一种用于将物质非轴向地运送越过生物体的表面的无针式经皮运送装置 (100)，该装置包括用于盛装被运送的物质的贮液腔 (110)。定位在装置中的活塞 (105) 与贮液腔 (110) 连通。执行器 (105) 驱动活塞 (105) 以从贮液腔 (110) 中排出物质。贮液腔 (110) 与喷嘴 (115) 流体连通，其包括至少一个侧开孔 (145)，物质通过该侧开孔被排出。多个侧开孔 (145) 可以导致越过可选择的表面区域的无针式运送。注射的深度和方向可以通过喷嘴 (115) 的参数来控制。通过提供的经选择的深度和方向，装置可能用于将物质注射到靶向生物层中，例如，解理面，以进一步促进覆盖范围。一种控制源可以用于激励装置 (100)。装置 (108) 也可以包括选的的动力源 (125)。
1. 一种用于将物质运送越过生物体的表面的无针式经皮运送装置，该运送装置包括：
用于盛装物质的贮液腔；
喷嘴，该喷嘴具有一个或多个孔以将物质运送至喷嘴末端附近，该喷嘴与贮液腔液体连通并适于纵向地靠在生物体的表面上而被挤压并压在生物体表面上但不刺穿该表面；
一个或多个孔中的至少一个被侧面定向在喷嘴中并相对于喷嘴的纵向轴以至少 45 度的角度被定位；以及
与贮液腔连通的执行器，当被激励时该执行器在贮液腔内产生压力，通过刺穿生物体的表面将物质侧面地经过至少一个侧面定向的孔注射到生物体中，从而形成浅层注射。
2. 根据权利要求 1 的运送装置，其中多于一个孔被侧面定向在喷嘴中。
3. 根据权利要求 1 的运送装置，其中执行器在激励期间是可以控制的以改变压力。
4. 根据权利要求 1 的运送装置，其中当喷嘴的轴垂直对准身体的表面时，喷嘴适于产生对于表面的浅层注射。
5. 根据权利要求 1 的运送装置，进一步包括可以回收的套筒，该套筒与喷嘴连通。
6. 根据权利要求 1 的运送装置，其中喷嘴包括管状物，该管状物有封闭末端而且有贯穿其侧面的一个或多个孔。
7. 根据权利要求 6 的运送装置，其中管状物用孔塞封闭，该孔塞具有将流动引导到孔的内表面。
8. 一种用于将物质运送越过生物体的表面的无针式经皮运送装置，该装置包括：
用于激励与贮液腔连通的执行器以在贮液腔中产生压力的装置；
喷嘴装置，该喷嘴装置具有一个或多个孔，用于将物质运送至它的末端附近，该喷嘴与贮液腔液体连通，并适于靠在生物体的表面上而被挤压并压在该生物体表面上而不刺穿该表面，其还包括侧面定向并相对于喷嘴的纵向轴以至少 45 度的角度而定位的一个或多个孔中的至少一个；以及
用于注射物质通过喷嘴上的至少一个侧面定向孔的装置，以导致物质的侧面无针式注射，从而形成浅层注射。
说明书

表面注射装置

技术领域
[0001] 本申请要求于2005年2月11日提交的第60/652,483号美国临时申请的利益。上述申请的全部教导通过引证被并入本文。

背景技术
[0002] 将液体（例如，药物）注射到病人或农业畜牧动物体中可以用各种不同的方式来进行。其中药物递送的最容易的方式是通过皮肤，皮肤是身体最外面的保护层。皮肤包括表面层，其包括角质层，颗粒层，棘层，基底层，和真皮，其中包括毛细血管层。角质层是由死亡的细胞组织所构成的粗糙的鳞片层。角质层从皮肤表面向外延伸大约10~20微米，而且没有血液供应。由于这一细胞层的厚度，要将化合物越过皮肤输送到体内或从体内输出都是非常困难的。

