Title: METHOD FOR MANUFACTURING ABSORBER LAYERS FOR SOLAR CELL

Abstract: The present invention relates to a process for producing CuInSe₂ and CuInₓGaₓSe₂ thin films used as an absorption layer for a solar cell such that they have a structure near to chemical equivalence ratio. The present invention provides a process for producing a thin film for a solar cell, comprising forming an InSe thin film on a substrate by Metal Organic Chemical Vapor Deposition using a [Me₂In-(μSeMe)]₁ precursor; forming a CuₓSe thin film on the InSe thin film by Metal Organic Chemical Vapor Deposition using a (facc)Ca(DMB) precursor; and forming a CuInₓSe₂ thin film on the CuₓSe thin film by Metal Organic Chemical Vapor Deposition using a [Me₂In-(μSeMe)]₂ precursor. Further, the process may further comprise forming a CuInₓGaₓSe₂ thin film on the CuInₓSe₂ thin film by Metal Organic Chemical Vapor Deposition using a [Me₂Ga-(μSeMe)] precursor.
METHOD FOR MANUFACTURING ABSORBER LAYERS FOR SOLAR CELL

Technical Field

The present invention relates to a process for producing an absorption layer for a solar cell, and more particularly to a process for producing CuInSe₂ and CuIn_{1-x}Ga_{x}Se₂ thin films having a structure close to a chemical equivalence ratio using MOCVD.

Background Art

A ternary thin film of CuInSe₂ (hereinafter, referred to as “CIS”) or CuIn_{1-x}Ga_{x}Se₂ (hereinafter, referred to as “CIGS”) is a semiconductor compound that has been actively studied recently.

Unlike a conventional solar cell using silicon, such a CIS-based thin film solar cell can be fabricated to have a thickness of less than 10 μ and has stable characteristics even with prolonged use thereof. In addition, by experimentation, it has been determined to have an energy conversion efficiency of up to 19% that is superior to other solar cells and thus commercialization thereof to a lower price high efficiency solar cell capable of substituting silicon is highly promising.
In this connection, a variety of processes for producing the CIS thin film have been recently reported. For example, one method, as described in US Patent No. 4,523,051, is to vapor deposit elemental metals simultaneously under vacuum atmosphere. However, this method uses an expensive effusion cell and thus is uneconomical with respect to mass production and realization of large area. Another method, as described in US Patent No. 4,798,660, is to heat and selenize a Cu-In precursor under selenium-containing gas atmosphere such as H₂Se. However, H₂Se gas is highly toxic to the human body and thus dangerous in mass production of the CIS thin film. Other methods such as electrodeposition, Molecular Beam Epitaxy, and the like have been proposed, but they are expensive or feasible only on a laboratory scale, thus being unsuitable for mass production of the CIS thin film.

Therefore, in order to implement mass production of a good quality CIS thin film, it is most preferred to use Metal Organic Chemical Vapor Deposition (hereinafter, referred to as "MOCVD") widely used in a conventional semiconductor process.

However, MOCVD is a generalized technique capable of producing a good quality thin film at lower production costs in the semiconductor industry, but production of the CIS solar cell using the conventional MOCVD technique presents problems associated with high production costs and complex process resulting in difficulty in mass production of good quality
thin films.

In order to grow the CIS or CIGS thin film, a conventional process involves sputtering molybdenum to be vapor deposited on a glass substrate, and then using it as the substrate for growing the thin film. However, the glass substrate is not flexible, and thus there was a problem in which the glass substrate cannot be used in a situation requiring free deformation thereof.

Disclosure of the Invention

Therefore, the present invention has been made in view of the above problems, and it is an object of the present invention to provide a process for producing a CIS or CIGS thin film having a structure close to a chemical equivalence ratio using MOCVD.

It is another object of the present invention to provide a process for producing CIS or CIGS thin film for a solar cell using MOCVD in which a preparation process is simple and mass production is possible at lower production costs.

It is a further object of the present invention to provide a process for producing a CIS or CIGS thin film for a solar cell, which is less harmful to the human body and is more environmentally-friendly.
It is another object of the present invention to provide a process for producing a CIS or CIGS thin film for a solar cell that is freely deformable and flexible.

