[—108[—110[_113'—-114
. / /
¥ /—102
cPU |{cpu {|cpu |{cpu
cPu |lcpu {lcpu llcpu
l 1
Vo SPEICHER
X 116
‘t‘_ _ o}
120
118 100
cpu || cpull cpul| cpu
P11 |
T T /—106
o SPEICHER cpu || cpu|{cpu |l cpu
104—-/
SPEICHER

122

FIG. 1

31/40

DE 698 33914 T2 2006.08.24
e 200
4
[~—208 ~—210 |
¥ BETRIEBS- ¥ BETRIEBS- |
SYSTEM- SYSTEM-
INSTANZ INSTANZ |
1 |
KONSOLE <+ 213 konsoLE < 215| |
1 - 214 | — 216
¥ ¥ |
; KONSOLEN-PORT KONSOLEN-PORT |
| PARTITION 1 « PARTITION 2 r
y4
i : -
202] 204 —
230 - | —~212
» BETRIEBS- |
| SYSTEM-
INSTANZ |
| I
KONSOLE <217
205 __1 1 'r'— 218 [
KONSOLEN-PORT
206 >
PARTITION 3

!

}

MULTIPLEXER

226

l

FIG. 2

— 228

WORKSTATION /

32/40

Y3T10ULINOD ¥37T08INOD

=43HII3dS

DE 698 33914 T2 2006.08.24

N3LONMWWVLS
“TVMQVH

33/40

»og — a

_H‘Mﬂozzs_sﬁﬂ
-Wnve

DE 698 33914 T2 2006.08.24

Y3ITTOUINOD
“43HIIAdS

osy

Ndd
rAX4
ovPy
Ndd
b oty
NdJ
oy 8zy
o ozp
ovy —/
¢ NOLLILYVd
4
v:i\

L NOILILYVd

1A
N_‘vl\

113 4

ALINNWINOD

34/40

DE 698 33914 T2 2006.08.24

START S00

502
/_

[

MASTER-KONSOLE
STARTEN

/—504

y

HARDWARE PRUEFEN

506
[

[4

KONFIGURATIONS-
BAUM BILDEN

l 508
»
JEDE PARTITION

INITIALISIEREN UND
IHRE KONSOLE STARTEN

»y
EINIGE BETRIEBS-

SYSTEM-INSTANZEN

BOOTEN F IG. 5

(ENDE 3—512

35/40

DE 698 33914 T2 2006.08.24

START 600

602
/_.
4

ANFANGSSEGMENT

DER APMP-DATENBANK
ABBILDEN

/— 604
r
INTERRUPT-MASKEN
FUER GEGENWAERTIGE

INSTANZ ZURUECKSETZEN

606
/-—

[
HEARTBEAT-WORT UND
ANDERE INSTANZ-
BLOECKE INITIALISIEREN

/—- 608

VIRTUELLE ADRESSE
DER APMP-DATENBANK IN
IP-HANDLER-ZELLE
SPEICHERN

‘ ENDE }— 610

FIG. 6

36/40

DE 698 33914 T2 2006.08.24

START 700

[- 702

SYSTEM UND INSTANZ
AUF INITIALISIERUNG
SETZEN

[704

[

PRIMAERE INSTANZ RUFT
GROESSENROUTINE AUF

706

RAUM FUER APMP-
DATENBANK
RESERVIEREN

/— 708

»
OFFSETS FUER DIENST-
SYSTEMSEGMENTE
FUELLEN

FIG. 74

37/40

DE 698 33914 T2 2006.08.24

INITIALISIERUNGS-
ROUTINE FUER JEDEN
DIENST AUFRUFEN

MITGLIEDSCHAFTS-
MASKE INITIALISIEREN

UND PARAMETER
EINRICHTEN
/-— 714
[
INSTANZ RICHTET SICH
SELBST ALS BIG

BROTHER EIN

INSTANZ- UND SYSTEM-
ZUSTAENDE
INITIALISIEREN

SPERRE VON APMP-
DATENBANK AUFHEBEN

FIG. 7B

38/40

DE 698 33914 T2 2006.08.24

START 800

802
/_
4

EINDEUTIGEN NAMEN UEBERPRUEFEN

/— 804
»
SYSTEM- UND INSTANZ-ZUSTAENDE

AUF INSTANZ-TEILNAHME SETZEN

806

L

TEIL VON APMP-DATENBANK IN
LOKALEN SPEICHER ABBILDEN

l ;/— 808

SYSTEMTEILNAHME-ROUTINEN
AUFRUFEN

ERFOLGREICH ?

FIG. 84

39/40

DE 698 33914 T2 2006.08.24

ZU MITGLIEDSCHAFTS-
MASKE HINZUFUEGEN

BIG BROTHER
| AUSWAEHLEN

INSTANZ-ZUSTAND EIN-
TRAGEN UND MITGLIED-
SCHAFTS-FLAG SETZEN

SPERRE VON APMP-
DATENBANK AUFHEBEN

‘ ENDE 9— 820

FIG. 8B

40/40

	Titelseite
	Beschreibung
	Patentansprüche
	Anhängende Zeichnungen