[0003] 当前用于通过皮肤递送局部药物的方法包括使用针头或其它的皮肤刺穿装置。侵入性操作，例如，适用针头或手术刀，能有效地克服角质层的屏障功能。然而，这些方法具有以下几个主要缺陷：局部皮肤损伤、出血、注射部位的感染风险，和产生的必须处理的污染的针头和手术刀的问题。而且，当使用上述装置将药物注射到农业畜牧动体内时，针头有时会断裂并嵌入到动物体内。

[0004] 因此，其有利于将少量的、精确数量的药物快速通过皮肤注射，而不存在潜在的针头会在动物体内断裂的危险。

发明内容
[0005] 本发明涉及用于运送物质越过生物体的表面的方法和装置。在某些实施方案中，无针式经皮运送装置包括用于盛装物质的贮液腔。而且该装置包括喷嘴，喷嘴与贮液腔流体连通。所述喷嘴适于依压和无刺痛地按压下生物体的表面。喷嘴包括侧开孔，通过该侧开孔物质能够被侧面地注入。该装置也包括执行器，所述执行器与贮液腔连通。当被激励时，执行器适于在贮液腔中产生压力，因而导致通过刺穿生物体的表面将物质侧地地经过孔注射到生物体中。

[0006] 执行器可以是任何类型适合的执行器。举例来说，执行器可以是一种线性执行器。执行器也可以是一种电磁式执行器，例如，洛伦兹力执行器，其包括用于在贮液腔中产生压力的电磁力。其他类型的执行器，例如，弹簧负载执行器，形状记忆执行器，电动马达执行器，和发生器式执行器以可以在该装置中使用。为了改变贮液腔中适用的压力，在执行期间，执行器是可以控制的。

[0007] 喷嘴包括管状物，该管状物有封闭末端而且有贯穿其侧面的孔。管状物用孔塞封闭，该孔塞具有将流动引导到孔的内表面。喷嘴可以包括为数众多的侧开孔。这将允许物质运送到身体中的优选区域中。当喷嘴的轴垂直对准身体的表面时，喷嘴适于产生对于表面的浅层注射。可以回收的套筒与喷嘴连通。

[0008] 本公开进一步涉及一种用于经皮运送物质越过身体的表面的方法。方法的步骤包
括挤压与贮液舱连通的喷嘴，使其深入到身体的表面和无刺穿地按摩身体的表面。下一步，与贮液舱连通的执行器被激励以在贮液舱中产生压力。最后，物质通过喷嘴上的侧面定向的孔进行注射，以产生物质的侧面的，无针式注射。

【0009】物质可以通过喷嘴上为数众多的侧开孔进行注射。同样地，物质可以注射到身体表面下的单层中。物质也可以被注射到限定身体的表面上不同的层之间的平面上。

【0010】本公开也涉及一种制造喷嘴的方法，其适于将物质非线性地运送物质到身体表面。步骤包括首先提供限定中心管腔的伸长部件。下一步，伸长部件的一个端部被定位以致其能及其接近电火花放电（ESD）金属线。最后，ESD 金属线被施加电压以允许伸长部件的端部被蒸发，从而形成非线性的适于将物质运送至生物体的表面上孔。

【0011】为了在伸长部件上形成椭圆形的孔，在蒸发期间使用线状 ESD 金属线。椭圆形孔的主轴的优选方向可以通过控制 ESD 金属线和伸长部件之间的对准来获得。如果需要为数众多的孔，伸长部件的不同部分的端部可以与 ESD 被重复蒸发以形成孔的阵列。

附图说明

【0012】通过以下结合本发明的优选的实施例的更为详细的描述，本发明的上述和其他的目的、特征和优势将变得更加明显，正如在附图中所例示说明的那样，类似的参考标记指代不同的附图中相同的部分。附图不是严格根据比例绘制的，而是将重点放在说明本发明的原理之上的。