Brief Description of the Drawings

The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:

Fig. 1 is a process flow schematically illustrating production of a CuInSe$_2$ thin film in accordance with a first embodiment of the present invention;

Fig. 2 is a graph showing XRD results on an InSe thin film grown in accordance with the present invention;

Fig. 3 is a graph showing XRD results on a Cu$_2$Se thin film grown in accordance with the present invention;

Fig. 4 is a graph showing XRD results on a CuInSe$_2$ thin film grown in accordance with the present invention;

Fig. 5 is a process flow schematically illustrating production of a CuIn$_{1-x}$Ga$_x$Se$_2$ thin film in accordance with a second embodiment of the present invention;

Fig. 6 is a graph showing XRD results on a CuIn$_{1-x}$Ga$_x$Se$_2$ thin film grown in accordance with the present invention;
Fig. 7 is a graph showing changes in lattice constants 2a and c with a ratio of [Ga]/[In+Ga] in a CuIn\textsubscript{1-x}Ga\textsubscript{x}Se\textsubscript{2} thin film grown in accordance with the present invention;

Fig. 8 is a graph showing a composition ratio of a CuInSe\textsubscript{2} thin film formed in accordance with the present invention;

Fig. 9 is a graph showing a composition ratio of a CuIn\textsubscript{1-x}Ga\textsubscript{x}Se\textsubscript{2} thin film formed in accordance with the present invention; and

Figs 10 through 14 are, respectively, SEM images of samples A through E of CuIn\textsubscript{1-x}Ga\textsubscript{x}Se\textsubscript{2} thin films formed in accordance with the present invention.

Best Mode for Carrying Out the Invention

Now, a process for producing CIS or CIGS thin film of the preferred embodiments in accordance with the present invention will be described in detail with reference to the attached drawings.

Fig. 1 schematically illustrates a process flow for production of a CIS thin film in accordance with a first embodiment of the present invention;

As shown in Fig. 1, an InSe thin film is formed on a substrate made of Mo material by MOCVD using \([\text{Me}_2\text{In-} (\mu\text{SeMe})]_2\), a single precursor including In and Se (step
S101). Me represents methyl, and μ means that Se is double-bonded to In. As the substrate, a thin and flexible substrate made of the Mo material may be used instead of a conventional glass substrate, and thus various shapes of solar cells may be implemented.

Next, a Cu$_2$Se thin film is formed on the InSe thin film formed in step S101 by MOCVD using a monovalent Cu precursor (hfac)Cu(DMB) (step S102). The hfac and DMB are abbreviations of hexafluoroacetylacetone and 3,3-dimethyl-1-butene, respectively.

Next, a CuInSe$_2$ thin film is formed on the Cu$_2$Se thin film formed in step S102 by MOCVD using [Me$_2$In-(μSeMe)]$_2$, a single precursor including In and Se (step S103). [Me$_2$In-(μSeMe)]$_2$, which is a precursor for forming the CuInSe$_2$ thin film, is the same as that used in step S101.

An apparatus used for growing the thin film in the present invention is a low pressure MOCVD. The low pressure MOCVD used in the present invention is equipped with a plurality of bubblers containing precursors such as (hfac)Cu(DMB), [Me$_2$In-(μSeMe)]$_2$ and [Me$_2$Ga-(μSeMe)]$_2$. Therefore, sequential use of the bubblers containing respective precursors makes it possible to prepare the CIGS thin film in a single process.

Fig. 2 shows XRD results on the InSe thin film grown in step S101. It shows that the structure of the β-InSe
structure is good and that the formed InSe thin film exhibited good growth.

Fig. 3 shows XRD results on the Cu$_2$Se thin film grown in step S102. As can be seen, an initial InSe thin film has been changed to the Cu$_2$Se thin film. X-ray fluorescence spectroscopy (XRF) analysis confirms that In was not detected and the thin film was completely made of Cu$_2$Se. That is, when Cu was grown on the InSe thin film by MOCVD using a (hfac)Cu(2,4,6-Me$_3$-C$_6$H$_2$-py)$_2$ precursor, original In has disappeared and was replaced with Cu thus showing conversion of InSe into Cu$_2$Se.