【0013】附图 1 显示的是表面注射装置的实施方案；
【0014】附图 2A-2C 举例说明了包括侧开孔的可以效仿的喷嘴；
【0015】附图 3A-3B 举例说明了包括均匀地和呈辐射状分布的孔的可以效仿的喷嘴；
【0016】附图 4 举例说明了具有角度的能够进行浅层注射的侧开孔的可以效仿的喷嘴；
【0017】附图 5 举例说明了使用表面注射装置产生浅层注射的方法；
【0018】附图 6 举例说明了使用表面注射装置在皮肤的各层之间进行注射的方法；
【0019】附图 7 举例说明了具有可回收套管的可以效仿的表面注射喷嘴；
【0020】附图 8 举例说明了使用电磁式执行器的表面注射装置；
【0021】附图 9 举例说明了使用形状记忆合金执行器的表面注射装置；
【0022】附图 10A-10B 举例说明了使用可以替换的形状记忆合金执行器的表面注射装置；
【0023】附图 11 举例说明了制造表面注射装置的喷嘴的方法；
【0024】附图 12 进一步显示附图 11 中的制造方法的细节；
【0025】附图 13A-13C 举例说明了包括 6, 8, 12 个孔阵列的可以效仿的喷嘴；
【0026】附图 14 显示的是与喷嘴结合使用的孔塞；
【0027】附图 15 举例说明了可以效仿的手持式便携注射装置，以及
【0028】附图 16 显示的是喷嘴阵列。

具体实施方式

【0029】以下是本发明的优选的实施例的描述。
【0030】一种皮下注射装置，或注射装置，被配置用于将物质运送越过生物体的表面。注射装置包括的装置有一个或更多的配置用于在注射物质之前刺穿皮肤的针头（例如，皮下注
射装置针头）。其他的注射装置被配置用于将物质注射到皮肤之下，而无需首先用针头刺穿皮肤（例如，无针式）。人们将会注意到本文中所使用的术语“无针式”是指无需首先使用针头刺穿皮肤进行注射的装置。因此，无针式装置可能包括针头，但是该针头不是用于首先将皮肤刺穿。某些无针式注射装置依靠从装置中排出的先锋弹射剂来首先刺穿皮肤。其他的无针式注射装置依靠药物本身的提供的压力。

[0031] 一般来说，注射装置包括用于盛装物质（例如，一种药物）以备注射的贮液腔或存储腔室。注射装置也可以包括远端部分，通过该远端部分药物可以注射到体内。典型的是，贮液腔通过管腔与远端部分流体连通。在操作中，运用在贮液腔中的压力迫使药物通过管腔从远端部分排出。对于无针式的应用，通常远端部分形成喷嘴，药物通过该喷嘴被排出，形成喷射。喷射的速度足以刺穿皮肤的最外层，并穿透身体以到达需要的深度。关于无针式注射装置的更进一步的详细描述已在题目为“ControlledNeedle-Free Transport”的美国申请中有所公布，该申请于2006年2月10日提交，并要求于2005年2月11日提交的第60/652,483号美国临时申请的利益。上述申请的全部教导通过引证被并入本文。

[0032] 附图1显示的是表面注射装置100。该表面注射装置100包括喷嘴115。所述喷嘴115适用于与生物体的表面进行垂直对准。喷嘴115包括限定用于分配物质的一个或更多的侧开孔145的远端140。喷嘴115的形状可以是圆柱形的、球形的、截头圆锥体的，或任何适应于生物体的表面的形状。

[0033] 贮液腔110通过沿着喷嘴115的纵向轴的轴向管腔142与喷嘴115进行流体连通，轴向管腔142成为喷嘴115的一个部分。贮液腔110盛装物质135以备注射。可以选择的是，可以使用任何适用于盛装物质的装置，例如，腔室，注入器，或可扩展的伸缩腔室。表面注射装置100也包括活塞或柱塞130，其与贮液腔110连通。

[0034] 表面注射装置100进一步包括执行器105。执行器105，当激励时适于向远端推进活塞130，以致有足够数量的压力被适用到贮液腔110中的物质135上。当执行器105被阻止时，活塞130可以被牵引到初始被阻止的位置上，或保持固定在当前的位置上。执行器105可以是，例如，线性执行器，电磁式执行器，例如，洛伦兹力执行器，形状记忆合金式执行器，弹簧负载式执行器，发生器式执行器，或任何适合的用于使活塞130产生足够的压力以将物质135从贮液腔110中排出的执行器。

[0035] 物质135可以从贮液腔110中流出经过轴向管腔142后流入到喷嘴115中。喷嘴115也可以包括非轴向的管腔144。非轴向的管腔144是流体连通的并与轴向管腔142连接到侧开孔145中。可以选择的是，轴向管腔142可以不被包括在其中，贮液腔110的远端可以直接连接到非轴向管腔142中。

[0036] 表面注射装置100可以包括动力源125。动力源125可以是，例如，电池，储能电容器，连接到电源线的连接机构，或适于提供足够的激励动力以操作表面注射装置100的任何动力源。在某些实施方案中，表面注射装置100也可以包括控制器120。控制器120可以被使用者所控制。在一个实施方案中，控制器120是单一的开关，其可以被使用者手动操作，例如，通过一种按钮。可以选择的是，控制器120可以自动操作。控制器120可以控制电流从动力源125流向执行器105。

[0037] 在其他的实施方案中，只有在某些参数得到满足时，控制器120可以允许激励。举例来说，如果有足够的能量保持在动力源125中以结束注射，控制器120可以只是启动注
射。

【0038】可以选择的或另外需要说明的是，在某些参数的基础上，控制器 120 可以被配置用于确定适当剂量的物质 135 被运送。所述参数，举例来说，可以包括存储的数值，例如，产品的有效期编码，来自远程供应源的信息。表面注射装置 100 可以配制，例如，交流界面，其可以在注射之前向目标提出询问。可以选择或另外需要说明的是，表面注射装置 100 可以质询远程数据库以确定关于适用或剂量的参数，而且控制器 120 可以在参数的基础上启动激动。

【0039】仍然是在其他的实施方案中，控制器 120 包括结合反馈的伺服控制器。例如，控制器 120 可能接收力传感器的输出，该力传感器被适当地放置以感应被适用在盛装于贮液腔 110 中的物质上的力。当皮肤被穿透时，被感应到的力可能会出现突然的波动以及贮液腔 110 中的压力会发生变化。压力的波动可能被提供给控制器 120 并用于改变适用的电流（例如，力），因此需要更高的电流的刺穿阶段转变为需要较低电流的传递阶段。控制器 120 可以执行各种不同的适当操作，所有的适当操作都在本发明的范围之内。

【0040】在操作过程中，物质 135 首先被加载到贮液腔 110 中。物质 135 可以通过阀将输入端口耦合到贮液腔 110 上并加载到贮液腔 110 中，当所述阀开启时，允许物质 135 流入贮液腔 110 中。可以选择的是，物质 135 可以只是被牵引到喷嘴 115 中。贮液腔 110 也可以是预先加载了物质的可替换的贮液腔 110。物质 135 可以通过任何适当的方式加载到贮液腔 110 中。

【0041】表面注射装置 100 被定位在生物体的表面上。然后，控制器 120 或者通过使用者或者自动地激励以启动注射过程。一旦控制器 120 启动注射过程，执行器 105 被激励。执行器 105 导致活塞 130 被推向远端。因此，活塞 130 将压力作用于贮液腔 110 中的物质 135 上，从而使物质 135 以足够的速度流经连接贮液腔 110 和喷嘴 115 的轴向管腔 142。

【0042】一旦物质流经轴向管腔 142，将被引导流传过非轴向管腔 144。非轴向管腔 144 引导物质 135 流经分布在喷嘴 115 上的侧开孔 145 和喷嘴 115 的轴向管腔 142。生物体的表面被排出的物质 135 的速度所刺穿，物质被非轴向地运送通过孔 145，由于物质 135 的运送已经完成，控制器 120 被阻止。可以选择的是，表面注射装置 100 可以用于将物质从生物体中牵引出来，与将物质注入到生物体中相反。


【0044】附图 3A 和 3B 显示的是 8 个均匀分布的孔 145 的阵列。附图 3A 清楚显示出轴向管腔 142 与纵轴 210 平行。轴向管腔 142 在其远端部分伸展开以形成一系列的非轴向的管腔 144，将轴向管腔 142 连接到孔 145 上。因此，孔 145 可以在喷嘴 115 的非轴向外形表面上形成。