Fig. 4 shows XRD results on the CuInSe$_2$ thin film grown in step S103. As can be seen, XRD patterns of the grown CuInSe$_2$ thin film were consistent with those of a generally known CuInSe$_2$ single crystal. The grown thin film was shown to have a single phase of a tetragonal structure.

Fig. 5 shows a process flow schematically illustrating production of a CIGS thin film in accordance with a second embodiment of the present invention.

As shown in Fig. 5, steps S201 through S203 are the same as in the above-mentioned CIS thin film production process. A CuIn$_{1-x}$Ga$_x$Se$_2$ thin film is formed on the CuInSe$_2$ thin film formed in step S203 by MOCVD using [Me$_2$Ga-(μSeMe)$_2$], a precursor including Ga and Se (step S204). [Me$_2$Ga-(μSeMe)$_2$]$_2$ is a precursor material wherein In in [Me$_2$In-$
(µSeMe)]₂ was replaced with Ga.

In order to analyze physical properties with regard to In and Ga composition ratio of the grown CIGS thin film, 5 samples (A, B, C, D and E) having different composition ratios were prepared by differing a vapor deposition period of time in step S204 so as to adjust the composition ratio of In and Ga. In the CuIn₁₋ₓGaₓSe₂ thin film, a value of x, i.e., the composition ratio of [Ga]/[In+Ga] was examined by X-ray fluorescence spectroscopy thus showing 0, 0.062, 0.19, 0.34 and 0.96, respectively.

Fig. 6 shows XRD results on CuIn₁₋ₓGaₓSe₂ thin films A, B, C, D and E grown in a second embodiment of the present invention. Depending on the composition ratio of [Ga]/[In+Ga], the positions of peaks has shifted to an increased angle (2θ).

Fig. 7 is a graph showing changes in lattice constants 2a and c with a value of x, i.e., a composition ratio of [Ga]/[In+Ga]. As shown here, lattice constants 2a and c linearly decrease as the value of x increases. Thereby, rate of change in lattice constants 2a and c with the composition ratio of [Ga]/[In+Ga] was 0.329 and 0.602, respectively, showing significant difference therebetween. Further, the CuInSe₂ thin film exhibited a lattice constant of a = 5.77Å and c = 11.54Å, which is consistent with the results obtained by Gryunova. In the grown CuIn₁₋ₓGaₓSe₂ thin films,
the highest value of \(x \) was 0.96 (sample E). In this case, the lattice constant of \(a = 5.612\AA \) and \(c = 10.953\AA \) was consistent with that of \(a = 5.60\AA \) and \(c=10.98\AA \) of CuGaSe\(_2\) which was reported by Gryunova.

Figs. 8 and 9 are, respectively, graphs showing the composition ratio of a CIS thin film grown in accordance with a first embodiment of the present invention and a CIGS thin film grown in accordance with a second embodiment of the present invention. A line connecting \((\text{In+Ga})_2\text{Se}_3\) and \(\text{Cu}_2\text{Se}\) and a vertical line are defined by Groenink and Janse, and represent non-molecularity and non-stoichiometry, respectively. A circle at the center of the triangle is a point having a composition ratio of Cu:In:Se = 1:1:2.

Dots in Fig. 8 represent a plurality of CuInSe\(_2\) samples prepared by experimentation, and as can be seen, the CIS thin film grown in accordance with the present invention has a ratio of Cu:In:Se near to 1:1:2. Further, each of the dots B, C, D and E in Fig. 9 is for samples having a [Ga]/[In+Ga] composition ratio of 0.062, 0.19, 0.34 and 0.96, respectively, and thus it can be seen that even when the CIGS thin film was grown by varying the ratio of In and Ga, a Cu:(In,Ga):Se ratio is maintained at almost 1:1:2 ratio.