【0045】附图 3B 显示的是具有围绕纵轴 210 均匀分布的孔 145 的喷嘴 115 的底部视图。每一个孔都具有相同的角度和放射状间隔。这将有助于确保物质 135 被均匀地注射到生物
体的表面。

在一个实施方案中，表面注射装置100可以用于生物体表面上的很浅层的注射。正如附图4所示，这可以通过将孔145相对于喷嘴115的横轴210较大的角度进行定位来完成。出于浅层注射的目的，优先的是，孔145相对于横轴210至少45度来定位。相对于横轴210以较大的角度定位孔145允许物质135大致上平行于生物体的表面排出，从而形成浅层注射。

正如附图5所示，为了产生浅层注射，喷嘴115需要充分地垂直对准生物体的表面。喷嘴115的远端部分被按压以低于生物体皮肤上的参考点（例如，附图标记R），以达到相对于参考点R的深度D。优选的是，喷嘴115的远端是钝状的，以较容易地按压皮肤面无需刺穿皮肤。环绕横轴210分布在喷嘴115上并且优选的以大于45度的角度相对于横轴210定位的孔145被按压到较浅的深度D1。当进行注射时，喷嘴115相对于皮肤的松弛表面进行非直交定位，松弛的表面是皮肤上未被按压的部分。

正如附图1中所描述的，表面注射装置100可以被激励，而且执行器105可以用于迫使物质135从贮液腔110中通过轴向管腔142排出，原料从非轴向管腔144排出流经孔145的侧向阵列并穿透皮肤。因此，可以在生物体的皮肤中产生浅层注射。

有益的是，孔145的角度可以在注射期间相对于喷嘴115的横轴变化。举例来说，如果需要较深层的注射，孔145可以以相对于喷嘴115的横轴210以较小的角度或锐角进行定位。这将导致注射充分垂直于皮肤表面而且会导致物质135的深层注射。

可以选择或另外需要说明的是，如附图16所示，表面注射装置100可以包括不止一个的喷嘴115。例如，喷嘴115可以配置为阵列以覆盖皮肤上更大的表面积。阵列可以是二维阵列，例如，喷嘴115的N×N矩形阵列。因此，由各个喷嘴115中的每一个喷嘴所形成的注射方式被结合于产生全面的注射方式，举例来说，一种插座式的4×4阵列。阵列中众多的喷嘴115被并行激励，所有的注射几乎在同一时间，或者可以选择的是，串连的一个或多个喷嘴115依次进行注射。

通常情况下，无针式注射装置被定位以垂直注射到皮肤的表面。通过注射，物质135经过侧向定位的孔145，可能发生物质135的绞窄的分布。可以选择的是，足够剂量的物质135可以靠近表面保存，因此，如附图6所示产生浅层注射。

皮肤包括主要的三层。最上面的一层是表面层610，其是半透明的。表面层包括角质层，颗粒层，棘层，基底层，以及真皮，其中包括毛细血管层。角质层650是由死亡的细胞组织构成的粗糙的鳞片层。角质层650从皮肤表面向外延伸大约10-20微米而且没有血液供应。由于这一细胞层的厚度，要将化合物越过皮肤输送到体内或从体内输出都是非常困难的。第二层是真皮620，其中包括血管，神经，毛发的根部和汗腺。真皮层以下是一层脂肪，皮下脂肪630。皮下脂肪位于肌肉640和骨骼之上，皮下脂肪中整个皮肤结构通过结缔组织附着。

表面注射装置100可以将物质递送到所需要的任何一层皮肤上，这是通过简单改变相对于喷嘴115的纵轴的孔145的角度来完成的。通过了解每一层的厚度，表面注射装置100可以通过熟练地操作来对适当的层进行注射。正如所描述的那样，通过改变孔145的角度，通过改变深度，喷嘴115在皮肤表面中被按压，或通过结合以上因素。