As can be seen from the foregoing, CIS and CIGS thin films grown in accordance with the present invention were prepared to have a very near chemical equivalence ratio.
Therefore, in accordance with the present invention, it is possible to simply prepare a good quality thin film having a desired equivalence ratio by MOCVD capable of performing mass production thereof without difficulty. Further, it is possible to have a value near to 1:1:2 ratio of Cu:In(Ga):Se of the thin film obtained even when the ratio of [Ga]/[In+Ga] was adjusted as desired.

Figs 10 through 14 are, respectively, surface SEM images of samples A, B, C, D and E of CIGS thin films grown in accordance with the present invention. All of them show crystal growth of constant grains and thus it represents that crystal growth progresses well regardless of the composition ratio of [Ga]/[In+Ga].

In addition, in accordance with a third embodiment of the present invention, by using [Me₂In-1(μTeMe)]₂ or [Me₂In-1(μSMe)]₂ instead of [Me₂Ga-1(μSeMe)]₂ used as the precursor in step S204 of the second embodiment, a portion of Se may be replaced with Te or S. As a result, the grown thin film is CuIn(Se,S) or CuIn(Se,Te).

Although the present invention was described by way of the preferred embodiments, the technical aspect of the present invention is not limited thereto. That is, even though as the thin film for a solar cell, a process for producing the CuIn₁₋ₓGaₓSₑ₂ (provided that, 0≤x≤1) and CuIn(Se,S) thin films was illustrated, these films are only
several examples of I-III-VI$_2$ compounds composed of elements selected from Groups I, III and VI of the Periodic Table.

Specific examples are described hereinafter. First, as a first step, a III-VI thin film was formed by Metal Organic Chemical Vapor Deposition using a single precursor including elements of Groups III and VI. Elements of Group III include all the elements belonging to Group III of the Periodic Table of Elements, such as In, Ga or Al, and elements of Group VI include all the elements belonging to Group VI of the Periodic Table of Elements, such as Se, S or Te. Therefore, the grown III-VI thin film is either InSe, GaSe, AlSe, InS, GaS, AlS, InTe, GaTe or AlTe.

In a second step, an I$_2$-VI thin film was formed on the III-VI thin film by Metal Organic Chemical Vapor Deposition using a precursor (including monovalent or bivalent precursor) including metals of Group I (for example, such as Ag or Cu). Elements of Group I include all the elements belonging to Group I of the Periodic Table of Elements, such as Cu or Ag. Therefore, the grown I$_2$-VI thin film is either Cu$_2$Se, Cu$_2$S, Cu$_2$Te, Ag$_2$Se, Ag$_2$S or Ag$_2$Te.

In a third step, an I-III-VI$_2$ thin film was formed on the I$_2$-VI thin film by Metal Organic Chemical Vapor Deposition using a single precursor including elements of Groups III and VI so as to complete a thin film for a solar cell in accordance with the present invention. Herein, elements of
Groups III and VI are the same as the elements used in the first step.

Further, in a fourth step, it is possible to prepare a solid solution semiconductor compound of the I-III-VI\(_2\) thin film on the I-III-VI\(_2\) thin film by Metal Organic Chemical Vapor Deposition using a single precursor including other elements of Groups III and VI. In this case, elements of Groups III and VI used herein are different from those used in the first and third steps. Consequently, the thin films thus obtained include CuIn\(_{1-x}\)Ga\(_x\)Se\(_2\), CuIn\(_{1-x}\)Al\(_x\)Se\(_2\), CuGa\(_{1-x}\)Al\(_x\)Se\(_2\), AgIn\(_{1-x}\)Ga\(_x\)Se\(_2\), AgIn\(_{1-x}\)Al\(_x\)Se\(_2\), AgIn\(_{1-x}\)Ga\(_x\)Se\(_2\), CuIn(Se,S)\(_2\), CuGa(Se,S)\(_2\), AgIn(Se,S)\(_2\), AgGa(Se,S)\(_2\), CuIn(Se,Te)\(_2\), CuGa(Se,Te)\(_2\), AgIn(Se,Te)\(_2\), AgGa(Se,Te)\(_2\), CuIn(S,Te)\(_2\), CuGa(S,Te)\(_2\), AgIn(S,Te)\(_2\) and AgGa(S,Te)\(_2\).

Therefore, the technical aspect of the present invention should be construed as disclosing a process for producing any I-III-VI\(_2\) compound and solid solution thereof.

The inventive single precursor including elements of Groups III and VI is not limited to the precursor of \([\text{Me}_2(III)-\mu(\text{VI}Me)]\) type used in the first, second and third embodiments of the present invention, and it is apparent to those skilled in the art that any other type of precursors which were not exemplified in the present invention may be used. In brief, since elements belonging to the same Group of the Periodic Table have similar chemical characteristics,
similar results will be obtained even with use of different precursors. Similarly, the precursor including Cu is not limited to (hfac)Cu(DMB).

Industrial Applicability

As apparent from the above description, in accordance with the present invention, it is possible to produce a good quality CuIn$_{1-x}$Ga$_x$Se$_2$ thin film for a solar cell having a desired equivalence ratio by simply controlling growth conditions of semiconductor compounds.

Further, in accordance with the present invention, it is also possible to realize mass production of a CuIn$_{1-x}$Ga$_x$Se$_2$ thin film for a solar cell at lower production costs by a simple production process.

In addition, in accordance with the present invention, the production process may be configured to be safer and more environmentally-friendly by using relatively low toxicity compounds as a precursor for producing a CuIn$_{1-x}$Ga$_x$Se$_2$ thin film for a solar cell.

Still further, the present invention uses flexible metals as a substrate and thus a shape of the solar cell may be freely changed as desired, thereby extending application area thereof.

Although the preferred embodiments of the present
invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.
CLAIMS:

1. A process for producing a thin film of an I-III-VI$_2$, comprising:
 a first step of forming a thin film of a III-VI compound on a substrate by Metal Organic Chemical Vapor Deposition using a single precursor including elements of Groups III and VI;
 a second step of forming a thin film of an I$_2$-VI compound on the thin film of the III-VI compound by Metal Organic Chemical Vapor Deposition using a precursor including metals of Group I; and
 a third step of forming a thin film of the I-III-VI$_2$ compound on the thin film of the I$_2$-VI compound by Metal Organic Chemical Vapor Deposition using a single precursor including elements of Groups III and VI.

2. The process as set forth in claim 1, further comprising a fourth step of forming a thin film of an I-III-VI$_2$ compound on the thin film of the I-III-VI$_2$ compound formed in the third step by Metal Organic Chemical Vapor Deposition using a single precursor including elements of Groups III and VI, and wherein elements of Group III used in the fourth step are different from those used in the first and third steps.
3. The process as set forth in claim 1, further comprising a fourth step of forming a thin film of an I-III-VI$_2$ compound on the thin film of the I-III-VI$_2$ compound formed in the third step by Metal Organic Chemical Vapor Deposition using a single precursor including elements of Groups III and VI, and wherein elements of Group VI used in the fourth step are different from those used in the first and third steps.

4. The process as set forth in any one of claims 1 through 3, wherein the precursors used in the first and third steps are $[\text{Me}_2\text{In}-(\mu\text{SeMe})]_2$.

5. The process as set forth in any one of claims 1 through 3, wherein the precursor used in the second step is $(\text{hfac})\text{Cu(DMB)}$.

6. The process as set forth in claim 2, wherein the fourth precursor is $[\text{Me}_2\text{Ga}-(\mu\text{SeMe})]_2$.

7. The process as set forth in claim 2, wherein the thin film of an I-III-VI$_2$ compound is selected from the group consisting of $\text{CuIn}_{1-x}\text{Ga}_x\text{Se}_2$, $\text{CuIn}_{1-x}\text{Al}_x\text{Se}_2$, $\text{CuGa}_{1-x}\text{Al}_x\text{Se}_2$, $\text{AgIn}_{1-x}\text{Ga}_x\text{Se}_2$, $\text{AgIn}_{1-x}\text{Al}_x\text{Se}_2$ and $\text{AgIn}_{1-x}\text{Ga}_x\text{Se}_2$.
8. The process as set forth in claim 3, wherein the thin film of an I-III-VI$_2$ compound is selected from the group consisting of CuIn(Se,S)$_2$, CuGa(Se,S)$_2$, AgIn(Se,S)$_2$, AgGa(Se,S)$_2$, CuIn(Se,Te)$_2$, CuGa(Se,Te)$_2$, AgIn(Se,Te)$_2$, AgGa(Se,Te)$_2$, CuIn(S,Te)$_2$, CuGa(S,Te)$_2$, AgIn(S,Te)$_2$ and AgGa(S,Te)$_2$.