可以选择或另外需要说明的是，表面注射装置100可以将物质135选择适用在皮
肤的各层之间皮肤之下。举例来说，正如本文所述，注射可以在表面层 610 和真皮 620 之间的平面上进行。有益的是，这也允许物质 135 喷射到所述两层中。

[0055] 通过将物质 135 递送到位于生物体的皮肤表面所需要的深度的平面上，表面注射装置 100 对于皮肤的处理条件和皮肤之下的可选择的组织层中具有商业上的应用。例如，表面注射装置 100 可以用于将胶原酶复合物注射到绵羊体内以消除苍蝇侵害所导致的疾病——一种严重困扰澳大利亚的美利奴（细毛）羊的问题。胶原酶分解皮肤之下的组织以减少或消除皮肤中的褶皱，其主要受到苍蝇寄生虫的影响。其他的应用包括类似的将胶原酶混合物注射到被烧伤的病人身上以帮助减少伤痕的影响。

[0056] 正如附图 7 所示，喷嘴 115 可以与可以回收的起保护作用的套管或套筒 710 一并提供。可回收的套筒 710 的静止位置优选覆盖孔 145 以防止污染和泄漏，和便于表面注射装置 100 的再次填装。当填装时，正如上文所述喷嘴 115 上的一个或更多的孔 145 暴露出来以便操作。套筒 710 可以轴向地填装，以相对于喷嘴 115 的远端最接近的方向被牵引（例如，远离皮肤的表面）。套筒 710 可以在喷嘴 115 上滑动，允许其容易地向远端和接近地推进。套筒 710 的主体可以包括任何适当的锁定装置以将套筒 710 锁定在喷嘴 115 上的需要位置上。可以选择或另外需要说明的是，套筒 710 可以旋转以可以选择地暴露一个或更多的孔 145。

[0057] 举例来说，套筒 710 可以包括相对于喷嘴 115 上的一个或更多的孔 145 的补充用孔。在第一位置上，喷嘴 115 上的一个或更多的孔 145 被套筒 710 覆盖。当旋转时，套筒 710 的补充用孔至多部分对准喷嘴 115 上的一个或更多的孔 145 以暴露至少一部分孔 145。补充孔的外形和/或对准可以与喷嘴 115 上的一个或更多的孔 145 的外形和/或对准结合以控制被两种孔的交线所限定的由此获得的一个或更多的孔的尺寸。

[0058] 套筒 710 包括远端边缘或起保护作用的套管 720，适于与注射位置周围的皮肤表面接合。当起保护作用的套管 720 被推进到邻接皮肤表面的位置时，套筒 710 阻止皮肤表面的进一步推进。喷嘴 115 滑动和套筒 710 时，喷嘴 115 可能被进一步推进超出起保护作用的套管 720 的端部。因此，喷嘴 115 提供的孔起是被套筒 710 和/或起保护作用的套管 720 所覆盖的，该孔通过滑动喷嘴 115 以超过起保护作用的套管 720 的端部得以暴露。

[0059] 套筒 710 可以是，例如，弹性负载，当起保护作用的套管 720 逐渐接触皮肤时以允许套筒 710 缩回。可以选择的是，任何适当的用于允许方便缩回的方式都可以在套筒 710 中使用。

[0060] 可以选择的是，起保护作用的套管 720 可以形成有助于控制喷嘴 115 的推进深度的皮肤表面上的参考平面。举例来说，表面注射装置 100 可以包括阻止装置，其阻止喷嘴 115 的进一步的推进超出相对于起保护作用的套管 720 的端部所测量的预先确定的距离。

[0061] 可以选择或另外需要说明的是，表面注射装置 100 包括用于感应喷嘴 115 相对于起保护作用的套管 720 的端部的位置的传感器。例如，可以安装位移传感器以测量套筒 710 的最近端端部相对于喷嘴 115 的位置。因此，在喷嘴 115 被推进到生物体的皮肤内之前，套筒 710 的最近端端部可以在位置 P1 上。当喷嘴 115 被按压进入皮肤时，作为皮肤与保护性套管 720 接触的结果，套筒 710 缩回。套筒 710 的最近端端部可以缩回至位置 P2 上。位置传感器可以测量 P1 和 P2 之间的距离。该距离表明喷嘴 115 在皮肤中的深度或推进。
可以进行的是，位置传感器不是必须的。喷嘴115可以仅仅被标记测量等级以测量套筒的位移。举例来说，例如前所述，等级可以标记在喷嘴115的最近端部以测量位置P1和P2之间的距离。任何适当的位置/位移测量装置可以包含与套筒710,起保护作用的套管720,喷嘴115或表面注射装置100的任何部分结合。

正如结合附图1所描述的那样，各种不同类型的适合的执行器可以与表面注射装置100结合使用。例如来说，执行器105可以是弹簧负载式执行器。弹簧负载式执行器初始时处于压缩状态。释放装置允许弹簧伸展开来以推进活塞130前进将压力施加到物质135上，从而使其通过喷嘴115的孔145排出。

也可以选择的是，执行器105可以是电动马达式执行器。因此，电动马达式执行器能够被激励以推进活塞130远离。用于激励电动马达的能量可以通过选任的电源125来提供。

也可以使用气体发生器式执行器，其中高压气体被用于激励执行器105。举例来说，执行器105可能包括与活塞130连通的可扩展的贮液腔110，在高压气体的作用下该执行器膨胀从而推进活塞130。可以选择的是，爆管类型的气体发生器以可以被使用。一种爆管类型的执行器可以导致用于推进活塞130而产生压缩气体的爆炸。

可以选择的是，正如附图8所示电磁式执行器810也可以使用。执行器810包括相对于磁场布置的导电线圈820，以至在线圈820中感应的电流能够导致相应的电磁力的产生。磁场中电流和产生的力之间的关系被很好限定，并且通常认为是洛伦兹力法则。

正如所显示的，电磁脉冲压力式执行器820与可扩张的伸缩腔室830耦合。进入线圈820的电流通过电源825提供，从而导致线圈820按照箭头A的方向运动。在线圈820中感应的电流出现在磁场中是由于磁体840的存在，导致产生了在方向上既垂直于磁场又垂直于线圈820的成比例的力，如如箭头A所示。因此，执行器820可以压缩或扩张伸缩腔室830，这取决于电流的方向。喷嘴115与可扩张的伸缩腔室830流体连接，以至在伸缩腔830室被压缩时，伸缩腔830中的配剂被迫通过喷嘴的孔145。鉴于电磁式执行器810的物理特性和输入的电流，电磁式执行器810的操作是可以控制的和高度可控的。

正如所描述的那样，电磁式执行器810可以与伺服控制器结合以产生伺服控制注射。注射压力被产生以实时响应由一个或多个传感器所确定的一种或更多的物理特性（例如，压力，位置，体积等等）。电磁式执行器810产生的高压脉冲具有快速的上升时间（例如，小于1微秒）用于将配剂注射到皮肤之下。由可控制的电磁式执行器810提供的压力可以在单次的注射激励中变化以获得需要的结果。

举例来说，第一高压首先用于将提供配剂以穿透生物体的较外面的表层。一旦皮肤被穿透，压力降低到第二，较低的压力以进行剩余的注射。通过感应腔室中压力的变化，伺服控制器可以用于测定何时皮肤被穿透，以及通过控制驱动可控制的电磁式执行器810的电流的振幅，伺服控制器可以对应地调节注射压力。

附图9显示的是可以选择的执行器的类型。执行器910包括一根到十根或更多的相互并行排列的光纤920。光纤920的一个端部附着在表面940上，而另一个端部附着在活塞930和另外一个压板950上，以至光纤920处于张紧状态。光纤由形状记忆合金组成，例如Ni-Ti，可以从Trade Mark Nitinol获得。当电势施加到端部上，形状记忆光纤920缩小以拖曳活塞930接近。这将允许物质135从药瓶970中释放出来，流入到喷嘴115中，并从孔145流出，从而分配物质135。形状记忆合金执行器在2002年7月19日提交的申请序列
号为 10/200, 574 的美国申请中有进一步的描述，其要求了于 2001 年 10 月 26 日提交的第 60/338, 169 号美国临时申请的全部利益，并通过引证将其全部利益并入本文。