9. A process for producing an absorption layer for a solar cell, comprising the steps of:

forming an InSe thin film on a substrate by Metal Organic Chemical Vapor Deposition using a single precursor including In and Se;

forming a Cu$_2$Se thin film on the InSe thin film by Metal Organic Chemical Vapor Deposition using a Cu precursor; and

forming a CuInSe$_2$ thin film on the Cu$_2$Se thin film by Metal Organic Chemical Vapor Deposition using a single precursor including In and Se.

10. The process as set forth in claim 9, further comprising the step of forming a CuIn$_{1-x}$Ga$_x$Se$_2$ thin film on the CuInSe$_2$ thin film by Metal Organic Chemical Vapor Deposition using a single precursor including Ga and Se.
FIG. 1

InSe formation [S101]

Cu$_2$Se formation [S102]

CuInSe$_2$ formation [S103]

FI G. 2

XRD intensity (arb. unit) vs. angle (2θ)

β-InSe
FIG. 7

CuIn$_{1-x}$Ga$_x$Se$_2$

Lattice constants (Å)

[Ga]/[In+Ga]

Points A, B, C, D, E and line 2a
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC7 H01L 31/0256

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Korean Patents and applications for inventions, since 1975

Electronic database consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>E, A</td>
<td>US 6736986 B2 (HELVOLVOLT CORPORATION) 18 MAY 2004 see the whole documents</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>US 5567469 (MATSUSHITA ELECTRIC CO., LTD.) 22 OCTOBER 1996 see the whole documents</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>US 5976614 (MIDWEST RESEARCH INSTITUTE) 02 NOVEMBER 1999 see the abstract</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>US 5731031 (MIDWEST RESEARCH INSTITUTE) 24 MARCH 1998 see the abstract</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>JP 08-316230 A (MATSUSHITA ELECTRIC CO., LTD.) 29 NOVEMBER 1996 see the whole documents</td>
<td>1-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

Date of the actual completion of the international search

17 SEPTEMBER 2004 (17.09.2004)

Date of mailing of the international search report

18 SEPTEMBER 2004 (18.09.2004)

Name and mailing address of the ISA/KR

Authorised officer

KIM, Dong Yup

Korean Intellectual Property Office

290 Dunsan-dong, Seo-gu, Daejeon 302-701, Republic of Korea

Telephone No. 82-42-481-5749

Facsimile No. 82-42-472-7140

Form PCT/ISA/210 (second sheet) (January 2004)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 6736988 B2</td>
<td>18.05.2004</td>
<td>WO 2003026025 A2</td>
<td>27.03.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2003026022 A2</td>
<td>27.03.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2003026023 A2</td>
<td>27.03.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2003026024 A2</td>
<td>27.03.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2003026022 A3</td>
<td>20.11.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003054662 AA</td>
<td>20.03.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2003026023 A3</td>
<td>15.04.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2003026028 A2</td>
<td>27.03.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2003026026 A2</td>
<td>27.03.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 595115 A1</td>
<td>04.05.1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 595115 B1</td>
<td>05.03.1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 6930465 C0</td>
<td>10.04.1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 6930465 T2</td>
<td>12.06.1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6151930 A</td>
<td>31.05.1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3064701 B</td>
<td>12.07.2000</td>
</tr>
</tbody>
</table>

| US 5976614 | 02.11.1999 | NONE | |

| | | WO 9723004 A1 | 26.06.1997 |

JP 06-316230 A	29.11.1996	JP 3484259 B	06.01.2004
		EP 743896 A2	20.11.1996
		US 5728231	17.03.1998