【0071】在即将要讨论的实施方案中，活塞 930 和锥形部分 960 是永久磁铁，以致锥形部分的接触面和端部 970 被相对极化。当形状记忆光束 920 的电势被去除时，光束变得松驰以允许活塞 930 折射到锥形部分 960，从而完成注射循环。

【0072】附图 10A-10B 中显示的是与形状记忆执行器一并使用的表面注射装置 100 的可以替换的实施方案。表面注射装置 100 包括两块电气插头板 1024 和 1026。

【0073】除了插头板 1024 和 1026 之外，执行器包括一根到六根或更多的定位在管道 1016 周围并相互平行的金属线 1030。每根金属线 1030 的一个端口附着在插头板 1024 上。插头板 1024 和 1026 是可以导电的。

【0074】金属线 1030 由适合的被加热时接触的材料制成，并可以用作一种激励的方法，例如，附图 9 所描述的形状记忆合金。加热可以通过使电流流经金属线 1030 和插头板 1024 和 1026 来完成。外形记忆合金的较大的收缩使其符合用于解释说明的实施方案。金属线 1030 的收缩导致活塞 1018 被朝向喷嘴 115 推进，因此迫使药物从腔室中流出并流入到孔 145 中。使用收缩材料的形状记忆类型的执行器或其他类型的执行器在 2003 年 9 月 8 日提交的申请序列号为 10/657, 734 的美国申请中有进一步的描述，其要求了于 2002 年 11 月 5 日提交的第 60/424, 114 号美国临时申请的全部利益，并通过引证将其全部利益并入本文。

【0075】附图 11 和附图 12 显示的是用于制造表面注射装置 100 的喷嘴 115 的方法。用于制造喷嘴 115 的方法包括提供一种限定中心管腔 1110 的伸长部件 1120，例如，一种伸长的中空圆柱体（例如，薄壁不锈钢管）。孔 145 可以由电火花放电（ESD）加工来制备。如果附图 11 所示，伸长部件 1120 的端部非常靠近 ESD 金属线 1210，ESD 金属线 1210 和伸长部件 1120 之间留有间隙 1220。

【0076】然后，ESD 金属线 1210 通过电源 1230 赋予能量，在间隙 1220 上产生电弧。因此，间隙 1220 可以在火花放电，导致伸长部件 1120 的最近部分被蒸发。优选的是，足够的伸长部件 1120 被蒸发以形成外部和中心管腔 1110 之间的孔 145。线状 ESD 金属线可以用于形成伸长部件 1120 上的椭圆形的孔 145。

【0077】椭圆形的主轴的优选定位可以通过控制 ESD 金属线和管之间的对准来获得。该过程可以围绕伸长部件 1120 的周长来重复，从而形成阵列。类似的制造方法可以用于形成套筒上的孔 145，正如上文中所描述的那样。可以效仿的喷嘴包括 6, 8 和 12 孔的阵列，正如附图 13A-13C 所示。

【0078】如附图 14 所示，使用伸长部件 1120 形成的表面注喷嘴，孔塞 1415 可以被插入到伸长部件 1120 的端部，以阻止在垂直于皮肤表面的方向上的材料注射。孔塞 1415 可以被塑形以方便将材料从伸长部件 1120 的管腔 1110 中引导到孔 145 中。

【0079】优选的是，本文所描述的表面注射装置 100 的任何实施方案可以被配置为便携式的结构。举例来说，便携式的注射装置可以配置为如附图 15 所示的手持式装置。动力可以通过远程动力源来提供，例如，多用途的电源。可以选择的是或需要另外说明的是，电源可以是设备齐全的电源，例如，电池。

【0080】尽管本发明结合上述优选的实施方案进行了特定的显示和描述，但是本领域内的普通技术人员可以理解到各种形式上的和细节上的变化都将在本发明的范围之内，而不会
脱离于以下权利要求所限定的范围。